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ON THE ESTIMATION OF INTEGRATED COVARIANCE
MATRICES OF HIGH DIMENSIONAL DIFFUSION PROCESSES1

BY XINGHUA ZHENG AND YINGYING LI

Hong Kong University of Science and Technology

We consider the estimation of integrated covariance (ICV) matrices of
high dimensional diffusion processes based on high frequency observations.
We start by studying the most commonly used estimator, the realized covari-
ance (RCV) matrix. We show that in the high dimensional case when the
dimension p and the observation frequency n grow in the same rate, the lim-
iting spectral distribution (LSD) of RCV depends on the covolatility process
not only through the targeting ICV, but also on how the covolatility process
varies in time. We establish a Marčenko–Pastur type theorem for weighted
sample covariance matrices, based on which we obtain a Marčenko–Pastur
type theorem for RCV for a class C of diffusion processes. The results explic-
itly demonstrate how the time variability of the covolatility process affects the
LSD of RCV. We further propose an alternative estimator, the time-variation
adjusted realized covariance (TVARCV) matrix. We show that for processes
in class C, the TVARCV possesses the desirable property that its LSD de-
pends solely on that of the targeting ICV through the Marčenko–Pastur equa-
tion, and hence, in particular, the TVARCV can be used to recover the empir-
ical spectral distribution of the ICV by using existing algorithms.

1. Introduction.

1.1. Background. Diffusion processes are widely used to model financial asset
price processes. For example, suppose that we have multiple stocks, say, p stocks
whose price processes are denoted by S

(j)
t for j = 1, . . . , p, and X

(j)
t := logS

(j)
t

are the log price processes. Let Xt = (X
(1)
t , . . . ,X

(p)
t )T . Then a widely used model

for Xt is [see, e.g., Definition 1 in Barndorff-Nielsen and Shephard (2004)]

dXt = μt dt + �t dWt ,(1.1)

where, μt = (μ
(1)
t , . . . ,μ

(p)
t )T is a p-dimensional drift process; �t is a p × p

matrix for any t , and is called the (instantaneous) covolatility process; and Wt is a
p-dimensional standard Brownian motion.
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The integrated covariance (ICV) matrix

�p :=
∫ 1

0
�t�

T
t dt

is of great interest in financial applications, which in the one dimensional case is
known as the integrated volatility. A widely used estimator of the ICV matrix is the
so-called realized covariance (RCV) matrix, which is defined as follows. Assume
that we can observe the processes X

(j)
t ’s at high frequency synchronously, say, at

time points τn,�:

X(j)
τn,�

(= logS(j)
τn,�

)
, � = 0,1, . . . , n, j = 1, . . . , p,

then the RCV matrix is defined as

�RCV
p :=

n∑
�=1

�X�(�X�)
T

(1.2)

where �X� =
⎛⎜⎝�X

(1)
�

...

�X
(p)
�

⎞⎟⎠ :=
⎛⎜⎝X

(1)
τn,� − X

(1)
τn,�−1

...

X
(p)
τn,� − X

(p)
τn,�−1

⎞⎟⎠ .

In the one dimensional case, the RCV matrix reduces to the realized volatility.
Thanks to its nice convergence to the ICV matrix as the observation frequency n

goes to infinity [see Jacod and Protter (1998)], the RCV matrix is highly appreci-
ated in both academic research and practical applications.

REMARK 1. The tick-by-tick data are usually not observed synchronously,
and moreover are contaminated by market microstructure noise. On sparsely sam-
pled data (e.g., 5-minute data for some highly liquid assets, or subsample from data
synchronized by refresh times [Barndorff-Nielsen et al. (2011)]), the theory in this
paper should be readily applicable, just as one can use the realized volatility based
on sparsely sampled data to estimate the integrated volatility; see, for example,
Andersen et al. (2001).

1.2. Large dimensional random matrix theory (LDRMT). Having a good es-
timate of the ICV matrix �p , in particular, its spectrum (i.e., its set of eigenval-
ues {λj : j = 1, . . . , p}), is crucial in many applications such as principal compo-
nent analysis and portfolio optimization (see, e.g., the pioneer work of Markowitz
(1952, 1959) and a more recent work [Bai, Liu and Wong (2009)]). When the di-
mension p is high, it is more convenient to study, instead of the p eigenvalues
{λj : j = 1, . . . , p}, the associated empirical spectral distribution (ESD)

F�p(x) := 1

p
#{j :λj ≤ x}, x ∈ R.
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A naive estimator of the spectrum of the ICV matrix �p is the spectrum of the

RCV matrix �RCV
p . In particular, one wishes that the ESD F�RCV

p of �RCV
p would

approximate F�p well when the frequency n is sufficiently high. From the large
dimensional random matrix theory (LDRMT), we now understand quite well that
in the high dimensional setting this good wish won’t come true. For example, in
the simplest case when the drift process is 0, covolatility process is constant, and
observation times τn,� are equally spaced, namely, τn,� = �/n, we are in the set-
ting of estimating the usual covariance matrix using the sample covariance matrix,
given n i.i.d. p-dimensional observations (�X�)�=1,...,n. From LDRMT, we know
that if p/n converges to a non-zero number and the ESD F�p of the true covari-

ance matrix converges, then the ESD F�RCV
p of the sample covariance matrix also

converges; see, for example, Marčenko and Pastur (1967), Yin (1986), Silverstein
and Bai (1995) and Silverstein (1995). The relationship between the limiting spec-
tral distribution (LSD) of �RCV

p in this case and the LSD of �p can be described
by a Marčenko–Pastur equation through Stieltjes transforms, as follows.

PROPOSITION 1 [Theorem 1.1 of Silverstein (1995)]. Assume on a common
probability space:

(i) for p = 1,2, . . . and for 1 ≤ � ≤ n, Z(p)
� = (Z

(p,j)
� )1≤j≤p with Z

(p,j)
� i.i.d.

with mean 0 and variance 1;
(ii) n = n(p) with yn := p/n → y > 0 as p → ∞;

(iii) �p is a (possibly random) nonnegative definite p × p matrix such that its
ESD F�p converges almost surely in distribution to a probability distribution H

on [0,∞) as p → ∞;
(iv) �p and Z(p)

� ’s are independent.

Let �
1/2
p be the (nonnegative) square root matrix of �p and Sp := 1/n ×∑n

�=1 �
1/2
p Z(p)

� (Z(p)
� )T �

1/2
p . Then, almost surely, the ESD of Sp converges in dis-

tribution to a probability distribution F , which is determined by H in that its
Stieltjes transform

mF (z) :=
∫
λ∈R

1

λ − z
dF (λ), z ∈ C+ := {z ∈ C : Im(z) > 0}

solves the equation

mF (z) =
∫
τ∈R

1

τ(1 − y(1 + zmF (z))) − z
dH(τ).(1.3)

In the special case when �p = σ 2Ip×p , where Ip×p is the p×p identity matrix,
the LSD F can be explicitly expressed as follows.
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PROPOSITION 2 [see, e.g., Theorem 2.5 in Bai (1999)]. Suppose that Z(p)
� ’s

are as in the previous proposition, and �p = σ 2Ip×p for some σ 2 > 0. Then the
LSD F has density

p(x) = 1

2πσ 2xy

√
(b − x)(x − a) if a ≤ x ≤ b,

and a point mass 1 − 1/y at the origin if y > 1, where

a = a(y) = σ 2(1 − √
y
)2 and b = b(y) = σ 2(1 + √

y
)2

.(1.4)

The LSD F in this proposition is called the Marčenko–Pastur law with ratio
index y and scale index σ 2, and will be denoted by MP(y,σ 2) in this article.

1.3. Back to the stochastic volatility case. In practice, the covolatility pro-
cess is typically not constant. For example, it is commonly observed that the
stock intraday volatility tends to be U-shaped [see, e.g., Admati and Pfleiderer
(1988), Andersen and Bollerslev (1997)] or exhibits some other patterns [see, e.g.,
Andersen and Bollerslev (1998)]. In this article, we shall allow them to be not
only varying in time but also stochastic. Furthermore, we shall allow the observa-
tion times τn,� to be random. These generalizations make our study to be different
in nature from the LDRMT: in LDRMT the observations are i.i.d.; in our setting,
the observations (�X�)�=1,...,n may, first, be dependant with each other, and sec-
ond, have different distributions because (i) the covolatility process may vary over
time, and (ii) the observation durations �τ� := τn,� − τn,�−1 may be different.

In general, for any time-varying covolatility process �t , we associate it with a
constant covolatility process given by the square root of the ICV matrix

�0
t :=

√∫ 1

0
�s�T

s ds for all t ∈ [0,1].(1.5)

Let X0
t be defined by replacing �t with the constant covolatility process �0

t (and
replacing μt with 0, and Wt with another independent Brownian motion, if neces-
sary) in (1.1). Observe that Xt and X0

t share the same ICV matrix at time 1. Based
on X0

t , we have an associated RCV matrix

�RCV0

p =
n∑

�=1

�X0
�(�X0

�)
T ,(1.6)

which is estimating the same ICV matrix as �RCV
p .

Since �RCV
p and �RCV0

p are based on the same estimation method and share the
same targeting ICV matrix, it is desirable that their ESDs have similar properties.
In particular, based on the results in LDRMT and the discussion about constant
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covolatility case in Section 1.2, we have the following property for �RCV0

p : if the

ESD F�p converges, then so does F�RCV0
p ; moreover, their limits are related to

each other via the Marčenko–Pastur equation (1.3). Does this property also hold for
�RCV

p ? Our first result (Proposition 3) shows that even in the most ideal case when
the covolatility process has the form �t = γt · Ip×p for some deterministic (scalar)
function γt , such convergence results may not hold for �RCV

p . In particular, the

limit of F�RCV
p (when it exists) changes according to how the covolatility process

evolves over time.
This leads to the following natural and interesting question: how does the LSD

of RCV matrix depend on the time-variability of the covolatility process? Answer-
ing this question in a general context without putting any structural assumption
on the covolatility process seems to be rather challenging, if not impossible. For
a class C (see Section 2) of processes, we do establish a result for RCV matri-
ces that’s analogous to the Marčenko–Pastur theorem (see Proposition 5), which
demonstrates clearly how the time-variability of the covolatility process affects
the LSD of RCV matrix. Proposition 5 is proved based on Theorem 1, which is
a Marčenko–Pastur type theorem for weighted sample covariance matrices. These
results, in principle, allow one to recover the LSD of ICV matrix based on that of
RCV matrix.

Estimating high dimensional ICV matrices based on high frequency data has
only recently started to gain attention. See, for example, Wang and Zou (2010);
Tao et al. (2011) who made use of data over long time horizons by proposing a
method incorporating low-frequency dynamics; and Fan, Li and Yu (2011) who
studied the estimation of ICV matrices for portfolio allocation under gross ex-
posure constraint. In Wang and Zou (2010), under sparsity assumptions on the
ICV matrix, banding/thresholding was innovatively used to construct consistent
estimators of the ICV matrix in the spectral norm sense. In particular, when the
sparsity assumptions are satisfied, their estimators share the same LSD as the ICV
matrix. It remains an open question that when the sparsity assumptions are not
satisfied, whether one can still make good inference about the spectrum of ICV
matrix. For processes in class C (see Section 2), whose ICV matrices do not need
to be sparse, we propose a new estimator, the time-variation adjusted realized co-
variance (TVARCV) matrix. We show that the TVARCV matrix has the desirable
property that its LSD exists provided that the LSD of ICV matrix exists, and fur-
thermore, the two LSDs are related to each other via the Marčenko–Pastur equation
(1.3) (see Theorem 2). Therefore, the TVARCV matrix can be used, for example,
to recover the LSD of ICV matrix by inverting the Marčenko–Pastur equation us-
ing existing algorithms.

The rest of the paper is organized as the following: theoretical results are pre-
sented in Section 2, proofs are given in Section 3, simulation studies in Section 4,
and conclusion and discussions in Section 5.
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Notation. For any matrix A, ‖A‖ = √
λmax(AA∗) denotes its spectral norm. For

any Hermitian matrix A, FA stands for its ESD. For two matrices A and B , we
write A ≤ B (A ≥ B , resp.) if B−A (A−B , resp.) is a nonnegative definite matrix.
For any interval I ⊆ [0,∞), and any metric space S, D(I ;S) stands for the space
of càdlàg functions from I to S. Additionally, i = √−1 stands for the imaginary
unit, and for any z ∈ C, we write Re(z), Im(z) as its real part and imaginary part,
respectively, and z as its complex conjugate. We also denote R+ = {a ∈ R :a > 0},
C+ = {z ∈ C : Re(z) > 0} and Q1 = {z ∈ C : Re(z) ≥ 0, Im(z) ≥ 0}. We follow
the custom of writing f ∼ g to mean that the ratio f/g converges to 1. Finally,
throughout the paper, c,C,C1,C

′ etc. denote generic constants whose values may
change from line to line.

2. Main results.

2.1. Dependance of the LSD of RCV matrix on the time-variability of covolatil-
ity process. Proposition 1 asserts that the ESD of sample covariance matrix con-
verges to a limiting distribution which is uniquely determined by the LSD of the
underlying covariance matrix. Unfortunately, Proposition 1 does not apply to our
case, since the observations �X� under our general diffusion process setting are
not i.i.d. Proposition 3 below shows that even in the following most ideal case, the
RCV matrix does not have the desired convergence property.

PROPOSITION 3. Suppose that for all p, Xt = X(p)
t is a p-dimensional pro-

cess satisfying

dXt = γt dWt , t ∈ [0,1],(2.1)

where γt > 0 is a nonrandom (scalar) càdlàg process. Let σ 2 = ∫ 1
0 γ 2

t dt , and so
that the ICV matrix �p is σ 2Ip×p . Assume further that the observation times τn,�

are equally spaced, that is, τn,� = �/n, and that the RCV matrix �RCV
p is defined

by (1.2). Then so long as γt is not constant on [0,1), for any ε > 0, there exists
yc = yc(γ, ε) > 0 such that if limp/n = y ≥ yc,

lim supF�RCV
p

(
b(y) + σ 2ε

)
< 1 almost surely.(2.2)

In particular, F�RCV
p does not converge to the Marčenko–Pastur law MP(y,σ 2).

Observe that MP(y,σ 2) is the LSD of RCV matrix when γt ≡ σ . The main mes-
sage of Proposition 3 is that, the LSD of RCV matrix depends on the whole co-
volatility process not only through �p , but also on how the covolatility process
varies in time. It will also be clear from the proof of Proposition 3 (Section 3.2)
that, the more “volatile” the covolatility process is, the further away the LSD is
from the Marčenko–Pastur law MP(y,σ 2). This is also illustrated in the simulation
study in Section 4.
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2.2. The class C . To understand the behavior of the ESD of RCV matrix more
clearly, we next focus on a special class of diffusion processes for which we (i)
establish a Marčenko–Pastur type theorem for RCV matrices; and (ii) propose an
alternative estimator of ICV matrix.

DEFINITION 1. Suppose that Xt is a p-dimensional process satisfying (1.1),
and �t is càdlàg. We say that Xt belongs to class C if, almost surely, there exist
(γt ) ∈ D([0,1];R) and � a p × p matrix satisfying tr(��T ) = p such that

�t = γt�.(2.3)

Observe that if (2.3) holds, then the ICV matrix �p = ∫ 1
0 γ 2

t dt · ��T . We note
that � does not need to be sparse, hence neither does �p .

A special case is when � = Ip×p . This type of process is studied in Proposi-
tion 3 and in the simulation studies in Section 4.

A more interesting case is the following.

PROPOSITION 4. Suppose that X
(j)
t satisfy

dX
(j)
t = μ

(j)
t dt + σ

(j)
t dW

(j)
t , j = 1, . . . , p,(2.4)

where μ
(j)
t , σ

(j)
t ∈ D([0,1];R) are the drift and volatility processes for stock j ,

and W
(j)
t ’s are (one-dimensional) standard Brownian motions. If the following

conditions hold:

(i) the correlation matrix process of (W
(j)
t )

Rt :=
(〈W(j),W(k)〉t

t

)
1≤j,k≤p

:= (
r(jk))

1≤j,k≤p(2.5)

is constant in t ∈ (0,1];
(ii) r(jk) �= 0 for all 1 ≤ j, k ≤ p; and

(iii) the correlation matrix process of (X
(j)
t )( ∫ t

0 σ
(j)
s σ

(k)
s d〈W(j),W(k)〉s√∫ t

0 (σ
(j)
s )2 ds · ∫ t

0 (σ
(k)
s )2 ds

)
1≤j,k≤p

:= (
ρ(jk))

1≤j,k≤p(2.6)

is constant in t ∈ (0,1];
then (X

(j)
t ) belongs to class C .

The proof is given in the supplementary article [Zheng and Li (2011)].
Equation (2.4) is another common way of representing multi-dimensional log-

price processes. We note that if X
(j)
t are log price processes, then over short time
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period, say, one day, it is reasonable to assume that the correlation structure of
(X

(j)
t ) does not change, hence by this proposition, (X

(j)
t ) belongs to class C .

Observe that if a diffusion process Xt belongs to class C , the drift process
μt ≡ 0, and τn,�’s and γt are independent of Wt , then

�X� =
∫ τn,�

τn,�−1

γt�dWt
d=
√∫ τn,�

τn,�−1

γ 2
t dt · �̆1/2 · Z�,

where “ d=” stands for “equal in distribution,” �̆1/2 is the nonnegative square root
matrix of �̆ := ��T , and Z� = (Z

(1)
� , . . . ,Z

(p)
� )T consists of independent stan-

dard normals. Therefore the RCV matrix

�RCV
p =

n∑
�=1

�X�(�X�)
T d=

n∑
�=1

wn
� · �̆1/2Z�(Z�)

T �̆1/2,

where wn
� = ∫ τn,�

τn,�−1
γ 2
t dt . This is similar to the Sp in Proposition 1, except that

here the “weights” wn
� may vary in �, while in Proposition 1 the “weights” are con-

stantly 1/n. Motivated by this observation we develop the following Marčenko–
Pastur type theorems for weighted sample covariance matrices and RCV matrices.

2.3. Marčenko–Pastur type theorems for weighted sample covariance matrices
and RCV matrices.

THEOREM 1. Suppose that assumptions (ii) and (iv) in Proposition 1 hold.
Assume further that:

(A.i′) for p = 1,2, . . . and 1 ≤ � ≤ n, Z(p)
� = (Z

(p,j)
� )1≤j≤p with Z

(p,j)
� i.i.d.

with mean 0, variance 1 and finite moments of all orders;
(A.iii′) �p is a (possibly random) nonnegative definite p × p matrix such that

its ESD F�p converges almost surely in distribution to a probability distribution
H on [0,∞) as p → ∞; moreover, H has a finite second moment;

(A.v) the weights wn
� ,1 ≤ � ≤ n,n = 1,2, . . . , are all positive, and there ex-

ists κ < ∞ such that the rescaled weights (nwn
� ) satisfy

max
n

max
�=1,...,n

(nwn
� ) ≤ κ;

moreover, almost surely, there exists a process ws ∈ D([0,1];R+) such that

lim
n

∑
1≤�≤n

∫ �/n

(�−1)/n
|nwn

� − ws |ds = 0;(2.7)

(A.vi) there exists a sequence ηp = o(p) and a sequence of index sets Ip sat-
isfying Ip ⊂ {1, . . . , p} and #Ip ≤ ηp such that for all n and all �, wn

� may depend

on Z(p)
� but only on {Z(p,j)

� : j ∈ Ip};
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(A.vii) there exist C < ∞ and δ < 1/6 such that for all p, ‖�p‖ ≤ Cpδ almost
surely.

Define Sp =∑n
�=1 wn

� · �1/2
p Z(p)

� (Z(p)
� )T �

1/2
p . Then, almost surely, the ESD of Sp

converges in distribution to a probability distribution Fw , which is determined by
H and (ws) in that its Stieltjes transform mFw(z) is given by

mFw(z) = −1

z

∫
τ∈R

1

τM(z) + 1
dH(τ),(2.8)

where M(z), together with another function m̃(z), uniquely solve the following
equation in C+ × C+:⎧⎪⎪⎪⎨⎪⎪⎪⎩

M(z) = −1

z

∫ 1

0

ws

1 + ym̃(z)ws

ds,

m̃(z) = −1

z

∫
τ∈R

τ

τM(z) + 1
dH(τ).

(2.9)

REMARK 2. Assumption (A.i′) can undoubtedly be weakened, for example,
by using the truncation and centralization technique as in Silverstein and Bai
(1995) and Silverstein (1995); or, a closer look at the proof of Theorem 1 indi-
cates that as long as Z

(p,j)
� has finite moments up to order k > 6/(1 − 6δ), the

theorem is true and can be proved by exactly the same argument.

REMARK 3. If wn
� ≡ 1/n, then ws ≡ 1, and Theorem 1 reduces to Proposi-

tion 1. Moreover, if ws is not constant, that is, ws �≡ ∫ 1
0 wt dt on [0,1), then except

in the trivial case when H is a delta measure at 0, the LSD Fw �= F , where F is the
LSD in Proposition 1 determined by H(·/∫ 1

0 wt dt). See the supplementary article
[Zheng and Li (2011)] for more details.

Theorem 1 is proved in Section 3.3.
A direct consequence of this theorem and Lemma 1 below is the following

Marčenko–Pastur type result for RCV matrices for diffusion processes in class C .
We note that, thanks to Lemma 1 below (see the remark after the proof of Lemma 1
for more explanations), regarding the drift process, except requiring them to be
uniformly bounded, we put no additional assumption on them: they can be, for
example, stochastic, càdlàg and dependant with each other. Furthermore, we al-
low for dependence between the covolatility process and the underlying Brownian
motion—in other words, we allow for the leverage effect. In the special case when
γ

(p)
t does not change in p, is nonrandom and bounded, and the observation times

are equally spaced, the (rather technical) assumptions (B.iii) and (B.iv) below are
trivially satisfied.
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PROPOSITION 5. Suppose that for all p, X(p)
t is a p-dimensional pro-

cess in class C for some drift process μ
(p)
t = (μ

(p,1)
t , . . . ,μ

(p,p)
t )T , covolatil-

ity process �
(p)
t = γ

(p)
t �(p) and p-dimensional Brownian motion W(p)

t =
(W

(p,1)
t , . . . ,W

(p,p)
t )T . Suppose further that:

(B.i) there exists C0 < ∞ such that for all p and all j = 1, . . . , p, |μ(p,j)
t | ≤

C0 for all t ∈ [0,1) almost surely;
(B.ii) �̆p = �(p)(�(p))T satisfies assumption (A.iii′) and (A.vii) in Theo-

rem 1;
(B.iii) there exists a sequence ηp = o(p) and a sequence of index sets Ip sat-

isfying Ip ⊂ {1, . . . , p} and #Ip ≤ ηp such that γ
(p)
t may depend on W(p)

t but

only on {W(p,j)
t : j ∈ Ip}; moreover, there exists C1 < ∞ such that for all p,

|γ (p)
t | ≤ C1 for all t ∈ [0,1) almost surely; additionally, almost surely, there exists

(γt ) ∈ D([0,1];R) such that

lim
p

∫ 1

0

∣∣γ (p)
t − γt

∣∣dt = 0;
(B.iv) the observation times τn,� are independent of Xt ; moreover, there exists

κ < ∞ such that the observation durations �τn,� := τn,� − τn,�−1 satisfy

max
n

max
�=1,...,n

(n · �τn,�) ≤ κ;
additionally, almost surely, there exists a process υs ∈ C([0,1);R+) such that

τn,[ns] → ϒs :=
∫ s

0
υr dr as n → ∞ for all 0 ≤ s ≤ 1,

where for any x, [x] stands for its integer part.

Then, as p → ∞, F�RCV
p converges almost surely to a probability distribution Fw

as specified in Theorem 1 for ws = (γϒs )
2υs .

Proposition 5 demonstrates explicitly how the LSD of RCV matrix depends on
the time-variability of the covolatility process. Hence, the RCV matrix by itself
cannot be used to make robust inference for the ESD F�p of the ICV matrix. If
(γs) [and hence ws = (γϒs )

2υs ] is known, then in principle, the equations (2.8)
and (2.9) can be used to recover F�p . However, in general, (γs) is unknown and
estimating the process (γs) can be challenging and will bring in more complication
in the inference. Moreover, the equations (2.8) and (2.9) are different from and
more complicated than the classical Marčenko–Pastur equation (1.3), and in order
to recover F�p based on these equations, one has to extend existing algorithms
[El Karoui (2008), Mestre (2008) and Bai, Chen and Yao (2010) etc.] which are
designed for (1.3). Developing such an algorithm is of course of great interest,
but we shall not pursue this in the present article. We shall instead propose an
alternative estimator which overcomes these difficulties.
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2.4. Time-variation adjusted realized covariance (TVARCV) matrix. Suppose
that a diffusion process Xt belongs to class C . We define the time-variation ad-
justed realized covariance (TVARCV) matrix as follows:

�̂p := tr(�RCV
p )

n
·

n∑
�=1

�X�(�X�)
T

|�X�|2 = tr(�RCV
p )

p
�̃p,(2.10)

where for any vector v, |v| stands for its Euclidean norm, and

�̃p := p

n
·

n∑
�=1

�X�(�X�)
T

|�X�|2 .(2.11)

Let us first explain �̃p . Consider the simplest case when μt ≡ 0, γt deterministic,

�t ≡ Ip×p , and τn,� = �/n, � = 0,1, . . . , n. In this case, �X� =
√∫ �/n

(�−1)/n γ 2
t dt ·

Z�/
√

n where Z� = (Z
(1)
� , . . . ,Z

(p)
� )T and Z

(j)
� ’s are i.i.d. standard normal. Hence,

�X�(�X�)
T /|�X�|2 = Z�(Z�)

T /|Z�|2. However, as p → ∞, |Z�|2 ∼ p, hence
�̃p ∼ 1/n · ∑n

�=1 Z�(Z�)
T , the latter being the usual sample covariance matrix.

We will show that, first, tr(�RCV
p ) ∼ tr(�p); and second, if Xt belongs to class C

and satisfies certain additional assumptions, then the LSD of �̃p is related to that
of �̆p via the Marčenko–Pastur equation (1.3), where

�̆p = p

tr(�p)
�p = ��T .(2.12)

Hence, the LSD of �̂p is also related to that of �p via the same Marčenko–Pastur
equation.

We now state our assumptions. Observe that about the drift process, again, ex-
cept requiring them to be uniformly bounded, we put no additional assumption.
Furthermore, we allow for the dependence between the covolatility process and
the underlying Brownian motion, namely, the leverage effect.

Assumptions:

(C.i) there exists C0 < ∞ such that for all p and all j = 1, . . . , p, |μ(p,j)
t | ≤

C0 for all t ∈ [0,1) almost surely;
(C.ii) there exist constants C1 < ∞,0 ≤ δ1 < 1/2, a sequence ηp < C1p

δ1

and a sequence of index sets Ip satisfying Ip ⊂ {1, . . . , p} and #Ip ≤ ηp such that

γ
(p)
t may depend on W(p)

t but only on {W(p,j)
t : j ∈ Ip}; moreover, there exists

C2 < ∞ such that for all p, |γ (p)
t | ∈ (1/C2,C2) for all t ∈ [0,1) almost surely;

(C.iii) there exists C3 < ∞ such that for all p and for all j , the individual

volatilities σ
(j)
t =

√
(γ

(p)
t )2 ·∑p

k=1(�
(p)
jk )2 ∈ (1/C3,C3) for all t ∈ [0,1] almost

surely;
(C.iv) limp→∞ tr(�p)/p (= limp→∞

∫ 1
0 (γ

(p)
t )2 dt) := θ > 0 almost surely;
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(C.v) almost surely, as p → ∞, the ESD F�p converges to a probability
distribution H on [0,∞);

(C.vi) there exist C5 < ∞ and 0 ≤ δ2 < 1/2 such that for all p, ‖�p‖ ≤ C5p
δ2

almost surely;
(C.vii) the δ1 in (C.ii) and δ2 in (C.vi) satisfy that δ1 + δ2 < 1/2;

(C.viii) p/n → y ∈ (0,∞) as p → ∞; and
(C.ix) there exists C4 < ∞ such that for all n,

max
1≤�≤n

n · (τn,� − τn,�−1) ≤ C4 almost surely;
moreover, τn,�’s are independent of Xt .

We have the following convergence theorem regarding the ESD of our proposed
estimator TVARCV matrix �̂p .

THEOREM 2. Suppose that for all p, Xt = X(p)
t is a p-dimensional process

in class C for some drift process μ
(p)
t = (μ

(p,1)
t , . . . ,μ

(p,p)
t )T , covolatility pro-

cess �
(p)
t = γ

(p)
t �(p) and p-dimensional Brownian motion W(p)

t , which satisfy
assumptions (C.i)∼(C.vii) above. Suppose also that p and n satisfy (C.viii), and
the observation times satisfy (C.ix). Let �̂p be as in (2.10). Then, as p → ∞,
F �̂p converges almost surely to a probability distribution F , which is determined
by H through Stieltjes transforms via the same Marčenko–Pastur equation (1.3)
as in Proposition 1.

The proof of Theorem 2 is given in Section 3.4.
The LSD H of the targeting ICV matrix is in general not the same as the LSD F ,

but can be recovered from F based on equation (1.3). In practice, when one has
only finite number of samples, the articles [El Karoui (2008), Mestre (2008) and
Bai, Chen and Yao (2010) etc.] studied the estimation of the population spectral
distribution based on the sample covariance matrices. In particular, applying The-
orem 2 of El Karoui (2008) to our case yields

COROLLARY 1. Let Hp = F �̂p , and define Ĥp as in Theorem 2 of El Karoui
(2008). If ‖�p‖ are bounded in p, then, as p → ∞, Ĥp → H almost surely.

Therefore, when the dimension p is large, based on the ESD of TVARCV ma-
trix �̂p , we can estimate the spectrum of underlying ICV matrix �p well.

3. Proofs.

3.1. Preliminaries. We collect some either elementary or well-known facts
in the following. The proofs are given in the supplemental article [Zheng and Li
(2011)].
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LEMMA 1. Suppose that for each p, v(p)
� = (v

(p,1)
� , . . . , v

(p,p)
� )T and w(p)

� =
(w

(p,1)
� , . . . ,w

(p,p)
� ), � = 1, . . . , n, are all p-dimensional vectors. Define

S̃n =
n∑

�=1

(
v(p)
� + w(p)

�

) · (v(p)
� + w(p)

�

)T and Sn =
n∑

�=1

w(p)
�

(
w(p)

�

)T
.

If the following conditions are satisfied:

(i) n = n(p) with limp→∞ p/n = y > 0;
(ii) there exists a sequence εp = o(1/

√
p) such that for all p and all �, all the

entries of v(p)
� are bounded by εp in absolute value;

(iii) lim supp→∞ tr(Sn)/p < ∞ almost surely.

Then L(F S̃n,F Sn) → 0 almost surely, where for any two probability distribution
functions F and G, L(F,G) denotes the Levy distance between them.

LEMMA 2 [Lemma 2.6 of Silverstein and Bai (1995)]. Let z ∈ C with v =
Im(z) > 0, A and B be p × p with B Hermitian, and q ∈ C

p . Then∣∣tr(((B − zI)−1 − (B + τqq∗ − zI)−1) · A)∣∣≤ ‖A‖/v for all τ ∈ R.

The following two lemmas are similar to Lemma 2.3 in Silverstein (1995).

LEMMA 3. Let w ∈ C with Re(w) ≥ 0, and A be an Hermitian nonnegative
definite matrix. Then ‖(wA + I )−1‖ ≤ 1.

LEMMA 4. Let w1,w2 ∈ C with Re(w1) ≥ 0 and Re(w2) ≥ 0, A be a p × p

Hermitian nonnegative definite matrix, B any p × p matrix, and q ∈ C
p . Then:

(i) | tr(B((w1A + I )−1 − (w2A + I )−1))| ≤ p · |w1 − w2| · ‖B‖ · ‖A‖;
(ii) |q∗B(w1A + I )−1q − q∗B(w2A + I )−1q| ≤ |w1 − w2| · |q|2‖B‖ · ‖A‖.

LEMMA 5. For any Hermitian matrix A and z ∈ C with Im(z) = v > 0, ‖(A−
zI)−1‖ ≤ 1/v.

Both Lemmas 3 and 4 require the real part of w (or w1, w2) to be nonnegative. In
our proof of Theorem 1, the requirements will be fulfilled thanks to the following
lemma.

LEMMA 6. Let z = iv ∈ C with v > 0, A be a p × p Hermitian nonnegative
definite matrix, q ∈ C

p , τ > 0. Then

−1

z
· 1

1 + τq∗(A − zI)−1q
∈ Q1 = {z ∈ C : Re(z) ≥ 0, Im(z) ≥ 0}.
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LEMMA 7. Let z = iv ∈ C with v > 0, A be any p × p matrix, and B be a
p × p Hermitian nonnegative definite matrix. Then tr(A(B − zI)−1A∗) ∈ Q1.

LEMMA 8. Suppose that ws ∈ D([0,1);R+). Then for any y ∈ C, the equa-
tion ∫ 1

0

1

1 + zws

ds = y

admits at most one solution in Q1.

The following result is an immediate consequence of Lemma 2.7 of Bai and
Silverstein (1998).

LEMMA 9. For X = (X(1), . . . ,X(p))T where X(j)’s are i.i.d. random vari-
ables such that EX(1) = 0,E|X(1)|2 = 1, and E|X(1)|2k < ∞ for some 2 ≤ k ∈ N,
there exists Ck ≥ 0, depending only on k, E|X(1)|4 and E|X(1)|2k , such that for
any p × p nonrandom matrix A,

E|X∗AX − tr(A)|2k ≤ Ck(tr(AA∗))k ≤ Ckp
k‖A‖2k.

PROPOSITION 6 [Theorem 2 of Geronimo and Hill (2003)]. Suppose that Pn

are real probability measures with Stieltjes transforms mn(z). Let K ⊆ C+ be an
infinite set with a limit point in C+. If limmn(z) := m(z) exists for all z ∈ K , then
there exists a probability measure P with Stieljes transform m(z) if and only if

lim
v→∞ iv · m(iv) = −1,(3.1)

in which case Pn → P in distribution.

3.2. Proof of Proposition 3. By assumption, γt is positive and non-constant
on [0,1), and is càdlàg, in particular, right-continuous; moreover,

∫ 1
0 γ 2

t dt = σ 2.
Hence, there exists δ > 0 and [c, d] ⊆ [0,1] such that

γt ≥ σ(1 + δ) for all t ∈ [c, d].
Therefore, if [(� − 1)/n, �/n] ⊆ [c, d],

�X�(�X�)
T d=

∫ �/n

(�−1)/n
γ 2
t dt · Z�(Z�)

T ≥ (1 + δ)2

n
· σ 2Z�(Z�)

T ,

where Z� = (Z
(1)
� , . . . ,Z

(p)
� )T consists of independent standard normals. Hence,

if we let Jn = {� : [(� − 1)/n, �/n] ⊆ [c, d]} and

�p = ∑
�∈Jn

�X�(�X�)
T , �p = σ 2

(n(d − c))
· ∑
�∈Jn

Z�(Z�)
T ,
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then for any x ≥ 0, by Weyl’s Monotonicity theorem [see, e.g., Corollary 4.3.3 in
Horn and Johnson (1990)],

F�RCV
p (x) ≤ F�p(x) ≤ F�p

(
x/[(1 + δ)2(d − c)]).(3.2)

Now note that #Jn ∼ (d − c)n, hence if p/n → y, by Proposition 2, F�p will
converge almost surely to the Marčenko–Pastur law with ratio index y′ = y/(d −c)

and scale index σ 2, which has density on [a(y′), b(y′)] with functions a(·) and b(·)
defined by (1.4). By the formula of b(·),

(1 + δ)2(d − c)b(y′) = (1 + δ) · σ 2(1 + δ)
(
y + 2

√
(d − c)y + d − c

)
.

Hence, for any ε > 0, there exists yc > 0 such that for all y ≥ yc,

(1 + δ)2(d − c)b(y′) ≥ (1 + δ) · σ 2((1 + √
y
)2 + ε

)= (1 + δ)
(
b(y) + σ 2ε

)
,

that is,

(b(y) + σ 2ε)

(1 + δ)2(d − c)
≤ b(y′)

1 + δ
.

By (3.2), when the above inequality holds,

lim supF�RCV
p

(
b(y) + σ 2ε

)≤ MP(y′,σ 2)(b(y′)/(1 + δ)
)
< 1.

3.3. Proof of Theorem 1. To prove Theorem 1, following the strategies in
Marčenko and Pastur (1967), Silverstein (1995), Silverstein and Bai (1995), we
will work with Stieltjes transforms.

PROOF OF THEOREM 1. For notational ease, we shall sometimes omit the
sub/superscripts p and n in the arguments below: thus, we write Z� instead of
Z(p)

� , w� instead of wn
� , � instead of �p , S instead of Sp , etc. Also recall that

yn = p/n, which converges to y > 0.
By assumption (A.vi) we may, without loss of generality, assume that the

weights w� are independent of Z�’s. This is because, if we let Z̃� be the result
of replacing Z

(p,j)
� , j ∈ Ip, with independent random variables with the same dis-

tribution that are also independent of w�, and S̃ := ∑n
�=1 w� · �1/2Z̃�(Z̃�)

T �1/2,
then rank(S̃ − S) ≤ 2ηp , and so by the rank inequality

‖FA − FB‖ ≤ rank(A − B)

p
for any A,B p × p symmetric matrices

[see, e.g., Lemma 2.2 in Bai (1999)], S̃ and S must have the same LSD.
We proceed according to whether H is a delta measure at 0 or not. If H is a delta

measure at 0, we claim that Fw is also a delta measure at 0, and the conclusion of
the theorem holds. The reason is as follows. By assumption (A.v),

S =
n∑

�=1

w� · �1/2Z�(Z�)
T �1/2 ≤ κ

n

n∑
�=1

�1/2Z�(Z�)
T �1/2 := κS.
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Hence by Weyl’s Monotonicity theorem again, for any x ≥ 0

FS(x) ≥ FS(x/κ).

However, it follows easily from Proposition 1 that FS converges to the delta mea-
sure at 0, hence so does FS .

Below we assume that H is not a delta measure at 0.
Let I = Ip×p be the p × p identity matrix, and

mn := mn(z) = tr((S − zI)−1)

p

be the Stieltjes transform of FS . By Proposition 6, in order to show that FS

converges, it suffices to prove that for all z = iv with v > 0 sufficiently large,
limn mn(z) := m(z) exists, and that m(z) satisfies condition (3.1).

We first show the convergence of mn(z) for z = iv with v > 0 sufficiently large.
Since for all n, |mn(z)| ≤ 1/v, it suffices to show that {mn(z)} has at most one
limit.

For notational ease, we denote by r� = �1/2Z�. We first show that

max
�=1,...,n

∣∣|r�|2/p − h
∣∣= max

�=1,...,n
|ZT

� �Z�/p − h| → 0 almost surely,(3.3)

where h = ∫∞
0 x dH(x). In fact, by Lemma 9 and assumptions (A.i′) and (A.vii),

for any k ∈ N,

E|ZT
� �Z� − tr(�)|2k ≤ Ckp

kp2δk for all 1 ≤ � ≤ n.

Using Markov’s inequality we get that for any ε > 0,

P
(|ZT

� �Z� − tr(�)| ≥ pε
)≤ Ckp

kp2δk

p2kε2k
= Ckε

−2k

p(1−2δ)k
for all 1 ≤ � ≤ n.

Hence, choosing k > 2/(1 − 2δ), using Borel–Cantelli and that n = O(p) yield

max
�=1,...,n

|ZT
� �Z�/p − tr(�)/p| → 0 almost surely.(3.4)

The convergence (3.3) follows.
Next, let

Mn = Mn(z) = −1

z

n∑
�=1

w�

1 + w�rT
� (S(�) − zI)−1r�

,(3.5)

where

S(�) := ∑
j �=�

wj rj rT
j = S − w�r�rT

� .
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Note that by Lemma 6, for any �,

−1

z

1

1 + w�rT
� (S(�) − zI)−1r�

∈ Q1.(3.6)

We shall show that

1

p
tr(−zMn� − zI)−1 − mn → 0 almost surely.(3.7)

Observe the following identity: for any p × p matrix B , q ∈ R
p and τ ∈ C for

which B and B + τqqT are both invertible,

qT (B + τqqT )−1 = 1

1 + τqT B−1q
qT B−1;(3.8)

see equation (2.2) in Silverstein and Bai (1995). Writing

S − zI − (−zMn� − zI) =
n∑

�=1

w�r�rT
� − (−zMn�),

taking the inverse, using (3.8) and the definition (3.5) of Mn yield

(−zMn� − zI)−1 − (S − zI)−1

= (−zMn� − zI)−1

(
n∑

�=1

w�r�rT
� − (−zMn�)

)
(S − zI)−1

= −1

z

n∑
�=1

w�

1 + w�rT
� (S(�) − zI)−1r�

(Mn� + I )−1r�rT
�

(
S(�) − zI

)−1

+ 1

z

n∑
�=1

w�

1 + w�rT
� (S(�) − zI)−1r�

(Mn� + I )−1�(S − zI)−1.

Taking trace and dividing by p we get

1

p
tr(−zMnS − zI)−1 − mn = 1

z

n∑
�=1

w�

1 + w�rT
� (S(�) − zI)−1r�

· d�,

where

d� = 1

p

(
tr
(
(Mn� + I )−1�(S − zI)−1)− rT

�

(
S(�) − zI

)−1
(Mn� + I )−1r�

)
.

By (5.2) in the proof of Lemma 6 in the supplementary article [Zheng and Li
(2011)], Re(rT

� (S(�) − zI)−1r�)) ≥ 0. Hence,∣∣∣∣ 1

1 + w�rT
� (S(�) − zI)−1r�

∣∣∣∣≤ 1.(3.9)
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Therefore in order to show (3.7), by assumption (A.v), it suffices to prove

max
�=1,...,n

|d�| → 0 almost surely.(3.10)

Define

M(�) = M(�)(z) = −1

z

∑
j �=�

wj

1 + wj rT
j (S(j,�) − zI)−1rj

,

where S(j,�) := ∑
i �=j,� wirirT

i = S − (wj rj rT
j + w�r�rT

� ). Observe that for ev-
ery �, M(�) is independent of Z�.

CLAIM 1. For any z = iv with v > 0 and any ε < 1/2 − δ,

max
�=1,...,n

pε
∣∣M(�)(z) − Mn(z)

∣∣→ 0 almost surely.(3.11)

PROOF. Define

m̃n(z) = tr(�1/2(S − zI)−1�1/2)

p
,

which belongs to Q1 by Lemma 7, and⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M̃n = M̃n(z) = −1

z

n∑
j=1

wj

1 + ynnwj m̃n(z)
,

M̃(�) = M̃(�)(z) = −1

z

∑
j �=�

wj

1 + ynnwj m̃n(z)

= M̃n(z) + 1

z

w�

1 + ynnw�m̃n(z)
.

(3.12)

Then by a similar argument for (3.9) and using assumption (A.v),

max
�=1,...,n

∣∣M̃(�)(z) − M̃n(z)
∣∣≤ κ

nv
.

Hence, it suffices to show that

pε|Mn(z) − M̃n(z)| → 0 and
(3.13)

max
�=1,...,n

pε
∣∣M(�)(z) − M̃(�)(z)

∣∣→ 0 almost surely.

We shall only prove the second convergence. In fact,

M(�)(z) − M̃(�)(z)

= −1

z

∑
j �=�

wj · ynnwj

(1 + wj rT
j (S(j,�) − zI)−1rj ) · (1 + ynnwj m̃n(z))

· ζj,�,
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where

ζj,� = m̃n(z) − rT
j (S(j,�) − zI)−1rj

p
.

Since for all j ,∣∣∣∣ wj · ynnwj

(1 + wj rT
j (S(j,�) − zI)−1rj ) · (1 + ynnwj m̃n(z))

∣∣∣∣≤ κ2yn

n
,

it suffices to show that

max
�=1,...,n

max
j �=�

pε|ζj,�| → 0 almost surely.(3.14)

To prove this, recall that r� = �1/2Z�, by Lemma 9 and the independence between
Z� and �1/2(S(j,�) − zI)−1�1/2, for any k ∈ N,

E
∣∣ZT

� �1/2(S(j,�) − zI
)−1

�1/2Z� − tr
(
�1/2(S(j,�) − zI

)−1
�1/2)∣∣2k

≤ Ckp
k · E(∥∥�1/2(S(j,�) − zI

)−1
�1/2∥∥2k)(3.15)

≤ Ckp
k · E‖�‖2k

v2k
≤ Cpkp2δk

v2k
,

where in the last line we used Lemma 5 and assumption (A.vii). Hence, for any
ε < 1/2 − δ, choosing k > 3/(1 − 2δ − 2ε) and using Borel–Cantelli again, we get

max
�=1,...,n

max
j �=�

pε

∣∣∣∣ZT
� �1/2(S(j,�) − zI)−1�1/2Z�

p
(3.16)

− tr(�1/2(S(j,�) − zI)−1�1/2)

p

∣∣∣∣→ 0.

Furthermore, by Lemma 2 and assumption (A.vii), recall that m̃n(z) = tr(�1/2(S−
zI)−1�1/2)/p,

max
�=1,...,n

max
j �=�

∣∣∣∣ 1

p
tr
(
�1/2(S(j,�) − zI

)−1
�1/2)− m̃n(z)

∣∣∣∣
(3.17)

≤ 2
‖�‖
pv

≤ Cpδ

pv
.

The convergence (3.14) follows. �

We now continue the proof of the theorem. Recall that r� = �1/2Z�, and Z� con-
sists of i.i.d. random variables with finite moments of all orders. By Lemma 4(ii)
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and (3.6),

max
�=1,...,n

|rT
� (S(�) − zI)−1(Mn� + I )−1r� − rT

� (S(�) − zI)−1(M(�)� + I )−1r�|
p

≤ max
�=1,...,n

|M(�) − Mn(z)| · |r�|2 · ‖(S(�) − zI)−1‖ · ‖�‖
p

(3.18)

≤ max
�=1,...,n

|M(�) − Mn(z)| · Cpδ

v
· |r�|2

p
→ 0,

where in the last line we used Lemma 5, assumption (A.vii), the assumption that
δ < 1/6 (and hence δ < 1/2 − δ) and (3.11), and (3.3).

Furthermore, similar to (3.15), by Lemma 9 and the independence between Z�

and �1/2(S(�) − zI)−1(M(�)� + I )−1�1/2, for any k ∈ N,

E
∣∣ZT

� �1/2(S(�) − zI
)−1(

M(�)� + I
)−1

�1/2Z�

− tr
(
�1/2(S(�) − zI

)−1(
M(�)� + I

)−1
�1/2)∣∣2k

≤ Ckp
k · E(∥∥�1/2(S(�) − zI

)−1(
M(�)� + I

)−1
�1/2∥∥2k)

≤ Ckp
k · E‖�‖2k

v2k
≤ Cpkp2δk

v2k
,

where in the last line we use Lemmas 5, 3 and (3.6), and assumption (A.vii).
Hence, choosing k > 2/(1 − 2δ) and using Borel–Cantelli again, we get

max
�=1,...,n

∣∣∣∣ZT
� �1/2(S(�) − zI)−1(M(�)� + I )−1�1/2Z�

p
(3.19)

− tr(�1/2(S(�) − zI)−1(M(�)� + I )−1�1/2)

p

∣∣∣∣→ 0.

Furthermore, by Lemmas 4(i), 3 and (3.6), the assumption that δ < 1/6 (and hence
2δ < 1/2 − δ) and (3.11), and assumption (A.vii),

max
�=1,...,n

∣∣∣∣ 1

p
tr
(
�1/2(S(�) − zI

)−1(
M(�)� + I

)−1
�1/2)

− 1

p
tr
(
�1/2(S(�) − zI

)−1(
Mn� + I

)−1
�1/2)∣∣∣∣

(3.20)
≤ max

�=1,...,n

∣∣M(�) − Mn

∣∣ · ∥∥(S(�) − zI
)−1∥∥ · ‖�‖2

≤ max
�=1,...,n

∣∣M(�) − Mn

∣∣ · Cp2δ

v
→ 0.
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Finally, similar to (3.17), by Lemmas 2 and 3, and assumption (A.vii),

max
�=1,...,n

∣∣∣∣ 1

p
tr
(
�1/2(S(�) − zI

)−1
(Mn� + I )−1�1/2)

− 1

p
tr
(
�1/2(S − zI)−1(Mn� + I )−1�1/2)∣∣∣∣(3.21)

≤ ‖(Mn� + I )−1‖ · ‖�‖
pv

≤ Cpδ

pv
→ 0.

Combining (3.18), (3.19), (3.20) and (3.21), we see that (3.10), and hence (3.7)
holds.

Now we are ready to show that {mn(z)} admits at most one limit.

CLAIM 2. Suppose that mnk
(z) converges to m(z), then

Mnk
(z) → M(z) := −1

z

∫ 1

0

ws

1 + ym̃(z)ws

ds �= 0,(3.22)

where m̃(z) is the unique solution in Q1 = {z ∈ C : Re(z) ≥ 0, Im(z) ≥ 0} to the
following equation: ∫ 1

0

1

1 + ym̃(z)ws

ds = 1 − y
(
1 + zm(z)

)
.(3.23)

PROOF. Writing

S − zI + zI =
n∑

�=1

w�r�rT
� ,

right-multiplying both sides by (S − zI)−1 and using (3.8) we get

I + z(S − zI)−1 =
n∑

�=1

w�r�rT
� (S(�) − zI)−1

1 + w�rT
� (S(�) − zI)−1r�

.

Taking trace and dividing by n we get

yn + zynmn(z) = 1 − 1

n

n∑
�=1

1

1 + w�rT
� (S(�) − zI)−1r�

,

where, recall that, mn(z) = tr((S − zI)−1)/p is the Stieltjes transform of FS .
Hence, if mnk

(z) → m(z), then

1

nk

nk∑
�=1

1

1 + ynk
nkw� · rT

� (S(�) − zI)−1r�/pk

= 1

nk

nk∑
�=1

1

1 + w�rT
� (S(�) − zI)−1r�

(3.24)

= 1 − ynk

(
1 + zmnk

(z)
)→ 1 − y

(
1 + zm(z)

)
.
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However, by the same arguments for (3.16) and (3.17) we have

max
�=1,...,n

∣∣∣∣rT
� (S(�) − zI)−1r�

p
− tr(�1/2(S(�) − zI)−1�1/2)

p

∣∣∣∣→ 0(3.25)

and

max
�=1,...,n

∣∣∣∣ tr(�1/2(S(�) − zI)−1�1/2)

p
− m̃n(z)

∣∣∣∣→ 0,(3.26)

where, recall that m̃n(z) = tr(�1/2(S − zI)−1�1/2)/p, which belongs to Q1 by
Lemma 7. Then by (3.24), assumption (A.v) and Lemma 8, m̃nk

(z) must also con-
verge, and the limit, denoted by m̃(z) ∈ Q1, must be the unique solution in Q1 to
the equation (3.23). Now by (3.12), (3.13) and assumption (A.v), we get the con-
vergence for Mnk

(z) in the claim. That M(z) �= 0 follows from the expression and
that m̃(z) ∈ Q1. �

We now continue the proof of the theorem. By the convergence of F�p to H

and the previous claim,

tr((−zMnk
(z)� − zI)−1)

p
→ −1

z

∫
τ∈R

1

τM(z) + 1
dH(τ).

But (3.7) implies that

m(z) = −1

z

∫
τ∈R

1

τM(z) + 1
dH(τ).(3.27)

Observing that M(z) �= 0, Re(M(z)) ≥ 0, and H is not a delta measure at 0, we
obtain that |m(z)| < 1/|z|. Hence 1 + zm(z) �= 0, and by (3.23), m̃(z) �= 0. Based
on this, we can get another expression for M(z), as follows. By (3.22), we have

M(z) = −1

z

∫ 1

0

ws

1 + ym̃(z)ws

ds

= −1

z
· 1

ym̃(z)
·
(

1 −
∫ 1

0

1

1 + ym̃(z)ws

ds

)
(3.28)

= −1

z
· 1

ym̃(z)
· (1 − (

1 − y
(
1 + zm(z)

)))
= −1

z
· 1 + zm(z)

m̃(z)
,

where in the third line we used the definition (3.23) of m̃(z).
We can then derive another formula for m̃(z). By (3.27),

1 + zm(z) = 1 −
∫
τ∈R

1

τM(z) + 1
dH(τ) = M(z)

∫
τ∈R

τ

τM(z) + 1
dH(τ)
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by using that H is a probability distribution. Dividing both sides by −zm̃(z)( �=0)

and using (3.28) yield

M(z) = −(1 + zm(z))

zm̃(z)
= −M(z)

∫
τ∈R

τ/(τM(z) + 1) dH(τ)

zm̃(z)
,

and hence since M(z) �= 0,

m̃(z) = −1

z

∫
τ∈R

τ

τM(z) + 1
dH(τ).(3.29)

Observe that by Lemma 7 and (3.6), for any n, both mn(z) and Mn(z) belong
to Q1, hence so do m(z) and M(z). We proceed to show that for those z = iv with
v sufficiently large, there is at most one triple (m(z),M(z), m̃(z)) ∈ Q1 ×Q1 ×Q1
that solves the equations (3.27), (3.22) and (3.29). In fact, if there are two different
triples (mi(z),Mi(z), m̃i(z)), i = 1,2, both satisfying (3.27), (3.22) and (3.29).
Then necessarily, M1(z) �= M2(z) and m̃1(z) �= m̃2(z). Now by (3.22),

M1(z) − M2(z) = −1

z
· y(m̃2(z) − m̃1(z)

) ∫ 1

0

w2
s

(1 + ym̃1(z)ws)(1 + ym̃2(z)ws)
ds

by (3.29),

m̃1(z) − m̃2(z) = −1

z

(
M2(z) − M1(z)

) ∫
τ∈R

τ 2

(τM1(z) + 1)(τM2(z) + 1)
dH(τ).

Therefore,

1 = y

z2

∫ 1

0

w2
s

(1 + ym̃1(z)ws)(1 + ym̃2(z)ws)
ds

(3.30)

×
∫
τ∈R

τ 2

(τM1(z) + 1)(τM2(z) + 1)
dH(τ).

However, since (Mi(z), m̃i(z)) ∈ Q1 × Q1, i = 1,2,∣∣∣∣∫ 1

0

w2
s

(1 + ym̃1(z)ws)(1 + ym̃2(z)ws)
ds

∣∣∣∣≤ ∫ 1

0
w2

s ds < ∞
and ∣∣∣∣∫

τ∈R

τ 2

(τM1(z) + 1)(τM2(z) + 1)
dH(τ)

∣∣∣∣≤ ∫
τ∈R

τ 2 dH(τ) < ∞.

Hence, for z = iv with v sufficiently large, (3.30) cannot be true.
It remains to verify (3.1), that is, limv→∞ iv · m(iv) = −1. In fact, using (3.27)

we get that

iv · m(iv) = −
∫
τ∈R

1

1 + τM(iv)
dH(τ).(3.31)

Since Re(M(iv)) ≥ 0, |1/(1+τM(iv))| ≤ 1 for all τ ≥ 0. Moreover, by (3.22) and
that Re(m̃(z)) ≥ 0, |M(iv)| ≤ 1/v · ∫ 1

0 ws ds, hence by the dominated convergence
theorem, the right-hand side of (3.31) converges to −1 as v → ∞. �
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3.4. Proof of Theorem 2. The TVARCV matrix has the form of weighted
sample covariance matrices as studied in Theorem 1; however, assumption (A.vi)
therein is not satisfied, and we need another proof.

Theorem 2 is a direct consequence of the following two convergence results.

PROPOSITION 7. Under assumption (C.iv), namely, suppose that

lim
p→∞ tr(�p)/p = θ,

then, almost surely, limp→∞ tr(�RCV
p )/p = θ.

The proof is given in the supplemental article [Zheng and Li (2011)].
Next, recall that �̆p and �̃p are defined by (2.12) and (2.11), respectively.

PROPOSITION 8. Under the assumptions of Theorem 2, both F �̆p and F �̃p

converge almost surely. F �̆p converges to H̆ defined by

H̆ (x) = H(θx) for all x ≥ 0.(3.32)

The LSD F̃ of �̃p is determined by H̆ in that its Stieltjes transform mF̃ (z) satisfies
the equation

mF̃ (z) =
∫
τ∈R

1

τ(1 − y(1 + zmF̃ (z))) − z
dH̆ (τ ).

This can be proved in very much the same way as Theorem 1, by working with
Stieltjes transforms. However, a much simpler and transparent proof is as follows.

PROOF OF PROPOSITION 8. The convergence of F �̆p is obvious since

F �̆p(x) = F�p
(
tr(�p)/p · x) for all x ≥ 0.

We now show the convergence of F �̃p . As in the proof of Theorem 1, for no-
tational ease, we shall sometimes omit the superscript p in the arguments below:
thus, we write μt instead of μ

(p)
t , γt instead of γ

(p)
t , � instead of �(p), etc.

First, note that

�X� =
∫ τn,�

τn,�−1

μt dt + � ·
∫ τn,�

τn,�−1

γt dWt :=
√∫ τn,�

τn,�−1

γ 2
t dt · (v� + � · Z�),

where

v� =
⎛⎜⎝ v

(1)
�
...

v
(p)
�

⎞⎟⎠=
∫ τn,�
τn,�−1

μt dt√∫ τn,�
τn,�−1

γ 2
t dt

and Z� =
⎛⎜⎝Z

(1)
�
...

Z
(p)
�

⎞⎟⎠=
∫ τn,�
τn,�−1

γt dWt√∫ τn,�
τn,�−1

γ 2
t dt

.
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By performing an orthogonal transformation if necessary, without loss of general-
ity, we may assume that the index set Ip ⊂ {1, . . . , ηp}. Then by assumptions (C.ii)

and (C.ix), for j > ηp , Z
(j)
� are i.i.d. N(0,1). Write U� = (Z

(1)
� , . . . ,Z

(ηp)

� )T and

D� = (Z
(ηp+1)

� , . . . ,Z
(p)
� )T . With the above notation, �̃p can be rewritten as

�̃p = yn

n∑
�=1

�X�(�X�)
T

|�X�|2 = yn

n∑
�=1

(v� + �Z�)(v� + �Z�)
T

|v� + �Z�|2 .(3.33)

By assumptions (C.i), (C.ii) and (C.ix), there exists C > 0 such that |v(j)
� | ≤

C/
√

n for all j and �, hence |v�|’s are uniformly bounded. We will show that

max
�=1,...,n

∣∣|�Z�|2/p − 1
∣∣

(3.34)
= max

�=1,...,n
|ZT

� �̆pZ�/p − 1| → 0 almost surely,

which clearly implies that

max
�=1,...,n

∣∣|v� + �Z�|2/p − 1
∣∣→ 0 almost surely.(3.35)

To prove (3.34), write

�̆p =
(

A B

BT C

)
,

where A,B and C are ηp × ηp, ηp × (n − ηp) and (n − ηp) × (n − ηp) matrices,
respectively. Then

ZT
� �̆pZ� = UT

� AU� + 2DT
� BT U� + DT

� CD�.

By a well-known fact about the spectral norm,

‖A‖ ≤ ‖�̆p‖, ‖B‖ ≤ ‖�̆p‖ and ‖C‖ ≤ ‖�̆p‖.
In particular, by assumptions (C.ii), (C.vi) and (C.vii),

0 ≤ tr(A) ≤ ηp · ‖�̆p‖ ≤ Cpδ1+δ2 = o(p),

hence tr(C)/p = (tr(�̆p) − tr(A))/p → 1. Now using the fact that D� consists of
i.i.d. standard normals and by the same proof as that for (3.4) we get

max
�=1,...,n

|DT
� CD�/p − 1| → 0 almost surely.(3.36)

To complete the proof of (3.34), it then suffices to show that

max
�=1,...,n

|UT
� AU�|
p

→ 0 and max
�=1,...,n

|DT
� BT U�|

p
→ 0 almost surely.
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We shall only prove the first convergence; the second one can be proved similarly.
We have

|UT
� AU�| ≤ ‖A‖ · |U�|2 ≤ C5p

δ2 · |U�|2.(3.37)

Observe that for all 1 ≤ i ≤ ηp , by assumption (C.ii),

∣∣Z(i)
�

∣∣2 = | ∫ τn,�
τn,�−1

γt dWt |2∫ τn,�
τn,�−1

γ 2
t dt

≤ C2
2

�τn,�

·
∣∣∣∣∫ τn,�

τn,�−1

γt dWt

∣∣∣∣2.
By the Burkholder–Davis–Gundy inequality, we then get that for any k ∈ N, there
exists λk > 0 such that

E
∣∣Z(i)

�

∣∣2k ≤ λkC
4k
2 .(3.38)

Now we are ready to show that max�=1,...,n|UT
� AU�|/p → 0. In fact, for any ε > 0,

for any k ∈ N, by Markov’s inequality, (3.37), Hölder’s inequality and (3.38),

P
(

max
�=1,...,n

|UT
� AU�| ≥ pε

)
≤

n∑
�=1

P(|UT
� AU�| ≥ pε)

≤
n∑

�=1

E|UT
� AU�|k
pkεk

≤
n∑

�=1

Ck
5pkδ2 · [(ηp · λkC

4k
2 ) · ηk−1

p ]
pkεk

≤ Cp1+kδ2+kδ1−k.

By assumption (C.vii), δ1 + δ2 < 1/2 < 1, hence by choosing k to be large enough,
the right hand side will be summable in p, hence by Borel–Cantelli, almost surely,
max�=1,...,n|UT

� AU�|/p → 0.
We now get back to �̃p as in (3.33). By (3.35), for any ε > 0, almost surely, for

all n sufficiently large, for all � = 1, . . . , n,

p(1 − ε) ≤ |v� + �Z�|2 ≤ p(1 + ε).

Hence, almost surely, for all n sufficiently large,

1

1 + ε
S̃p ≤ �̃p = yn

n∑
�=1

(v� + �Z�)(v� + �Z�)
T

|v� + �Z�|2 ≤ 1

1 − ε
S̃p,

where S̃p = 1/n ·∑1≤�≤n(v� +�Z�)(v� +�Z�)
T . Hence, by Weyl’s Monotonic-

ity theorem, for any x ≥ 0,

F S̃p
(
(1 + ε)x

)≥ F �̃p(x) ≥ F S̃p
(
(1 − ε)x

)
.(3.39)
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Next, by Lemma 1, S̃p has the same LSD as Sp := 1/n
∑

1≤�≤n �Z�(Z�)
T �T .

Moreover, by using the same trick as in the beginning of the proof of Theorem 1,
FSp has the same limit as FS′

p , where S′
p = 1/n

∑
1≤�≤n �Z̃�(Z̃�)

T �T , and Z̃�

consists of i.i.d. standard normals. For FS′
p , it follows easily from Proposition 1

that it converges to F̃ . Moreover, by Theorems 1.1 and 2.1 in Silverstein and Choi
(1995), F̃ is differentiable and in particular continuous at all x > 0. It follows from
(3.39) that F �̃p must also converge to F̃ . �

4. Simulation studies. In this section, we present some simulation studies to
illustrate the behavior of ESDs of RCV and TVARCV matrices. In particular, we
show that the ESDs of RCV matrices that have the same targeting ICV matrix �p

can be quite different from each other, depending on the time variability of the
covolatility process. Our proposed estimator, the TVARCV matrix �̂p , in contrast,
has a very stable ESD.

We use in particular a reference curve which is the Marc̆enko–Pastur law. The
reason we compare the ESDs of RCV and TVARCV matrices with the Marc̆enko–
Pastur law is that the Marc̆enko–Pastur law is the LSD of �RCV0

p defined in (1.6),
which is the RCV matrix estimated from sample paths of constant volatility that
has the same targeting ICV matrix as �RCV

p . As we will see soon in the following
two subsections, when the covolatility process is time varying, the ESD of RCV
matrix can be very different from the Marc̆enko–Pastur law, while the ESD of
TVARCV matrix always matches the Marc̆enko–Pastur law very well.

In the simulation below, we assume that � = I , or in other words, Xt sat-
isfies (2.1) with γt a deterministic (scalar) process, and Wt a p-dimensional
standard Brownian motion. The observation times are taken to be equidistant:
τn,� = �/n, � = 0,1, . . . , n.

We present simulation results of two different designs: one when γt is piece-
wise constant, the other when γt is continuous (and non-constant). In both cases,
we compare the ESDs of the RCV and TVARCV matrices. Results for different
dimension p and observation frequency n are reported.

In all the figures below, we use red solid lines to represent the LSDs of �RCV0

given by the Marc̆enko–Pastur law, black dashed line to represent the ESDs of
RCV matrices, blue bold longdashed line to represent the ESDs of TVARCV ma-
trices.

4.1. Design I, piecewise constants. We first consider the case when the volatil-
ity path follows piecewise constants. More specifically, we take γt to be

γt =
{√

0.0007, t ∈ [0,1/4) ∪ [3/4,1],√
0.0001, t ∈ [1/4,3/4).

In Figure 1, we compare the ESDs of RCV and TVARCV matrices for different
pairs of p and n, with the LSD of �RCV0 given by the Marc̆enko–Pastur law as
reference.
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FIG. 1. Left panel: p = 100, n = 1,000; right panel: p = 2,000, n = 1,000.

We see from Figure 1 that:

• the ESDs of RCV matrices are very different from the LSD given by the
Marc̆enko–Pastur law (the LSD of �RCV0

);
• the ESDs of TVARCV matrices follow the LSD given by the Marc̆enko–Pastur

law very well, for both pairs of p and n, even when p is small compared with n.

In fact, the dependence of the ESD of RCV matrix on the time variability of
covolatility process can be seen more clearly from Figure 2, where we consider
the same design but different values for γt :

γt =
{

a1/2 × 10−2, t ∈ [0,1/4) ∪ [3/4,1],
b1/2 × 10−2, t ∈ [1/4,3/4),

where a + b = 8.

We plot the ESDs of RCV and TVARCV matrices for the case when p = n =
1,000, in the left and right panel, respectively. The curves’ corresponding param-

FIG. 2. Comparisons, different values of piecewise constants (a, b) as shown in the legend, which
are such that the targeting ICV matrix is the same; the red solid curve is the Marc̆enko–Pastur law

(the LSD of �RCV0
). p and n are both taken to be 1,000. Left panel: RCV; right panel: TVARCV.
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FIG. 3. Left panel: p = 100, n = 1,000; right panel: p = 2,000, n = 1,000.

eters (a, b) are reported in the legend. Note that since all pairs of (a, b) have the
same summation, in all cases the targeting ICV matrices are the same.

We see clearly from Figure 2 that, the ESDs of RCV matrices can be very dif-
ferent from each other even though the RCV matrices are estimating the same ICV
matrix; while for TVARCV matrices, the ESDs are almost identical.

4.2. Design II, continuous paths. We illustrate in this subsection the case
when the volatility processes have continuous sample paths. In particular, we as-
sume that Xt satisfies (2.1) with

γt =√
0.0009 + 0.0008 cos(2πt), t ∈ [0,1].

We see from Figure 3 similar phenomena as in Design I about the ESDs of RCV
and TVARCV matrices for different pairs of p and n.

5. Conclusion and discussions. We have shown theoretically and via simu-
lation studies that:

• the limiting spectral distribution (LSD) of RCV matrix depends not only on that
of the ICV matrix, but also on the time-variability of covolatility process;

• in particular, even with the same targeting ICV matrix, the empirical spectral
distribution (ESD) of RCV matrix can vary a lot, depending on how the under-
lying covolatility process evolves over time;

• for a class C of processes, our proposed estimator, the time-variation adjusted
realized covariance (TVARCV) matrix, possesses the following desirable prop-
erties as an estimator of the ICV matrix: as long as the targeting ICV matrix is
the same, the ESDs of TVARCV matrices estimated from processes with differ-
ent covolatility paths will be close to each other, sharing a unique limit; more-
over, the LSD of TVARCV matrix is related to that of the targeting ICV matrix
through the same Marc̆enko–Pastur equation as in the sample covariance matrix
case.
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Furthermore, we establish a Marc̆enko–Pastur type theorem for weighted sam-
ple covariance matrices. For a class C of processes, we also establish a Marc̆enko–
Pastur type theorem for RCV matrices, which explicitly demonstrates how the
time-variability of the covolatility process affects the LSD of RCV matrix.

In practice, for given p and n, based on the (observable) ESD of TVARCV
matrix, one can use existing algorithms to obtain an estimate of the ESD of ICV
matrix, which can then be applied to further applications such as portfolio alloca-
tion, risk management, etc.
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SUPPLEMENTARY MATERIAL

Supplement to “On the estimation of integrated covariance matrices of
high dimensional diffusion processes” (DOI: 10.1214/11-AOS939SUPP; .pdf).
This material contains the proof of Proposition 4, a detailed explanation of the sec-
ond statement in Remark 3, and the proofs of the various lemmas in Section 3.1
and Proposition 7.
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