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ON THE APPROXIMATE MAXIMUM LIKELIHOOD ESTIMATION
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The transition density of a diffusion process does not admit an explicit
expression in general, which prevents the full maximum likelihood estimation
(MLE) based on discretely observed sample paths. Aït-Sahalia [J. Finance 54
(1999) 1361–1395; Econometrica 70 (2002) 223–262] proposed asymptotic
expansions to the transition densities of diffusion processes, which lead to an
approximate maximum likelihood estimation (AMLE) for parameters. Built
on Aït-Sahalia’s [Econometrica 70 (2002) 223–262; Ann. Statist. 36 (2008)
906–937] proposal and analysis on the AMLE, we establish the consistency
and convergence rate of the AMLE, which reveal the roles played by the
number of terms used in the asymptotic density expansions and the sampling
interval between successive observations. We find conditions under which the
AMLE has the same asymptotic distribution as that of the full MLE. A first
order approximation to the Fisher information matrix is proposed.

1. Introduction. Continuous-time diffusion processes defined by stochas-
tic differential equations [Karatzas and Shreve (1991), Øksendal (2000), Protter
(2004)] are the basic stochastic modeling tools in the modern financial theory and
applications. Diffusion models are commonly employed to describe the price dy-
namics of a financial asset or a portfolio of assets. An eminent application is in
deriving the price of a derivative contract on an asset or a group of assets. The cel-
ebrated Black–Scholes–Merton option pricing formula [Black and Scholes (1973),
Merton (1973)] was obtained by assuming that the underlying asset followed a
geometric Brownian motion such that the log price process of the underlying as-
set followed an Ornstein–Uhlenbeck diffusion process. The widely used Vasicek
(1977) and Cox, Ingersoll and Ross (1985) pricing formulas for the zero coupon
bond were developed based on two specific mean-reverting diffusion processes
with a constant or the square root [Feller (1952)] diffusion functions, respectively.
Other pricing formulas have also been developed for assets defined by other pro-
cesses; see Bakshi, Cao and Chen (1997) and Dumas, Fleming and Whaley (1998).
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In the implementations of the aforementioned pricing formula, the parameters of
the diffusion processes which describe the underlying assets dynamics have to
be estimated based on empirical observations. Sundaresan (2000) gave a compre-
hensive survey on the financial applications of continuous-time stochastic mod-
els which were largely the diffusion processes. Fan (2005) provided an overview
on nonparametric estimation for diffusion processes. Other related works include
Bibby and Sørensen (1995), Wang (2002), Fan and Zhang (2003), Fan and Wang
(2007), Mykland and Zhang (2009) and Aït-Sahalia, Mykland and Zhang (2011).

There are several challenges to be faced when estimating parameters of diffu-
sion processes. One challenge is that despite being continuous-time models, the
processes are only observed at discrete time points rather than observed continu-
ously over time. The discrete observations prevent the use of the relatively straight-
forward likelihood expressions [Prakasa Rao (1999)] available for continuously
observed diffusion processes. Another challenge is that despite the fact that the
diffusion processes are Markovian, their transition densities from one time point
to the next do not have finite analytic expressions, except for only a few specific
processes. This means that the efficient maximum likelihood estimation (MLE)
cannot be readily implemented for most of these processes.

In ground-breaking works, Aït-Sahalia (1999, 2002) established series expan-
sions to approximate the transition densities of univariate diffusion processes.
Similar expansions have been proposed for multivariate processes in Aït-Sahalia
(2008). These density approximations, as advocated by Aït-Sahalia, are then em-
ployed to form approximate likelihood functions, which are maximized to obtain
the approximate maximum likelihood estimators (AMLEs). Aït-Sahalia (2002,
2008) demonstrated that the approximate likelihood converges to the true likeli-
hood as the number of terms in the series expansions goes to infinity. He also
provided some results on the consistency of the AMLEs. Numerical evaluations of
the transition density approximations as conducted in Aït-Sahalia (1999), Stramer
and Yan (2007a, 2007b) and others, have shown good performance in the numeri-
cal approximation of the underlying transition densities. The approach has opened
a very accessible route for obtaining parameter estimators for diffusion processes,
and for estimating other quantities which are functions of the transition density, as
commonly encountered in finance. Indeed, Aït-Sahalia and Kimmel (2007, 2010)
demonstrated two such applications in stochastic volatility models and the affine
term structure models, respectively. Tang and Chen (2009) provided some results
on the AMLE based on the one-term expansion for the mean-reverting processes.
They revealed that there was an extra leading order bias term in the AMLE due to
the density approximation.

Although the above-mentioned results on the transition density approximation
and the AMLE had been provided, there are some key questions that remain to
be addressed. One is on the consistency of the AMLE. While Aït-Sahalia (2002,
2008) contained some results on consistency, there is more to be explored. There
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are two key ingredients in Aït-Sahalia’s density approximation. One is J , the num-
ber of terms used in the approximation, and the other is δ, the length of the sam-
pling interval between successive observations. In this paper, we study explicitly
the roles played by J and δ on the consistency of the AMLE, and quantify their
roles on the convergence rate. Another question is under what conditions on J

and δ, does the AMLE have the same asymptotic distribution as the full MLE.
Here, we consider two regimes: (i) δ is fixed, and J → ∞; (ii) J is fixed, but
δ → 0, representing two views of asymptotics. In the case of δ → 0, it is found that
J ≥ 2 is necessary to ensure the AMLE having the same asymptotic normality as
the MLE. Like the transition density, the Fisher information matrix, the quantity
that defines the efficiency of the full MLE, is unknown analytically; even the un-
derlying transition density is known. We show in this paper that an approximation
to the Fisher information matrix can be obtained based on the one-term density
approximation.

The paper is organized as follows. In Section 2, we outline the transition density
approximations of Aït-Sahalia (1999, 2002). Some preliminary analysis is needed
for studying the AMLE is presented in Section 3. Section 4 establishes the con-
sistency and convergence rates of the AMLE. Asymptotic normality of the AMLE
and its equivalence to the full MLE are addressed in Section 5. Section 6 discusses
the approximation for the Fisher information matrix. Simulation results are re-
ported in Section 7. Technical conditions and details of proofs are relegated to the
Appendix.

2. Transition density approximation. Consider a univariate diffusion pro-
cess (Xt)t≥0 defined by a stochastic differential equation

dXt = μ(Xt ; θ) dt + σ(Xt ; θ) dBt ,(2.1)

where μ and σ are, respectively, the drift and diffusion functions and Bt is the
standard Brownian motion. Both the drift and diffusion functions are known except
for an unknown parameter vector θ taking values in a set � ⊆ R

d .
Given a sampling interval δ > 0, let fX(x|x0, δ; θ) be the transition density

of Xt+δ given Xt = x0 for (x0, x) ∈ X × X , where X is the domain of Xt . De-
spite the parametric forms of the drift and the diffusion functions that are available
in (2.1), a closed-form expression for fX(x|x0, δ; θ) is not generally available for
most of the processes. In most cases, the density is only known to satisfy the Kol-
mogorov backward and forward partial differential equations. In ground-breaking
works, Aït-Sahalia (1999, 2002) proposed asymptotic expansions to approximate
the transition density.

The approach of Aït-Sahalia is the following. He first transformed Xt to a dif-
fusion process with unit diffusion function by

Yt = γ (Xt ; θ) :=
∫ Xt du

σ(u; θ)
,(2.2)
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which satisfies dYt = μY (Yt ; θ) dt + dBt , where

μY (y; θ) = μ(γ −1(y; θ); θ)

σ (γ −1(y; θ); θ)
− 1

2

∂σ

∂x
(γ −1(y; θ); θ).

Let fY (y|y0, δ; θ) be the transition density of Yt+δ given Yt = y0. The two density
functions are related according to

fX(xt |xt−1, δ; θ) = σ−1(xt ; θ) · fY (γ (xt ; θ)|γ (xt−1; θ), δ; θ).(2.3)

To ensure convergence of the expansions, Aït-Sahalia standardized Yt+δ by
Zt+δ = δ−1/2(Yt+δ −y0). Let fZ(z|y0, δ; θ) denote the conditional density of Zt+δ

given Zt = 0, which is related to fY by

fZ(z|y0, δ; θ) = δ1/2fY (δ1/2z + y0|y0, δ; θ).

Let {Hj(z)}∞j=1 be the Hermite polynomials

Hj(z) = φ−1(z)
djφ(z)

dzj
,

which are orthogonal with respect to the standard normal density φ, namely∫
Hj(z)Hk(z)φ(x) dx = 0 if j �= k. A formal Hermite orthogonal series expan-

sion to the density fZ(z|y0, δ; θ) is

f H
Z (z|y0, δ; θ) = φ(z)

∞∑
j=0

ηj (y0, δ; θ)Hj (z),(2.4)

where the coefficients

ηj (y0, δ; θ) = (j !)−1
∫

Hj(z)fZ(z|y0, δ; θ) dz

= (j !)−1
E
[
Hj

(
δ−1/2(Yt+δ − y0)

)|Yt = y0; θ].
The last conditional expectation has no analytic expression in general, although it
may be simulated using the method proposed in Beskos et al. (2006). Aït-Sahalia
proposed Taylor expansions for this conditional expectation with respect to the
sampling interval δ based on the infinitesimal generator of Yt . For twice continu-
ously differentiable function g, the infinitesimal generator of Yt is

Aθg(y) = μY (y; θ)
∂g

∂y
+ 1

2

∂2g

∂y2 .(2.5)

A K-term Taylor series expansion to E[Hj(δ
−1/2(Yt+δ − y0))|Yt = y0; θ ] is

E
[
Hj

(
δ−1/2(Yt+δ − y0)

)|Yt = y0; θ]

=
K∑

k=0

Ak
θHj

(
δ−1/2(y − y0)

)∣∣
y=y0

δk

k!(2.6)

+ E
[

Ak+1
θ Hj

(
δ−1/2(Yt+δ∗ − y0)

)∣∣Yt = y0; θ] δk+1

(k + 1)! .
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Substituting (2.6) to the orthogonal expansion (2.4) followed by gathering
terms according to the powers of δ, a J -term expansion to the transition density
fY (y, δ|y0; θ) is

f
(J )
Y (y|y0, δ; θ) = δ−1/2φ

(
y − y0

δ1/2

)
exp

(∫ y

y0

μY (u; θ) du

) J∑
j=0

cj (y|y0; θ)
δj

j ! ,

where c0(y|y0; θ) ≡ 1 and for j ≥ 1,

cj (y|y0; θ) = j (y − y0)
−j

×
∫ y

y0

(w − y0)
j−1

×
{
λY (w; θ)cj−1(w|y0; θ) + 1

2

∂2cj−1(w|y0; θ)

∂w2

}
dw.

Here λY (y; θ) = −{μ2
Y (y; θ) + ∂μY (y; θ)/∂y}/2.

Transforming back from y to x via (2.2) and (2.3), the J -term expansion to
fX(x|x0, δ; θ) is

f
(J )
X (x|x0, δ; θ)

= σ−1(x; θ)δ−1/2φ

(
γ (x; θ) − γ (x0; θ)

δ1/2

)

× exp
{∫ x

x0

μY (γ (u; θ); θ)

σ (u; θ)
du

} J∑
j=0

cj (γ (x; θ)|γ (x0; θ); θ)
δj

j ! .

Although it employs the Hermite polynomials and has the Gaussian density as the
leading term as an Edgeworth expansion does, the transition density expansion
is not an Edgeworth expansion. This is because the latter is for density functions
of statistics admitting the central limit theorem, which differs from the current
context of expanding the transition density. Aït-Sahalia (2002) demonstrated that
as J → ∞,

f
(J )
X (x|x0, δ; θ) → fX(x|x0, δ; θ)(2.7)

uniformly with respect to θ ∈ � and x0 over compact subsets of X . The con-
vergence is also uniform with respect to x over subsets of X depending on the
property of σ(x; θ).

Define

A1(x|x0, δ; θ) = − log{σ(x; θ)} − 1

2δ
{γ (x; θ) − γ (x0; θ)}2,

A2(x|x0, δ; θ) =
∫ x

x0

μY (γ (u; θ); θ)

σ (u; θ)
du
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and

A3(x|x0, δ; θ) = log

{
J∑

j=0

cj (γ (x; θ)|γ (x0; θ); θ)δj /j !
}
.

If
∑∞

j=0|cj (y|y0, δ; θ)|δj /j ! < ∞ on Y × Y with probability one, where Y is the

domain of Yt , we can define Ã3(x|x0, δ; θ) = log{∑∞
j=0 cj (y|y0; θ)δj /j !}. Then

the result in (2.7) implies that

logfX(x|x0, δ; θ)

= − log
√

2πδ + A1(x|x0, δ; θ) + A2(x|x0, δ; θ)(2.8)

+ Ã3(x|x0, δ; θ).

Expression (2.8) is the starting point for our analysis.
Given a set of discrete observations {Xtδ}nt=1 with equal sampling length δ of

the diffusion process (Xt)t≥0, to simplify notations, we write Xt for Xtδ and hide
δ in the expressions for the transition density fX and its approximations. At the
same time, we use f and f (J ) to express fX and f

(J )
X , respectively. Based on

the J -term expansion to the true transition density, the J -term approximate log-
likelihood function given in Aït-Sahalia (2002) is

�
(J )
n,δ (θ) = −n log

√
2πδ +

n∑
t=1

A1(Xt |Xt−1, δ; θ)

+
n∑

t=1

A2(Xt |Xt−1, δ; θ) +
n∑

t=1

A3(Xt |Xt−1, δ; θ).

Let θ̂
(J )
n,δ = arg maxθ∈� �

(J )
n,δ (θ) be the approximate MLE (AMLE) and θ̂n,δ be

the true MLE that maximizes the full likelihood

�n,δ(θ) =
n∑

t=1

logf (Xt |Xt−1, δ; θ).

To keep the notation simple, we write θ̂
(J )
n = θ̂

(J )
n,δ and θ̂n = θ̂n,δ by suppressing δ

in subscripts.

3. Preliminaries. Under regular circumstances as assumed by condition
(A.2)(ii) in the Appendix, the full MLE θ̂n and the J -term approximate MLE
θ̂

(J )
n satisfy their respective likelihood score equations so that

n∑
t=1

∇θ logf (Xt |Xt−1, δ; θ̂n) =
n∑

t=1

∇θ logf (J )(Xt |Xt−1, δ; θ̂ (J )
n

)= 0.(3.1)
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Subtracting
∑n

t=1 ∇θ logf (J )(Xt |Xt−1, δ; θ0) from both sides of (3.1),

n∑
t=1

∇θ logf (J )(Xt |Xt−1, δ; θ̂ (J )
n

)−
n∑

t=1

∇θ logf (J )(Xt |Xt−1, δ; θ0)

=
n∑

t=1

∇θ [Ã3(Xt |Xt−1, δ; θ0) − A3(Xt |Xt−1, δ; θ0)](3.2)

+
n∑

t=1

∇θ logf (Xt |Xt−1, δ; θ̂n) −
n∑

t=1

∇θ logf (Xt |Xt−1; θ0).

Carrying out Taylor expansions on both sides of (3.2), we can get

1

n

n∑
t=1

∇2
θθ logf (J )(Xt |Xt−1, δ; θ0) · (θ̂ (J )

n − θ0
)

+ 1

2

[
Ed ⊗ (

θ̂ (J )
n − θ0

)′] · 1

n

n∑
t=1

∇3
θθθ logf (J )(Xt |Xt−1, δ; θ̃ ) · (θ̂ (J )

n − θ0
)

= 1

n

n∑
t=1

∇θ [Ã3(Xt |Xt−1, δ; θ0) − A3(Xt |Xt−1, δ; θ0)](3.3)

+ 1

n

n∑
t=1

∇2
θθ logf (Xt |Xt−1, δ; θ0) · (θ̂n − θ0)

+ 1

2
[Ed ⊗ (θ̂n − θ0)

′] · 1

n

n∑
t=1

∇3
θθθ logf (Xt |Xt−1, δ; θ̄ ) · (θ̂n − θ0),

where Ed is the d × d identity matrix, θ̃ is on the joint line between θ̂
(J )
n and θ0

and θ̄ is on the joint line between θ̂n and θ0. Here we define

∇3
θθθ logf (Xt |Xt−1, δ; θ) :=

⎛
⎜⎝

∂3 logf (Xt |Xt−1, δ; θ)/∂θ ∂θ ′ ∂θ1
...

∂3 logf (Xt |Xt−1, δ; θ)/∂θ ∂θ ′ ∂θd

⎞
⎟⎠ ,

which is a d2 × d matrix, and ∇3
θθθ logf (J )(Xt |Xt−1, δ; θ) is similarly defined.

Furthermore, let

Fn(θ0, J, δ) = n−1
n∑

t=1

∇2
θθ [Ã3(Xt |Xt−1, δ; θ0) − A3(Xt |Xt−1, δ; θ0)],

Un(θ0, J, δ) = n−1
n∑

t=1

∇θ [Ã3(Xt |Xt−1, δ; θ0) − A3(Xt |Xt−1, δ; θ0)]
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and

Nn(θ0, J, δ) = n−1
n∑

t=1

∇2
θθ logf (J )(Xt |Xt−1, δ; θ0).

Then (3.3) can be written as

Nn(θ0, J, δ)
(
θ̂ (J )
n − θ0

)+ n1
(
θ̂ (J )
n , θ0

)
= Un(θ0, J, δ) + [Nn(θ0, J, δ) + Fn(θ0, J, δ)](θ̂n − θ0)(3.4)

+ n2(θ̂n, θ0),

where n1(θ̂
(J )
n , θ0) and n2(θ̂n, θ0) denote the remainder terms whose explicit

expressions can be obtained by matching (3.3) with (3.4).
Expansion (3.4) is the starting point in our studies for the consistency and

asymptotic distribution of the AMLE. Indeed, the asymptotic properties of the
AMLE will be evaluated under two regimes regarding J and δ. The first one is that

δ is fixed but J → ∞,(3.5)

which is the situation considered in Aït-Sahalia (2002). The second regime allows
that

J is fixed, δ → 0 but nδ → ∞,(3.6)

which is more tuned with an implementation of the density approximation with a
fixed number of terms.

We will first present some results which are valid for any fixed J and δ. Let
‖A‖2 = {ρ(A′A)}1/2 be the spectral norm of a matrix A, where ρ(A′A) denotes
the largest eigen-value of A′A. The following proposition describes properties for
the quantities that appear in (3.4).

PROPOSITION 1. Under conditions (A.1), (A.3), (A.4), (A.6), (A.7) given in
the Appendix, there exists a positive constant  such that for any positive integer
J and δ ∈ (0,):

(a) E{Fn(θ0, J, δ)}, E{Un(θ0, J, δ)} and E{Nn(θ0, J, δ)} exist;
(b) n1(θ̂

(J )
n , θ0) = Op{‖θ̂ (J )

n − θ0‖2
2} and n2(θ̂n, θ0) = Op{‖θ̂n − θ0‖2

2} as
n → ∞.

Let I (δ) = −E∇2
θθ logf (Xt |Xt−1, δ; θ0) be the Fisher information matrix,

which we assume is invertible in condition (A.5). It is expected that the expected
value of Nn(θ0, J, δ), denoted by N(θ0, J, δ), will converge to −I (δ), as J → ∞
for each fixed δ or J being fixed but δ → 0. The following proposition bounds the
difference between N(θ0, J, δ) and −I (δ) for each fixed J and δ.



2828 J. CHANG AND S. X. CHEN

PROPOSITION 2. Under conditions (A.1), (A.4), (A.6), (A.7) given in the Ap-
pendix, there exist two positive constants ̄ and C, that are not dependent on J

and δ, such that for any positive integer J and δ ∈ (0, ̄),

‖N(θ0, J, δ) + I (δ)‖2 ≤ CδJ+1.

As I (δ) is invertible for each fixed δ > 0, Nn(θ0, J, δ) will be invertible with
probability approaching one as J → ∞ for a fixed δ. However, if δ → 0, the limit
of the Fisher information I (0) := limδ→0 I (δ), as well as N(θ0, J,0), may be sin-
gular. This is the case for some Ornstein–Uhlenbeck processes as shown in Sec-
tion 6. The following proposition provides another account on N(θ0, J, δ) and
its deviation from −I (δ), as well as the convergence of N−1(θ0, J, δ)U(θ0, J, δ),
where U(θ0, J, δ) denotes the expected value of Un(θ0, J, δ) for each pair of fixed
J and δ.

PROPOSITION 3. Under conditions (A.1), (A.3)–(A.7) given in the Appendix,
there exist two constants C1,C2, that are not dependent on J and δ, and a constant
 > 0 such that for any positive integer J and δ ∈ (0,),

‖N−1(θ0, J, δ)I (δ) + Ed‖2 ≤ C1δ
J and ‖N−1(θ0, J, δ)U(θ0, J, δ)‖2 ≤ C2δ

J .

The next proposition describes the convergence rate for the difference between
the first derivatives of the full log-likelihood and the approximate log-likelihood.

PROPOSITION 4. Under conditions (A.1), (A.4), (A.6), (A.7) given in the Ap-
pendix, there exist two finite positive constants ̃ and C, not dependent on J and δ,
such that for any J , δ ∈ (0, ̃] and n,

E

{
sup
θ∈�

∥∥n−1 · ∇θ

[
�n,δ(θ) − �

(J )
n,δ (θ)

]∥∥
2

}
≤ CδJ+1.

The following proposition together with Proposition 4 is needed to establish the
consistency of the AMLE.

PROPOSITION 5. Under conditions (A.1), (A.3), (A.4), (A.6), (A.7) given in
the Appendix, there exists a constant ̇ > 0 such that

sup
θ∈�

∥∥∥∥∥1

n

n∑
t=1

∇θ logf (Xt |Xt−1, δ; θ) − E∇θ logf (Xt |Xt−1, δ; θ)

∥∥∥∥∥
2

p→ 0

for (i) δ ∈ (0, ̇] being fixed, n → ∞, or (ii) n → ∞, δ → 0 but nδ → ∞.

As the full MLE θ̂n is a key bridge for the AMLE, we report in the following
proposition the asymptotic normality of the MLE which covers both cases of fixed
δ and diminishing δ case.
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PROPOSITION 6. Under conditions (A.1)–(A.7) given in the Appendix,

√
nI 1/2(δ)(θ̂n − θ0)

d→ N(0,Ed) as nδ3 → ∞,

where Ed is d × d identity matrix.

The requirement of nδ3 → ∞ in the above proposition is to cover the case where
I (0) = limδ→0 I (δ) is singular, as spelled out in the proof given in the Appendix.
If such case is ruled out, for instance, via the so-call Jacobsen condition [Jacobsen
(2001), Sørensen (2007)], the more standard nδ → ∞ is sufficient; see also Gobet
(2002) for related results.

4. Consistency. We consider in this section the consistency of the AMLE
θ̂

(J )
n and establish its convergence rate under the two asymptotic regimes given

in (3.5) and (3.6), respectively. The two asymptotic regimes were also considered
in Aït-Sahalia (2002, 2008). For a fixed sampling interval δ, Aït-Sahalia (2002)

proved that there existed a sequence Jn → ∞ such that θ̂
(Jn)
n − θ̂n

p→ 0 under Pθ0

as n → ∞, where Pθ0 is the underlying probability measure. Based on the con-

sistency of θ̂n, we know that the consistency of θ̂
(Jn)
n is hold. For a fixed J , Aït-

Sahalia (2008) proved that there existed a sequence {δn} vanishing to zero such
that

√
nI 1/2(δn)(θ̂

(J )
n,δn

− θ0) = Op(1).
In this paper, we will give more explicit guidelines on how to select the afore-

mentioned sequences Jn and δn so that the AMLE is consistent. Our study here
begins with (3.1), which together with Propositions 4 and 5 lead to the following
result on the consistency of the AMLE under the two asymptotic regimes, respec-
tively.

THEOREM 1. Under conditions (A.1)–(A.4), (A.6), (A.7) given in the Ap-

pendix, θ̂
(J )
n − θ0

p→ 0 under either: (i) δ ∈ (0, ̃ ∧ ̇] being fixed, J → ∞ and
n → ∞, or (ii) J being fixed, n → ∞, δ → 0 but nδ → ∞.

By Proposition 2 and condition (A.5), multiply N−1(θ0, J, δ) on both sides
of (3.4), we have

θ̂ (J )
n − θ0

= N−1Un + N−1(Nn + Fn)(θ̂n − θ0) − N−1(Nn − N)
(
θ̂ (J )
n − θ0

)
(4.1)

− N−1n1
(
θ̂ (J )
n , θ0

)+ N−1n2(θ̂n, θ0).

From this together with Proposition 4 and Theorem 1, we can establish the con-
vergence rate of the AMLE.
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THEOREM 2. Under conditions (A.1)–(A.7) given in the Appendix,

θ̂ (J )
n − θ0 =

{
Op{δJ+1 + (nδ)−1/2}, if δ ∈ (0, ̃ ∧ ̇] is fixed and J → ∞;
Op{δJ + (nδ)−1/2}, if J is fixed, δ → 0 but nδ3 → ∞.

The above theorem reveals the impacts of the sampling interval δ and the num-
ber of terms J used in the density approximation on the convergence rate. In par-
ticular, the rate of AMLE has an extra δJ+1 or δJ term in addition to the standard
rate (nδ)−1/2 of the full MLE. This extra term is the result of the density approxi-
mation, and its particular form suggests that the sampling interval δ has to be less

than 1 in order to make the AMLE θ̂
(J )
n converge to θ0. It is apparent that the higher

the J is, the less impact the extra term has on the AMLE θ̂
(J )
n .

5. Asymptotic distribution. In this section, we consider the asymptotic dis-
tribution of the AMLE θ̂

(J )
n . Our investigations are organized according to two

asymptotic regimes: (i) δ fixed, J → ∞ and (ii) J fixed, δ → 0 but nδ → ∞.

5.1. Fixed δ, J → ∞. This is a simple case to treat. Under this setting, we
note from Proposition 2 and condition (A.5) that N−1(θ0, J, δ) = O(1) uniformly
for any J . Utilizing the result in Theorem 2, expansion (4.1) becomes

θ̂ (J )
n − θ0 = N−1Un + (θ̂n − θ0) + Op(n−1/2δJ−1/2 + n−1δ−1 + δ2J+2).

Hence, note that Un = Op(δJ+1),
√

nI 1/2(δ)
(
θ̂ (J )
n − θ0

)
= √

nI 1/2(δ)(θ̂n − θ0) + Op(δJ−1/2 + n−1/2δ−1 + n1/2δJ+1).

If nδ2J+2 → 0, then
√

nI 1/2(δ)
(
θ̂ (J )
n − θ0

) d→ N(0,Ed).

Therefore, the AMLE has the same asymptotic distribution as the full MLE θ̂n.
This is attained by requesting nδ2J+2 → 0 in addition to J → ∞. If nδ2J+2 → c >

0, the AMLE is still asymptotically normal but would have an inflated variance due
to the contribution from the first term involving Un. Apart from this, the asymptotic
mean will no longer be zero. Hence, it is much desirable to have nδ2J+2 → 0. The
latter condition prescribes a rule on the selection of the J = Jn(δ). By choosing an
ε > 0 so that δ2J+2 = n−1−ε for each pair of n and δ, then

J = Jn(δ) = −1 − ε

2 log δ
logn − 1 >

−1

2 log δ
logn − 1.

The integer truncation of the above lower bound plus one can be used as a reference
value for the number of terms used in the density approximation for each given pair
of (n, δ).
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TABLE 1
The least approximation term selection to guarantee the AMLE
has the same asymptotic distribution as the full MLE for special

sampling interval δ and sample size n

δ n = 500 n = 1,000 n = 2,000 n = 4,000

1/252 1 1 1 1
1/52 1 1 1 1
1/12 1 1 1 1
1/4 2 2 2 2
1/2 4 4 5 5
3/4 10 12 13 14

Table 1 reports such reference values of J assigned by the above formula for
a set of (n, δ) combinations commonly encountered in empirical studies. It shows
that for monthly frequency or less (δ ≤ 1/12), one term approximation is adequate,
and for δ = 1/4, J = 2 is needed. However, there is a dramatic increase in J as
the sampling length is larger than 1/4: demanding at least four terms for δ = 1/2
(half yearly) or at least ten terms for δ = 3/4. The number of terms also increases
for these higher δ values as n increases, although the rate of this increase is much
slower than that as δ is increased. The latter may be understood that for a given δ,
as n increases, the chance of having extreme values in the tails of the transition
distribution increases. As the density approximation is less accurate in the tails
than in the main body of the distribution, there is a need for having more terms in
the density approximation.

5.2. J fixed, δ → 0 but nδ → ∞. Our starting point is the expansion (4.1).
As Nn − N = Op{(nδ)−1/2}, N−1(Nn − N) = op(1) if nδ3 → ∞, which is also
required in the asymptotic normality of the full MLE as outlined in Proposition 6.
We will show in the following that nδ3 → ∞ is also necessary to ensure AMLE
sharing the same asymptotic distribution as the full MLE. It is understood that in
order for θ̂

(J )
n having the same asymptotic distribution as θ̂n, it is required that

N−1Un,N
−1n1

(
θ̂ (J )
n , θ0

)
and N−1n2(θ̂n, θ0) are all op

{∥∥θ̂ (J )
n − θ0

∥∥
2

}
.

We will demonstrate in the following that the above requirements can be at-
tained by nδ3 → ∞ and J ≥ 2. Hence, under these circumstances, θ̂

(J )
n has the

same asymptotic distribution as θ̂n. Later we will demonstrate that this equiva-
lence in the asymptotic distribution is quite unlikely for J = 1. Our analysis needs
to expand (3.2) to the quadratic terms. To this end, let us define

Mn(θ0, J, δ) = n−1
n∑

t=1

∇3
θθθ logf (J )(Xt |Xt−1, δ; θ0)
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and

Tn(θ0, J, δ) = n−1
n∑

t=1

∇3
θθθ logf (Xt |Xt−1, δ; θ0).

By further expanding to quadratic terms, (4.1) can be written as

θ̂ (J )
n − θ0

= N−1Un + N−1(Nn + Fn)(θ̂n − θ0) − N−1(Nn − N)
(
θ̂ (J )
n − θ0

)
− 1

2N−1[Ed ⊗ (
θ̂ (J )
n − θ0

)′]
Mn

(
θ̂ (J )
n − θ0

)
(5.1)

+ 1
2N−1[Ed ⊗ (θ̂n − θ0)

′]Tn(θ̂n − θ0)

− N−1̃n1
(
θ̂ (J )
n , θ0

)+ N−1̃n2(θ̂n, θ0),

where ̃n1(θ̂
(J )
n , θ0) and ̃n2(θ̂n, θ0) are remainder terms. Using the same method

in the proof of Proposition 1, it can be shown that ̃n1(θ̂
(J )
n , θ0) = Op{‖θ̂ (J )

n −
θ0‖3

2} and ̃n2(θ̂n, θ0) = Op{‖θ̂n − θ0‖3
2}.

In order to make θ̂
(J )
n have the same asymptotic distribution as θ̂n, the two

quadratic terms on the right-hand side of (5.1) have to be smaller order of θ̂
(J )
n −θ0

and θ̂n − θ0, respectively, namely

N−1[Ed ⊗ (
θ̂ (J )
n − θ0

)′]
Mn

(
θ̂ (J )
n − θ0

)= op

{∥∥θ̂ (J )
n − θ0

∥∥
2

}
or equivalently

N−1[Ed ⊗ (
θ̂ (J )
n − θ0

)′]= op(1)(5.2)

and

N−1[Ed ⊗ (θ̂n − θ0)
′]Tn(θ̂n − θ0) = op{‖θ̂n − θ0‖2}

or equivalently

nδ3 → ∞(5.3)

since θ̂n − θ0 = Op{(nδ)−1/2} and N−1 = O(δ−1).

As θ̂
(J )
n − θ0 = Op{δJ + (nδ)−1/2}, (5.2) requires that δJ−1 + n−1/2δ−3/2 → 0.

Hence, in order to make θ̂
(J )
n have the same asymptotic distribution as θ̂n, it is

necessary to have

J ≥ 2 and nδ3 → ∞.(5.4)

Now we consider the case of J = 1. To ensure the remainder terms N−1 ×
n1(θ̂

(J )
n , θ0) and N−1n2(θ̂n, θ0) are negligible, by a similar argument applied

above for the case of J ≥ 2, it is also necessary to assume nδ3 → ∞. From Theo-
rem 2, θ̂

(1)
n − θ0 = Op{δ + (nδ)−1/2}. To gain insight on the situation, we need to
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find out the order of magnitude of the quadratic term in (5.1), namely the order of
magnitude of

Sn = N−1[Ed ⊗ (
θ̂ (1)
n − θ0

)′]
Mn

(
θ̂ (1)
n − θ0

)− N−1[Ed ⊗ (θ̂n − θ0)
′]Tn(θ̂n − θ0).

With this notation, (5.1) can be written as

θ̂ (J )
n − θ0 = N−1Un + N−1(Nn + Fn)(θ̂n − θ0) − 1

2Sn
(5.5)

+ op{(nδ)−1/2} + Op(δ2).

Define an operator between two vectors A and B ,

A ∗ B = [Ed ⊗ A′]MnB + [Ed ⊗ B ′]MnA.

By repeated substitutions, it can be shown that

Sn = 1
2N−1[(N−1Un) ∗ (N−1Un)] + 1

2N−1[(1
2Sn

) ∗ (1
2Sn

)]
− N−1[(N−1Un) ∗ (1

2Sn

)]+ op(δ).

As Un = Op(δ2) for J = 1 and N−1 = O(δ−1), it can be deduced from the
above equation that Sn = Op(δ). Hence, for J = 1 if we require nδ3 → ∞, the

quadratic term Sn will contribute to the leading order of θ̂
(1)
n − θ0. If we do

not require nδ3 → ∞, then the sum of remainder terms, N−1̃n1(θ̂
(J )
n , θ0) +

N−1̃n2(θ̂n, θ0) will not be controlled. Hence, if J = 1, it is very likely that the
asymptotic distribution of θ̂

(J )
n will differ from that of θ̂n unless Un = 0 with prob-

ability one. In the rare case of Un = 0, it is possible for θ̂
(1)
n and θ̂n to share the

same limiting distribution.
Therefore, in order to guarantee that θ̂ (J )

n has the same asymptotic distribution as
θ̂n under δ → 0, we need to use the AMLE based on at least two-term expansions,
while satisfying nδ3 → ∞, which we will assume in the rest of this section.

Note that θ̂
(J )
n − θ0 = Op{δJ + (nδ)−1/2}. Then,

θ̂ (J )
n − θ0 = N−1Un + (θ̂n − θ0)

+ Op(n−1/2δJ−3/2) + N−1 · Op(δ2J + n−1δ−1).

Furthermore,√
nI 1/2(δ)

(
θ̂ (J )
n − θ0

)
= √

nI−1/2(δ)I (δ)N−1Un + √
nI 1/2(δ)(θ̂n − θ0) + Op(δJ−3/2)

+ √
nI−1/2(δ)I (δ)N−1 · Op(δ2J + n−1δ−1)

= √
nI 1/2(δ)(θ̂n − θ0) + Op(δJ−3/2 + n−1/2δ−3/2 + n1/2δJ+1/2).

Hence, for any J ≥ 2 such that nδ3 → ∞ and nδ2J+1 → 0,
√

nI 1/2(δ)
(
θ̂ (J )
n − θ0

) d→ N(0,Ed).



2834 J. CHANG AND S. X. CHEN

This result shows that, when δ vanishes to zero, in order to guarantee the AMLE
has the same asymptotic distribution as full MLE, we need to pick the approxima-
tion order J ≥ 2, while maintaining nδ3 → ∞ and nδ2J+1 → 0.

The following theorem summarizes the asymptotic normality under both
asymptotic regimes.

THEOREM 3. Under conditions (A.1)–(A.7) given in the Appendix,
√

nI 1/2(δ)
(
θ̂ (J )
n − θ0

) d→ N(0,Ed)

for: (i) δ ∈ (0, ̃ ∧ ̇] being fixed, n → ∞, J → ∞ but nδ2J+2 → 0 or (ii) J ≥ 2
being fixed, n → ∞, δ → 0 but nδ3 → ∞ and nδ2J+1 → 0.

5.3. Asymptotic bias and variance. The remainder of this section is devoted
to the consideration of the asymptotic bias and variance of the AMLE under the
two asymptotic regimes. Given our analysis in the early part of this section, our
consideration will be focused on the situations where the asymptotic normality of
the AMLE can be assumed, namely under: (i) δ being fixed, J → ∞, n → ∞ but
nδ2J+2 → 0 or (ii) J ≥ 2 being fixed, δ → 0, nδ3 → ∞ but nδ2J+1 → 0.

In the case of δ being fixed and J → ∞, from (5.1) and provided nδ2J+2 → 0,
we have

θ̂ (J )
n − θ0 = N−1Un + N−1(Nn + Fn)(θ̂n − θ0) − N−1(Nn − N)N−1Un

− N−1(Nn − N)N−1(Nn + Fn)(θ̂n − θ0)

− 1
2N−1{Ed ⊗ [N−1Un + N−1(Nn + Fn)(θ̂n − θ0)]′}
× Mn[N−1Un + N−1(Nn + Fn)(θ̂n − θ0)]

+ 1
2N−1[Ed ⊗ (θ̂n − θ0)

′]Tn(θ̂n − θ0) + Op(n−3/2)

= N−1Un + [Ed − N−1(Nn − N)]N−1(Nn + Fn)(θ̂n − θ0)

+ Op(n−1/2δJ+1) + Op(n−3/2).

Then, the leading order bias of θ̂
(J )
n is

B(θ0, J, δ) = N−1U + E{[Ed − N−1(Nn − N)]N−1(Nn + Fn)(θ̂n − θ0)},(5.6)

and the leading order variance is

V (θ0, J, δ) = N−1I (δ)Var(θ̂n)I (δ)N−1.(5.7)

In the case of J ≥ 2 being fixed, δ → 0 and nδ3 → ∞ but nδ2J+1 → 0, it can
be shown by a similar argument to that for the fixed δ case above, the asymptotic
bias and variance have the same forms as (5.6) and (5.7), respectively. Both (5.6)
and (5.7) will be used to calibrate with the simulated bias and variance in the sim-
ulation study in Section 7. For J = 1 and δ → 0, there are difficulties in obtaining
an expression for the bias of the AMLE in general due to the same dilemma in con-
trolling the reminder terms and the quadratic term Sn as outlined in Section 5.2.
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6. Approximating Fisher information matrix. We demonstrate in this sec-
tion that the approximation of the transition density provides a way to approximate
the Fisher information matrix. Fisher information matrix I (δ) is a key quantity as-
sociated with inference based on the full MLE. It defines the asymptotic efficiency
and convergence rate. From Proposition 2, a natural candidate to approximate I (δ)

is −N(θ0, J, δ) based on the J -term expansion. To simplify our expedition, our
consideration here is focused under the following diffusion process:

dXt = μ(Xt ;η)dt + σ(Xt ; ξ) dBt ,(6.1)

where η = (η1, . . . , ηd1)
′ and ξ = (ξ1, . . . , ξd2)

′ are distinct drift and diffusion pa-
rameters, respectively. The whole parameter θ = (η′, ξ ′)′. Here, we provide an ex-
plicit expression N(θ0,1, δ) based on the one-term density expansion. Expressions
for higher J values may be made via more extensive derivations.

Let μi , μij and so on denote partial derivatives with respect to ηi , ηi and ηj ,
respectively; and σi and σx,j and so on denote partial derivatives with respect to ξi ,
and x and ξj , respectively. By the one-term (J = 1) transition density approxima-
tion, derivations given in Chang and Chen (2011) show that

E

(
∂2 logf (1)

∂ηi ∂ηj

)
=: δ · N(1)

11 + O(δ2), E

(
∂2 logf (1)

∂ηi ∂ξj

)
=: δ · N(1)

12 + O(δ2)

and

E

(
∂2 logf (1)

∂ξi ∂ξj

)
=: −2E(σ−2σiσj ) + δ · N(1)

22 + O(δ2),

where

N
(1)
11 = E

{−σ−2μiμj − μσ−2μij + σ−1μijσx − 1
2μxij

}
,

N
(1)
12 = E{2μσ−3μiσj − σ−2μiσxσj + σ−1μiσxj },

N
(1)
22 = E

{−6μ2σ−4σiσj + 16μσ−3σxσiσj + 2μ2σ−3σij − 3σ−2μxσiσj

− 19
2 σ−2σ 2

x σiσj − 9
2μσ−2σxσij − 5μσ−2σxiσj − 5μσ−2σxjσi

+ σ−1μxσij + 4σ−1σxxσiσj + 11
2 σ−1σxσxiσj + 11

2 σ−1σxσxjσi

+ 3
2σ−1σ 2

x σij + 5
2μσ−1σxij − 3

4σxxσij − 5
2σxiσxj − 3

2σxσxij

− σxxiσj − σxxjσi + 3
4σσxxij

}
.

Thus

N(θ0,1, δ) =
(

δ · N(1)
11 δ · N(1)

12

δ · N(1)
12

′ −2 · E(σ−2σiσj ) + δ · N(1)
22

)
+ O(δ2).(6.2)

We learn from Proposition 2 that −N(θ0,1, δ) provides a leading order approx-
imation to I (δ) with a reminder term at the order of δ2. Equation (6.2) confirms
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that as δ → 0, given the asymptotic normality of the full MLE θ̂n as conveyed by
Proposition 6, that the convergence rate of the full MLE for the drift parameters
η is (nδ)−1/2 whereas that for the diffusion parameters ξ is n−1/2, faster than the
drift parameter estimator. Our study confirms the results of Gobet (2002), Sørensen
(2007) and Tang and Chen (2009).

In the rest of the section, we will derive the Fisher information matrix approxi-
mation for two specific diffusion processes. Both are widely employed in modeling
of the interest rate dynamics.

6.1. Vasicek model. Consider the Vasicek (1977) model,

dXt = κ(α − Xt) dt + σ dBt ,(6.3)

which is also the Ornstein–Uhlenbeck process. The conditional distribution of Xt

given Xt−1 is

Xt |Xt−1 ∼ N
{
Xt−1e

−κδ + α(1 − e−κδ), 1
2σ 2κ−1(1 − e−2κδ)

}
,

and the stationary distribution of {Xt } is N(α, σ 2

2κ
). It yields that the information

matrix of θ = (κ,α,σ )′ is I (δ) = (Iij )3×3 where

I11 = 1

2κ2 + δ[κδ + κδe2κδ − 2e2κδ + 2]
κ(e2κδ − 1)2 = δ

2κ
+ O(δ2), I12 = I21 = 0,

I13 = I31 = (1 + 2κδ) − e2κδ

σκ(e2κδ − 1)
= − δ

σ
+ O(δ2),

I22 = 2κ(eκδ − 1)2

σ 2(e2κδ − 1)
= κ2δ

σ 2 + O(δ2), I23 = I32 = 0 and I33 = 2

σ 2 .

These mean that

I (δ) =
⎛
⎝ δ · (2κ)−1 0 −δ · σ−1

0 δ · κ2σ−2 0
−δ · σ−1 0 2σ−2

⎞
⎠+ O(δ2).(6.4)

Hence I (0) = limδ→0 I (δ) is singular, an issue we have raised earlier, which
makes us assume that δI−1(δ)’s largest eigenvalue is bounded in condition (A.5).

Using the approximation formula in (6.2), we have

N(θ,1, δ) =
⎛
⎝−δ · (2κ)−1 0 δ · σ−1

0 −δ · κ2σ−2 0
δ · σ−1 0 −2σ−2

⎞
⎠+ O(δ2).

This means the leading order term of −N(θ,1, δ) is identical with that of the true
Fisher information matrix in (6.4).
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6.2. Cox–Ingersoll–Ross model. Consider the Cox–Ingersoll–Ross (CIR)
model [Cox, Ingersoll and Ross (1985)],

dXt = κ(α − Xt) dt + σ
√

Xt dBt ,(6.5)

which is also Feller’s (1952) square root process.
Let θ = (κ,α,σ )′ and c = 4κσ−2(1 − e−κδ)−1. The conditional distribution of

cXt given Xt−1 is

cXt |Xt−1 ∼ χ2
ν (λ),

where the distribution is a noncentral χ2 distribution with degree of freedom ν =
4κασ−2 and noncentral parameter λ = cXt−1e

−κδ . The transition density of Xt

given Xt−1 is

f (Xt |Xt−1, δ; θ) = c

2
e−u−v

(
v

u

)q/2

Iq

(
2
√

uv
)
,

where u = cXt−1e
−κδ/2, v = cXt/2, q = 2κα/σ 2 − 1 ≥ 0, and Iq is the modi-

fied Bessel function of the first kind of order q . If 2κα > σ 2, then the stationary
distribution of {Xt } is �(2κα

σ 2 , σ 2

2κ
).

Although the second partial derivations of the log transition density function can
be derived after some labor that is involved with differentiating the modified Bessel
function of the first kind, acquiring an expression for the Fisher information matrix
is a rather hard task, largely due to the difficulty in deriving the expectations. In
contrast, using the approximation formula (6.2), we can obtain the approximation
for the opposite Fisher information matrix,

N(θ0,1, δ) =
⎛
⎝N11 N12 N13

N21 N22 N23
N31 N32 N33

⎞
⎠+ O(δ2),

where

N11 = δ · α2σ 2 − 2κα2 + ασ 2

σ 4 − 2κασ 2 ,

N12 = N21 = δ · 4κασ 2 − σ 4 − 8κ2α + 4κσ 2

2σ 4 − 4κασ 2 ,

N13 = N31 = −δ · 2κα2σ 2 − 4κ2α2 + 2κασ 2

σ 5 − 2κασ 3 ,

N22 = δ · κ2

σ 2 − 2κα
,

N23 = −δ · 2κ2ασ 2 − 4κ3α + 2κ2σ 2

σ 5 − 2κασ 3
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and

N33 = −2

σ 2 + δ · (24κ2α2σ 2 − 48κ3α2 + 48κ2ασ 2

− 24κασ 4 + 36κσ 4 + 4σ 5 + 9σ 6)(4σ 6 − 8κασ 4)−1.

Using −N(θ0,1, δ), we can get the approximation of the Fisher information
matrix. This approximation may be used in carrying out statistical inference on the
CIR processes.

6.3. Observed Fisher information. The major application for the asymptotic
normality of both the full and approximate MLEs is for statistical inference
of θ , which include confidence regions and testing hypotheses for θ . For such
purposes, the Fisher information I (δ) needs to be estimated. A natural candi-
date would be −Nn(θ̂

(J )
n , J, δ). Although it converges to I (δ) at the rate of

Op{(nδ)−1/2 + δJ } or Op{(nδ)−1/2 + δJ+1}, depending on whether δ is fixed or

diminishing, −Nn(θ̂
(J )
n , J, δ) may not be nonnegative definite, which can hinder

the acquisition of {−Nn(θ̂
(J )
n , J, δ)}1/2. To get around this issue, by noticing that

I (δ) is the variance of the likelihood score, we consider

Ĩn(θ, J, δ) = 1

n

n∑
t=1

[∇θ logf (J )(Xt |Xt−1, δ; θ)
][∇θ logf (J )(Xt |Xt−1, δ; θ)

]′
as an estimator of I (δ). The following theorem shows this by replacing I (δ) with
Ĩn(θ̂

(J )
n , J, δ) in Theorem 3.

THEOREM 4. Under conditions (A.1)–(A.7) given in the Appendix,
√

nĨ 1/2
n

(
θ̂ (J )
n , J, δ

)(
θ̂ (J )
n − θ0

) d→ N(0,Ed)

for: (i) δ ∈ (0, ̃ ∧ ̇] being fixed, n → ∞, J → ∞ but nδ2J+2 → 0 or (ii) J ≥ 2
being fixed, n → ∞, δ → 0 but nδ3 → ∞ and nδ2J+1 → 0.

Confidence regions and testing hypotheses can be readily carried out by utilizing
the above results.

7. Simulation. We report results from simulation studies which are designed
to confirm the theoretical findings on the AMLE as reported in the earlier sections.
To allow verification with the full MLE, we considered the Vasicek and CIR diffu-
sion models reported in the previous section as both models permit the full MLE.
The two asymptotic regimes were experimented: the fixed δ and the diminishing δ

with nδ3 → ∞.
The first part of the simulation is about the case in which δ is fixed. The pa-

rameters used in the simulated Vasicek and CIR models were θ = (κ,α,σ )′ =
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(0.858,0.0891,0.0468)′ and θ = (κ,α,σ )′ = (0.892,0.09,0.1817)′, respectively.
The sampling interval δ was 1/12 and 1/4, and the order of the density approxi-
mation J was 1 and 2, respectively. For each δ and J , the sample size n was set at
500, 1,000 and 2,000, respectively. In addition to bias and standard deviation, we
consider

RMSD(n, J, δ) =
√

E
∥∥θ̂ (J )

n − θ̂n

∥∥2
2,

the square root of the expected square of modulated deviations between θ̂
(J )
n

and θ̂n, as an overall performance measure.
Tables 2 and 3 summarize the simulation for the fixed δ case. They report the

average bias and standard deviation (SD) for the full MLE and AMLEs with J = 1
and J = 2, as well as the RMSD between the AMLEs and the full MLE, for both
the Vasicek and the CIR models. To give the simulation results more perspective
and to confirm the derived approximate bias and variance formulas in Section 5,
we also computed the asymptotic bias and standard deviation based on formulas
(5.6) and (5.7). We observe from Tables 2 and 3 that at each δ (1/12 and 1/4)
experimented, the bias and the standard deviation of all the estimators for the three
parameters became smaller as n increased. These confirmed the consistency of the
estimators. The tables also showed that there was a good agreement among the
three estimators in terms of the performance measures. It appeared that the bias
and the variance of the AMLE with J = 1 and J = 2 were quite comparable to
each other. However, by comparing RMSD, it was clear that in most of the cases
(except for n = 500 of CIR model), the RMSD for J = 2 was smaller than J = 1,
signaling the AMLE with J = 2 was closer to the full MLE than that of the AMLE
with J = 1. This indicates that the AMLEs with J = 2 were indeed closer to those
with J = 1, as confirmed by our early analysis. The asymptotic bias and standard
deviation predicted for the AMLE with J = 1 and 2 offer more insights, and show
good agreement between the simulated results and the predicted values by the
theory, which is very assuring. We also observe that for δ = 1/4, the AMLE with
J = 2 performs better than AMLE with J = 1, which somehow reflects Table 1
which shows that J = 2 is preferred to J = 1 at this frequency. When δ was fixed
at 1/12, we see the performance between J = 1 and J = 2 was largely similar.

The second part of the simulation was devoted to the diminishing δ case. Here
we wanted to confirm the differential behavior of the AMLEs in the limiting
distribution between J = 1 and J ≥ 2, as revealed in Section 5. The Vasicek
model with θ = (κ,α,σ )′ = (0.892,0.09,0.1817)′ was considered. We tried to
create two scenarios: (i) nδ3 → ∞ and (ii) nδ3 → 0, while δ → 0. They were
created by choosing δ = n−1/6 and δ = n−1/2, respectively, whiling selecting
n = 500,1,000,2,000,4,000 and 8,000, respectively, to create two streams of
asymptotic sequences. For each n and δ, we generated repeatedly the Vasicek sam-
ple paths 1,000 times. For each simulated sample path, we obtained the AMLEs
θ̂

(J )
n for J = 1 and 2, respectively, and computed the Wald statistics

Wn(J ) = n
(
θ̂ (J )
n − θ0

)′
I (δ)

(
θ̂ (J )
n − θ0

)
.
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TABLE 2
Simulated average bias (Bias) and standard deviations (SD) of the full MLE and two
AMLEs with J = 1 and 2 for Vasicek model (κ = 0.858, α = 0.0891, σ = 0.0468);
A.Bias and A.SD are asymptotic bias and SD based on formulas (5.6) and (5.7);

RMSD is the root of mean square deviation between θ̂n and θ̂
(J )
n

δ = 1/12 δ = 1/4

n Statistics MLE J = 1 J = 2 MLE J = 1 J = 2

500 Bias κ 0.0992 0.0896 0.0992 0.0380 0.0127 0.0396
α 0.0002 0.0002 0.0002 4.09e–5 5.63e–5 4.17e–5
σ 4.39e–5 4.14e–5 4.39e–5 9.12e–5 7.13e–5 9.43e–5

A.Bias κ 0.0908 0.1016 0.0174 0.0376
α 0.0003 0.0002 0.0002 0.0001
σ 4.55e–5 4.55e–5 0.0001 0.0001

SD κ 0.2307 0.2255 0.2309 0.1366 0.1290 0.1386
α 0.0085 0.0085 0.0085 0.0050 0.0050 0.0050
σ 0.0016 0.0016 0.0016 0.0016 0.0016 0.0016

A.SD κ 0.2251 0.2366 0.1215 0.1403
α 0.0084 0.0085 0.0047 0.0050
σ 0.0016 0.0016 0.0016 0.0016

RMSD κ 0.0173 0.0062 0.0332 0.0316
α 0.0002 1.28e–5 0.0005 0.0002
σ 1.36e–5 1.05e–5 0.0001 0.0001

1,000 Bias κ 0.0518 0.0419 0.0520 0.0170 −0.0095 0.0186
α −0.0002 −0.0002 −0.0002 1.83e–5 2.81e–5 1.58e–5
σ 7.05e–5 6.68e–5 7.06e–5 3.66e–5 6.83e–6 3.96e–5

A.Bias κ 0.0446 0.0529 −0.0097 0.0161
α −0.0001 −0.0002 1.69e–5 1.45e–5
σ 0.0001 0.0001 3.29e–5 4.55e–5

SD κ 0.1624 0.1586 0.1625 0.0957 0.0905 0.0966
α 0.0058 0.0058 0.0058 0.0034 0.0034 0.0034
σ 0.0011 0.0011 0.0011 0.0012 0.0012 0.0012

A.SD κ 0.1585 0.1666 0.0849 0.0982
α 0.0057 0.0058 0.0032 0.0034
σ 0.0011 0.0011 0.0012 0.0012

RMSD κ 0.0100 0.0008 0.0316 0.0063
α 0.0001 9.14e–6 0.0004 0.0001
σ 7.39e–6 7.80e–7 0.0001 1.59e–5

If
√

nI 1/2(δ)(θ̂
(J )
n − θ0) is asymptotically standard normally distributed in R

d ,

then the Wald statistic Wn(J )
d→ χ2

3 . Based on the 1,000 Wald statistics from
the simulations, we then performed the Kolmogorov–Smirnov (K–S) test to test
H0 :Wn(J ) ∼ χ2

3 , or not, for each of the designed sequences of (n, δ) generated
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TABLE 2
(Continued)

δ = 1/12 δ = 1/4

n Statistics MLE J = 1 J = 2 MLE J = 1 J = 2

2,000 Bias κ 0.0245 0.0149 0.0246 0.0084 −0.0191 0.0100
α −3.97e–5 −3.34e–5 −4.01e–5 −5.72e–5 −4.90e–5 −5.80e–5
σ 2.69e–5 2.30e–5 2.70e–5 4.00e–5 9.21e–6 4.34e–5

A.Bias κ 0.0179 0.0249 −0.0085 0.0071
α −2.63e–5 −2.98e–5 0.0001 −0.0001
σ 4.55e–5 4.55e–5 4.55e–5 4.55e–5

SD κ 0.1114 0.1091 0.1115 0.0647 0.0611 0.0652
α 0.0042 0.0041 0.0042 0.0024 0.0024 0.0024
σ 0.0008 0.0008 0.0008 0.0008 0.0008 0.0008

A.SD κ 0.1088 0.1143 0.0576 0.0665
α 0.0041 0.0042 0.0023 0.0024
σ 0.0008 0.0008 0.0008 0.0008

RMSD κ 0.0100 0.0006 0.0300 0.0042
α 0.0001 7.37e–6 0.0003 4.68e–5
σ 6.27e–6 7.80e–7 0.0001 1.02e–5

under the two scenarios. Table 4 reports the p-values of the test, which show that
for J = 1, under both scenarios, the p-values of the K–S test became smaller,
and hence the above null hypothesis was rejected as n increased. For J = 2, the
p-values of the K–S test were sharply different between the two scenarios. In par-
ticular, the p-values were mostly quite large under the scenario of nδ3 → ∞, and
they were largely significant (small) when δ was diminishing at the faster rate of
n−1/2 such that nδ3 → 0. These were consistent with our theoretical findings in
Section 5.

APPENDIX

We need the following technical assumptions in our analysis.
(A.1) (i) � is a compact set in R

d , and the true parameter θ0 is an interior point
of �; (ii) for all values of the parameters θ , Assumption 1–3 in Aït-Sahalia (2002)
hold; (iii) the drift function μ(x; θ) is a bona fide function of θ for each x.

(A.2) (i) For every δ > 0, E∇θ logf (Xt |Xt−1, δ; θ0) = 0, and θ0 is the only
root of E∇θ logf (Xt |Xt−1, δ; θ) = 0. (ii) the MLE θ̂n and the J -term approximate
MLE θ̂

(J )
n satisfy, respectively,

n∑
t=1

∇θ logf (Xt |Xt−1, δ; θ̂n) = 0 and
n∑

t=1

∇θ logf (J )(Xt |Xt−1, δ; θ̂ (J )
n

)= 0.
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TABLE 3
Simulated average bias (Bias) and standard deviations (SD) of the full MLE and two AMLEs with
J = 1 and 2 for CIR model (κ = 0.892, α = 0.09, σ = 0.1817); A.Bias and A.SD are asymptotic

bias and SD based on formulas (5.6) and (5.7); RMSD is the root of mean square deviation

between θ̂n and θ̂
(J )
n

δ = 1/12 δ = 1/4

n Statistics MLE J = 1 J = 2 MLE J = 1 J = 2

500 Bias κ 0.0980 0.0910 0.0978 0.0371 0.0234 0.0388
α 0.0001 0.0004 0.0001 −6.38e–5 0.0008 −0.0001
σ 0.0003 0.0003 0.0003 0.0004 0.0005 0.0003

A.Bias κ 0.0818 0.0984 0.0207 0.0513
α 0.0005 0.0001 0.0008 −0.0001
σ 0.0003 0.0003 0.0004 0.0002

SD κ 0.2389 0.2340 0.2405 0.1437 0.1338 0.2256
α 0.0093 0.0093 0.0093 0.0055 0.0054 0.0055
σ 0.0060 0.0060 0.0060 0.0065 0.0065 0.0069

A.SD κ 0.2169 0.2389 0.1159 0.1938
α 0.0091 0.0093 0.0064 0.0055
σ 0.0060 0.0060 0.0067 0.0065

RMSD κ 0.0200 0.0224 0.0447 0.1622
α 0.0009 0.0004 0.0018 0.0004
σ 0.0004 0.0004 0.0017 0.0021

1,000 Bias κ 0.0521 0.0435 0.0521 0.0218 0.0070 0.0186
α −1.54e–5 0.0002 −2.22e–5 −0.0002 0.0007 −0.0003
σ 3.86e–5 4.35e–5 3.81e–5 0.0003 0.0006 0.0003

A.Bias κ 0.0411 0.0525 0.0095 0.0262
α 0.0004 −3.43e–5 0.0007 −0.0003
σ 3.17e–5 2.69e–5 0.0003 0.0001

SD κ 0.1596 0.1558 0.1603 0.0968 0.0861 0.0980
α 0.0067 0.0067 0.0067 0.0039 0.0037 0.0039
σ 0.0043 0.0043 0.0043 0.0045 0.0045 0.0045

A.SD κ 0.1452 0.1596 0.0823 0.0969
α 0.0066 0.0067 0.0044 0.0039
σ 0.0040 0.0043 0.0047 0.0045

RMSD κ 0.0173 0.0141 0.0447 0.0200
α 0.0003 2.66e–5 0.0020 0.0001
σ 0.0002 3.91e–5 0.0021 0.0002

(A.3) There exist finite positive constants  and K1 such that, for l = 1,2,3,
any δ ∈ (0,], i1, i2, i3 ∈ {1, . . . , d} and j = 1 and 2,

E sup
θ∈�

{∣∣∣∣∂
lAj (Xt |Xt−1, δ; θ)

∂θi1 · · · ∂θil

∣∣∣∣
3}

≤ K1.



AMLE FOR DIFFUSION PROCESSES 2843

TABLE 3
(Continued)

δ = 1/12 δ = 1/4

n Statistics MLE J = 1 J = 2 MLE J = 1 J = 2

2,000 Bias κ 0.0295 0.0199 0.0294 0.0103 −0.0057 0.0069
α −0.0002 0.0001 −0.0002 −3.06e–5 0.0010 −9.87e–5
σ 0.0002 0.0002 0.0002 3.05e–5 0.0006 1.33e–5

A.Bias κ 0.0213 0.0299 −0.0011 0.0147
α 0.0002 −0.0002 0.0006 −0.0001
σ 0.0002 0.0002 0.0005 1.06e–5

SD κ 0.1082 0.1053 0.1088 0.0696 0.0607 0.0698
α 0.0048 0.0048 0.0048 0.0028 0.0027 0.0028
σ 0.0030 0.0031 0.0030 0.0033 0.0037 0.0033

A.SD κ 0.1181 0.1105 0.0592 0.0697
α 0.0047 0.0048 0.0027 0.0028
σ 0.0030 0.0030 0.0034 0.0033

RMSD κ 0.0173 0.0068 0.0424 0.0100
α 0.0004 0.0001 0.0020 0.0001
σ 0.0005 0.0003 0.0027 0.0001

(A.4) There exist finite positive constants νl for l = 0,1,2 and 3,  > 0 and
K2 such that ν0 > 3, ν2 > ν1 > 3, ν3 > 1 and for any i1, . . . , i3 ∈ {1, . . . , d} and
δ ∈ (0,],

E

{
sup
θ∈�

[ ∞∑
l=0

∣∣∣∣∂
qcl(γ (Xt ; θ)|γ (Xt−1; θ); θ)

∂θi1 · · · ∂θiq

∣∣∣∣
l

l!
]νl

}
≤ K2.

TABLE 4
p-values of Kolmogorov–Smirnov test for Wn(J ) ∼ χ2

3

Situation n δ J = 1 J = 2

δ = n−1/6 500 0.3550 0.3524 0.0587
1,000 0.3162 0.4595 0.5830
2,000 0.2817 0.1149 0.2710
4,000 0.2510 0.0019 0.8309
8,000 0.2236 5.74e–8 0.6002

δ = n−1/2 500 0.0447 5.04e–7 2.45e–8
1,000 0.0316 0.0003 9.72e–5
2,000 0.0224 0.0006 0.0003
4,000 0.0158 0.1109 0.0851
8,000 0.0112 0.0470 0.0367
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(A.5) For any δ > 0, the Fisher information matrix

I (δ) := −E∇2
θθ logf (Xt |Xt−1, δ; θ0)

is invertible and as δ → 0 the largest eigenvalues of δI−1(δ) is bounded away from
infinity.

(A.6) For each positive integer K , which may be infinite, and any δ ∈ (0,],

P

{
inf
θ∈�

∣∣∣∣∣
K∑

l=0

cl(γ (Xt ; θ)|γ (Xt−1; θ); θ)
δl

l!
∣∣∣∣∣= 0

}
= 0.

(A.7) For any β > 1 and η > 0, there exists (β,η) > 0, then for any δ ∈
(0,(β,η)] and K , where K may be infinite,

P

{
inf
θ∈�

∣∣∣∣∣
K∑

l=0

cl(γ (Xt ; θ)|γ (Xt−1; θ); θ)
δl

l!
∣∣∣∣∣< η1/β

}
< η.

Assumptions (A.1) and (A.2) are standard requirements for maximum like-
lihood estimators. In particular, (A.1) (ii) contains conditions on the smooth-
ness of the drift and the diffusion which ensures the existence of a unique so-
lution to (2.1) as well as the infinite differentiability of the transition density
f (x|x0, δ; θ) with respect to x, x0 and δ, and three times differentiable with
respect to θ [Friedman (1964)]. The second part of (A.2) is the simplified ap-
proach of Cramér (1946) assuming the MLEs are the solutions of the likelihood
score equations. Assumption (A.3) is needed to guarantee the third derivative of
logf (Xt |Xt−1, δ; θ) with respect to θ can be controlled by an integrable func-
tion, while condition (A.4) ensures the absolute convergence of the infinite series∑∞

l=0|cl(γ (Xt ; θ)|γ (Xt−1; θ)|δl/ l! = exp{Ã3(x|x0, δ; θ)} as Aït-Sahalia (2002)
has provided conditions on the nondegeneracy of the diffusion function and the
boundary condition, which together with the third part of condition (A.1) leads to
the convergence of the above infinite series exp{Ã3(x|x0, δ; θ)}. Condition (A.4) is
also needed to allow exchange of differentiation and summation for the infinite se-
ries. The first part of the (A.5) is of standard in likelihood inference. Its second part
reflects the fact that for some processes limδ→0 I (δ) may be singular, as conveyed
in our discussion in Section 6 for the Vasicek process. Condition (A.6) is needed
to guarantee the derivatives of log transition density and log approximate transi-
tion density exist with probability one. Condition (A.7) is needed to manage the
denominators in the derivatives of the log approximate transition density, ensuring
that the probability of their taking small values can be controlled uniformly.

We shall give the proofs for the propositions and theorems mentioned in Sec-
tions 3–6. We first present some lemmas about the true transition density and its
approximations, which we will use in later proofs. The proofs for the lemmas can
be found in Chang and Chen (2011).
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LEMMA 1. Under (A.1) and (A.4), for any δ ∈ (0,), the infinite series
∞∑
l=0

cl(γ (Xt ; θ)|γ (Xt−1; θ))
δl

l!
absolutely converges with probability 1, and for k = 1,2 and 3, and i1, i2, i3 ∈
{1, . . . , d},

∂k

∂θi1 · · · ∂θik

∞∑
l=0

cl(γ (Xt ; θ)|γ (Xt−1; θ))
δl

l!

=
∞∑
l=0

∂k

∂θi1 · · · ∂θik

cl(γ (Xt ; θ)|γ (Xt−1; θ))
δl

l! .

LEMMA 2. Under (A.6) and (A.7), for any positive β > 1, there exist two
constants m(β) < ∞ and 1(β) > 0 such that for any δ ∈ (0,1(β)] and J , where
J can be infinity, then

E

{
sup
θ∈�

∣∣∣∣∣
J∑

l=0

cl(γ (Xt ; θ)|γ (Xt−1; θ))
δl

l!
∣∣∣∣∣
−β}

< m(β).

LEMMA 3. Under (A.1), (A.3), (A.4), (A.6), (A.7), there exist two constants
M1 < ∞ and 2 > 0 such that, for any J , where J can be infinity, δ ∈ (0,2) and
i, j, k ∈ {1, . . . , d},

E

{
sup
θ∈�

∣∣∣∣∂
3 logf (J )(Xt |Xt−1, δ; θ)

∂θi ∂θj ∂θk

∣∣∣∣
}

< M1.

PROOF OF PROPOSITION 1. Using the same method in the proof of Lemma 3,
we know (a) holds. On the other hand, Lemma 3 implies (b). �

PROOF OF PROPOSITION 2. See the proof of Proposition 2 in Chang and
Chen (2011). �

PROOF OF PROPOSITION 3. Recall Proposition 2, then

‖I−1(δ)N(θ0, J, δ) + Ed‖2 ≤ ‖I−1(δ)‖2 · ‖N(θ0, J, δ) + I (δ)‖2 ≤ CδJ .

If CδJ < 1, then

‖N−1(θ0, J, δ)I (δ) + Ed‖2 ≤ ‖I−1(δ)N(θ0, J, δ) + Ed‖2

1 − ‖I−1(δ)N(θ0, J, δ) + Ed‖2
.

From Proposition 2, if CδJ+1 < 1, then

‖N−1(θ0, J, δ) + I−1(δ)‖2 ≤ ‖I−1(δ)‖2
2‖N(θ0, J, δ) + I (δ)‖2

1 − ‖I−1(δ)‖2‖N(θ0, J, δ) + I (δ)‖2
.
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On the other hand, using the same method in the proof of Proposition 2, we have

‖U(θ0, J, δ)‖2 ≤ CδJ+1

for any positive J and δ ∈ (0, ̄). Hence, we can find the constants C1,C2 and
 > 0 such that

‖N−1(θ0, J, δ)I (δ) + Ed‖2 ≤ C1δ
J and ‖N−1(θ0, J, δ)U(θ0, J, δ)‖2 ≤ C2δ

J

for any positive integer J and δ ∈ (0,). �

PROOF OF PROPOSITION 4. Use the same method in the proof of Proposi-
tion 2. �

PROOF OF PROPOSITION 5. We’ll use Corollary 2.1 in Newey (1991) to prove
this proposition. We only need to verify three conditions under two situations men-
tioned in Proposition 5:

(i) for any i ∈ {1, . . . , d},

E

{
∂

∂θi

logf (Xt |Xt−1, δ; θ)

}
is equicontinuous;

(ii) for any i ∈ {1, . . . , d},

sup
θ∈�

∥∥∥∥∥1

n

n∑
t=1

∂2

∂θi ∂θ ′ logf (Xt |Xt−1, δ; θ)

∥∥∥∥∥
2

= Op(1);

(iii) for any i ∈ {1, . . . , d} and θ ∈ �,

1

n

n∑
t=1

∂

∂θi

logf (Xt |Xt−1, δ; θ) − E

{
∂

∂θi

logf (Xt |Xt−1, δ; θ)

}
p→ 0.

For any θ∗, θ∗∗ ∈ �, note that

E

{
∂

∂θi

logf (Xt |Xt−1, δ; θ∗)
}

− E

{
∂

∂θi

logf (Xt |Xt−1, δ; θ∗∗)
}

= E

{
∂2

∂θi ∂θ ′ logf (Xt |Xt−1, δ; θ̄ )

}
· (θ∗ − θ∗∗),

where θ̄ is on the joint line between θ∗ and θ∗∗. Then∣∣∣∣E
{

∂

∂θi

logf (Xt |Xt−1, δ; θ∗)
}

− E

{
∂

∂θi

logf (Xt |Xt−1, δ; θ∗∗)
}∣∣∣∣

≤
∥∥∥∥E

{
∂2

∂θi ∂θ ′ logf (Xt |Xt−1, δ; θ̄ )

}∥∥∥∥
2
· ‖θ∗ − θ∗∗‖2.
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For any j ∈ {1, . . . , d}, use the same method in the proof of Lemma 3, we know
that there exists a constant C, which is not dependent on J and δ, and ̂ > 0 such
that, for any J and δ ∈ (0, ̂],

E

{
sup
θ∈�

∣∣∣∣ ∂2

∂θi ∂θj

logf (Xt |Xt−1, δ; θ)

∣∣∣∣
}

< C.

Hence, (i) and (ii) can be established.
To verify (iii), from (A.3) [Lemmas 3 and 4 in Aït-Sahalia and Mykland (2004)],

we know that there exists a positive constant κ such that for any t1 < t2,∣∣∣∣E
{[

∂

∂θi

logf (Xt1 |Xt1−1, δ; θ) − E

{
∂

∂θi

logf (Xt1 |Xt1−1, δ; θ)

}]

×
[

∂

∂θi

logf (Xt2 |Xt2−1, δ; θ) − E

{
∂

∂θi

logf (Xt2 |Xt2−1, δ; θ)

}]}∣∣∣∣
≤ C · exp{−κ(t2 − t1)δ},

where

C = E

{[
∂

∂θi

logf (Xt |Xt−1, δ; θ) − E

{
∂

∂θi

logf (Xt |Xt−1, δ; θ)

}]2}
.

Then

E

{
1

n

n∑
t=1

[
∂

∂θi

logf (Xt |Xt−1, δ; θ) − E

{
∂

∂θi

logf (Xt |Xt−1, δ; θ)

}]}2

≤ C

n
+ C

n
· exp{−κδ}

1 − exp{−κδ}
≤ 3

[
2K1 + K2 · m

(
2ν1

ν1 − 2

)]
·
{

1

n
+ 1

n[exp(κδ) − 1]
}

→ 0,

under the two situations mentioned in the statement of Proposition 5. Hence we
complete the proof. �

PROOF OF PROPOSITION 6. From (A.2), we can get n−1∇θ �n,δ(θ̂n) = 0. Ex-
panding it at θ0,

0 = 1

n

n∑
t=1

∇θ logf (Xt |Xt−1, δ; θ0) + 1

n

n∑
t=1

∇2
θθ logf (Xt |Xt−1, δ; θ̃ ) · (θ̂n − θ0).

Then

θ̂n − θ0 =
{
−1

n

n∑
t=1

∇2
θθ logf (Xt |Xt−1, δ; θ̃ )

}−1

· 1

n

n∑
t=1

∇θ logf (Xt |Xt−1, δ; θ0).
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Define In(δ) = −n−1∑n
t=1 ∇2

θθ logf (Xt |Xt−1, δ; θ0). From Lemma 3, an −n−1 ×∑n
t=1 ∇2

θθ logf (Xt |Xt−1, δ; θ̃ ) = In(δ) · {1 + op(1)}. Using the same way as that
in the verification of (iii) in the proof of Proposition 5, we can get In(δ) − I (δ) =
Op{(nδ)−1/2}. If nδ3 → ∞, by (A.5),

{
−1

n

n∑
t=1

∇2
θθ logf (Xt |Xt−1, δ; θ̃ )

}−1

= {
I (δ) · {1 + op(1)} + Op{(nδ)−1/2}}−1

= I−1(δ) · {1 + op(1)}.
Then

√
nI 1/2(δ)(θ̂n − θ0) = I−1/2(δ)

1

n1/2

n∑
t=1

∇θ logf (Xt |Xt−1, δ; θ0) · {1 + op(1)}.

We will use the martingale central limit theorem [Billingsley (1995), page 476]
to show that the first part on the right-hand side of the above equation con-
verges to a standard normal distribution. For any α ∈ R

d with unit L2 norm,
to simplify notations, let Un,m = α′I−1/2(δ)n−1/2∇θ logf (Xm|Xm−1, δ; θ0) and
Fn,m = σ(X1, . . . ,Xm). It is easy to check (Un,m,Fn,m) is a martingale dif-
ference array. By the Markov property and Birkhoff’s Ergodic theorem, Vn,n =∑n

m=1 E(U2
n,m|Fn,m)

p→ EU2
n,m = 1. On the other hand,

∑n
m=1 |Un,m|3 ≤ C(n ×

δ3)−1/2 → 0. This implies the asymptotic normality of
√

nα′I 1/2(δ)(θ̂n − θ0).
Then we complete the proof. �

PROOF OF THEOREM 1. From Propositions 4 and 5, we can get

∥∥E∇θ logf
(
Xt |Xt−1, δ; θ̂ (J )

n

)∥∥
2

p→ 0

for either: (i) δ ∈ (0, ̃ ∧ ̇] being fixed, J → ∞ and n → ∞, or (ii) J being
fixed, n → ∞, δ → 0 but nδ → ∞. Hence, noting condition (A.2)(i), we have the
consistency of the AMLE θ̂

(J )
n . �

PROOF OF THEOREM 2. For fixed δ, from Theorem 1 and (4.1), we know that
the leading order term of θ̂

(J )
n −θ0 contains two parts: one is N−1Un, and the other

is N−1(Nn + Fn)(θ̂n − θ0). Hence, θ̂
(J )
n − θ0 = Op{δJ+1 + (nδ)−1/2}.

For J fixed and δ → 0, Proposition 4 implies

E

{∥∥∥∥∥1

n

n∑
t=1

∇θ logf
(
Xt |Xt−1, δ; θ̂ (J )

n

)− 1

n

n∑
t=1

∇θ logf (Xt |Xt−1, δ; θ̂n)

∥∥∥∥∥
2

}

≤ CδJ+1.
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This means that

E

{∥∥∥∥∥1

n

n∑
t=1

∇2
θθ logf (Xt |Xt−1, δ; θ̃ ) · (θ̂ (J )

n − θ̂n

)∥∥∥∥∥
2

}
≤ CδJ+1,

where θ̃ is on the joining line between θ̂
(J )
n and θ̂n. Hence

1

n

n∑
t=1

∇2
θθ logf (Xt |Xt−1, δ; θ̃ ) · (θ̂ (J )

n − θ̂n

)= Op(δJ+1).

Since θ̃
p→ θ0 and θ̂

(J )
n − θ̂n = op(1),

1

n

n∑
t=1

∇2
θθ logf (Xt |Xt−1, δ; θ0) · (θ̂ (J )

n − θ̂n

)= Op(δJ+1).

On the other hand, from Proposition 2, we know

1

n

n∑
t=1

∇2
θθ logf (Xt |Xt−1, δ; θ0) − 1

n

n∑
t=1

∇2
θθ logf (J )(Xt |Xt−1, δ; θ0)

= Op(δJ+1).

Then Nn(θ̂
(J )
n − θ̂n) = Op(δJ+1). Using the same way of verifying (iii) in the

proof of Proposition 5, we know Nn − N = Op{(nδ)−1/2}. As nδ3 → ∞, then

N(θ̂
(J )
n − θ̂n) = Op(δJ+1). Hence, θ̂

(J )
n − θ̂n = Op(δJ ). At the same time, we

know θ̂n − θ0 = Op{(nδ)−1/2}. Then

θ̂ (J )
n − θ0 = Op{δJ + (nδ)−1/2}.

This completes the proof of Theorem 2. �

PROOF OF THEOREM 4. We only need to prove following result:
√

nĨ 1/2
n

(
θ̂ (J )
n , J, δ

)(
θ̂ (J )
n − θ0

)= √
nI 1/2(δ)

(
θ̂ (J )
n − θ0

)+ op(1)

under the two situations mentioned in Theorem 4. Using the approach in the proof

of Lemma 3, we have Ĩn(θ̂
(J )
n , J, δ) − Ĩn(θ0, J, δ) = Op{‖θ̂ (J )

n − θ0‖2}. Also, us-

ing the same way of verifying (iii) in the proof of Proposition 5, Ĩn(θ0, J, δ) −
EĨn(θ0, J, δ) = Op{(nδ)−1/2}. By the same argument in the proof of Proposition 2,
EĨn(θ0, J, δ) − I (δ) = O(δJ+1). Hence, if nδ3 → ∞, under either asymptotic
regime in Theorem 4,

Ĩ 1/2
n

(
θ̂ (J )
n , J, δ

)= I 1/2(δ) · {1 + op(1)}.
Then we complete the proof. �
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