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REMEMBERING ERICH LEHMANN1

BY WILLEM R. VAN ZWET

Leiden University

In this paper I shall try to sketch some typical aspects of Erich Lehmann’s
contributions to statistics through his research, his teaching, his service to the
profession and his personality.

1. Introduction. Erich Leo Lehmann was born in Strasbourg on Novem-
ber 20, 1917. He was raised in Frankfurt am Main where his father was a prominent
lawyer. Immediately after Hitler came to power in 1933, the family left Germany
for Switzerland, where Erich finished high school and studied mathematics for two
years at the University of Zürich. In 1938 he continued his studies at Trinity Col-
lege, Cambridge and in January 1941 he arrived in Berkeley as a graduate student
at the University of California. In 1942 he moved from pure mathematics to statis-
tics. In 1944–1945 he spent a year on Guam as an operations analyst with the U.S.
Air Force, together with his lifelong friend Joseph Hodges, Jr. Having returned
to Berkeley at the end of the war, Erich received his Ph.D. in 1946 and after that
remained on the Berkeley faculty throughout his career. He received many honors
such as membership of both the National Academy of Sciences and the Ameri-
can Academy of Arts and Sciences, as well as honorary doctorates at Leiden and
Chicago. He passed away on September 12, 2009 at the age of 91. Those who
knew him well, remember him with affection.

The purpose of this paper is not to present an authoritative account of Erich
Lehmann’s many achievements. That will doubtless be done at some later date.
My aim is merely to describe, from a purely personal point of view, the qualities
that impressed me most about Erich Lehmann as a scientist and a person, and that
influenced my own life to a considerable extent.

Luckily there exists an excellent book about Erich’s life and times written by
himself [Lehmann (2008)]. Although this book is formally about his interactions
with fellow scientists, it does present a reasonably complete picture of his thought
and activities over the years. An earlier version of some of the material in this
book may be found in an interview that appeared in Statistical Science [DeGroot
(1986)]. In Lehmann (1997) Erich provided an account of the history of his famous
book Testing Statistical Hypotheses. Another rich source of material is Constance
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Reid’s biography of Jerzy Neyman [Reid (1982)]. Finally there are my own conver-
sations and correspondence with Erich that intermittently cover a period of roughly
45 years. I shall use these sources freely to discuss some of Erich’s activities and
thoughts.

2. Research. Erich’s research was paramount to his person, so I shall begin
by discussing two of his papers that I particularly like and that are typical of his
research style. Both papers start out with deceptively simple ideas that yield results
that greatly improve our understanding of essentially complex matters. A more
comprehensive view of Erich’s research output will be available in a volume of his
selected papers that should appear shortly.

2.1. The power of rank tests. Lehmann (1953) is the first of these two papers.
I discussed it for the volume of Lehmann’s selected papers, but I think the paper
has a natural place here, too. It consists of two simple remarks, but of course these
remarks were only found to be simple after they had been made! The setting is the
power computation for two-sample rank tests. Let X1, . . . ,Xm,Y1, . . . , Yn be inde-
pendent, with the Xi and the Yj having continuous distribution functions F and G,
respectively. We wish to test the hypothesis F = G against the alternative that the
Y ’s are stochastically larger than the X’s, that is, F(x) ≥ G(x) for all x with strict
inequality for at least one value of x and hence on an interval. We rank the com-
bined sample in increasing order, let R1, . . . ,Rn denote the ranks of Y1, . . . , Yn and
define the rank test statistic T = ∑

1≤j≤n k(Rj ) where k is an increasing function.
The rank test rejects the hypothesis for large values of T . The test is distribution-
free in the sense that under the hypothesis the distribution of T is independent
of the common distribution F of the observations. Of course this is immediately
obvious since under the hypothesis the elements of the combined sample of X’s
and Y ’s are independent and identically distributed (i.i.d.) and therefore exchange-
able, and hence every permutation of the ranks of the combined sample is equally
probable. There is also a slightly different and perhaps less obvious argument for
showing that the test is distribution-free. One simply notes that by subjecting all
observations to the same increasing transformation, the common distribution F of
the combined data may be changed into any other distribution, but the ranks—and
hence their distribution—remain unchanged. As we shall see, the advantage of the
second argument is that it does not involve the exchangeability of the combined
sample under the hypothesis and the explicit knowledge of the joint distribution of
the ranks that follows from this.

The problem with rank tests was the computation of the power, that is, the
probability of rejection under an alternative. Concentrating on shift alternatives
G(x) = F(x − θ) for θ > 0, it took the combined efforts of the statistics profes-
sion quite some time before this question found a satisfactory asymptotic answer
as m and n → ∞. For fixed sample sizes the problem was considered hopeless
in general. Lehmann noticed that under the alternative, part of the invariance that
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had proved so useful under the hypothesis still survives. An increasing transfor-
mation of all of the observations still leaves the ranks unchanged. So if K is a
distribution function on (0,1) and one considers the alternative (F,K(F)), that is,
G(x) = K(F(x)), then the increasing transformation F of the random variables
carries this into the alternative (U,K) where U denotes the uniform distribution
on (0,1) for the F(Xi) and K the distribution function of the F(Yj ). Hence for
every F , the distribution of T under the alternative (F,K(F)) is the same as that
under (U,K).

The second, even simpler remark was that two years earlier Wassily Hoeffding
had derived an expression for the distribution of the ranks in terms of the distribu-
tion of uniform order statistics [Hoeffding (1951)]. This expression is particularly
easy to compute explicitly for the case where K(v) = va for a > 1. So Lehmann
suggested considering the composite alternative (F,F a) for fixed a > 1 and all
continuous F , for which the distribution of the ranks—and hence of T —is in-
dependent of F and equal to that for (U,Ua) which is easy to compute for any
sample size. As a result one can now compute the exact small sample power of the
rank test for a curve of alternatives (F,F a) for varying F and limiting results for
m,n → ∞ are readily available. With the aid of Hoeffding’s formula for the dis-
tribution of the ranks under the alternative and the Neyman–Pearson lemma, one
can find most powerful and locally most powerful tests for such alternatives.

Of course this does not solve the problem of computing the power against shift
alternatives because in that case the computation is still unpleasant and the result-
ing power will depend on F as well as on the shift θ . In defense of his (F,K(F))

models for varying F as opposed to the usual shift models, Lehmann points out
that it seems that when distribution-free methods are appropriate “one usually does
not have very precise knowledge of the alternative. What is then required are al-
ternatives representative of the principal types of deviation from the hypothesis, in
terms of which one can study, at least in outline, the ability of various tests to detect
such deviations.” Some 60 years later many of us would agree with this sentiment.

During a meeting in Berkeley on the occasion of Erich’s 80th birthday in 1997,
I spoke about this paper and evoked the image of a large group of statisticians
wearing themselves out by climbing the mountain of technicalities associated with
the study of shift alternatives, while at the same time Erich Lehmann tiptoed qui-
etly around the mountain to greet them when they got to the other side. What I did
not realize at the time and only discovered when re-reading Erich’s interview in
Statistical Science [DeGroot (1986)] was that Erich himself also liked this paper
particularly and considered it one of his favorites. After the meeting he wrote to
me: “It is rather a strange experience—at the same time embarrassing and ego-
swelling—to find one’s work the topic of several lectures. I hope it does not sound
conceited if I say that your talk was the one that gave my work some ‘personal-
ity’.” It seems safe to think that he liked the meeting as well as the interest in his
44-year-old paper.



REMEMBERING ERICH LEHMANN 2269

2.2. Deficiency. Hodges and Lehmann (1970) is the other paper I would like
to discuss. Again the paper advances a simple idea that could almost be called
obvious, except for the fact that nobody had considered it in any generality before.
Earlier studies of this kind, such as Fisher (1925) or Rao (1961), are concerned
with a single specific problem in a restricted setting. The general approach set
forth in the Hodges–Lehmann paper led to a revival of asymptotic expansions of
distribution functions that substantially strengthened large sample theory. Also the
paper has the unique distinction of having a title consisting of a single word!

To compare the quality of two statistical procedures A and B for the same prob-
lem, one may compare the sample sizes NA and NB needed to obtain the same
performance from the two procedures. As a measure of performance one can think
of the variance σ 2 of an estimator or the power π of a test of a null hypothesis
against a given alternative for a given level of significance α. If we restrict at-
tention to tests rather than estimators, NA and NB are the sample sizes needed
to obtain a power π ∈ (0,1) against the given alternative for a significance level
α ∈ (0,1) with procedure A or B . The ratio NB/NA may then be viewed as the
efficiency of procedure A with respect to B , that is, as a measure of how well
procedure A performs for this particular testing problem when compared to B . In
most cases of interest, however, the quantity NB/NA is too difficult to compute,
so one resorts to asymptotics.

Let X1,X2, . . . ,Xn be i.i.d. random variables with common density fθ and con-
sider the problem of testing the null hypothesis H0 : θ = 0 against the alternative
K(c,n) : θ = cn−1/2 for c > 0. For sample sizes n = 1,2, . . . we thus have a se-
quence of testing problems and under the usual regularity conditions the alternative
hypothesis approaches the null hypothesis as n → ∞ in the sense of mutual conti-
guity. The level of significance α ∈ (0,1) is kept fixed and contiguity ensures that
the power of any sequence of tests against this sequence of alternatives is bounded
away from 0 and 1 as n → ∞. Suppose, as is often the case, that as n → ∞ the
power for the nth testing problem against K(c,n) equals

πn,A(K(c,n)) = a0(c) + a1(c)n
−1/2 + a2(c)n

−1 + o(n−1),
(2.1)

πn,B(K(c,n)) = b0(c) + b1(c)n
−1/2 + b2(c)n

−1 + o(n−1)

for test procedures A and B , respectively, smooth functions ai and bi and c > 0. If
procedure A is applied for sample size n, then procedure B should be applied with
sample size k = kn in order to obtain the same power, so

πn,A(K(c,n)) = πk,B(K(c,n)) = πk,B

(
K

(
c(k/n)1/2, k

))
(2.2)

and hence

a0(c) = b0
(
c(k/n)1/2) + o(1).(2.3)

Typically, the functions ai and bi are smooth and this will allow us to find the
asymptotic relative efficiency of procedure A with respect to B for the sequence of
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alternatives K(c,n)

E(A,B) = lim
n→∞

NB

NA

= lim
n→∞

kn

n

as the solution E of the equation

a0(c) = b0(cE
1/2).(2.4)

If E(A,B) > 1, then this indicates that for large samples procedure A is preferable
to procedure B for testing against the alternative K(c,n) as procedure B needs a
sample of size nE(A,B) whereas sample size n suffices for procedure A to achieve
the same power.

The problem becomes more interesting if the limiting powers a0(c) and b0(c)

are equal and hence E(A,B) = 1. In this case the asymptotic relative efficiency
E provides no guidance for the choice of one of the procedures, but so far we
have only used the leading terms a0(c) and b0(c) in (2.1). Hodges and Lehmann
suggested substituting the full expansions (2.1) in (2.2) and using the fact that
k/n → 1 to expand

(
k

n

)1/2

=
(

1 + k − n

n

)1/2

= 1 + k − n

2n
− (k − n)2

8n2 + · · ·
and use the smoothness of the functions bi to solve (2.2) and obtain an expan-
sion for (k − n)/n. They call dn = (kn − n) the deficiency of procedure B with
respect to procedure A and when E(A,B) = 1 one typically obtains an expansion
of the form dn = h1n

1/2 + h2 + o(1). The case where h1 = 0 so that procedure B

needs only a bounded number of additional observations to compete with proce-
dure A is of course of particular interest. This occurs if a1(c) = b1(c). Note that
our informal discussion does not cover some of the more complex cases where
the functions ai(c) and/or bi(c) may not be bounded and deficiencies of different
orders of magnitude than n1/2 or 1 may occur.

In their paper Hodges and Lehmann computed deficiencies for a number of
pairs of parametric tests and estimators. The paper ends with a section ominously
entitled “Further possibilities.” The authors write: “More interesting perhaps are
a number of problems in which the deficiency concept appears to be useful, but
where its application presents certain technical difficulties stemming from the fact
that the computation of deficiency requires higher-order asymptotic terms than we
encounter in the usual efficiency analysis.” Of course this refers to the fact that
power expansions like (2.1) are needed for deficiency calculations, whereas the
leading terms a0(c) and b0(c) suffice for computing efficiencies. They continue by
describing a few of these problems of which the first one is simply: “What is the
deficiency (for contiguous normal shift alternatives) of the normal scores test or
of van der Waerden’s X-test with respect to the t-test?” After their earlier work on
rank tests they clearly expected the rank tests to do well.
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When reading the paper, both Peter Bickel in Berkeley and I in Leiden un-
derstood that here was our homework assignment for the next few years. In the
discussion of Lehmann (1953) above, I mentioned the mountain of technicalities
involved in computing the limiting power of rank tests for location alternatives,
and now we were asked to find asymptotic expansions for these powers with re-
mainder o(n−1). All I knew about this subject was the chapter in Feller (1966) on
Edgeworth expansions for sums of i.i.d. random variables and that did not seem
quite sufficient. However, after months of hard labor it turned out that Hodges and
Lehmann’s optimistic view of rank tests was right. We found that for contiguous
normal location alternatives, the deficiency of the normal scores test or van der
Waerden’s test with respect to the t-test equals dn = (1/2) log logn +O(1) for the
one-sample case and dn = log logn + O(1) for the two-sample case. For large n,
only log logn additional observations are needed to make the best rank tests per-
form as well as the best parametric test! Also, the normal distribution is the slightly
unpleasant exception referred to above. A more typical result is that for contigu-
ous logistic location alternatives, the deficiency of Wilcoxon’s test with respect to
the most powerful parametric test tends to a finite limit for the one- as well as the
two-sample problem. Even better news was that for contiguous normal location
alternatives the deficiency of the permutation test based on sample means with re-
spect to the t-test tends to zero as n → ∞. Explicit formulas for these deficiencies
may be found in Albers, Bickel and van Zwet (1976) and Bickel and van Zwet
(1978).

When Frank Wilcoxon introduced his one- and two-sample rank tests in
Wilcoxon (1945), the general feeling—and to some extent his own—was that these
rank tests were quick-and-dirty methods that would suffer from a serious loss of
power compared to classical parametric tests. Since then research has consistently
shown that this is not the case. Through his own work and by pointing out the right
problems to others, Erich Lehmann played a major role in this development.

3. Teacher and friend of many. The Latin text on the diploma of Erich
Lehmann’s honorary doctorate at Leiden praises him for contributing substantially
to the formulation of statistical science as a consistent mathematical theory, and for
his work in areas such as nonparametric methods, estimation theory, robust meth-
ods and second-order asymptotics. The text then continues describing Erich also
as “magister et amicus multorum,” that is, teacher and friend of many, and adds
that through the books he has written, he has taught and educated scholars all over
the world. Though all of this was written in somewhat stilted Latin, it does give a
succinct description of Erich Lehmann’s accomplishments. Two typical examples
of his research in nonparametrics and second-order asymptotics were discussed in
the previous section. Let us now discuss Erich’s book Testing Statistical Hypothe-
ses and its role in the mathematization of statistics and the education of an entire
generation of statisticians worldwide.
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In Lehmann (2008) Erich tells how he came to Berkeley in January 1941 to
study pure mathematics, and after his first semester got a teaching assistantship
with Evans, chair of the mathematics department. After America’s entry into the
war, the university ran a training program for the army with Erich as one of the
instructors. In the summer of 1942 Evans advised him that it might be more useful
for the war effort if he would switch from pure mathematics to statistics with Jerzy
Neyman. In the fall of 1942 Erich took Neyman’s first upper division course in
statistics. At some time during the course Neyman suddenly had to leave for three
weeks and Erich had to take over the lectures that were supposed to be his intro-
duction to statistics as a student. To make things even scarier, there was no text for
the course.

After finishing the first semester of the statistics program, Erich decided that he
did not like statistics. He and other pure mathematics students thought statistics did
not possess the beauty of number theory or other parts of pure mathematics. He felt
that “ad hoc methods based on questionable and quite arbitrary assumptions were
used to solve messy problems.” He went to the newly appointed famous logician
Alfred Tarski and asked if he could study algebra with him. Like Neyman, Tarski
was Polish and intent to build up his own group in Berkeley. That was where the
similarity of the two ended and in Berkeley they were called “Poles apart.” Of
course Tarski was happy to have this new student, but before Erich had a chance
to tell Neyman he was leaving, Neyman offered him a promotion to lecturer at
a much higher salary than his assistantship. Erich decided he could not afford to
turn down this offer. Had the outcome been different, then this article would have
been written by a different person for a different journal, with the word “statistics”
replaced by “algebra” throughout.

Having decided to stay in the statistics program, Erich started by attending Ney-
man’s basic graduate course in statistical theory and discovered that statistics was
not so bad after all. In the 1930s Jerzy Neyman and Egon Pearson had succeeded
in formulating a consistent mathematical model that made it possible to discuss the
properties of statistical tests in mathematical terms. The course was largely based
on this work and Erich quickly saw that there was sensible mathematics going on.
In 1944–1945 there was a break in his graduate education when he served for a
year as an operations analyst with the U.S. Air Force on Guam to study bombing
accuracy. In 1946 he completed his Ph.D. with Neyman as advisor, and Hsu and
Pólya standing by during Neyman’s long absence. Many of us had less impressive
advisors!

After obtaining his Ph.D., Erich’s teaching activities started in earnest. In 1948
and 1949 Neyman entrusted him with the basic graduate course on hypothesis
testing. Erich’s first graduate student Colin Blyth attended the course and took
notes, and after careful reading by Erich the notes were mimeographed and sold at
cost, first by the Statistical Laboratory and later by the University Bookstore. As it
was the only systematic treatment of the Neyman–Pearson theory, the notes began
to be used at other universities in the United States and abroad. Of course the notes
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covered only the basics of the theory and the simplest applications, so there was
soon an increasing demand to expand the material into a textbook.

At this point a serious conflict occurred. As mentioned in Reid (1982) and
DeGroot (1986), Neyman heard rumors that Lehmann had not followed the script
for the course closely enough in his class. Indeed, Erich had added some newer ma-
terial, for example, on invariance. As a result, Neyman would not let Erich teach
the course anymore, and it was only after Neyman stepped down as chair of the
then new Statistics Department in 1956, that Erich taught it again.

Of course this did not stop Erich from working on the book and ten years af-
ter Blyth’s notes the first volume Testing Statistical Hypotheses appeared in 1959
[Lehmann (1959)]. I first saw the book when I started work on my thesis in Am-
sterdam in January 1961, and it made an overwhelming impression on me. Of
course I had been taught the basic ideas of hypothesis testing and the derivation
of the distributions of various common test statistics, but it all seemed to consist
of a lot of special cases without much in common. Already when reading the first
chapter on decision theory things started to fall into place. As a master student in
mathematics I had taken a full year of measure theory with Zaanen in Leiden and
another year of measure theoretic probability with van Dantzig in Amsterdam, so
I could skip the probability background in Chapter 2. The remaining chapters pro-
vided a lucid account of the subject along the lines of Neyman and Pearson, in a
logical order and written with the utmost care.

A few years earlier I had taken a course of van Dantzig where he discussed R. A.
Fisher’s attempt at providing a framework for statistical inference in his book Sta-
tistical Methods and Scientific Inference [Fisher (1956)]. I am afraid I was unable
to understand the content of this book in any mathematical sense, and neither was
van Dantzig who wrote a scathing review of the book [van Dantzig (1957)]. With
this earlier experience in mind I was relieved to find Professor Lehmann’s ac-
count of the Neyman–Pearson approach intelligible and entirely satisfactory, even
though Professor Fisher has warned us that “it is to be feared, therefore, that the
principles of Neyman and Pearson’s ‘Theory of Testing Hypotheses’ are liable to
mislead those who follow them into much wasted effort and disappointment, and
that its authors are not inclined to warn students of these dangers” [Fisher (1956),
page 88].

I am afraid I am one of those people whom Professor Fisher feared would be
misled, but I will admit it does not bother me. I was certainly not the only one
for whom Testing Statistical Hypotheses was a revelation. The claim I made above
that the book educated an entire generation of statisticians worldwide cannot be
far off the mark. Unfortunately the sales number of the book is unknown, but in
Lehmann (1997) Erich writes that the money he made was not nearly enough to
imitate Landau and build a mansion in Göttingen from the proceeds of the book,
but would certainly have been sufficient to buy a fancier car than the one Erich was
actually driving.
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Unfortunately, total perfection does not exist and in Lehmann (1997) Erich
writes: “The biggest source of errors was the more than 200 problems. The dif-
ficulty often resulted from some fine points or special cases that I had overlooked
and that naturally caused readers much trouble when they struggled with them.
Letters asking for clarification were not only painful reminders of my ineptitude
but they could also take quite a bit of time and effort to answer at a time when
I was no longer working in this area. I was saved from this bondage to my past
errors when a heroic group of 15 Dutch statisticians decided to work though the
whole collection systematically and in 1984 with Wiley’s permission published the
solutions as a 310-page book [Kallenberg et al. (1984)]. One member of the group
told me later that this was the most painful job he had ever undertaken. How-
ever, from then on I was able to answer queries about the problems with a simple
reference.” I have to admit that I was not one of the 15 Dutch heroes.

The companion volume Theory of Estimation appeared in 1983. It also had its
roots in Colin Blyth’s mimeographed lecture notes dating back to 1950, but the
many developments since that time made even more rewriting and addition neces-
sary. In Erich’s own words in the introduction, the two volumes together “provide
an introduction to classical statistics from a unified point of view.” What was still
new in the 1950s was classical in the eighties! Since then both volumes have been
revised and reprinted and there is now a third edition of Testing Statistical Hy-
potheses with Joseph Romano as a co-author and double the number of pages, and
a second edition of Theory of Point Estimation, joint with George Casella. Both
books continue to acquire new friends. In between Erich also published Elements
of Large Sample Theory, a more elementary—and easier to read—treatment of
asymptotic theory than most comparable texts. His last book on Fisher, Neyman
and the creation of classical statistics will hopefully appear in 2011. When work-
ing on this book he wrote to me with his typical self-deprecating humor: “I lead
the kind of life appropriate to my age: Taking pills, going to doctors, and sleeping
during the day as well as at night. So as not to be completely idle, I putter away
at a new book: Fisher, Neyman, and the creation of classical statistics. It is a story
that I find not only scientifically interesting but also full of drama.” If I am allowed
a single commercial, let me say that this will be the book that all of us should read.

One last word about Erich as “teacher and friend of many.” Erich was always
friendly to young people. A year after getting my Ph.D., I visited the United States
for the first time and had a chance to attend the Fifth Berkeley Symposium. When
I entered the coffee room at the symposium, a gentleman sought me out, intro-
duced himself as Erich Lehmann and started talking about my thesis. I could not
believe my ears: the famous Professor Lehmann taking time to speak to me and
actually having an idea what my thesis was about! This was typically Erich: kind,
considerate and generous with the younger generation, including of course his own
students. This may explain that even in his nineties when his own generation had
largely vanished, he had so many friends and admirers in the profession. They got
together at the Lehmann symposia, spoke about recent developments and generally
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enjoyed each other’s company. This is probably the best recipe for staying young,
which Erich succeeded in doing until a remarkable age. I am told that in the end
he was ready to go. We have known a great man that we will sorely miss.

4. Administrative and governing tasks. First of all, I should perhaps dispel
a common misconception about Erich Lehmann that he actively encouraged him-
self. I am referring to his self-professed disinterest and inability in matters of an
administrative or governing nature.

Many professors exhibit this behavior in hopes of being spared administrative
jobs through assumed incompetence. However, even though he may not have liked
it, Erich knew very well how to run things and convince people. He was chair of
the Statistics Department in Berkeley and the faculty seems to agree that he was
very effective: when he wanted something done, he was usually right and got it
done. In his obituary for Erich in Bernoulli News, Peter Bickel phrased this more
elegantly by referring to Erich’s “great astuteness about the world, what could be
achieved, and how to do it.”

From 1953 through 1955 Erich was editor of The Annals of Mathematical Statis-
tics. In those days, the Annals did not have a separate managing editor, so the ed-
itor’s work did not stop with the final acceptance of papers to be published. He
was also responsible for seeing the issues through the printing process. No wonder
Erich would have much preferred to continue as associate editor. However, Ney-
man strongly encouraged him to accept the editorship, and was willing to reduce
his teaching load and provide salary and space for an editorial assistant. He obvi-
ously felt that Erich would do a good job, but he also thought that this would give
his Statistical Laboratory—soon to turn into the Department of Statistics—some
additional visibility.

So Erich accepted the editorship and apparently did very well, since after his
three-year term he was asked to continue for another term. Neyman agreed to con-
tinue the previous arrangement, Erich accepted a second term, but some time later
Neyman turned around and said that he could no longer provide an editorial assis-
tant. Erich found this incredible and told IMS president Henry Scheffé about this,
who suggested that IMS could probably pay the assistant’s salary. When Erich told
Neyman about this suggestion, Neyman replied that he would also need the room
that the Annals was using for its editorial office and would only have a window-
less storeroom in the attic available for the Annals. Neyman argued that he needed
the money and the office space for the editorial assistant of the proceedings of the
upcoming Third Berkeley Syposium. Erich realized that further discussion was
useless and resigned as editor of the Annals. An acrimonious exchange of letters
started between Neyman and various IMS council members, and in the end even
David Blackwell, the most reasonable person around, found Neyman unwilling to
listen. This is not the place to discuss the motives behind this quarrel, but only to
point out that Erich felt that this amounted to a definite break between Neyman
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and himself that lasted for many years. He makes it clear, however, that Neyman
never took this personal problem out on his career but always tried to further it. The
entire affair is recalled in detail in Reid (1982). A quarter of a century later Erich
writes that he thought “the issue didn’t warrant such an uproar and did what he
could to calm the waters” [Lehmann (2008)]. All in all, it was a rather sad ending
of an editorial job well done.

Let me relate a less-known instance of Erich’s effectiveness that ended on a
much happier note. Around 1960 the only statistics meetings in Europe were the
biennial sessions of the International Statistical Institute (ISI) that were held all
over the world, and with some regularity in Europe. However, these meetings were
largely devoted to official statistics and a number of people felt that there should
also be meetings of mathematical statisticians in Europe. Statistics was growing
rapidly in Europe, the United States was far away, and without regular interna-
tional contacts people felt isolated. Jim Durbin felt strongly about this and so did
Henri Theil, president of the Econometric Society, who wanted joint meetings in
Europe of statisticians and econometricians. Theil asked ISI to sponsor such Eu-
ropean meetings, but ISI declined. Durbin approached IMS. At the time Erich was
president-elect of IMS and an informal meeting to discuss this matter was held in
Erich’s home in Berkeley. Erich felt strongly that IMS as the largest scientific so-
ciety in mathematical statistics should be willing to take on an international role.
He argued that one quarter of IMS members lived outside the U.S. and that this
proportion was rising. At its meeting in Stanford in August 1960 the IMS Council
decided to initiate the holding of European regional meetings in addition to the
annual meeting and the meetings of the American regions. A European regional
committee was appointed and at the IMS council meeting in Seattle in June 1961
with Erich as president, this committee recommended to hold such meetings in
September 1962 in Dublin and in July 1963 in Copenhagen. Council approved.

Thus the first European meeting at Dublin took place two years after the idea
first came to IMS, which is a remarkable performance for which Erich’s support
was indispensable. He recognized a great opportunity when he saw it and acted
accordingly to convince his less internationally minded colleagues. The Dublin
meeting was truly memorable, with an excellent scientific program attended by
300 people, and a superb party hosted by the Guinness brewery in memory of their
former brewmaster W. S. Gosset, also known as Student. The European meetings
of statisticians continue to the present day and have played a major role in the
development of statistics in Europe. As Henri Theil retired from the project soon
after the European regional committee was appointed, the main credit for what has
been achieved should go to Jim Durbin and Erich Lehmann.

5. Personal memories. Over the years I spent many summers and two full
semesters in Berkeley and during these years I got to know Erich Lehmann pretty
well. Erich also visited the Netherlands a number of times and in 1985 Leiden
University awarded an honorary doctorate to him. This happens only rarely and
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the last time a mathematical scientist became a doctor h.c. was a century earlier
in 1885 when the laureate was Thomas Stieltjes, also a name well known to prob-
abilists and statisticians. Erich has given a humorous account of this event in the
final chapter of Lehmann (2008).

A few months before the award ceremony a delicate problem landed on my
plate. When Leiden University was founded in 1575 after the siege of Leiden by
the Spanish was lifted, it adopted the motto Praesidium Libertatis (Bulwark of
Liberty). During World War II, the dean of the law school lived up to this motto
by protesting the firing of the Jewish professors by the German occupation in a
public address. Faculty and students joined in this protest, the dean was arrested
and the Germans closed down the university. Given this history, I was not surprised
to receive a phone call from the rector who asked me whether I was absolutely sure
that Professor Lehmann had no Nazi taint in his past. I told him that the Lehmann
family left Germany immediately after Hitler came to power in 1933 when Erich
was 15, and that Erich spent a year in Guam with the U.S. Air Force. The rector
said this was all very well, but he could have been a member of the Hitler Jugend
while still in Germany. I replied that anyone who knew Erich would find it very
difficult to picture him in a HJ uniform, but I also had to admit that the rector had
a legitimate reason for wanting to avoid any risk of a possible scandal. Of course
I found the whole thing rather embarrassing and I tried to ask in a roundabout
way whether my friends in Berkeley knew anything of relevance. Of course what
happened was that nobody seemed to know anything about this until somebody
asked Erich’s wife Julie who provided a perfect answer. The Lehmann family was
of Jewish origin. Erich’s father had read Hitler’s Mein Kampf and, unlike many of
his friends, took Hitler seriously. Moreover, as a prominent lawyer, he had won a
major lawsuit against some important Nazi. So when Hitler came to power shortly
after, he decided that the family should leave the country as quickly as possible,
which they did. The rector was convinced but I still felt embarrassed. However,
I need not have worried. Much later Julie told me that both she and Erich had liked
the fact that somewhere in the world people still cared about these matters.

The day after Erich and Julie arrived for a week of festivities surrounding the
award ceremony, Erich had a fever that took two days to control and allowed him
to skip one of the nightly dinner parties offered by the rector, the dean, the depart-
ment, etc. After returning to the U.S. he wrote to me: “On the way back, I had one
insight into the proceedings of last week. Could the purpose of this series of 10-
course dinners be to dispose of the newly baked (doctor) h.c.’s before they can do
any damage to the reputation of the Acad. Lugd. Batav. (i.e., Leiden University)?”

In a similarly fanciful but somewhat more serious vein he continued with: “Bill,
neither of us tends to take things too seriously but (. . . ) even at the risk of em-
barrassing you (I must tell you) of the extraordinary, liberating effect (last week’s
ceremony) had on me.

I grew up with great advantages and some serious disadvantages. The most
important of the latter was the relationship with my father, a very outgoing, enor-
mously successful lawyer who adored my equally outgoing, delightful and original



2278 W. R. VAN ZWET

younger brother (. . . ) but found little to admire in me, who was shy, reserved, and
unadventurous. It is not that he mistreated me—on the contrary, he was always
very nice to me—he just made it clear that I was a bit disappointing and that he
had no expectations of my ever amounting to anything. Over the years the weight
of his disapproval has lightened some, but it has remained with me until last week
when I had it out with him (the poor man has been dead for 35 years). I challenged
him: ‘Now admit that you were wrong. In my quiet boring way I did make it after
all—getting the only mathematical Dr h.c. from Leiden in the 20th century is as
big a success as any man can wish for his son—so there!’ And he admitted it.”

In 1997 I spent two months in Berkeley. I was sorry to hear that Erich and Julie
would be in Princeton at that time, but happy when they offered me the use of their
apartment. For some reason they came back earlier than planned, so after being
there for a month, I prepared to move out. However, they argued that since their
apartment really consisted of two apartments joined together by removing a wall,
I could still use the apartment on one side of the virtual wall for the remainder of
my stay. Of course I protested, but they refused to listen.

So for one month we shared their double apartment. Because Erich used to get
up at 5.30 a.m. to work on one of his books, he had finished the day’s work by the
time I got up. We had a cup of coffee and a chat and I went to the department. In
the evening we had long discussions about everything under the sun. In Lehmann
(2008) Erich writes: “In the evenings, after dinner, we used to discuss the problems
of the world over a glass of genever, a supply of which he had brought from the
Netherlands.” We may not have solved all of these problems but it was certainly
fun.

In Erich’s last letter to me in early 2009, there was another fanciful dream. He
wrote: “Last night you made an appearance in my dream. You introduced me to
a colleague of yours who had a massive data set that she needed to analyze and
you asked me to assist her in this enterprise. I reminded you that my facility with
applied statistics parallels that attributed to my mother’s intelligence by one of her
teachers:

Dumm geboren, Born stupid
Nichts dazu gelernt Learned nothing since
Und das noch vergessen And forgot even that.

(A true story). But I said I’d do my best, which I hope you appreciate.”
I wrote back that I was sorry to have disturbed his well-earned sleep and that

I liked the evaluation of his mother’s intelligence, though obviously false. Since
neither Erich nor I are known for our applied work, it was perhaps just as well that
it was all a dream.

Erich Lehmann was a great man who touched many of our lives in a very posi-
tive way. We are sad that he is no longer with us, but the good memories remain.
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