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STOCHASTIC EXPANSIONS USING CONTINUOUS DICTIONARIES:
LÉVY ADAPTIVE REGRESSION KERNELS

BY ROBERT L. WOLPERT1, MERLISE A. CLYDE2 AND CHONG TU

Duke University, Duke University and PIMCO

This article describes a new class of prior distributions for nonparametric
function estimation. The unknown function is modeled as a limit of weighted
sums of kernels or generator functions indexed by continuous parameters that
control local and global features such as their translation, dilation, modulation
and shape. Lévy random fields and their stochastic integrals are employed to
induce prior distributions for the unknown functions or, equivalently, for the
number of kernels and for the parameters governing their features. Scaling,
shape, and other features of the generating functions are location-specific to
allow quite different function properties in different parts of the space, as
with wavelet bases and other methods employing overcomplete dictionaries.
We provide conditions under which the stochastic expansions converge in
specified Besov or Sobolev norms. Under a Gaussian error model, this may
be viewed as a sparse regression problem, with regularization induced via the
Lévy random field prior distribution. Posterior inference for the unknown
functions is based on a reversible jump Markov chain Monte Carlo algo-
rithm. We compare the Lévy Adaptive Regression Kernel (LARK) method
to wavelet-based methods using some of the standard test functions, and il-
lustrate its flexibility and adaptability in nonstationary applications.

1. Introduction. Popular approaches for nonparametric Bayesian estimation
of unobserved functions generally employ as prior distributions either Gaussian
processes (or random fields, in two or more dimensions) or mixtures of Dirichlet
processes. In this article, we focus attention on a wider class of processes, Lévy
random fields and their stochastic integrals. These include Gaussian random fields
as a limiting case, while Dirichlet processes may be represented as “normalized”
variants of the Gamma Lévy random field; Lévy random fields thus provide an
important link between two of the random processes that form the foundation of
Bayesian nonparametric methods (see Section 6). In this article, we construct prior
distributions for the mean function in nonparametric regression as stochastic inte-
grals of Lévy random fields. Under suitable regularity, these can be expressed as

Received May 2010; revised January 2011.
1Supported by NSF Grants DMS-07-57549, PHY-09-41373 and NASA AISR Grant

NNX09AK60G.
2Supported by NSF Grants DMS-0342172 and DMS-04-06115.
MSC2010 subject classifications. Primary 62G08; secondary 60E07.
Key words and phrases. Bayes, Besov, kernel regression, LARK, Lévy random field, nonpara-

metric regression, relevance vector machine, reversible jump Markov chain Monte Carlo, splines,
support vector machine, wavelets.

1916

http://www.imstat.org/aos/
http://dx.doi.org/10.1214/11-AOS889
http://www.imstat.org
http://www.ams.org/mathscinet/msc/msc2010.html


LÉVY ADAPTIVE REGRESSION KERNELS 1917

stochastic expansions using continuous dictionaries, permitting tractable Bayesian
inference. While our focus is on nonparametric regression, we hope that the reader
will see the possibilities of using Lévy random fields in other contexts.

To begin, suppose we have noisy measurements {Yi}i∈I of an unknown real-
valued function f : X → R observed at points {xi}i∈I in some complete separable
metric space X , with E[Yi] = f (xi). In nonparametric regression models, the mean
function f (·) is often regarded as an element of some Hilbert space H of real-
valued functions on X , and is expressed as a linear combination of basis functions
{gj } ⊂ H:

f (xi) = ∑
0≤j<J

gj (xi)βj(1)

with some (finite or infinite) number J of unknown coefficients {βj }0≤j<J . There
is a vast literature on classical and Bayesian approaches for estimating f from
noisy data using such methods as regression splines, Fourier expansions, wavelet
expansions, and kernel methods, including kernel regression and support (or rele-
vance) vector machines [see Chu and Marron (1991), Cristianini and Shawe-Taylor
(2000), Denison et al. (2002), Vidakovic (1999), Wahba (1992), for background
and references]. Many approaches, including smoothing splines and support vec-
tor machines, use as many basis elements, J , as there are data points, n = |I |, but
employ regularization to avoid over-fitting. Sparser solutions (using fewer basis el-
ements, J � n) may be obtained through more stringent regularization penalties,
as in the Lasso [Tibshirani (1996)] and Dantzig Selector [Candès and Tao (2007)]
approaches, or (often equivalently) in Bayesian methods through choice of prior
distributions, as in relevance vector machines [Tipping (2001)]. Sparse solutions
may also be achieved by using variable selection techniques to choose a few well-
placed basis functions, perhaps in conjunction with regularization [Chen, Donoho
and Saunders (1998), Denison, Mallick and Smith (1998), DiMatteo, Genovese
and Kass (2001), Mallat and Zhang (1993), Johnstone and Silverman (2005b),
Smith and Kohn (1996), Wolfe, Godsill and Ng (2004)].

In most signal processing and other nonstationary applications, no single (espe-
cially orthonormal) basis will lead to a sparse representation [Donoho and Elad
(2003), Wolfe, Godsill and Ng (2004)]. Overcomplete dictionaries and frames
[Daubechies (1992), Mallat and Zhang (1993)] provide larger collections of gen-
erating elements {gω}ω∈� than would a single basis for H, potentially allowing for
more effective signal extraction and data compression. Examples of overcomplete
dictionaries include unions of bases, Gabor frames, nondecimated or translational
invariant wavelets, wavelet packets, or more general kernel functions or generating
functions g(x,ω) where ω ∈ � controls features (local or global) of the generat-
ing function, such as translations, dilations, modulations and shapes. Because of
the redundancy inherent in overcomplete representations, coefficients for expan-
sions using overcomplete dictionaries are not uniquely determined. This lack of
uniqueness is advantageous, permitting more parsimonious representations from
the dictionary than those obtained using any single basis.
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In this article, we develop a fully Bayesian method for the sparse regres-
sion problem using stochastic expansions [Abramovich, Sapatinas and Silverman
(2000)] of continuous dictionaries. We begin in Section 2 by introducing Lévy
random fields, which are used to induce prior distributions for f ∈ H through
stochastic integration of a kernel function with respect to a signed infinitely divis-
ible random measure. We call the new model class Lévy Adaptive Regression Ker-
nel or “LARK” models. The LARK framework allows both the number of kernels
and kernel-specific parameters to adapt to any nonstationary features of f . Both
finite and infinite expansions are considered. Exploiting the construction of Lévy
random fields through Poisson random fields, we develop finite approximations
to infinite expansions in Section 3 that permit tractable inference. In Section 4,
we provide conditions under which the functions are almost surely in the same
function space as the generating kernel. We describe the hierarchical representa-
tions of LARK models in Section 5 that enable posterior inference for the LARK
model using reversible jump Markov chain Monte Carlo (RJ-MCMC) methods.
In Section 6, we discuss relationships among LARK and other popular parametric
and nonparametric methods. We then compare our LARK method to other proce-
dures using simulated data in Section 7 and real data in Section 8. In Section 9, we
discuss possible extensions of the LARK model.

2. Stochastic expansions and prior distributions. To make inference about
the unknown mean function f ∈ H given noisy observations Yi of f (xi) for
{xi} ⊂ X , we must first propose a prior distribution on H for f . Let � be a com-
plete separable metric space and φ : X × � → R a Borel measurable function, and
set φj (xi) ≡ φ(xi,ωj ) for some collection {ωj } ⊂ �. As a slight extension of the
basis expansion of (1), set

f (x) ≡ ∑
0≤j<J

φ(x,ωj )βj(2)

for a random number J ≤ ∞ of randomly drawn pairs (βj ,ωj ) ∈ R × �. This is
equivalent to specifying a random signed Borel measure L(dω) = ∑

βjδωj
(dω)

on �, giving the equivalent representation:

f (x) =
∫
�

φ(x,ω)L(dω).(3)

The task of assigning prior distributions to functions f (·) of the form (2) is equiv-
alent to that of specifying prior distributions for the random measure L(dω) in
(3), that is, to specifying consistent joint probability distributions for all random
vectors of the form (L(A1), . . . , L(Ak)) for disjoint Borel sets Ai ⊂ �. Lévy ran-
dom measures, those for which {L(Ai)} are independent for disjoint {Ai}, are ideal
for this purpose, since (as we will see in Section 5.3) they are simple to construct
and amenable to posterior simulation. To make ideas more concrete, we first de-
scribe possible choices for the generating functions φ(x,ω) used in our stochastic
expansions and then proceed with the presentation of Lévy random measures in
Section 2.2.
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2.1. Generating functions. Possible choices for φ(x,ω) for X = R include
translation-invariant kernel functions, such as the Gaussian

φG(x,ω) ≡ exp
{−1

2λ(x − χ)2}
(4a)

or the Laplace

φL(x,ω) ≡ exp{−λ|x − χ |}(4b)

kernels with ω ≡ (χ,λ) ∈ X × R+ ≡ �. There is no need to restrict attention to
symmetric (e.g., Mercer) kernels, as required in the conventional Support Vector
Machine (SVM) approach [Law and Kwok (2001), Sollich (2002)]. Asymmetric
kernels, such as the one-sided exponential

φE(x,ω) ≡ exp{−λ(x − χ)}1{x>χ}(4c)

are useful, for example, in modeling pollutant dissipation over time. Other possi-
bilities include piecewise-constant Haar wavelets on X = (0,1],

φH (x,ω) ≡ 1{0<λ(x−χ)≤1}(4d)

or continuous rescaling and shifting of other wavelet functions

φψ(x,ω) ≡ λ1/2ψ
(
λ(x − χ)

)
.(4e)

In each of these examples, � is a location-scale space with location parameter
χ and parameter λ determining the scale. Higher-dimensional spaces X may be
accommodated in a similar way; for example, in Section 8.2 we use space–time
kernel

φST(x,ω) ≡ exp
{−1

2(s − σ)′�(s − σ) − λ|t − τ |}(4f)

for space–time point x = (s, t) ∈ R2 ×R+; here ω = (σ, τ,�,λ) includes a space–
time point (σ, τ ) ∈ R2 × R+, a positive-definite spatial dispersion matrix � ∈ S +

2 ,
and a temporal decay rate λ ∈ R+.

2.2. Lévy random measures. For any ν+ ≥ 0 and any probability distribution
π(dβ dω) on R × �, let J ∼ Po(ν+) be Poisson-distributed with mean ν+, and let

{(βj ,ωj )}0≤j<J
i.i.d.∼ π(dβ dω); then the random measure given by

L(A) ≡ ∑
0≤j<J

1A(ωj )βj(5)

assigns independent infinitely-divisible (henceforth “ID”) random variables L(Ai)

to disjoint Borel sets Ai ⊂ �, with characteristic functions

E
[
eit L(A)] = exp

{∫ ∫
R×A

(eitβ − 1)ν(dβ dω)

}
(6)

with ν(dβ dω) ≡ ν+π(dβ dω). More generally, the “Lévy measure” ν(dβ dω)

need not be finite for the random measure L to be well defined, so long as the
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integral in (6) converges for all t ∈ R; since the integrand is bounded on all of
R × � and is of order O(β) near β ≈ 0, this will hold for any measure that satis-
fies the local L1 integrability condition∫ ∫

R×K
(1 ∧ |β|)ν(dβ dω) < ∞(7)

for each compact K ⊂ �. The mean and variance, when they exist, are given by
E[L(A)] = ∫∫

R×A βν(dβ dω) and Var[L(A)] = ∫∫
R×A β2ν(dβ dω), respectively.

Khinchine and Lévy (1936) showed that the most general ID random variables
[and hence the most general ID-valued random measures; see Rajput and Rosiński
(1989), Proposition 2.1] have characteristic functions of the form

E
[
eit L(A)] = exp

{
itδ(A) − 1

2
t2�(A)

(8)

+
∫ ∫

R×A

(
eitβ − 1 − ith0(β)

)
ν(dβ dω)

}
,

where h0(β) ≡ β1[−1,1](β), determined uniquely by the characteristic triplet of
sigma-finite measures (δ,�, ν) consisting of a signed measure δ(dω) and a posi-
tive measure �(dω) on �, and a positive measure ν(dβ dω) on R×� that satisfies
the local L2 integrability condition∫ ∫

R×K
(1 ∧ β2)ν(dβ dω) < ∞(9)

for each compact K ⊂ � and ν({0},�) = 0 (for more details on this nonstationary
version of the classic Lévy–Khinchine formula see Jacod and Shiryaev [(1987),
page 75], Cont and Tankov [(2004), pages 457–459] or Wolpert and Taqqu (2005)).

The role of the compensator function h0(β) is to make the last integrand in
(8) bounded and O(β2) near β ≈ 0, permitting the replacement of (7) with the
weaker condition (9); in this case L(dω) may have countably-many points of sup-
port {ωj } ⊂ � whose magnitudes {βj } are not absolutely summable, precluding
a representation of the form (5). The compensator h0(β) may be replaced by any
bounded measurable function satisfying

h(β) = β + O(β2), β ≈ 0,(10)

with a corresponding replacement of δ(dω) with δh(dω) = δ(dω) + ∫
R[h(β) −

h0(β)]ν(dβ dω). Whenever (7) is satisfied, we may take h(β) ≡ 0 with the same
adjustment to δ0.

By (8) the random measure L may be written as the sum of two indepen-
dent parts: a Gaussian portion, assigning independent normally-distributed ran-
dom variables with mean δh(Ai) and variance �(Ai) to disjoint sets Ai , and the
remaining portion, with characteristic function

E
[
eit L(A)] = exp

{∫ ∫
R×A

(
eitβ − 1 − ith(β)

)
ν(dβ dω)

}
.(11)
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We call a random signed measure L with no Gaussian component [i.e., an ID-
valued measure with �(�) = δh(�) = 0, that satisfies (11)] a Lévy random mea-
sure. Nonnegative Lévy random measures satisfying (7) were called “completely
random measures” by Kingman (1967).

2.3. Lévy random fields. A Lévy random measure L satisfying (11) induces a
linear mapping φ �→ L[φ] from functions φ :� → R to random variables L[φ] ≡∫
� φ(ω)L(dω); such a mapping is called a random field. For simple functions

φ(ω) = ∑
ai1Ai

(ω) with each Āi ⊂ � compact, we set L[φ] ≡ ∑
ai L(Ai) and

verify that

E
[
eit L[φ]] = exp

{∫ ∫
R×�

(
eitφ(ω)β − 1 − itφ(ω)h(β)

)
ν(dβ dω)

}
.(12)

It is straightforward to extend this by continuity in probability to (at least) all
bounded measurable compactly-supported φ :� → R. We now present a general
construction based on Poisson random fields, the key to our approach to tractable
posterior Bayesian inference.

2.3.1. Poisson construction I: Uncompensated. When ν(dβ dω) satisfies (7)
(i.e., |β| is locally ν-integrable at zero) we may take h(β) ≡ 0 in (12) and con-
struct L as follows. Begin with a Poisson random measure N (dβ dω) ∼ Po(ν) on
(R × �) that assigns independent Poisson-distributed random variables N (Ci) ∼
Po(ν(Ci)) with means ν(Ci) to disjoint Borel sets Ci ⊂ (R × �). For any Borel
set A ⊂ � with compact closure Ā and bounded measurable compactly-supported
φ :� → R, set J ≡ N (R × A) and

L(A) ≡
∫ ∫

R×A
βN (dβ dω) = ∑

0≤j<J

1A(ωj )βj ,

L[φ] ≡
∫ ∫

R×�
βφ(ω)N (dβ dω) = ∑

0≤j<J

φ(ωj )βj ,(13)

where {(βj ,ωj )} is the (random) set of J ≤ ∞ support points of N (dβ dω). The
integrals and sums in (12), (13) are well defined for all φ for which∫ ∫

[−1,1]×�
|βφ(ω)|ν(dβ dω) < ∞,

which by (7) includes all bounded measurable compactly-supported functions.
For any Borel sets A ⊂ � and B ⊂ R, the Poisson measure N assigns to the set

B × A ⊂ R × � the number N (B × A) of L’s support points ωj ∈ A with mass
of sizes βj ∈ B . By (7) this is necessarily finite if A has compact closure and B

is bounded away from zero, but if ν(R × �) = ∞ then L will have J = ∞ sup-
port points in � altogether with (almost surely) absolutely summable magnitudes∑

0≤j<J {|βj | :ωj ∈ A} < ∞.
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2.3.2. Poisson construction II: Compensated. The situation is more delicate in
case the Lévy measure does not satisfy (7), but only the weaker bound in (9) (i.e.,
if β2 is locally ν-integrable but |β| is not). Begin again with the Poisson measure
N ∼ Po(ν) on R × �, and introduce the compensated or centered Poisson mea-
sure Ñ (dβ dω) ≡ N (dβ dω) − ν(dβ dω) with mean zero [Sato (1999), page 38],
inducing an isometry from L2(R × �,ν(dβ dω)) to the square-integrable zero-
mean random variables. Following Wolpert and Taqqu (2005), set

L(A) ≡
∫ ∫

R×A
[β − h(β)]N (dβ dω) +

∫ ∫
R×A

h(β)Ñ (dβ dω),

L[φ] ≡
∫ ∫

R×�
[β − h(β)]φ(ω)N (dβ dω)(14)

+
∫ ∫

R×�
h(β)φ(ω)Ñ (dβ dω)

for any measurable φ for which (14) converges. If (7) holds, one may simplify (14)
to

L[φ] =
∫ ∫

R×�
βφ(ω)N (dβ dω) −

∫ ∫
R×�

h(β)φ(ω)ν(dβ dω)(15a)

= ∑
0≤j<J

φ(ωj )βj + δh[φ](15b)

showing that the role of the compensator is to add an h-dependent “drift” (or offset,
in higher dimensions) term δh[φ] = − ∫∫

R×� h(β)φ(ω)ν(dβ dω) to (13). When
(7) fails, however, both the uncompensated sum and δh[φ] in (15) will be infinite,
while the representation of (14) remains valid under the following conditions.

THEOREM 1. Let ν be a Lévy measure on R × � satisfying (9). Then L[φ]
is well defined by (14) with characteristic function given by (12) for compensator
h0(β) ≡ β1{|β|≤1} if φ satisfies∫ ∫

[−1,1]c×�

(
1 ∧ |βφ(ω)|)ν(dβ dω) < ∞,(16a) ∫ ∫

[−1,1]×�

(|βφ(ω)| ∧ |βφ(ω)|2)
ν(dβ dω) < ∞.(16b)

If, in addition, φ satisfies∫ ∫
R×�

(1 ∧ β2)|φ(ω)|ν(dβ dω) < ∞,(16c)

then L[φ] is well defined for any compensator h(β) satisfying (10).

PROOF. Under these conditions, the integrands of the compensated and un-
compensated Poisson integrals in (14) are in the Musielak–Orlicz spaces for which
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those integrals are well defined; see Rajput and Rosiński [(1989), page 9], Kwapień
and Woyczyński (1992). �

In particular:

COROLLARY 1. L[φ] is well defined with characteristic function (12) for any
function φ satisfying∫ ∫

R×�
(1 ∧ β2)

(|φ(ω)| ∨ φ2(ω)
)
ν(dβ dω) < ∞,(17)

including [by (9)] all bounded measurable compactly-supported φ. Thus, L(A) =
L[1A] is always well defined for any Borel set A ⊂ � with compact closure Ā.

Similarly:

PROPOSITION 1. For a Lévy measure ν satisfying (7), take h(β) ≡ 0; then

(13) L[φ] ≡
∫ ∫

R×�
βφ(ω)N (dβ dω) = ∑

0≤j<J

φ(ωj )βj

[with J ≡ N (R × �) ≤ ∞] is well defined with characteristic function (12) for
any φ satisfying ∫ ∫

R×�

(
1 ∧ |βφ(ω)|)ν(dβ dω) < ∞.(18)

2.4. Constructing Lévy kernel integrals. Denote by � the linear space of func-
tions φ :� → R for which L[φ] has been defined; we have seen that this includes
at least all bounded measurable compactly-supported functions φ. Denote by G the
linear space of measurable functions g : X → �, and simplify notation by writing
“g(x,ω)” for g(x)(ω). Each of the generating functions introduced in (4) lies in G .
For any g ∈ G , we can construct a random function f : X → R by

f (x) ≡ L[g(x)](19)

=
∫ ∫

R×�
g(x,ω)[β − h(β)]N (dβ dω)

+
∫ ∫

R×�
g(x,ω)h(β)Ñ (dβ dω)

= ∑
0≤j<J

g(x,ωj )[βj − h(βj )]

+
∫ ∫

R×�
g(x,ω)h(β)Ñ (dβ dω) or

= ∑
0≤j<J

g(x,ωj )βj if (7) holds so compensation is unneeded.(20)
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Integer moments of f (x) are easy to compute, when they exist, from the charac-
teristic function given in (12), for example:

E{f (x)} =
∫ ∫

R×�
φ(x,ω)[β − h(β)]ν(dβ dω),(21a)

Cov{f (x1), f (x2)} =
∫ ∫

R×�
φ(x1,ω)φ(x2,ω)β2ν(dβ dω).(21b)

2.5. Examples of Lévy measures. We now consider some specific examples
of Lévy random fields and the corresponding kernel integrals. Familiar examples
include Poisson, Gamma, Cauchy and more generally α-Stable random fields.

2.5.1. Compound Poisson processes. The simplest model to consider would
be that of (2), with finite Lévy measure satisfying ν+ ≡ ν(R × �) < ∞, repro-
duced here:

f (x) ≡ ∑
0≤j<J

φ(x,ωj )βj .(2)

This has a Poisson-distributed number J ∼ Po(ν+) of terms whose locations ωj

and magnitudes βj are i.i.d. with an arbitrary distribution {βj ,ωj } i.i.d.∼ π(dβ dω),
hence Lévy measure of the form ν(dβ dω) = ν+π(dβ dω). The marginal distribu-
tion of f (x) at each x ∈ X is compound Poisson.

2.5.2. Gamma random fields. The Lévy measure for the Gamma random field
is infinite but satisfies the strong local L1 integrability condition (7), obviating
compensation; in the homogeneous case, it is

ν(dβ dω) = β−1e−βη1{β>0} dβγ (dω)(22)

for some σ -finite measure γ (dω) on �, giving L(A) ∼ Ga(γ (A), η) [with mean
γ (A)/η] for Borel measurable A ⊂ � with γ (A) < ∞. Because ν is concen-
trated on R+, the mass βj at each of the Gamma random measure’s support points
ωj is positive, so all the coefficients in the expression f (x) = ∑

φ(x,ωj )βj are
nonnegative. With a nonnegative generating function φ ∈ G , this provides a di-
rect way to construct nonnegative mean functions f ≥ 0 without having to trans-
form the responses {Yi} as Gaussian methods would require. The mean E[f (x)] =
η−1 ∫

g(x,ω)γ (dω) is available from (21a), as is the covariance from (21b).

2.5.3. Symmetric Gamma random fields. A symmetric analogue of the
Gamma random field (22) has Lévy measure

ν(dβ dω) = |β|−1e−|β|η dβγ (dω)(23)

on all of R × �, leading to random variables L(A) distributed as the difference of
two independent Ga(γ (A), η) variables, with characteristic function E[eit L(A)] =
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(1 + t2/η2)−γ (A). Both the standard positive Gamma random measure and this
symmetric version satisfy the local L1 bound (7), hence no compensation is re-
quired so we may take h(β) ≡ 0 and employ the simple construction (20) of f (x).
The mean E[f (x)] = 0 vanishes for the symmetric Gamma random field, or for any
other Lévy random field with a symmetric (in ±β) Lévy measure satisfying (7).
Covariances are available from (21b). Nearly all of the commonly used isotropic
geostatistical covariance functions [see Chilès and Delfiner (1999), Section 2.5]
may be achieved by the choice of a suitable generating kernel g(x, ·) and Lévy
measure ν(dβ dω); see Clyde and Wolpert (2007) for specific examples.

2.5.4. Symmetric α-Stable random fields. Symmetric α-Stable (SαS) Lévy
random fields have Lévy measure

ν(dβ dω) = cαα|β|−1−α dβ γ (dω)(24)

on R × � for some 0 < α < 2 and σ -finite positive measure γ (dω), where cα =
(1/π)�(α) sin(πα/2), giving L(A) ∼ St(α,0, γ (A),0) [in parametrization (M) of
Zolotarev (1986), page 11] with infinite variance (and thus no meaningful covari-
ance function for f (x) ≡ L[g(x)]). This infinite Lévy measure satisfies (9) for all
0 < α < 2, but satisfies the stronger local L1 condition (7) only for 0 < α < 1;
thus compensation is required to construct SαS random fields with 1 ≤ α < 2, in-
cluding the Cauchy case of α = 1. One can show that f (x) is well defined for any
φ(x, ·) ∈ Lα(�,γ (dω)), including the generating functions of (4). The SαS fields
have heavier tails than, for example, the symmetric Gamma fields of Section 2.5.3,
and may be more appropriate for problems where one might expect f (·) to include
by a few heavily weighted kernels.

3. Approximations for implementing kernel integrals. Computer simula-
tions of Lévy random measures A �→ L(A) and random fields φ �→ L[φ] asso-
ciated with finite Lévy measures ν may be constructed as in (5), (13), simply

by setting ν+ ≡ ν(R × �) and drawing J ∼ Po(ν+) and {(βj ,ωj )}0≤j<J
i.i.d.∼

π(dβ dω) ≡ ν(dβ dω)/ν+. If ν(R × �) = ∞ however the sums in these equa-
tions will include countably infinitely-many terms, and may not be absolutely
summable. We now construct an approximating set of finite Lévy measures {νε}
indexed by ε > 0 and show that the approximate Lévy random fields Lε[φ] con-
verge to the random field L[φ] given in (14). Note that ε is not a model parameter.
It is only a device used for two purposes: as a tool in the theorems constructing
LARK models (in this section) and establishing their properties (in Section 4), and
to enable the construction of practical numerical methods to approximate LARK
models within specified error bounds (in Section 5).

THEOREM 2. Let ν be a Lévy measure defined on R × � satisfying (9) and
φ ∈ � satisfying (16). Take {Kε} to be any family of compact sets increasing to �
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as ε → 0, and for any Borel sets A ⊂ � and B ⊂ R and let νε be the unique Borel
measure on R × � satisfying

νε(B × A) ≡ ν
(
(B ∩ [−ε, ε]c) × (A ∩ Kε)

)
(25)

for B ⊂ R, A ⊂ � [note ν+
ε ≡ νε(R × �) < ∞]. Let h(·) be any bounded mea-

surable compensator function on R satisfying h(β) = β + O(β2) for β near zero.
Then as ε → 0, the random variables

Lε[φ] ≡
∫ ∫

[−ε,ε]c×Kε

βφ(ω)N (dβ dω)

(26)
−

∫ ∫
[−ε,ε]c×Kε

h(β)φ(ω)ν(dβ dω)

converge in probability to L[φ] of (14).

PROOF. The error in approximating L[φ] of (14) by Lε[φ] of (26) is

L[φ] − Lε[φ] =
∫ ∫

Nε

(
β − h(β)

)
φ(ω)N (dβ dω)

(27)
+

∫ ∫
Nε

h(β)φ(ω)Ñ (dβ dω),

where Nε ≡ {(β,ω) : |β| ≤ ε or ω ∈ Kc
ε }. The first term in (27) converges to zero

almost surely, and the second in L1, as ε → 0; see the Appendix for details. �

The approximation Lε[φ] is the sum of a Lévy random field with finite Lévy
measure νε [hence with simple representation (13)] and a deterministic drift term
δε[φ] given by the second integral in (26). The drift vanishes whenever ν(dβ dω)

is symmetric in ±β and h(β) is odd.

COROLLARY 2. If either (a) ν(dβ dω) satisfies (7), or (b) ν(dβ dω) satisfies
(9) and is even in ±β , and also h(β) is an odd function, then for each x ∈ X ,

fε(x) ≡ ∑
0≤j<Jε

g(x,ωj )βj(28)

with

Jε ∼ Po(ν+
ε ), {βj ,ωj }0≤j<Jε | Jε

i.i.d.∼ νε(dβ dω)/ν+
ε

converges to f (x) in probability as ε → 0.

PROOF. With fε(x) ≡ Lε[g(x)],
fε(x) =

∫
�

g(x,ω)Lε(dω)

(29)
=

∫ ∫
R×�

g(x,ω)βNε(dβ dω) −
∫ ∫

R×�
g(x,ω)h(β)νε(dβ dω)
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with Nε(dβ dω) ∼ Po(νε(dβ dω)). If ν satisfies (7), then without loss of generality
take the compensator function h(β) ≡ 0. In both cases (a) and (b), the second
integral in (29) vanishes, leading to (28) [cf. (2)]. �

Note that in case (b) the {g(x,ωj )βj } are not absolutely summable so
“
∑∞

j=0 g(x,ωj )βj ” does not converge in the Lebesgue sense. In each of our ap-
plications the conditions of Corollary 2 hold, allowing us to approximate ν by a
finite Lévy measure νε [and L by Lε ∼ Lévy(νε)], and exploit the resulting Poisson
representation for inference.

4. Function spaces for LARK models. Theorem 2 and Corollary 2 establish
pointwise convergence of fε(x) to f (x) as ε → 0; in this section we provide con-
ditions to ensure that fε(·) → f (·) in appropriate Besov or Sobolev norms if the
generating functions lie in the same space.

For s ≥ 0 and d ∈ N denote by Ws
2(R

d) the Sobolev space of real-valued square-
integrable functions f (·) ∈ L2(R

d) [Sobolev (1991), Section 1.7, Reed and Simon
(1975), page 50] with finite Sobolev norm

‖f ‖Ws
2
=

{
1

(2π)d

∫
Rd

(1 + |ξ |2)s |f̂ (ξ)|2 dξ

}1/2

(30)

with Fourier transforms defined for f ∈ L1(R
d) by

f̂ (ξ) =
∫

Rd
eiξ ·xf (x) dx

and by L2 limits for f ∈ L2(R
d); here dξ and dx denote the Lebesgue volume

element in Rd , and ξ ·x denotes the Euclidean inner product. Each Ws
2 is a Banach

space, hence complete. By Plancherel’s theorem, each f ∈ Ws
2 with s ≥ 0 has

s distributional derivatives in L2(R), and by Sobolev’s lemma has k continuous
derivatives for each integer 0 ≤ k < s − d/2.

Besov spaces constitute a flexible family that includes elements with wide spa-
tial irregularity. The Besov space Bs

pq consists of those f ∈ Lp(Rd) whose Besov
semi-norms are finite. Several equivalent Besov semi-norms appear in the liter-
ature [Triebel (1992), Theorem 2.6.1, page 140]; we use the definition given as
equation 2 of that theorem. For p,q ≥ 0 and s > d(1/p − 1)+ and for any integer
m > s (m = 1 + �s� is easiest), set

|f |spq =
(∫

|h|≤1
|h|−sq‖�m

h f ‖q
p dh/|h|d

)1/q

or, in dimension d = 1,

|f |spq =
(

2
∫ 1

0
h−1−sq‖�m

h f ‖q
p dh

)1/q

,(31)
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where �m
h denotes the mth forward finite difference,

�0
hf (x) = f (x),

�m
h f (x) = [�m−1

h f (x + h) − �m−1
h f (x)](32)

=
m∑

k=0

(
m

k

)
(−1)m−kf (x + kh).

The Besov space Bs
pq is the Banach space completion of Lp(Rd) under norm

‖f ‖s
pq = ‖f ‖p + |f |spq .(33)

For p = q = 2, Bs
pq coincides with the Sobolev space Ws

2.
For fixed ω ∈ �, each of the kernel functions g(·,ω) in (4) is in Bs

pq for all
p,q ≥ 1 and some s > 0, and hence each finite approximation of the form (28)
lies in the same Bs

pq . For example, the Gaussian kernel of (4a) (along with its d-
dimensional generalization) satisfies gG(·,ω) ∈ Bs

pq for every s < ∞ and p,q ≥ 1,
while in R1 the double-sided Laplace kernel of (4b) satisfies gL(·,ω) ∈ Bs

pp for
s < 1 + 1/p < 2 for integer p and the Haar wavelet of (4d) is in Bs

pq only for
s < 1/p. To simplify proofs in Section 4.1, we will restrict attention to generating
functions g on Rd ; these results may be extended to bounded domains the Besov
semi-norms defined in terms of differences on bounded domains in Section 5.2.2
of Triebel (1992) may be used to extend these results.

We now provide conditions for LARK models to be in the same Besov space as
their generating functions.

4.1. Convergence of LARK models in Besov spaces.

THEOREM 3. Fix g ∈ Bs
pq(Rd) for some p,q ≥ 1 and s > 0 and a Lévy

measure ν on R × � with � = (S d+ × Rd) of translation-invariant product form
ν(dβ dω) = ν̃(dβ d�)dχ [here ω = (�,χ)] for a σ -finite measure ν̃(dβ d�)

on R × S d+ that satisfies the integrability condition (7). Define a location-scale
LARK model f (·) on X = Rd by: f (x) = ∫

� φ(x,ω)L(dω) where φ(x,ω) ≡
g(�(x − χ)) satisfies (18) for each fixed x ∈ X . Then f has the almost surely
convergent series expression

f (x) = ∑
j

g
(
�j(x − χj )

)
βj(34)

and f ∈ Bs
pq almost surely if ν̃ satisfies∫ ∫

R×S d+
(1 ∧ |β||�|−1/p)ν̃(dβ d�) < ∞,(35a) ∫ ∫

R×S d+
(1 ∧ |β||�|s−1/p)ν̃(dβ d�) < ∞.(35b)
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PROOF. Equation (18) ensures that the sum in (34) will converge almost surely
for each fixed x ∈ X , with a finite number of terms |g(�j (x − χj ))βj | > 1 and
infinitely many, but absolutely summable, terms with |g(�j (x − χj ))βj | ≤ 1. The
Lp norm of f satisfies the bound

‖f ‖p ≤ ∑
j

∥∥g(
�j(· − χj )

)∥∥
p|βj | = ‖g‖p

∑
j

|�j |−1/p|βj |

by the triangle inequality and Proposition 2 in Appendix A. This is finite almost
surely by (35a) since g ∈ Bs

pq ⊂ Lp . The Besov semi-norm of f is bounded by

|f |spq ≤ ∑
j

|βj |
∣∣g(

�j(x − χj )
)∣∣s

pq

= ∑
j

|βj |
(∫

|h|≤1
|h|−d−sq

∥∥�m
h g

(
�j(· − χj )

)∥∥q
p dh

)1/q

= ∑
j

|βj |
(∫

|h|≤1|
|h|−d−sq |�j |−q/p‖�m

�jhg‖q
p dh

)1/q

by Proposition 2; changing variables h �→ t = �h, this is

= ∑
j

|βj ||�j |s−1/p

(∫
|�−1

j t |≤1
|t |−d−sq‖�m

t g‖q
p dt

)1/q

.(36)

The integral in (36) is bounded by∫
Rd

|t |−d−sq‖�m
t g‖q

p dt =
∫
|t |≤1

|t |−d−sq‖�m
t g‖q

p dt

+
∫
|t |>1

|t |−d−sq‖�m
t g‖q

p dt.

The first term is just (|g|spq)q , and (32) implies ‖�m
t g‖p ≤ 2m‖g‖p , so

≤ (|g|spq)
q +

∫
|t |>1

|t |−d−sq(2m‖g‖p)q dt

= (|g|spq)
q + πd/221+mq

�(d/2)sq
‖g‖q

p

≤ (c‖g‖s
pq)q

for some c < ∞, so

|f |spq ≤ c‖g‖s
pq

∑
j

|βj ||�j |s−1/p,(37)

which is almost surely finite by (35b). �
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Each of the kernels g(·,ω) considered in the examples in Sections 7 and 8 may
be shown to be in some Besov space Bs

pq , and each is bounded by ‖g‖∞ ≤ 1.
Corollary 3 establishes that each of our LARK models with a Lévy measure that
satisfies (7) is in the same space Bs

pq as its generating function.

COROLLARY 3. Let f (x) = ∫
φ(x,ω)L(dω) be a one-dimensional LARK

model on a compact set X ⊂ R1, with product Lévy measure ν(dβ dω) =
νβ(dβ)πλ(dλ)dχ on R × R+ × X satisfying (7) with Gamma probability mea-
sure πλ(dλ) = Ga(aλ, bλ) and location-scale generator φ(x,ω) = g(λ(x − χ))

with bounded g ∈ Bs
pq . Then f ∈ Bs

pq almost surely if αλ > 1/p for p,q ≥ 1 and
s > 0. In particular, if aλ ≥ 1 then f ∈ Bs

pq if g ∈ Bs
pq for all p,q ≥ 1 and s > 0.

PROOF. Equation (18) holds for bounded g ∈ Bs
pq with Lévy measures of the

form indicated; the conditions on αλ ensure that also
∫
R+ λ−1/pπλ(dλ) < ∞ and∫

R+ λs−1/pπλ(dλ) < ∞, so the bounds of (35) hold. �

4.2. Comparisons with Abramovich, Sapatinas and Silverman. The stochas-
tic wavelet expansion of Abramovich, Sapatinas and Silverman (2000) may be
viewed as a LARK model using wavelet generator (4e), with coefficients that,
when conditioned on the scale parameters {aj }, have independent Gaussian dis-

tributions {βj } ind∼ No(0, ca−δ
j ) with ω = (a, b) ∈ [a0,∞) × [0,1) and νω(dω) ∝

a−ξ 1{a≥a0} db da for some c, δ, ξ ≥ 0, δ + ξ > 0 and a0 ≥ 1. The parameters δ and
ξ control the size and frequency of wavelet coefficients and determine whether
the expansion will have a well-defined limit. For a finite Lévy measure νω(dω)

(ξ > 1), the expansion will be in the corresponding Besov space of the generating
wavelet with probability one. For ξ ≤ 1, the Poisson mean is no longer finite; how-
ever, Abramovich, Sapatinas and Silverman (2000) provide conditions on δ and ξ

so that f falls in the corresponding Besov space of the generating wavelet.
For “simplicity of exposition,” Abramovich, Sapatinas and Silverman work with

functions of unit period [i.e., satisfying g(x) = g(x + 1)] and regard them as func-
tions on the unit torus T, the interval [0,1] with the endpoints identified. We now
illustrate how the LARK theory may be used to prove that the resulting expansion
lies in Bs

pq(T) if the generating function does. The Besov sequence norms used by
Abramovich, Sapatinas and Silverman and others are natural for the Gaussian dis-
tributions and discrete wavelet expansions they study; we have found the (equiv-
alent) function norms to be more convenient for continuous wavelet expansions
using non-Gaussian (α-Stable, e.g.) distributions used for the coefficients in our
expansions. We follow Nikol’skiı̆ [(1975), Sections 1.1.1 and 4.3.5] in defining
Besov norms on the torus by replacing the Lp norm on R with that over T in the
definition of the Besov semi-norm and norm [see (31), (33)], and in denoting the
corresponding spaces by L∗

p(T) and Bs∗
pq(T), respectively.

To simplify the proof, we will use the following lemma.
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LEMMA 1. Let πz(dz) denote the standard normal distribution on R, let g ∈
L∗

p(T) with p ≥ 1 and let r ∈ {0,1}. Then∫ ∫ ∫
R×[1,∞)×T

(
1 ∧ |zg(u)r |λ−a)

λ−bπz(dz) dλdu < ∞
for any a ∈ R if b > 1, and for all a > 1 − b if b ≤ 1.

The proof is given in Appendix A.1.

THEOREM 4. Let g ∈ Bs∗
pq(T) for some p,q ≥ 1 and s > 0. Let L(dω) be a

random field on � = [1,∞) × T with Lévy measure

ν(dβ dλdχ) = 1√
2π

λδ/2−ζ e−β2λδ/2 dβ dλdχ(38)

on R × � with δ, ζ ≥ 0. Then the LARK model f (x) = ∫
� λ1/2g(λ(x − χ))L(dω)

has an absolutely convergent expansion

f (x) = ∑
j

βjλ
1/2
j g

(
λj (x − χj )

)
, 0 ≤ x < 1,(39)

provided that δ−1
2 > 1 − ζ for 0 ≤ ζ ≤ 1, or for any δ ≥ 0 if ζ > 1. Also f (·) ∈

Bs∗
pq(T) almost surely for δ−1

2 > s + 1 − ζ if 0 ≤ ζ ≤ 1 or for any δ ≥ 0 if ζ > 1.

PROOF. The absolute convergence of (39) for each x will follow from Propo-
sition 1 if we can verify the conditions of (18), that is, finiteness of the integral∫ ∫ ∫

R×[1,∞)×T

(
1 ∧ ∣∣βλ1/2g

(
λ(x − χ)

)∣∣)ν(dβ dλdχ).(40)

Applying the change of variables β �→ z = λδ/2β ,

=
∫ ∫ ∫

R×[1,∞)×T

(
1 ∧ |z|λ(1−δ)/2∣∣g(

λ(x − χ)
)∣∣)λ−ζ πz(dz) dλdχ,(41)

where πz(dz) is the standard normal distribution. Since the term in parentheses is
bounded by one, (41) is finite for all δ and g if ζ > 1. For 0 ≤ ζ ≤ 1, apply another
change of variables χ �→ u = λ(x − χ) and apply periodicity

=
∫

R

∫ ∞
1

∫ λx

λ(x−1)

(
1 ∧ |zg(u)|λ(1−δ)/2)

duλ−1−ζ dλπz(dz)

which, due to periodicity, satisfies the bound

≤
∫

R

∫ ∞
1

∫ 1

0

(
1 ∧ |zg(u)|λ(1−δ)/2)

du�λ�λ−1−ζ dλπz(dz)

≤ 2
∫ ∫ ∫

R×[1,∞)×T

(
1 ∧ |zg(u)|λ(1−δ)/2)

duλ−ζ dλπz(dz),
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where �λ� denotes the least integer ≥ λ. By Lemma 1 this is finite for 0 ≤ ζ ≤ 1 if
δ−1

2 > 1 − ζ with g ∈ Bs∗
pq , so (18) holds and Proposition 1 ensures convergence.

The L∗
p norms of the mth forward differences of a periodic function g(·) ∈

Bs∗
pq(T) and their scaled translates g(λ(· − χ)) for χ ∈ T and positive scale λ ∈

[1,∞) are related by ∥∥�m
h g

(
λ(· − χ)

)∥∥∗
p ≤ 21/p‖�m

λhg‖∗
p(42)

since, by a change of variables x �→ u = λ(x − χ),∥∥�m
h g

(
λ(· − χ)

)∥∥∗
p

= λ−1/p

{∫ λ(1−χ)

−λχ

∣∣∣∣∣
m∑

k=0

(
m

k

)
(−1)m−kg(u + kλh)

∣∣∣∣∣
p

du

}1/p

,

which, again from periodicity, satisfies

≤
(�λ�

λ

)1/p
{∫ 1

0

∣∣∣∣∣
m∑

k=0

(
m

k

)
(−1)m−kg(u + kλh)

∣∣∣∣∣
p

du

}1/p

=
(�λ�

λ

)1/p

‖�m
λhg‖∗

p,

while �λ�/λ ≤ 2.
The Besov semi-norm of f is bounded by

|f |s∗pq ≤ ∑
j

|βj |λ1/2
j

∣∣g(
λj (· − χj )

)∣∣s∗
pq

= ∑
j

|βj |λ1/2
j

(∫
|h|≤1

|h|−1−sq
∥∥�m

h g
(
λj (· − χj )

)∥∥∗q
p dh

)1/q

≤ ∑
j

|βj |λ1/2
j

(�λj�
λj

)1/p(∫
|h|≤1|

|h|−1−sq‖�m
λjhg‖∗q

p dh

)1/q

= ∑
j

|βj |λs+1/2
j

(�λj�
λj

)1/p(∫
|t |≤λj

|t |−1−sq‖�m
t g‖∗q

p dt

)1/q

.(43)

The integral in (43) is bounded by∫
R

|t |−1−sq‖�m
t g‖∗q

p dt =
∫
|t |≤1

|t |−1−sq‖�m
t g‖∗q

p dt

+
∫
|t |>1

|t |−1−sq‖�m
t g‖∗q

p dt.
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The first term is just (|g|s∗pq)q , and (32) implies ‖�m
t g‖∗

p ≤ 2m‖g‖∗
p , so

≤ (|g|s∗pq)q +
∫
|t |>1

|t |−1−sq(2m‖g‖∗
p)q dt

= (|g|spq)q + 21+mq

sq
‖g‖∗q

p

≤ (c‖g‖s∗
pq)q

for some c < ∞, so

|f |s∗pq ≤ 2c‖g‖s∗
pq

∑
j

|βj |λs+1/2
j(44)

is almost surely finite if and only if∫ ∫ ∫
R×[1,∞)×T

(1 ∧ |β|λs+1/2)ν(dβ dλdχ)

is finite. Applying the change of variables β �→ z = λδ/2β ,

=
∫ ∫ ∫

R×[1,∞)×T

(
1 ∧ |z|λs+(1−δ)/2)

λ−ζ πz(dz) dλdχ

is finite by Lemma 1 for all δ ≥ 0 if ζ > 1 and for δ−1
2 > s + 1 − ζ if 0 ≤ ζ ≤ 1.

A similar argument shows that the L∗
p norm of f satisfies a bound of the form

‖f ‖∗
p ≤ c‖g‖∗

p

∑
j

|βj |λ1/2
j

for some c < ∞. This is finite almost surely if∫ ∫ ∫
R×[1,∞)×T

(1 ∧ |β|λ1/2)ν(dβ dλdχ)

=
∫ ∫ ∫

R×[1,∞)×T

(
1 ∧ |z|λ(1−δ)/2)

λ−ζ πZ(dz) dλdχ

is finite, which follows from Lemma 1 for all δ ≥ 0 if ζ > 1 and, if ζ ≤ 1, for δ

satisfying δ−1
2 > 1 − ζ since g ∈ Bs∗

pq ⊂ L∗
p . Combining conditions, the Bs∗

pq norm
of f is finite if δ/2 − 1/2 > s + 1 − ζ for 0 ≤ ζ ≤ 1 and for all δ ≥ 0 if ζ > 1. �

For Lévy measures ν(dβ dλdχ) supported on R × N × T (i.e., for which λ is
almost-surely integral) the function f (x) of (39) would inherit periodicity from
the generator g(λj (x − χj )) but, for the absolutely-continuous measure of (38),
it is the definition of f (x) as a function on T [as in Abramovich, Sapatinas and
Silverman (2000), equation (2)] that induces periodicity. The restriction to λ ≥ 1
may be relaxed to the more natural λ > 0 in the LARK framework, but may require
the use of compensation.
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4.3. Compensation. For Lévy measures satisfying only the local-L2 bound of
(9) and not the local-L1 bound of (7), we must use the definition of f (x) in (14)
and use (16) to establish conditions that ensure f will be well defined for g ∈ Bs

pq .
We verify these conditions for the existence of LARK models under symmetric
α-Stable random fields.

THEOREM 5. For a Symmetric α-Stable random field with Lévy measure of
the form ν(dβ dω) = cαα|β|−1−α dβπ(d�)dχ on R × S d+ × Rd for 0 < α < 2,
with π(d�) a probability measure on S d+ and g ∈ Bs

pq(R
d) ∩ L1(R

d) for p,q ≥ 1
and s > 0, the conditions of (16) for f (x) to be well defined by Theorem 1 are
satisfied for 1 < α ≤ p, α < 2 if E[|�|−1] < ∞. For α = 1, there is the additional
requirement that ∫

Rd
|g(u) log|g(u)||du < ∞.(45)

PROOF. Fix x ∈ X . By the affine change of variables of χ �→ u ≡ �(x − χ),∫ ∫
[−1,1]c×�

(
1 ∧ |βφ(x,ω)|)ν(dβ dω)

= 2cαα

∫
S d+

|�|−1π(d�)

∫ ∫
[1,∞)×Rd

(
1 ∧ β|g(u)|)β−1−α dβ du

= 2cααE|�|−1
∫

Rd

{∫ |g(u)|−1

1
β−α|g(u)|dβ +

∫ ∞
|g(u)|−1

β−1−α dβ

}
du.

For 1 < α < 2,

= 2cααE|�|−1
{∫

Rd

|g(u)| − |g(u)|α
α − 1

du +
∫

Rd

|g(u)|α
α

du

}
,

which is finite for 1 < α ≤ p since g ∈ L1 and g ∈ Bs
pq ⊂ Lp . For α = 1,

= 2c1E|�|−1
{∫

Rd
−|g(u)| log|g(u)|du +

∫
Rd

|g(u)|du

}
.

The first integral exists and is finite by (45) while the second is finite since g ∈ L1.
Similarly, the integral in (16b) is∫ ∫

[−1,1]×�

(|βφ(x,ω)| ∧ |βφ(x,ω)|2)
ν(dβ dω)

= 2cααE|λ|−1
{∫ ∫

[0,1)×Rd

(|βg(u)| ∧ |βg(u)|2)
β−1−α dβ du

}
.

The integral in braces∫ ∫
[0,1∧|g(u)|−1]×Rd

β1−αg(u)2 dβ du +
∫ ∫

[1∧|g(u)|−1,1]×Rd
β−α|g(u)|dβ du
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is finite for 1 < α ≤ p, α < 2:

≤
∫

Rd

|g(u)|α
2 − α

+ |g(u)|α − |g(u)|
α − 1

du

≤ ‖g‖p
p

(2 − α)(α − 1)
< ∞,

while for α = 1,

≤
∫

Rd
{|g(u)| + |g(u) log|g(u)||}du < ∞

by (45). Finally, (16c) holds because∫ ∫
R×�

(1 ∧ β2)|φ(x,ω)|ν(dβ dω)

= E|�|−1cαα

∫ ∫
R×Rd

(1 ∧ β2)|β|−1−α|g(u)|dβ du

= E|�|−1‖g‖1cαα

∫
R
(1 ∧ β2)|β|−1−α dβ < ∞. �

All of the generator functions in the examples in Section 7 satisfy the conditions
of the theorem for the Cauchy random field (α = 1), so the LARK models are well
defined as ε → 0 and for finite ε > 0, the approximations are in the same Besov
space as g. We are able to show that this also holds for Sobolev Ws

2 spaces (which
are equivalent to Bs

22) even when compensation is required, but this remains an
open question for Bs

pq with general p and q .

4.4. Convergence in Ws
2.

THEOREM 6. Let {φ(x,ω)} be a location-scale family of the form φ(x,ω) ≡
g(�(x − χ)) for ω = (χ,�) with χ ∈ Rd and nonsingular d×d matrix � ∈ S d+
for some function g(·) ∈ Ws

2 with s ≥ 0. Let ν be a Lévy measure satisfying the
condition ∫ ∫

R×�
|�|−1[1 + ρ(�)2s](1 ∧ β2)ν(dβ dω) < ∞,(46)

where ρ(�) denotes the spectral radius (largest eigenvalue) of �. Recall

f (x) ≡
∫ ∫

R×�
φ(x,ω)[β − h(β)]N (dβ dω)

(19)
+

∫ ∫
R×�

φ(x,ω)h(β)Ñ (dβ dω)
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and, for ε > 0, define

fε(x) ≡
∫ ∫

[−ε,ε]c×�
φ(x,ω)[β − h(β)]N (dβ dω)

+
∫ ∫

[−ε,ε]c×�
φ(x,ω)h(β)Ñ (dβ dω)(47)

= ∑
0≤j<Jε

ε<|βj |

φ(x,ωj )βj −
∫ ∫

[−ε,ε]c×�
φ(x,ω)h(β)η(dβ dω).

Then fε(·) → f (·) in Ws
2 almost surely as ε → 0.

PROOF. First, consider the case of compensator functions satisfying h(β) = β

for all |β| ≤ 1. Apply an affine change of variables to see that φ(x,ω) has Fourier
transform (in x)

φ̂(ξ,ω) = eiξ ·χ |�|−1ĝ(�−1ξ).

For 0 < ε1 < ε2 < 1 and x ∈ Rd , set �(x) ≡ fε1(x) − fε2(x) and let A ≡ {ε1 <

|β| ≤ ε2} × �. Then

�(x) = ∑
0≤j<Jε1

ε1<|βj |≤ε2

φ(x,ωj )βj −
∫ ∫

A
φ(x,ω)βν(dβ dω)

is a zero-mean random function of x with Fourier transform

�̂(ξ) = ∑
0≤j<Jε1

ε1<|βj |≤ε2

eiξ ·χj |�j |−1ĝ(�−1
j ξ)βj

−
∫ ∫

A
eiξ ·χ |�|−1ĝ(�−1ξ)βν(dβ dω),

a zero-mean L2 random function of ξ with second moment

E|�̂(ξ)|2 =
∫ ∫

A
|�|−2|ĝ(�−1ξ)|2β2ν(dβ dω).(48)

Thus �(·) has expected squared Sobolev norm E‖fε1 − fε2‖2
Ws

2
:

= (2π)−d
∫ ∫ ∫

Rd×A
(1 + |ξ |2)s |�|−2|ĝ(�−1ξ)|2β2ν(dβ dω)dξ

= (2π)−d
∫ ∫ ∫

Rd×A
(1 + |�η|2)s |�|−1|ĝ(η)|2β2ν(dβ dω)dη

≤ (2π)−d
∫ ∫ ∫

Rd×A
(1 + |η|2)s[(1 + ρ(�)

)2s]|�|−1|ĝ(η)|2β2ν(dβ dω)dη
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= ‖G‖2
Ws

2

∫ ∫
{ε1<|β|≤ε2}×�

[(
1 + ρ(�)

)2s]|�|−1β2ν(dβ dω)(49)

→ 0 as ε1, ε2 → 0 by (46),

so {fεk
} is a Cauchy sequence in Ws

2 for any εk → 0 and ‖f − fεk
‖Ws

2
→ 0.

Since fε is a finite linear combination of scaled translates of g ∈ Ws
2, each fε

(and hence f ) lies in Ws
2 almost surely and Theorem 6 is proved for compensator

functions satisfying h(β) = β for |β| < 1.
For an arbitrary bounded compensator h(β) satisfying |β − h(β)| ≤ cβ2 for

some c > 0, (48) has the additional nonrandom term∣∣∣∣∫ ∫
A

eiξ ·χ ĝ(�−1ξ)

|�|
(
β − h(β)

)
ν(dβ dω)

∣∣∣∣2 ≤ c

(∫ ∫
A

|ĝ(�−1ξ)|
|�| β2ν(dβ dω)

)2

leading at most to an additional constant factor of [1 + c
∫∫

R×�(1 ∧ β2)ν(dβ dω)]
in (49), leading as before to ‖f − fεk

‖Ws
2
→ 0 and completing the proof. �

COROLLARY 4. If {φ(x,ω)} is a location-scale family of the form consid-
ered in Theorem 6 and if a Lévy measure ν is of product form ν(dβ dω) =
νβ(dβ)πω(dω) for some σ -finite measure νβ(dβ) on R and probability measure
πω(·) on � that for some s ≥ 0 satisfy∫

R
(1 ∧ β2)νβ(dβ) < ∞,(50a) ∫

�
|�|−1((

1 + ρ(�)
)2s)

πω(dω) < ∞,(50b)

then ν(dβ dω) also satisfies (46) and hence fε(·) → f (·) in Ws
2 almost surely as

ε → 0.

For example, in one dimension, (50b) is satisfied for all s > 0 if � = λ has
the χν distribution with ν > 1 degrees of freedom, that is, if λ2 ∼ Ga(αλ,βλ)

with αλ > 1
2 . More generally, for any m > 0 (50b) is satisfied for all s > 0 if

λm ∼ Ga(αλ,βλ) with αλ > 1/m or, for m < 0, for αλ > (1 − 2s)/m.
Recall that the quantity ε introduced in the proof of Theorem 6 and the statement

of Corollary 4 is not a model parameter and has no bearing on the Sobolov spaces
to which the limiting function f (·) belongs; it is only a tool used in proofs and
implementations, to which we now turn.

5. Inference for LARK models. The LARK model introduced in Section 1
may now be summarized as

E[Y(x) | L, θ ] = f (x) ≡
∫
�

φ(x,ω)L(dω),(51)

L | θ ∼ Lévy(ν),

θ ∼ πθ(dθ)
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with implicit dependence of the Lévy measure ν(dβ dω) and conditional distri-
bution for Y(x) on a hyperparameter vector θ . In all of our examples, we take
ν to be a product measure ν(dβ dω) = νβ(β) dβ|�|πω(dω) satisfying the condi-
tions of Corollary 2, with πω(·) a probability measure on �, |�| a measure of
the volume of �, and νβ(·) > 0 a nonnegative density function on R satisfying∫
R(1 ∧ β2)νβ(β) dβ < ∞ [so ν satisfies (9)], for which either (a) ν also satisfies

(7) or (b) νβ(β) is even and h(β) is odd in β . Thus, we have the representation

θ ∼ πθ(dθ),(52a)

J | θ ∼ Po(ν+
ε ), ν+

ε ≡ νε(R × �),(52b)

{(βj ,ωj )}0≤j<J | J, θ
i.i.d.∼ πβ(βj ) dβjπω(dωj ),

(52c)
πβ(β) ≡ 1{|β|>ε}νβ(β)|�|/ν+

ε ,

Yi | f ind∼ pY (y | f (xi)) dy,
(52d)

f (xi) ≡ ∑
0≤j<J

φ(xi,ωj )βj

for sampling model pY (· | μ) parametrized by μ.

5.1. Examples of Lévy random fields. Motivated by the applications in Sec-
tion 8, we now focus on LARK models built on approximations to Gamma, sym-
metric Gamma and Symmetric α-Stable (in particular, Cauchy) Lévy random
fields, and quantify the approximation errors to facilitate the selection of ε and
other prior hyperparameters.

5.1.1. Gamma LARK models. The Gamma random field of Section 2.5.2 has
νβ(dβ) = γβ−1e−βη1{β>0} dβ for some constants γ > 0 and η > 0. The parameter
η in (22) controls both the Poisson rate of mass points {(βj ,ωj )} of magnitude
|β| > ε and the probability distribution of those magnitudes {βj }. To facilitate
elicitation we disentangle those two roles by truncating at |βη| ≥ ε (rather than
|β| ≥ ε); of course the limit as ε → 0 is the same. The distributions of J and {βj }
are now given by

J ∼ Po(ν+
ε ), ν+

ε = γ |�|E1(ε),

βj
i.i.d.∼ πβ(βj ) dβj , πβ(βj ) = βj

−1e−βj η

E1(ε)
1{βj η>ε},

where the exponential integral function [Abramowitz and Stegun (1964), pa-
ge 228] is denoted as E1(z) ≡ ∫ ∞

z t−1e−t dt . With this truncation, the expected
square L2 norm of the loss due to truncation for any φ ∈ L2(�, |�|πω(dω)), such
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as φ(ω) = φ(x,ω), is

E|L[φ] − Lε[φ]|2 =
∫ ∫

R×�
φ(ω)2|β|21{|βη|≤ε}ν(dβ dω)

= ‖φ‖2
2

∫ ε/η

0
β2νβ(β) dβ(53a)

= γ η−2‖φ‖2
2[1 − (1 + ε)e−ε],

showing the rate at which Lε[φ] → L[φ] in L2 as ε → 0. This is used in Sec-
tion 5.2 to guide the elicitation of hyperparameters.

5.1.2. Symmetric Gamma LARK models. The symmetric Gamma random
field of Section 2.5.3 has Lévy measure νβ(dβ) = γ |β|−1e−|β|η dβ for some con-
stants γ > 0 and η > 0. Once again truncation at |βη| > ε leads to

J ∼ Po(ν+
ε ), ν+

ε = 2γ |�|E1(ε)

βj
i.i.d.∼ πβ(βj ) dβj , πβ(βj ) = |βj |−1e−|βj |η

2E1(ε)
1{|βj η|>ε}

and expected squared discrepancy (used for elicitation)

E|L[φ] − Lε[φ]|2 = 2γ η−2‖φ‖2
2[1 − (1 + ε)e−ε].(53b)

5.1.3. Symmetric α-Stable LARK models. The SαS Lévy random field of Sec-
tion 2.5.4 has νβ(dβ) = γ̇ α

π
�(α) sin πα

2 |β|−α−1 dβ for some constants γ̇ > 0 and
0 < α < 2. To facilitate elicitation and posterior inference, we write γ̇ = γ η−α and
(again) truncate at |βjη| > ε. This leads to

J ∼ Po(ν+
ε ), ν+

ε = γ |�| 2

π
�(α) sin

πα

2
ε−α

βj
i.i.d.∼ πβ(βj ) dβj , πβ(βj ) = αεα

2ηα
|βj |−α−11{|βj η|>ε}

with symmetric Pareto distributions for the coefficients {βj }. For the Cauchy
(α = 1), these simplify to ν+

ε = 2γ |�|/(πε), with

πβ(βj ) = ε

2η
|βj |−21{|βj η|>ε}.

Although the total variation |L| is almost surely infinite, and even |L − Lε| will be
infinite for α ≥ 1, still for φ ∈ L2(�, |�|πω(dω)) the expected squared discrep-
ancy is finite:

E|L[φ] − Lε[φ]|2 =
∫ ∫

R×�
φ(ω)2|β|21{|βη|≤ε}ν(dβ dω)

(53c)

= 2γ η−2‖φ‖2
2

[
�(α + 1)

π(2 − α)
sin

πα

2
ε2−α

]
or 2γ η−2‖φ‖2

2[ε/π ] for the Cauchy case α = 1.
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5.2. Prior elicitation of hyperparameters. We now turn to the selection of
ε > 0, the vector θ ∈ � of (52), and the Lévy measure ν(dβ dω). In each of our
examples θ ≡ (γ, η) for rate parameters γ and η governing the frequency and
magnitude of coefficients {βj }, respectively, and the expected squared truncation
error for Lε[φ] for φ(ω) = φ(x,ω) is of the form E|L[φ(x, ·)] − Lε[φ(x, ·)]|2 =
γ η−2‖φ(x, ·)‖2

2c(ε) for some c(ε) > 0 with c(ε) → 0 as ε → 0 [see (53)].
We choose prior distributions to attain three goals: (1) desired range of number

J of terms in the stochastic expansion; (2) desired range of coefficient magnitudes
{βj }; and (3) tolerable expected truncation error. We first select a Lévy family
(Gamma, α-Stable, etc.) to meet the needs of a particular problem for symmetry
or positivity, sharp or heavy tails, etc. Each of our Lévy measures is of the product
form ν(dβ dω) = νβ(dβ)πω(dω) considered in Theorem 6 and Corollary 4, with
location, scale, and perhaps other location-specific (and hence adaptive) attributes
encoded in ω ∈ � in problem-specific ways.

Hyperparameters in the Lévy measure νβ(dβ) govern sparseness for LARK
models, that is, the number J of terms in the stochastic expansion. In each LARK
model, J has a Poisson distribution with mean proportional to γ . The coefficient
of variation under the Poisson distribution falls to zero as the mean increases, over-
stating the prior certainty for large values of EJ . To ameliorate this, we introduce
an additional layer of hierarchy by placing a Gamma prior distribution on the pa-
rameter γ ∼ Ga(aγ , bγ ), leading to the overdispersed negative binomial prior dis-
tribution for J ∼ NB(aJ ,pJ ). The parameter η governs the scale of the coefficients
{βj }, and hence the range of the regression function f (·). We employ a Gamma
distribution for the scale parameter η−1 ∼ Ga(aη, bη). Together the hyperparam-
eters ε, aγ , bγ , aη, bη determine the prior distributions for J , for the coefficients
{βj } (and hence the range of f (·)), and for the expected mean-square truncation
error. We select values for these five parameters to meet five criteria: attain two
specified quantiles (such as a central 99% interval) for each of J and {βj }, and a
specified bound on the expected truncation error Eγ η−2‖φ(x, ·)‖2

2c(ε). Typically
this involves an iterative numerical solution.

As a default choice, we take π(dω) = πχ(dχ)πλ(dλ) to be the product of the
uniform distribution for locations χ ∼ Un(X ) and a Gamma distribution for in-
verse (distance) scale parameters λ ∼ Ga(aλ, bλ). The shape and rate hyperpa-
rameters aλ and bλ govern the range of probable values for the location-specific
inverse scale parameters {λj } and hence for the smoothness of f (x), similar to
how bandwidth selection governs smoothness in other kernel methods. A kernel at
ωj = (χj , λj ) will represent a feature located at χj of width 1/λj , so large values
of λj are needed to fit a very “spiky” part of a curve, while a smoother part of a
curve may be fit most parsimoniously using small values of λj . The prior distri-
bution for λj must support an adequate range of values in order to fit a spatially
inhomogeneous curve. Values of aλ > 1 will ensure E[λ] < ∞ and a finite co-
variance function; we choose (aλ, bλ) to attain two specified quantiles, such as a
central 99% interval.
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5.3. Posterior inference. The joint posterior density of all parameters under
the LARK model of (52), given observations Y = {Yi}, is

p(γ, η, J,β,ω | Y)

∝ πγ (γ )πη(η)
exp[−νε(R × �)]

J !(54)

×
{ ∏

0≤j<J

νε(βj ,ωj )

}{∏
i∈I

pY

(
Yi

∣∣∣ ∑
0≤j<J

φ(xi,ωj )βj

)}
.

The posterior (and full conditional) distributions of the parameters are not available
in closed form. Since some of our parameters (β and ω) have varying dimension,
some form of trans-dimensional Markov chain Monte Carlo, such as a reversible
jump (RJ-MCMC) algorithm [Green (1995), Wolpert, Ickstadt and Hansen (2003),
Sisson (2005)] must be used to provide samples from (54) for posterior inference.
See Appendix B for a sketch of the RJ-MCMC algorithm.

6. Relation of LARK to other models.

6.1. Gaussian processes or random fields. For any positive Borel measure
�(dω) on a complete separable metric space �, there exists a Gaussian random
measure Z(dω) on � that assigns to disjoint Borel sets Ai ⊂ � of finite mea-
sure �(Ai) < ∞ independent mean-zero Gaussian random variables Z(Ai) ∼
No(0,�(Ai)) of variance EZ(Ai)

2 = �(Ai). For any kernel function g on X × �

with φ(x, ·) ∈ L2(�,�(dω)) for each x ∈ X , this induces a mean-zero Gaussian
random field through the Wiener stochastic integral

f (x) =
∫
�

φ(x,ω)Z(dω)

with covariance C(x, y) = E[f (x)f (y)] = ∫
� φ(x,ω)φ(y,ω)�(dω). The Gaus-

sian random measure Z(dω) is the special case of a Lévy random measure L(dω)

defined earlier in (8) with δ(dω) ≡ 0 and ν(dβ dω) ≡ 0.
A wide variety of Gaussian processes are available in this form. For example,

those with stationary covariance C(x, y) = c(x − y) may be written in the above
form if the spectral measure has a density function ĉ(ω) = ∫

X e−iω·xc(x) dx whose
square root is Lebesgue integrable, for example, the Matérn class [Stein (1999),
page 31] in Rd with smoothness parameter ν > d/2. The Gaussian random field
model above may also be obtained as the limit as α → 2 of the symmetric α-Stable
LARK models considered herein, providing an alternative method for inference
that avoids the need for large matrix inversions. To maintain a unified computa-
tional approach, we have limited our attention in this article to LARK models with
pure-jump Lévy random measures, that is, �(·) ≡ 0.
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6.2. Compound Poissons and mixtures of Gaussian random fields. Mixtures
of Gaussian random fields may be constructed as LARK models with Lévy mea-
sure of the form

ν(dβ dω) = (2πσ 2
ω)−1/2e−β2/2σ 2

ω dβνω(dω)(55)

leading to mean functions of the form f (xi) = ∑
0≤j<J φ(x,ωj )βj with normally-

distributed coefficients βj |ω ∼ No(μω,σ 2
ω). For finite measures νω, the expansion

has a Poisson-distributed number of terms, hence, is a Poisson mixture of Gaussian
processes (or for hierarchical models with a Gamma distributed Poisson mean,
a negative binomial mixture of Gaussian processes). In Section 4.2, we showed
that the stochastic wavelet expansion of Abramovich, Sapatinas and Silverman
(2000), an example of (55), may be viewed as a LARK model. Chu, Clyde and
Liang (2009) extend the compound Poisson (or LARK with finite ν) model to
include mixtures of normals distributions for βω and develop methods for Bayesian
inference for such OverComplete Wavelet expansions (OCW); we compare the
OCW method to other LARK models in the simulation study of Section 7.

For automatic curve fitting using splines and wavelets, Denison et al. [(2002),
Chapter 3] used a similar hierarchical model with common σω ≡ σ , but truncated
the (Poisson-distributed) number of terms in the basis expansions at some fixed
upper bound Ju. Taking Ju → ∞ leads to the Gaussian LARK model of (55) with
a common variance. Gaussian processes have sharp tails, of course, leading to
concerns about robustness when they are used as prior distributions in problems
with likelihood functions that fall off more slowly. Specifying variances for Gaus-
sian prior distributions is nontrivial, with large “noninformative” choices leading
to the so-called Lindley paradox. Denison et al. recommend an inverse Gamma
prior on σ 2 to avoid this well-known problem. This leads to a multivariate Student
t distribution on the expansion coefficients and, since the prior now has bounded
influence, provides robustness. The limiting model (as Ju → ∞) may be viewed
as a mixture of Lévy random fields.

Rather than using a multivariate Student t for the coefficients, one might use
“ridge” priors and model the uncertain function f (·) = ∑

0≤j<J βjφ(·;ωj ) as the
sum of a Poisson (or negative binomial)-distributed number J of kernel functions

φ(·;ωj) with coefficients βj
i.i.d.∼ C(0, τ ) drawn from a centered Cauchy distribu-

tions with scale τ . To accommodate rough functions f (·), one must be willing
to consider large numbers of terms, most of which will have small coefficients—
under these priors, one must consider large EJ and small τ . But how small? And
what happens if τ is made a bit smaller and EJ a bit larger? As τ → 0, if one
scales the expected number EJ of terms (as a function of τ ) properly, this model
converges to a LARK model with infinite Lévy measure (and so is not sensitive to
the cut-off ε, which merely quantifies how close is this approximation). If EJ is
not scaled properly to converge to a LARK model, the limiting results may depend
critically on arbitrary and unintentional choices.
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This may be implemented explicitly in LARK form by placing independent
Ga(α/2, ε/2) prior distributions on σ−2

ω in (55) to achieve independent univariate
Student tα(0, ε) distributions for the coefficients {βj } and (approximately, as the
parameter ε → 0) the heavy-tailed Symmetric α-Stable process for f (x) of Sec-
tions 2.5.4 and 5.1.3 [this also illustrates that truncating the support of βω is not the
only way to construct suitable approximating sequences of finite Lévy measures
νε(dβ dω) ⇒ ν(dβ dω) for which the integrals in (27) converge]. An important
feature of our infinitely divisible construction (in contrast to a compound Poisson
approach from other distributional families) is that in each case, as ε → 0 the ap-
proximating model converges to one with a well-defined prior (with infinite Lévy
measure) and a proper posterior distribution.

6.3. Finite dimensional frames. LARK may be viewed as a limit of Bayesian
variable selection methods with finite frames or dictionaries. Wolfe, Godsill and
Ng (2004) consider frames based on discretizing � as a fine grid with |G| ele-
ments. They place i.i.d. prior distributions πG(β)dβ on the nonzero coefficients
and i.i.d. Bernoulli kernel inclusion indicators with inclusion probability ρG. If
|G|ρGπG(β) → ν(β) as |G| → ∞, then the result converges to a LARK model on
the infinite-dimensional frame. The representation in Wolfe, Godsill and Ng (2004)
uses a point mass at zero to provide sparsity. Similarly, one may view the prior dis-
tributions in LARK under the ε-truncation approach as assigning zero mass to a
neighborhood around zero, also leading to sparse representations. One benefit of
LARK is its provision of a formal method for coherent prior specification for con-
tinuous dictionaries; a second is its provision of a proper prior specification in the
limit as ε → 0, ensuring insensitivity to the choice of ε.

Standard stochastic search algorithms using finite-dimensional frames may ex-
hibit poor mixing when the correlations between grid elements tend to ±1. To
illustrate, suppose that two possible kernel parameters ω0 and ω1 are close in pa-
rameter space, leading to two highly correlated columns in the design matrix. In
addition, assume that inclusion of either column leads to nearly-maximal likeli-
hood. With the standard one-at-a-time deletion or addition moves in many stochas-
tic search algorithms, to move from a model including a kernel indexed by ω0 to
one indexed by ω1 would require an extremely unlikely deletion followed by an
addition (or unlikely addition followed by a deletion). LARK avoids this difficulty
by allowing the continuous parameter ω indexing dictionary elements to move in-
crementally from ω0 to ω1 by a series of update steps, avoiding some of the poor
mixing problems associated with highly correlated frame elements in a fine-grid
based method.

6.4. Dirichlet processes. The Dirichlet process [Ferguson (1973, 1974), An-
toniak (1974)] has received widespread use as a prior distribution on probability
distribution functions. Its popularity is due in large part to its analytic tractability
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in many problems; simulation is straightforward, and Bayesian MCMC inference
methods are available [Escobar (1994), MacEachern (1994), Escobar and West
(1995), MacEachern (1998), Müller and Quintana (2004)]. Liang, Mukherjee and
West (2007) consider nonlinear regression and classification models E[Yi | Xi] =
f (Xi) for data {(Yi,Xi)} using kernel expansions of the form

f (x) =
∫

k(x,u)γ (du) =
∫

k(x,u)w(u)F (du)(56)

with random signed measure γ (du) expressed as the integral of a weight function
w(u) with respect to a probability distribution F , modeled as a Dirichlet process
F ∼ DP(F0, α) with base measure F0 and scale α > 0. If observed points {Xi}
are viewed as a random sample from F , then updating the posterior for F solely
on the basis of the observed {Xi} would lead in the limit as α → 0 to a degener-
ate posterior for F concentrated at the empirical distribution for X, justifying the
finite-dimensional expansion

f (x) =
n∑

i=1

k(x, xi)w(xi)

with kernels evaluated only at the observed data locations. The generalized g-
prior of West (2003) for the coefficients {wi = w(xi)} leads to dependent Cauchy
distributions for the {f (xi)}. This approach (like the SVM, RVM and related ap-
proaches) has as many coefficients as there are data points, but avoids over-fitting
through shrinkage. Asymptotic properties of f (x) as n → ∞ are difficult to study
in the absence of a limiting structure such as that provided by LARK.

The Dirichlet measure F(du) does not assign independent random variables to
disjoint sets and so (56) is not a LARK model, but it can be constructed from one.
In fact it is exactly the normalized LARK model

f (x) =
∫
�

k(x,u)w(u)L(du)
/

L(�)

(57)
= ∑

j

k(x,uj )wjβj

/
β+

with F(du) = L(du)/L(�) for a Gamma random field L(du) with infinite Lévy
measure

ν(dβ du) = αβ−1e−β1{β>0} dβF0(du),

where β+ := ∑
βj [note that w(u) could be absorbed into k(x,u)].

Well-known disadvantages of Dirichlet process models include their inflexibil-
ity (the single parameter α determines the prior dispersion everywhere, precluding
prior specifications with more uncertainty in some regions than in others), their dis-
creteness, and the limited variability of the masses assigned to the countably-many
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support points. The normalized Gamma representation (57) of DP’s offers the op-
portunity to overcome some of these disadvantages—for example, the Gamma pro-
cess may be given a variable rate parameter b(u) by taking

ν(dβ du) = β−1e−b(u)β1{β>0} dβF0(du)

leading to a precision that can vary with location u ∈ �, or the Gamma random
field may be replaced with another nonnegative Lévy random field with wider dis-
persion, such as the fully-skewed Stable process of index α < 1. Other nonnegative
Lévy random fields are beginning to be used in machine learning [Jordan (2010)]
and other fields.

7. Simulation study. We now turn our attention to simulated and real exam-
ples to illustrate the performance of LARK models in practice. We conducted a
simulation study using four spatially varying functions introduced by Donoho and
Johnstone (1994) that are now standard in the wavelet literature: Blocks, Bumps,
Doppler and Heavysine. Data were generated for each test function by adding in-
dependent Gaussian random noise No(0, σ 2) to the true target function f (·) at
n = 1024 equally-spaced points on X = [0,10]. As in Abramovich, Sapatinas and
Silverman (1998), the value of σ was chosen to attain a root signal-to-noise ratio

(RSNR) of
√∫

X (f (x) − f̄ )2 dx/σ 2 = 7.0, where f̄ ≡ 1
|X |

∫
X f (x) dx. Each target

function f (·) has a range of approximately 0 ≤ f (x) ≤ 25. For each function, we
generated 100 replicate data sets to evaluate the performance of LARK and other
methods on the basis of mean squared error

MSE ≡ n−1
n∑

i=1

(
f̂ (xi) − f (xi)

)2
.(58)

7.1. Hyperparameters. In Table 1, we report the kernel functions used for the
four simulation examples, chosen to illustrate the flexibility of LARK to use a
wide range of kernels that may be adapted to anticipated features (smoothness,
spikiness, jumps, curvature, covariation, etc.) of applications. In each case, we take

TABLE 1
Kernel functions used for four test functions

Test function Kernel φ(xi;χj ,λj )

Blocks 1{0<λj (xi−χj )≤1}
Bumps e−λj |xi−χj |

Doppler e
−0.5λ2

j (xi−χj )2

Heavysine e
−0.5λ2

j (xi−χj )2
1{|xi−χj |<2.0}
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TABLE 2
Hyperparameters used in examples of Section 7.1

Lévy measure ε aγ bγ aη bη aλ bλ

Symmetric Gamma 0.0041 2.53 6.45 13.01 0.71 1.117 0.1965

Cauchy 0.0029 2.53 14.2 0.50 1.00 1.117 0.1965

� = [0,10]×R+ (and |�| = 10), with elements denoted ω = (χ,λ), comprising a
location parameter χ ∈ X = [0,10] and a shape parameter λ > 0. As described in

Section 5.2, we take {χj } i.i.d.∼ Un(�) and {λj } i.i.d.∼ Ga(aλ, bλ) with aλ, bλ chosen
(see Table 2) to achieve a 95% prior interval of [0.20,20.0] for λ to attain dilated
kernels covering from half a percent up to fifty percent of X .

Our choice of the remaining hyperparameters was guided by three objectives:
to achieve a 95% prior predictive interval of [5,100] for J , to achieve a 95%
prior predictive interval of [−25,25] for the {βj }, and to achieve a limit on the
mean squared truncation error of ‖L[φ] − Lε[φ]‖2 = (E|L[φ] − Lε[φ]|2)1/2 ≤
0.05 · ‖φ‖2 (see Section 5.2). While these objectives could be met for the LARK
model with symmetric Gamma prior with the values given in Table 2, they are
not quite attainable for the Cauchy model—the competing goals of an extremely
wide distribution for the {βj } and a low mean squared truncation error cannot be
reconciled. Upon relaxing the prior predictive distribution requirement on {βj } to
a 99.9% interval of [−33,33], adequate for this problem with a flat Pareto-tailed
distribution for {βi}, the remaining objectives for the distribution of J and the
mean square truncation error were attained using the values given in Table 2. See
Figure 5, Appendix C for realizations from the prior distribution.

7.1.1. Performance. We compared LARK with two of the best wavelet meth-
ods currently available for inhomogeneous function estimation using overcomplete
representations: the empirical Bayes approach (“EBayesThresh”) of Johnstone and
Silverman (2004, 2005a, 2005b) using translational-invariant wavelets, and the
continuous over-complete wavelet (“OCW”) approach of Chu, Clyde and Liang
(2009) based on the stochastic wavelet expansions of Abramovich, Sapatinas and
Silverman (2000). We replicated the results of Johnstone and Silverman (2005b)
under the beta-Laplace prior using their R package EBayesThresh [Johnstone
and Silverman (2005a)] with Daubechies’ “least asymmetric” (la8) wavelets [see
Section 4 of Daubechies (1988) or Section 6.4 of Daubechies (1992)]. OCW uses
the same la8 wavelet as EBayesThresh except for the Blocks example, where
both LARK and OCW use the Haar wavelet. The OCW method may be viewed
as a special case of LARK with a finite nonseparable Lévy measure, where coeffi-
cients βj have independent Laplace distributions conditional on scale parameters
λj , which in turn have truncated Pareto distributions. As in LARK, OCW assigns
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TABLE 3
Average and (standard errors) over 100 replications of mean square errors of the four test functions

using the Lévy Adaptive Regression Kernels (LARK) using the symmetric Gamma and Cauchy
priors, the OCW approach using a Laplace prior [Chu, Clyde and Liang (2009)], and the

EBayesThresh approach using a Laplace prior [Johnstone and Silverman (2005a)]

Method Blocks Bumps HeavySine Doppler

LARK-Gamma 0.030 (0.0013) 0.111 (0.0019) 0.038 (0.0010) 0.152 (0.0030)
LARK-Cauchy 0.026 (0.0011) 0.105 (0.0017) 0.036 (0.0010) 0.157 (0.0028)
OCW 0.060 (0.0023) 0.285 (0.0025) 0.082 (0.0010) 0.152 (0.0019)
EBayesThresh 0.096 (0.0013) 0.307 (0.0032) 0.118 (0.00098) 0.202 (0.0027)

independent uniform locations, with a negative binomial distribution for the num-
ber of terms in the expansion.

The performance of each method was measured by its average mean square
error (AMSE), defined as the average value of the MSE given in (58) over the
100 replicated simulations. Overall, the performance of the LARK model is ex-
cellent (Table 3). Both LARK versions generated lower AMSE values than did
EBayesThresh for all four test functions. LARK also has smaller AMSE than
OCW, except for Doppler, where the methods are comparable. For Blocks, both
LARK and OCW use the Haar wavelet, thus any difference in results is due to
the prior distribution on the function; LARK leads to a 50% reduction in AMSE
compared to OCW. For the other examples, both OCW and EBayesThresh uses
a Laplace prior distribution for each coefficient in the expansion and the same
wavelet; in all cases it is clear that using a continuous dictionary is better than
the finite-dimensional dictionary (frame) with the nondecimated wavelets. Lark
reconstructions (right column, Figure 1) consistently show less ringing and fewer
artifacts than EBayesThresh (left column).

8. Applications.

8.1. Motorcycle crash data. To further illustrate the method, we explore the
motorcycle crash experiment data of Schmidt, Mattern and Schüler (1981) consid-
ered by Silverman (1985), shown in Figure 2. The 133 observations are unequally
spaced, with repeated observations at some time points. Our focus in this exam-
ple is to illustrate how a single wide class of generating functions may be used
in LARK, with the data (through the likelihood) influencing the choice of kernels
present in the posterior distribution. We use the power exponential family of kernel
functions φ(x;χ,λ,ρ) = exp{−λ|x − χ |ρ}, but here (in contrast with the exam-
ples in Section 7) we treat ρ as an uncertain parameter and make inference about
it from the data. We take the power ρ to be common for all kernels, and use a rela-
tively concentrated Gamma prior distribution ρ ∼ Ga(2.0,0.75) with a 50% HPD
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FIG. 1. Comparison of fitted functions using EBayesThresh beta.laplace [Johnstone and Sil-
verman (2005a)] (left column) and Lévy Adaptive Regression Kernels (LARK-Gamma) (right column)
for the four test functions. From top to bottom, the test functions are Blocks, Bumps, Doppler and
Heavysine, respectively.
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FIG. 2. Left: results of the LARK model for the motorcycle crash data. Circles represent the obser-
vations; solid line is the posterior mean; dotted lines are pointwise 90% Bayesian credible interval
for the mean function. Right: histogram of posterior samples of the exponential power parameter ρ,
with prior density (solid line) for comparison.

interval of [0.58,2.56] which comfortably includes both the Laplace (ρ = 1) and
Gaussian (ρ = 2) kernels as special cases.

The results are summarized in Figure 2. It is apparent that the fitted mean cap-
tures the general trend of the data very well, with minimal boundary effects. The
model is parsimonious in the sense we only need 4 kernels on average to fit the
data. The posterior mean for ρ is approximately 3 with most of the posterior mass
well above the values (ρ = 1,2) for the Laplace and Gaussian kernels.

8.2. Spatial temporal model. In this section, we explore the performance of
the LARK approach for modeling hourly SO2 concentration levels (measured in
ppm) in Pennsylvania, New Jersey, Delaware and Maryland [U.S. EPA (2007)].
The locations of the 33 monitoring stations are shown in Figure 3; the study re-
gion S , delineated by a rectangle in the figure, covers a 310 km×310 km area. We
used rescaled coordinates from a Lambert (conformal conic) projection to reduce
the distortion caused by the earth’s curvature. For demonstration purposes, we re-
strict analysis to measurements taken during a 144 hour period T from September
of 2002. About 5% of SO2 readings are missing (at random) from the data set,
which is not a problem for the LARK model. While Gaussian random field mod-
els are popular for modeling spatial-temporal data, the log transformation typically
used in the Gaussian approach (because the mean function is strictly positive) elim-
inates many of the (important) spiky features of the data. Our Gamma random field
prior distribution allows us to model the data in the original units.

The model can be written in the same simple form as (52), but now the SO2 con-
centration Y(x) is indexed by points x ∈ X = S × T in space–time and the Lévy
random measure L(dω) assigns Gamma-distributed random variables to Borel sets
of a space � of points ω = (σ, τ,�,λ) that include a location (σ, τ ) ∈ S × T in
space–time, a positive-definite 2 × 2 spatial dispersion matrix � ∈ S +

2 , and a tem-
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(a) (b)

FIG. 3. (a) Thirty-three monitors used by EPA to measure hourly SO2 concentration in year 2002.
The inverted triangle denotes Site 31. The study area is delineated by a rectangle that includes
parts of Pennsylvania, Maryland, New Jersey and Delaware, and is blown up in (b) which illustrates
locations of kernels from a draw from the posterior distribution. The blue circles represent aperiodic
points and the red circles represent daily periodic point sources. Circle areas are proportional to the
magnitudes of the point sources they represent.

poral decay rate λ > 0. We employ a separable kernel of the form

φ(x,ω) = exp{−(s − σ)′�(s − σ)/2 − λ|t − τ |}
and in the spirit of Higdon [(1998), Section 3.2] and Higdon, Swall and Kern
[(1999), Section 2.2], we employ a novel parametrization for � in terms of its
eigenvalues and the orientation of its major axis [see Tu (2006), Section 4.2.6, for
details on prior specifications]. In variations also described in Tu [(2006), Chap-
ter 4] accommodation is made for partial periodicity (due to diurnal patterns asso-
ciated with daily variation in ambient temperature, traffic levels, etc.), still within
the framework described by (51) but now with more elaborate choices for � and
φ(x,ω).

The locations of latent point sources from one iteration of the RJ-MCMC algo-
rithm are presented in Figure 3(b). Larger latent points appear to be clustered in
the Baltimore metropolitan area and near the New Jersey/Pennsylvania border. The
model’s support points are more than a mere modeling device—they can help ana-
lysts identify possible underlying sources of pollution, or support future decisions
on monitor locations.

The predictive power of the model is validated through out-of-sample predic-
tion. The model was fit excluding data from Site 31 [the inverted triangle in Fig-
ure 3(a)], and then its predictions were compared with reported measurements
from that site for the entire 144 hours. The result shown in Figure 4 is promis-
ing. The major peak was captured clearly, and 90% pointwise Bayesian credible
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FIG. 4. Out-of-sample predictions for Site 31. Dashed line represents observed time series, solid
line represents predictive mean curve. Gray lines are 90% posterior predictive intervals.

intervals cover in excess of 80% of the true observations. This was a challenging
out-of-sample prediction problem due to low cross-correlations among sites. We
are currently refining features of the prior distributions to incorporate known point
sources.

9. Discussion. In this article, we have developed a fully Bayesian adaptive
kernel method, LARK, for nonparametric function estimation. The LARK model
is based on a stochastic expansion of functions in a continuous overcomplete dic-
tionary, and may be expressed as a stochastic integral of a kernel or other gen-
erating function with respect to a Lévy random field. When (7) is satisfied (so
compensation is unnecessary), the Lévy field is a random signed measure. By us-
ing a positive random measure and positive kernel family, LARK models provide
natural constructions for nonnegative functions (as in Section 8.2); with signed
measures, unconstrained functions may be modeled (as in Sections 7 and 8.1).
The kernel parameters are location-specific and thus adapt to local features of the
data. As with wavelets, the adaptive smoothing using LARK preserves local fea-
tures such as discontinuities and high peaks and is especially useful for modeling
inhomogeneous functions. The LARK approach does not require that the data be
equally-spaced without missing observations nor that the sample size be a dyadic
power as is a commonly required of many wavelet methods.

The RJ-MCMC algorithm developed for fitting LARK provides an automatic
stochastic search mechanism for finding sparse representations of a function. The
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algorithm is computationally efficient [requiring only O(n ·M) operations for data
including n observations and an MCMC stream of length M], as dictionary ele-
ments are calculated only when needed. Kernel methods such as Support Vector
Machines (SVMs) and Bayesian Relevance Vector Machines [or RVMs, Tipping
(2001)] employ all data points as kernel locations, but attain sparsity by shrink-
ing coefficients to zero. LARK provides additional flexibility by not restricting
kernel locations. Many competing sparse methods, including the Dantzig Selector
and Lasso, require the a priori selection of a pre-specified number of dictionary
elements. Evaluating these kernels on a sufficiently fine grid will exceed the com-
putational cost of LARK. Fine grids also lead to extreme multicollinearity in these
approaches, that may lead both to numerical instability and violation of the condi-
tions needed for sparse solutions.

9.1. Extensions. It is straightforward to implement LARK with wide classes
of generating functions including wavelets, structural elements in texture analy-
sis, and splines. Unlike support vector machines or other methods based on Mer-
cer kernels [Pillai et al. (2007)], the LARK approach does not require symmetry,
continuity or simple functional forms. While it is often convenient to use kernels
based on some distance metric, arbitrary generating functions may be tailored to
the problem at hand as illustrated in the space–time example of Section 8.2. The
LARK modeling approach adapts readily to problems in any number of dimen-
sions.

In Section 4, we present conditions for LARK models to belong to the same
Besov space as their generating functions, for Lévy measures and generating func-
tions that satisfy the stringent local L1-bound of (18). In the more general case,
where (18) fails and compensation is required, we are able to establish similar
results only for Bs

pq with p = q = 2 (equivalent to Ws
2). We are exploring exten-

sions to the general case, but the additional drift term that arises in compensation
complicates confirming the convergence of fε to f in Bs

pq for general p,q .
Work is also on-going in establishing conditions for posterior consistency for

function estimation. Extending methods of Choudhuri, Ghosal and Roy (2004),
Ghosal and van der Vaart (2007) and Choi and Schervish (2007), Pillai (2008) has
verified posterior consistency for certain LARK models with Gaussian measure-
ment errors in work that will be reported elsewhere.

APPENDIX A: DETAILS OF PROOFS

PROPOSITION 2. For a function g(·) ∈ Lp(Rd) and its scaled translate
g(�(· − χ)) with χ ∈ Rd and positive definite matrix � ∈ S d+, the Lp norm of
g(�(· − χ)) and the Lp norm of its mth forward differences are given by∥∥g(

�(· − χ)
)∥∥

p = |�|1/p‖g‖p

∥∥�m
h g

(
�(· − χ)

)∥∥
p = |�|1/p‖�m

λhg‖p,(59)

where |�| denotes the determinant of �.
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PROOF. By a change of variables χ �→ u = �(x − χ),

∥∥�m
h g

(
�(· − χ)

)∥∥
p =

{∫ ∣∣�m
h g

(
�(x − χ)

)∣∣p dx

}1/p

=
{∫ ∣∣∣∣∣

m∑
k=0

(
m

k

)
(−1)m−kg

(
�(x + kh − χ)

)∣∣∣∣∣
p

dx

}1/p

= |�|−1/p

{∫ ∣∣∣∣∣
m∑

k=0

(
m

k

)
(−1)m−kg(u + k�h)

∣∣∣∣∣
p

du

}1/p

= |�|−1/p‖�m
�hg‖p.

The proof for the Lp norm of g(�(·−χ)) follows by the same change of variables.
�

A.1. Proof of Lemma 1. First, consider the case b > 1 and a ∈ R. Then∫ ∫ ∫
R×[1,∞)×T

(
1 ∧ |zg(u)r |λ−a)

λ−bπz(dz) dλdu

<

∫ ∫ ∫
R×[1,∞)×T

λ−bπz(dz) dλdu

= 1

b − 1
< ∞.

Next, consider the case of b < 1 and a > 1 − b (which imply a > 0):∫ ∫ ∫
R×[1,∞)×T

(
1 ∧ |zg(u)r |λ−a)

λ−bπz(dz) dλdu

=
∫ ∫

|zg(u)r |>1

∫ |zg(u)r |1/a

1
λ−b dλπz(dz) du

+
∫ ∫

R×T
|zg(u)r |

∫ ∞
1∨|zg(u)r |1/a

λ−a−b dλπz(dz) du

=
∫ ∫

|zg(u)r |>1

λ1−b

1 − b

∣∣∣∣λ=|zg(u)r |1/a

λ=1
πz(dz) du

+
∫ ∫

R×T
|zg(u)r | λ(1−a−b)

1 − a − b

∣∣∣∣λ=∞

λ=1∨|zg(u)r |1/a
πz(dz) du

=
∫ ∫

|zg(u)r |>1

1 − |zg(u)r |(1−b)/a

b − 1
πz(dz) du

+
∫ ∫

|zg(u)r |>1

|zg(u)r |(1−b)/a

a + b − 1
πz(dz) du
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+
∫ ∫

|zg(u)r |≤1

|zg(u)r |
a + b − 1

πz(dz) du

≤ 1

b − 1
+

∫ ∫
R×T

|zg(u)r |(1−b)/a a

(a + b − 1)(1 − b)
πz(dz) du

= 1

b − 1
+ a

(a + b − 1)(1 − b)

∫
R

|z|(1−b)/aπz(dz)

∫
T

|g(u)r |(1−b)/a du

< ∞
for a + b > 1 if r = 0, and for ap + b ≥ 1 if r = 1 [since g ∈ L∗

p(T)], which is
implied by a > 1 − b.

Now consider the case of b = 1 and a > 0:∫ ∫ ∫
R×[1,∞)×T

(
1 ∧ |zg(u)r |λ−a)

λ−bπz(dz) dλdu

=
∫ ∫

|zg(u)r |>1

∫ |zg(u)r |1/a

1
λ−1 dλπz(dz) du

+
∫ ∫

R×T
|zg(u)r |

∫ ∞
1∨|zg(u)r |1/a

λ−a−1 dλπz(dz) du

=
∫ ∫

|zg(u)r |>1
logλ

∣∣∣∣λ=|zg(u)r |1/a

λ=1
πz(dz) du

+
∫ ∫

R×T
|zg(u)r |λ

−a

−a

∣∣∣∣λ=∞

λ=1∨|zg(u)r |1/a
πz(dz) du

=
∫ ∫

|zg(u)r |>1

1

a
log|zg(u)r |πz(dz) du +

∫ ∫
|zg(u)r |>1

1

a
πz(dz) du

+
∫ ∫

|zg(u)r |≤1

|zg(u)r |
a

πz(dz) du

≤ 1

a

∫ ∫
R×T

log+|zg(u)r |πz(dz) du + 1

a

< ∞
since log+(zgr) = (0 ∨ log |zgr |) ≤ |z| + |g|r and g ∈ L∗

1(T).

A.2. Proof of Theorem 2. For any compensator function h(β) satisfying (10)
there are numbers cj ∈ (0,∞) such that

|h(β)| ≤ c0, |β − h(β)| ≤ c1(|β| ∧ β2), |h(β)| ≤ c2(1 ∧ |β|)
for all β ∈ R. Fix 0 < ε ≤ 1 and a function φ : R × � → R satisfying (16); let
Ba , Bb and Bc be the values of the integrals from (16a)–(16c), respectively. To
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complete the proof of Theorem 2 it suffices to show that each of the two terms
from (27),

X ≡
∫ ∫

Nε

(
β − h(β)

)
φ(ω)N (dβ dω) and

(60)
Y ≡

∫ ∫
Nε

h(β)φ(ω)Ñ (dβ dω),

converges to zero in probability as ε → 0. Write the first integral in (60) as the sum
of two parts:

X ≡
∫ ∫

Nε

(
β − h(β)

)
φ(ω)N (dβ dω) = X1 + X2

with

X1 ≡
∫ ∫

Nε∩[|βφ|≤1]
(
β − h(β)

)
φ(ω)N (dβ dω),

X2 ≡
∫ ∫

Nε∩[|βφ|>1]
(
β − h(β)

)
φ(ω)N (dβ dω).

Then

E|X1| ≤ c1

∫ ∫
Nε∩[|βφ|≤1]

(|β| ∧ β2)|φ(ω)|ν(dβ dω)

= c1

∫ ∫
Nε∩[|β|≤1]∩[|βφ|≤1]

(1 ∧ β2)|φ(ω)|ν(dβ dω)

+ c1

∫ ∫
Nε∩[|β|>1]∩[|βφ|≤1]

(
1 ∧ |βφ(ω)|)ν(dβ dω)

≤ c1(Bc + Ba) < ∞,

so X1 → 0 in L1 as ε → 0 by Lebesgue’s dominated convergence theorem since
the indicator function 1{Nε}(β,ω) tends to zero a.e. (ν) as ε → 0. Now con-
sider X2:

ν
({(β,ω) : |βφ(ω)| > 1}) =

∫ ∫
[|β|≤1]∩[|βφ|>1]

1ν(dβ dω)

+
∫ ∫

[|β|>1]∩[|βφ|>1]
1ν(dβ dω)

≤
∫ ∫

[|β|≤1]∩[|βφ|>1]
(|βφ(ω)| ∧ |βφ(ω)|2)

ν(dβ dω)

+
∫ ∫

[|β|>1]∩[|βφ|>1]
(
1 ∧ |βφ(ω)|)ν(dβ dω)

≤ Bb + Ba < ∞,
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so almost surely the random support of N (dβ dω) in [|βφ| > 1] is a finite set
disjoint from

⋂
ε>0 Nε; it follows that N (Nε ∩ [|βφ(ω)| > 1]) → 0 and hence

X2 → 0 almost surely as ε → 0.
Similarly, we write the second integral in (60) as the sum of four parts:

Y ≡
∫ ∫

Nε

h(β)φ(ω)Ñ (dβ dω) = Y1 + Y2 + Y3 + Y4

with

Y1 ≡
∫ ∫

Nε∩[|β|≤1]∩[|βφ|≤1]
h(β)φ(ω)Ñ (dβ dω),

Y2 ≡
∫ ∫

Nε∩[|β|≤1]∩[|βφ|>1]
h(β)φ(ω)Ñ (dβ dω),

Y3 ≡
∫ ∫

Nε∩[|β|>1]∩[|βφ|≤1]
h(β)φ(ω)Ñ (dβ dω),

Y4 ≡
∫ ∫

Nε∩[|β|>1]∩[|βφ|>1]
h(β)φ(ω)Ñ (dβ dω).

Now

E|Y1|2 =
∫ ∫

Nε∩[|β|≤1]∩[|βφ|≤1]
h(β)2φ(ω)2ν(dβ dω)

≤ c2
2

∫ ∫
Nε∩[|β|≤1]∩[|βφ|≤1]

|βφ(ω)|2ν(dβ dω)

= c2
2

∫ ∫
Nε∩[|β|≤1]∩[|βφ|≤1]

(|βφ(ω)| ∧ |βφ(ω)|2)
ν(dβ dω)

≤ c2
2Bb < ∞,

so Y1 → 0 in L2 (and hence also in L1) as ε → 0 by LDCT,

Y2 ≡
∫ ∫

Nε∩[|β|≤1]∩[|βφ|>1]
h(β)φ(ω)Ñ (dβ dω)

=
∫ ∫

Nε∩[|β|≤1]∩[|βφ|>1]
h(β)φ(ω)N (dβ dω)

−
∫ ∫

Nε∩[|β|≤1]∩[|βφ|>1]
h(β)φ(ω)ν(dβ dω),

E|Y2| ≤ 2
∫ ∫

Nε∩[|β|≤1]∩[|βφ|>1]
|h(β)||φ(ω)|ν(dβ dω)

≤ 2c2

∫ ∫
Nε∩[|β|≤1]∩[|βφ|>1]

|βφ(ω)|ν(dβ dω)

= 2c2

∫ ∫
Nε∩[|β|≤1]∩[|βφ|>1]

(|βφ(ω)| ∧ |βφ(ω)|2)
ν(dβ dω)

≤ 2c2Bb < ∞,
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so Y2 → 0 in L1 as ε → 0 by dominated convergence,

Y3 ≡
∫ ∫

Nε∩[|β|>1]∩[|βφ|≤1]
h(β)φ(ω)Ñ (dβ dω)

=
∫ ∫

Nε∩[|β|>1]∩[|βφ|≤1]
h(β)φ(ω)N (dβ dω)

−
∫ ∫

Nε∩[|β|>1]∩[|βφ|≤1]
h(β)φ(ω)ν(dβ dω),

E|Y3| ≤ 2
∫ ∫

Nε∩[|β|>1]∩[|βφ|≤1]
|h(β)||φ(ω)|ν(dβ dω)

≤ 2c2

∫ ∫
Nε∩[|β|>1]∩[|βφ|≤1]

|βφ(ω)|ν(dβ dω)

= 2c2

∫ ∫
Nε∩[|β|>1]∩[|βφ|≤>1]

(
1 ∧ |βφ(ω)|)ν(dβ dω)

≤ 2c2Ba < ∞,

so Y3 → 0 in L1 as ε → 0. Finally, for Y4,

Y4 ≡
∫ ∫

Nε∩[|β|>1]∩[|βφ|>1]
h(β)φ(ω)Ñ (dβ dω)

=
∫ ∫

Nε∩[|β|>1]∩[|βφ|>1]
h(β)φ(ω)N (dβ dω)

−
∫ ∫

Nε∩[|β|>1]∩[|βφ|>1]
h(β)φ(ω)ν(dβ dω),

E|Y4| ≤ 2
∫ ∫

Nε∩[|β|>1]∩[|βφ|>1]
|h(β)φ(ω)|ν(dβ dω)

≤ 2c0

∫ ∫
Nε∩[|β|>1]∩[|βφ|>1]

|φ(ω)|ν(dβ dω)

≤ 2c0

∫ ∫
Nε∩[|β|>1]∩[|βφ|>1]

(1 ∧ β2)|φ(ω)|ν(dβ dω)

≤ 2c0Bc < ∞
so Y4 → 0 in L1 as ε → 0, completing the proof of Theorem 2.

APPENDIX B: REVERSIBLE-JUMP MCMC PROCEDURES

A typical RJ-MCMC procedure for sampling varying-dimensional parame-
ters involves at least three types of moves (Birth, Death and Update); we use
Metropolis–Hastings steps for each of these. Our trans-dimensional update steps
entail altering the value (β∗

j ,ω∗
j ) of one point (βj ,ωj ). We select j ∼ Un(0 :J −1)
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for proposed updating, then take Gaussian random walk steps successively in
the coefficient βj , the location parameter χj , and the log kernel shape parame-
ter, logλj . Step sizes are chosen to achieve approximately 30% acceptance rates
for each class of updates. One novel feature is that when the proposed update of
some coefficient βj falls in the truncated region β∗

j η ∈ (−ε, ε), the move is treated
as a Death, the point (βj ,ωj ) is removed and J is decremented. This is advan-
tageous as it automatically focuses on small magnitude coefficients for removal
(rather than a random selection as in the typical RJ-MCMC Death step). A Birth
step entails generating a new point (β∗,ω∗) to be included among the {(βj ,ωj )}
and incrementing J by one. We use a double exponential birth distribution with
rate η/ε, conditioned to exceed |βj |η > ε so that proposed coefficients are small,
balancing the “Death” of small coefficients in the Update step to attain the target
acceptance rates. The fixed-dimensional parameters are sampled using a conven-
tional Metropolis–Hastings approach [Gilks, Richardson and Spiegelhalter (1996),
Section 1.3.3]. Each of these inexpensive update steps requires only O(n) opera-
tions [in contrast to Gaussian methods, which may require O(n3)], so the method
scales well in the number n of observations. Further details of the RJ-MCMC are
available in [Tu (2006), Appendix A.1, pages 116 and 117]. An R package [R De-
velopment Core Team (2004)] implementing LARK is under development by the
authors and will be made publicly available.

APPENDIX C: EXAMPLES OF LARK PRIOR REALIZATIONS

(a) (b)

FIG. 5. Four realizations from LARK prior distribution with (a) Blocks kernel and Symmetric
Gamma Lévy measure; (b) Bumps kernel and Gamma Lévy measure; (c), (d) Doppler kernel and
Cauchy Lévy measure, with J = 1000 for (a)–(c) and J = 10 for (d) components. Hyperparameters
aλ, bλ, aγ , bγ , aη , bη and ε are given in Table 2.
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(c) (d)

FIG. 5. (Continued.)
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