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ASYMPTOTIC EQUIVALENCE OF FUNCTIONAL LINEAR
REGRESSION AND A WHITE NOISE INVERSE PROBLEM

BY ALEXANDER MEISTER

Universität Rostock

We consider the statistical experiment of functional linear regression
(FLR). Furthermore, we introduce a white noise model where one observes
an Itô process, which contains the covariance operator of the corresponding
FLR model in its construction. We prove asymptotic equivalence of FLR and
this white noise model in LeCam’s sense under known design distribution.
Moreover, we show equivalence of FLR and an empirical version of the white
noise model for finite sample sizes. As an application, we derive sharp mini-
max constants in the FLR model which are still valid in the case of unknown
design distribution.

1. Introduction. We consider the statistical problem of functional linear re-
gression (FLR). In its standard version, one observes the data (X,Y) where
X = (X1, . . . ,Xn)

T are i.i.d. random variables taking their values in C([0,1]),
that is, the set consisting of all continuous functions on the interval [0,1], and
Y = (Y1, . . . , Yn)

T with

Yj = 〈Xj, θ〉 + εj , j = 1, . . . , n,(1.1)

where 〈·, ·〉 denotes the L2([0,1])-inner product throughout this work. The i.i.d.
error variables εj are assumed to be centered and normally distributed with the
variance σ 2. Moreover, all X1, ε1, . . . ,Xn, εn are independent. The goal is to esti-
mate the regression function θ ∈ � ⊆ L2([0,1]). In general, we allow for such a
structure of the function class � which does not determine θ up to finitely many
real-valued parameters. Thus we consider a nonparametric estimation problem.
Moreover we assume that EX1 = 0 and P [‖X1‖2 ≥ x] ≤ CX,0 exp(−CX,1x

CX,2)

for all x > 0 and some finite constants CX,0,CX,1,CX,2 > 0 where ‖ · ‖p , p ≥ 1
denotes the Lp([0,1])-norm of some element of that space. Thus the tails of the
design distribution are restricted. Such conditions are usual in nonparametric re-
gression problems.

The FLR model has obtained considerable attention in the statistical commu-
nity during the last years, which is reflected in the large amount of literature on
this topic. Various of estimation procedures have been proposed to make the re-
gression function θ empirically accessible (see, e.g., [6–8, 12, 13]). The minimax
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convergence rates in FLR are investigated, for example, in [5, 8, 15]. In [4], adap-
tive estimation in FLR is considered. Generalizations of FLR are discussed in [18].
A central limit theorem for FLR is derived in [9]. In [24], practical applications of
FLR in the field of medical statistics are described; the authors consider two real
data sets on primary biliary cirrhosis and systolic blood pressure. For a compre-
hensive introduction to the field of functional data analysis in general, see [21].

In order to compare two statistical models, it is useful to prove asymptotic
equivalence between those models. For the basic concept and a detailed descrip-
tion of this strong asymptotic property, we refer to [16] and [17]. Also, a review on
this topic is given in the following section. As an important feature, if two models
E1,n and E2,n are asymptotically equivalent, then E1,n adopts optimal convergence
rates and sharp asymptotic constants with respect to any bounded loss function
from model E2,n and vice versa. Thus, the theory of asymptotic equivalence does
not only capture special loss functions such as the mean integrated squared error
(MISE) or the pointwise mean squared error (MSE) but includes various types of
semi-metrics between the estimator and the target function θ and also addresses
the estimation of characteristics of θ , such as its support or its mode. Furthermore,
superefficiency phenomena also coincide in both models when considering sub-
classes �′ of the target parameter space �. In particular, research has focussed on
proofs of asymptotic equivalence of experiments where n i.i.d. data are observed,
whose distribution depends on some parameter θ ∈ �, and experiments where θ

occurs in the drift of an empirically accessible Itô process. For instance, Nuss-
baum [19] considers an asymptotically equivalent white noise model for density
estimation, while Brown and Low [2] introduce such a model for nonparametric
regression. In recent related literature on regression problems, Carter [10] studies
the case of unknown error variance, and Reiss [22] extends asymptotic equivalence
to the multivariate setting.

Returning to model (1.1), we suppose that the nuisance parameters σ and PX ,
that is, the distribution of the Xj , are known. That allows us to exclude those
quantities from the parameter space of the experiment and to fully concentrate on
the estimation of θ . This condition is also imposed in most papers dealing with
asymptotic equivalence for nonparametric regression experiments. The work of
[10] represents an exception where the corresponding white noise model becomes
more difficult and, apparently, less useful to derive adoptable asymptotic proper-
ties. With respect to asymptotic equivalence, we restrict our consideration to the
case of known PX . However, in Section 5, we will show that the sharp minimax
asymptotics with respect to the MISE are extendable to the case of unknown design
distribution.

The main purpose of the current work is to prove asymptotic equivalence of
model (1.1) and a statistical inverse problem in the white noise setting. That latter
model is described by the observation of an Itô process Y(t), t ∈ [0,1], Y(0) = 0,
driven by the stochastic differential equation

dY (t) = [Kθ ](t) dt + n−1/2σ dW(t),(1.2)
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where W(t) denotes a standard Wiener process on the interval [0,1], and K de-
notes a linear operator mapping from the Hilbert space L2([0,1]) to itself. These
models are also widely studied in mathematical statistics (see, e.g., [11] and [14]).
They have their applications in the field of signal deblurring and econometrics.
We will concentrate on a specific version of model (1.2) where K is equal to the
unique positive symmetric square root �1/2 of the covariance operator �, that is,
�1/2�1/2 = � and �f = ∫

EX1(·)X1(t)f (t) dt for any f ∈ L2([0,1]). Thus, the
observation Y(t), t ∈ [0,1], is defined by Y(0) = 0 and

dY (t) = [�1/2θ ](t) dt + n−1/2σ dW(t).(1.3)

In [8], the authors remark on the similarity of models (1.1) and (1.3). In the current
paper, we will rigorously establish asymptotic equivalence between those models.
As an interesting feature, additional observation of the data X1, . . . ,Xn would be
redundant in model (1.3). All information about the design points is recorded by
� in (1.3). Therefore, all what is observed in the corresponding white noise ex-
periment is the process Y(t), t ∈ [0,1]. After the general introduction to the prop-
erty of asymptotic equivalence as used in the current paper in Section 2, we will
first prove (nonasymptotic) equivalence of model (1.1) and an empirical version of
model (1.3) where � is replaced by a noisy counterpart in Section 3. In Section 4,
we prove asymptotic equivalence of (1.1) and (1.3) under some additional techni-
cal conditions. In Section 5, we show that the sharp lower bound which follows
from the results of the previous section can be attained by specific estimators in
the realistic case of unknown design distribution. A discussion of the findings and
their conclusions are provided in Section 6.

2. Asymptotic equivalence. To recall the definition of asymptotic equiva-
lence, we consider two (sequences of) statistical experiments Ej,n = (�j,n,Aj,n,

Pj,n,θ ), j = j1, j2, with a joint parameter space �, which may depend on n. The
LeCam distance between Ej1,n and Ej2,n is defined by

�(Ej1,n,Ej2,n) = max
k=1,2

inf
K∈Kjk,n

sup
θ∈�

‖K(Pjk,n,θ ) − Pj3−k,n,θ‖TV,

where ‖ · ‖TV is the total variation distance, and Kjk,n denotes the collection of
so-called transitions (see [23] and [19] for their exact definition). The statistical
experiments Ej1,n and Ej2,n are called asymptotically equivalent if �(Ej1,n,Ej2,n)

converges to zero as n → ∞, while they are called equivalent if �(Ej1,n,Ej2,n) =
0 for all n.

In the framwork of our note, we will not use that general definition of (asymp-
totic) equivalence but our proofs lean on following sufficient conditions for these
properties:

(i) We consider the following sufficient condition for asymptotic equivalence
of Ej1,n and Ej2,n: We define the sets Rj,n,θ , j = j1, j2, θ ∈ �, which contains all
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real-valued integrable random variables R on the domain �j,n satisfying |R| ≤ 1
a.s. Thus any kind of bounded loss functions are captured by the classes Rj,n,θ

so that the expectation ER with respect to the distribution Pj,n,θ describes an
arbitrary bounded and normalized statistical risk for estimating the parameter θ

under the observation scheme Ej,n. Now we define two sequences (Tjk,j3−k,n)n,
k = 1,2, of (Ajk

,Aj3−k
)-measurable mappings from �jk

to �j3−k
. As an essential

condition, the Tjk,j3−k,n must not depend on θ . Hence, Tjk,j3−k,n may be interpreted
as a transformation of the data from an observation contained in the space �j,n to
an observation which lies in �3−j,n. Thus a statistician who intends to construct an
estimation procedure for θ may always apply this transformation Tjk,j3−k,n to an
observation ω ∈ �jk,n. Then we obtain asymptotic equivalence of Ej1,n and Ej2,n

when we can show the existence of such transformation sequences (Tjk,j3−k,n)n,
k = 1,2, so that

sup
θ∈�

sup
Rj3−k,n,θ∈Rj3−k,n,θ

|ERj3−k,n,θ − E(Rj3−k,n,θ ◦ Tjk,j3−k,n)| −→ 0(2.1)

as n → ∞ for all k = 1,2. Accordingly, we have equivalence if the left-hand side
in (2.1) equals 0 for any n. Intuitively speaking, after transforming the data drawn
from model Ej1,n according to Tj1,j2,n, the distance between any bounded statisti-
cal risk in model Ej2,n on one hand and for the transformed data from model Ej1,n

becomes small for large n or is equal to zero for any n, respectively. The same
condition must also hold true when exchanging j1 and j2.

In the specific framework of our note, we assume, in addition, that all transfor-
mations Tjk,j3−k,n must not depend on the nuisance parameter σ . That compensates
the unrealistic condition of known σ . In particular, σ is not used to transform the
data or to construct decision procedures or estimators. Therefore, our results also
addresses the case of unknown σ . Nevertheless, σ must be viewed as uninteresting
for the statistician, that is, it must not explicitly occur in the loss functions Rjk,jk+1 .
Thus, the problem of estimating σ is not covered by our approach.

(ii) Assume that the experiment Ej2,n describes the observation of T (ω) for
ω ∈ �j1,n,θ in experiment Ej1,n where T is a sufficient statistic for θ in exper-
iment Ej1,n. Then Ej1,n and Ej2,n are statistically equivalent (i.e., their LeCam
distance vanishes) and, hence, asymptotically equivalent. That assertion holds true
whenever the experiments are Polish spaces. This criterion is satisfied as all proba-
bility spaces considered in the current work are R

d , C([0,1]), L2([0,1]) and some
set products of those classes (see Lemma 3.2 in [2]).

(iii) If some experiments Ej1,n and Ej2,n on one hand, and Ej2,n and Ej3,n on
the other hand, are (asymptotically) equivalent, then Ej1,n and Ej3,n are (asymp-
totically) equivalent, too. Also, (asymptotic) equivalence of Ej1,n and Ej2,n is a
symmetric relation between the experiments.

(iv) Assume that some experiments Ej1,n and Ej2,n may be decomposed into
two independent experiments Ej1,n,k and Ej2,n,k , k = 1,2, respectively. Moreover,
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we suppose that the experiments Ej1,n,1 and Ej2,n,1 on one hand and the experi-
ments Ej1,n,2 and Ej2,n,2 on the other hand are (asymptotically) equivalent. Then,
the combined experiments Ej1,n and Ej2,n are (asymptotically) equivalent as well.

Now, E1,n denotes the underlying experiment of the FLR model (1.1); it is
defined by �1,n = C([0,1])(n) × R

(n), A1,n denotes the Borel σ -algebra when
considering the uniform metric on the functional components and the Euclidean
metric on the real-valued components of �1,n. The corresponding probability mea-
sures P1,n,θ are well defined by the assumptions of the model (1.1). The parameter
space � ⊆ L2([0,1]) will be specified later. Still, the observations (X,Y) may be
viewed as random variables having their domain on some basic probability space
(�,A,P ).

3. Empirical covariance operator. We define the linear covariance operator
� :L2([0,1]) → L2([0,1]) by

�f =
∫

EX1(·)X1(t)f (t) dt ∀f ∈ L2([0,1]).
Writing K(s, t) = EX1(s)X1(t), we realize that � is a Hilbert–Schmidt integral
operator where ∫ 1

0

∫ 1

0
|K(s, t)|2 ds dt ≤ (E‖X1‖2

2)
2 < ∞,

by the Cauchy–Schwarz inequality and the tail condition imposed on the dis-
tribution of ‖X1‖2. Hence � is a continuous and compact operator. We have
K(s, t) = K(t, s) for all s, t ∈ [0,1] so that the operator � is self-adjoint. Fur-
thermore, it is positive; that is, by Fubini’s theorem we have

〈f,�f 〉 = E|〈X1, f 〉|2 ≥ 0

for any f ∈ L2([0,1]).
Then, some well-known results from functional analysis, in particular spectral

theory for compact operators, may be applied. There exists an orthonormal basis
{ϕj }j≥1 of the separable Hilbert space L2([0,1]) which consists of eigenfunctions
of �. The corresponding eigenvalues are denoted by λj ≥ 0. The sequence (λn)n
converges to zero and may be viewed as monotonously decreasing without loss
of generality. Those results are also used, for example, in [5]. Furthermore, for
� as for any compact self-adjoint positive operator from L2([0,1]) to itself, there
exists a unique compact self-adjoint positive operator �1/2 from L2([0,1]) to itself
such that (�1/2)2 = �; then �1/2 is called the square root of �. We have �1/2ϕj =
λ

1/2
j ϕj for any j ≥ 1.

We may define an empirically accessible version �̂ of � by replacing the expec-
tation by the average; more precisely, we have

�̂f = 1

n

n∑
j=1

∫
Xj(·)Xj (t)f (t) dt ∀f ∈ L2([0,1]).
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Thus, �̂ may be viewed as the operator � when PX equals the uniform distribution
on the discrete set {X1, . . . ,Xn}. Therefore, all properties derived for � in the
previous paragraph can be taken over to �̂. In particular, ϕ̂j , integer j ≥ 1, denotes
the orthonormal basis of the eigenfunctions of �̂ with the eigenvalues λ̂j .

Now we consider the conditional probability density p1,n,θ (y1, . . . , yn | X1,

. . . ,Xn) of the data Y1, . . . , Yn given the design functional observations X1, . . . ,Xn

in model (1.1). This density shall be understood with respect to the n-dimensional
Lebesgue measure. We derive that

p1,n,θ (y1, . . . , yn | X1, . . . ,Xn)

= (2π)−n/2σ−n
n∏

j=1

exp
(
− 1

2σ 2 (yj − 〈Xj, θ〉)2
)

(3.1)

= (2π)−n/2σ−n exp
(−‖y − x‖2/(2σ 2)

)
,

with the vectors y = (y1, . . . , yn)
T and x = (〈X1, θ〉, . . . , 〈Xn, θ〉)T . Moreover,

‖ · ‖ denotes the Euclidean norm. Expanding θ ∈ � ⊆ L2([0,1]) in the orthonor-
mal basis {ϕ̂j }j≥1 gives us that

〈Xj, θ〉 =
∞∑

k=1

〈Xj, ϕ̂k〉〈ϕ̂k, θ〉.(3.2)

We impose the following condition on the distribution PX:

P [X1 ∈ L] = 0, for any deterministic linear subspace
(3.3)

L ⊆ L2([0,1]) with dimL < ∞.

Intuitively, this assumption provides that the probability mass of the Xj fills the
whole of L2([0,1]). Somehow, (3.3) is the functional data analog for continuity of
a distribution of some real-valued random variables. It is satisfied when we take an
appropriate Gaussian process for X1, for instance. Condition (3.3) yields that the
linear space generated by X1, . . . ,Xn is n-dimensional almost surely. Otherwise,
at least one of the Xj must be included in the linear hull of the other design vari-
ables. According to (3.3) that occurs with probability zero when employing the
conditional probability measure given the data X1, . . . ,Xj−1,Xj+1, . . . ,Xn. Fi-
nally, applying the expectation, we obtain the desired result for the unconditional
distribution.

We realize that the range of �̂ is included in the linear hull of X1, . . . ,Xn. By
definition, ϕ̂j is contained in that n-dimensional space whenever λ̂j > 0. As the
ϕ̂j form an orthonormal basis at most n of the eigenvalues λ̂j are nonvanishing.
Furthermore, the linear independence of the X1, . . . ,Xn implies that the functions
�̂Xk = n−1 ∑n

j=1〈Xj,Xk〉Xj , k = 1, . . . , n, are linearly independent, too, so that
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the range of �̂ is equal to the linear hull of X1, . . . ,Xn. Clearly, the range of �̂ also
coincides with the linear hull of all ϕ̂j with λ̂j > 0, from what follows 〈Xj, ϕ̂k〉 = 0
for all j = 1, . . . , n and k > n. Also, we have λ̂j > 0 for j = 1, . . . , n and λ̂j = 0
for j > n. Hence, (3.2) leads to the representation

〈Xj, θ〉 =
n∑

k=1

〈Xj, ϕ̂k〉〈ϕ̂k, θ〉(3.4)

for all j = 1, . . . , n. Equation (3.4) is equivalent to the system of linear equations
x = Qf with the vector f = (〈ϕ̂1, θ〉, . . . , 〈ϕ̂n, θ〉)T and the matrix Q with the com-
ponents Qj,k = 〈Xj, ϕ̂k〉, j, k = 1, . . . , n. Then the conditional density p1,n,θ as in
(3.1) may be written as

p1,n,θ (y1, . . . , yn | X1, . . . ,Xn) = (2π)−n/2σ−n exp
(−‖y − Qf‖2/(2σ 2)

)
.(3.5)

We consider that the (k, k′)th component of the matrix QT Q is equal to
n∑

j=1

〈Xj, ϕ̂k〉〈Xj, ϕ̂k′ 〉 = n〈�̂ϕ̂k, ϕ̂k′ 〉 = nλ̂k · δk,k′ .

Thus QT Q is a diagonal matrix containing nλ̂k as its (k, k)th component. We de-
note the diagonal matrix having n1/2λ̂

1/2
k as its (k, k)th component by D. Obvi-

ously, D is invertible, and we define A = QD−1. We have

AT A = D−1QT QD−1 = I,

where I denotes the identity matrix. Also, this yields that AAT = I and that A
is an orthogonal matrix. Thus, ‖Av‖ = ‖v‖ for any vector v ∈ R

n. Equality (3.5)
provides that

p1,n,θ (y1, . . . , yn | X1, . . . ,Xn)

= (2π)−n/2σ−n exp
(−‖AAT y − ADf‖2/(2σ 2)

)
(3.6)

= (2π)−n/2σ−n exp
(−‖AT y − Df‖2/(2σ 2)

)
.

Referring to the notation of (2.1), we consider the expectation ER1,n,θ (X,Y)

where R1,n,θ ∈ R1,n,θ . We derive that

ER1,n,θ (X,Y) = EE(R1,n,θ (X,Y) | X)

= E

∫
· · ·

∫
R1,n,θ (X1, . . . ,Xn;y1, . . . , yn)

× p1,n,θ (y1, . . . , yn | X1, . . . ,Xn) dy1 · · ·dyn
(3.7)

= E

∫
· · ·

∫
R1,n,θ (X1, . . . ,Xn;Az)(2π)−n/2

× σ−n exp
(−‖z − Df‖2/(2σ 2)

)
dz1 · · ·dzn

= ER1,n,θ (X,AZ),
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where Z = (Z1, . . . ,Zn)
T denotes a vector consisting of independent normally

distributed random variables where Zk has the mean

n1/2λ̂
1/2
k 〈ϕ̂k, θ〉 = 〈ϕ̂k, n

1/2�̂1/2θ〉,
and the variance σ 2, conditionally on the σ -algebra generated by X. Therefore, the
Zk may be represented as

Zk = 〈ϕ̂k, n
1/2�̂1/2θ〉 + σεk, k = 1, . . . , n,(3.8)

where ε1, . . . , εn are i.i.d. N(0,1)-distributed random variables. The εj are inde-
pendent of the σ -algebra generated by X. We have applied the integral transforma-
tion y = Az where det A = ±1 due to the orthogonality of A. Note that the sign of
the eigenfunctions ψ̂j may still be chosen; we can arrange that det A = 1.

Now we define the statistical experiment E2,n with the same parameter space
� as E1,n, (�2,n,A2,n) = (�1,n,A1,n) and P2,n,θ as the probability measure
generated by the random variable (X,Z) with Z as in (3.7). In the notation of
Section 2, paragraph (i), we use the mapping T2,1,n :�2,n → �1,n defined by
T2,1,n(x, z) = (x,Az), x ∈ C0([0,1])(n), z ∈ R

n, as the data transformation from
E2,n to E1,n. By definition, the matrix A does not depend on the parameter θ but
only on the data X1, . . . ,Xn and the known orthonormal basis {ϕ̂j }j≥1. Also, it
does not depend on σ as requested in the previous section. We have already de-
rived that A is an orthogonal matrix so that T2,1,n is a bijective mapping from the
set C0([0,1])(n) × R

n to itself. Hence, its reverse mapping T −1
2,1,n may be used as

the data transformation T1,2,n. Then, according to (2.1), we have proved the fol-
lowing lemma.

LEMMA 3.1. Under condition (3.3), the statistical experiments E1,n and E2,n

are equivalent.

The random variables εj , integer j , as occurring in (3.8), may be represented
by

εj =
∫ 1

0
ϕ̂j (t) dW(t),

where W denotes a standard Wiener process on [0,1] which is independent of X.
We deduce that the ε1, ε2, . . . are an independent sequence of N(0,1)-distributed
random variables. Moreover, they are independent of X1, . . . ,Xn although ϕ̂j de-
pends on these design variables. That can be shown via the conditional character-
istic function of (ε1, ε2, . . .) given X1, . . . ,Xn; that is,

E

[
exp

(
i

∞∑
j=1

∫
sj ϕ̂j (t) dW(t)

) ∣∣∣ X1, . . . ,Xn

]
= exp

(
−1

2
σ 2

∥∥∥∥∥
∞∑

j=1

sj ϕ̂j

∥∥∥∥∥
2

2

)

= exp

(
−1

2
σ 2

∞∑
j=1

s2
j

)
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for all real-valued sequences (sm)m≥1 with
∑∞

m=1 s2
m < ∞. Applying the expecta-

tion to the above equality, the unconditional characteristic function of (ε1, ε2, . . .)

turns out to coincide with the conditional one. We have

Zj = 〈ϕ̂j , n
1/2�̂1/2θ〉 + σ

∫ 1

0
ϕ̂j (t) dW(t) =

∫
ϕ̂j dZ(t)(3.9)

for all j = 1, . . . , n where Z(t), t ∈ [0,1], denotes an Itô process satisfying

dZ(t) = n1/2[�̂1/2θ ](t) dt + σ dW(t),(3.10)

and Z(0) = 0. The differential dZ(t) shall be understood in the Itô sense.
Now we define the statistical experiment E3,n with a completely functional ob-

servation structure. We fix that �3,n = C([0,1])(n+1) with the corresponding Borel
σ -algebra A3,n. The probability measure P3,n,θ is defined via the observation of X
as in E2,n and the Itô process Z(t), t ∈ [0,1], as defined in (3.10). The definition
(3.9) of Zj can be extended to j > n straightforwardly. As λ̂j = 0, we obtain that

Zj = σ

∫ 1

0
ϕ̂j (t) dW(t) ∀j > n.

Moreover, Z(t) is uniquely determined by the Zj for all integers j ≥ 1 and vice
versa. That can be seen as follows:

Z(t) =
∫

1[0,t](s) dZ(s) =
∞∑

j=1

〈1[0,t], ϕ̂j 〉Zj

for all t ∈ [0,1] where the infinite sum must be understood as an E‖·‖2
2-limit. That

seems to cause some troubles as we only observe one element of the probability
space. However, convergence in probability implies almost sure convergence of a
subsequence so that Z(t) is fully accessible by the observation of all Zj . On the
other hand, by a similar argument, all Zj are accessible (in practice, that means
approximable arbitrarily precisely) by a trajectory of the process Z.

Hence the data set {Zj : j > n} is independent of the Z1, . . . ,Zn, conditionally
on the σ -algebra generated by X. Furthermore, the distribution of the Zj , j > n,
does not depend on the target parameter θ so that Zj , for j > n, does not contain
any information about θ . We conclude that (X,Z1, . . . ,Zn) is a sufficient statis-
tic for the observation scheme in the experiment E3,n. We can utilize result (ii)
from Section 2 in order to prove equivalence of the experiments E2,n and E3,n.
Considering paragraph (iii) from Section 2, we may establish equivalence of the
experiments E1,n and E3,n. This result is presented in the following theorem.

THEOREM 3.1. Under condition (3.3), the FLR statistical experiment E1,n

is equivalent to the model E3,n where one observes X and the Itô process Z(t),
t ∈ [0,1], as defined in (3.10).
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4. Asymptotic approximation. In the previous section, we have derived a
statistically equivalent white noise model for the FLR problem. However, the Itô
process Z in (3.9) contains the noisy operator �̂ in its construction. In the current
section, we will replace it by the covariance operator �.

For that purpose, we split the original experiment E1,n into two indepen-
dent parts E1,n,1 and E1,n,2 where E1,n,1 is based on the observation of the
data (Xj ,Yj ), j = 1, . . . ,m, and E1,n,2 consists of the residual data (Xj ,Yj ),
j = m+1, . . . , n. The selection of the integer parameter m is deferred. The strategy
of splitting the sample in the current context leans on [19]. Applying Theorem 3.1
to each of the experiments E1,n,k , k = 1,2, we obtain equivalence of E1,n,k and
the experiments E4,n,k for k = 1,2. Therein, E4,n,1 is defined by the observation
of X1 = (X1, . . . ,Xm) and the Itô process Z1(t), t ∈ [0,1], specified by Z1(0) = 0
and

dZ1(t) = m1/2[�̂1/2
1 θ ](t) dt + σ dW1(t),

and accordingly E4,n,2 is defined by the observation of X2 = (Xm+1, . . . ,Xn) and
the Itô process Z2(t), t ∈ [0,1], specified by Z2(0) = 0 and

dZ2(t) = (n − m)1/2[�̂1/2
2 θ ](t) dt + σ dW2(t).

Furthermore, �̂k , k = 1,2, denotes the empirical covariance operator constructed
by the data X1 and X2, respectively. Also note that W1 and W2 are two independent
standard Wiener processes. Using criterion (iv) in Section 2, the experiment E4,n,
which combines the independent experiments E4,n,1 and E4,n,2, we deduce that
E4,n and E1,n are equivalent.

From the experiment E4,n,1 we construct an estimator θ̂1 for θ . We define that

θ̂1 =
K∑

k=1

m−1/2λ−1
k

∫
[�̂1/2

1 ϕk](t) dZ1(t)ϕk,

where K is an integer-valued smoothing parameter still to be selected. Condition
(3.3) guarantees that all λj are positive since, otherwise, λj = 0 would yield that
E|〈X1, ϕk〉|2 = 0 for all k ≥ j , and hence

∑
k≥j |〈X1, ϕk〉|2 = 0 a.s. so that X1

would lie in the linear hull of ϕ1, . . . , ϕj−1. Thus the estimator θ̂1 is well defined.
We introduce the data transformation T4,5,n :�4,n → �5,n where

T4,5,n(x1, z1,x2, z2)

=
(

x1, z1,x2, z2 − (n − m)1/2
∫ ·

0
[�̂1/2

2 θ̂1](t) dt

+ (n − m)1/2
∫ ·

0
[�1/2θ̂1](t) dt

)
.

The transformation is fully accessible by the data drawn from the experiment
E4,n,1 and the assumed knowledge of the distribution of X. We set (�5,n,A5,n) =
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(�4,n,A4,n) where �4,n = Cm
0 ([0,1]) × C0([0,1]) × Cn−m

0 ([0,1]) × C0([0,1])
and A4,n is the corresponding Borel σ -algebra. The data structure of E4,n is rep-
resented by (X1,Z1,X2,Z2) when inserting the data set as an argument of the
mapping T4,5,n. Note that z2 = Z2 may be inserted in the definition of the estima-
tor θ̂1. The integral occurring in the definition of θ̂1 is not defined for all continuous
functions z1 but for almost all trajectories of Z1. For the other negligible trajec-
tories the integral may conventionally be put equal to zero to make the mapping
T4,5,n well defined on the whole of its domain.

We define the experiment E5,n where ones observes the data

(X1,Z1,X2,Z
′
2) = T4,5,n(X1,Z1,X2,Z2),

where the data X1,Z1,X2,Z2 are obtained under experiment E4,n. The experiment
E5,n is defined on the probability space (�5,n,A5,n). Considering the definition of
T4,5,n, we realize that the shift contained in the forth component is still available
in the experiment E5,n as the other components are kept. Therefore, T4,5,n is an
invertible transformation so that the experiments E4,n and E5,n are equivalent.

In the experiment E5,n, the component Z′
2 is still an Itô process condition-

ally on X1,X2,Z1. Now we introduce the experiment E6,n with (�6,n,A6,n) =
(�5,n,A5,n) where one observes the data X1,Z1,X2 and the Itô process S2(t),
t ∈ [0,1] with S2(0) = 0 and

dS2(t) = (n − m)1/2[�1/2θ ](t) dt + σ dW2(t).

In the notation of Section 2, we consider that

|ERj,n,θ (X1,Z1,X2,Z
′
2) − ERj,n,θ (X1,Z1,X2, S2)|

≤ E

∣∣∣∣1 − exp
(
−σ−1

∫
�5,6(t) dW2(t) − 1

2σ 2 ‖�5,6‖2
2

)∣∣∣∣
(4.1)

≤ 2E

{
1 − exp

(
− 1

2σ 2 ‖�5,6‖2
2

)}1/2

≤ 2
{

1 − exp
(
− 1

2σ 2 E‖�5,6‖2
2

)}1/2

,

where

�5,6 = (n − m)1/2(�1/2θ − �1/2θ̂1 + �̂
1/2
2 θ̂1 − �̂

1/2
2 θ)

= (n − m)1/2(�1/2 − �̂
1/2
2 )(θ − θ̂1).

Therein, we have used Girsanov’s theorem, ‖Rj,n,θ‖∞ ≤ 1 for Rj,n,θ ∈ Rj,n,θ as
j = 5,6, the Bretagnolle–Huber inequality and Jensen’s inequality in the last step.

Now we study the expectation occurring in (4.1) by Parseval’s identity with
respect to the basis {ϕ̂k,2}k≥1 and the orthogonal expansion of ϕ̂k,2 with respect
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to {ϕj }j≥1 where {ϕ̂k,2}k≥1 denotes the eigenfunctions of �̂2 and λ̂k,2 the corre-
sponding eigenvalues.

E‖�5,6‖2
2 = (n − m)

∞∑
k=1

E

∣∣∣∣∣
∞∑

j=1

〈�̂1/2
2 ϕj − �1/2ϕj , ϕ̂k,2〉〈ϕj , θ − θ̂1〉

∣∣∣∣∣
2

= (n − m)

∞∑
k=1

E

∣∣∣∣∣
∞∑

j=1

(λ
1/2
j − λ̂

1/2
k,2 )〈ϕj , ϕ̂k,2〉〈ϕj , θ − θ̂1〉

∣∣∣∣∣
2

≤ (n − m)

∞∑
k=1

E

∞∑
j=1

j−γ |λj − λ̂k,2||〈ϕj , ϕ̂k,2〉|2

×
∞∑

j ′=1

j ′γ E|〈ϕj ′, θ − θ̂1〉|2,

where we have used the Cauchy–Schwarz inequality for sums and the elementary
inequality (

√
x − √

y)2 ≤ |x − y| for all x, y ≥ 0. Therein γ > 0 is still to be
selected. Also, the independence of �̂2 and θ̂1 has been utilized. Then, we apply
the Cauchy–Schwarz inequality with respect to the discrete random variable V

satisfying P [V = |λ̂k,2 − λj |] = |〈ϕj , ϕ̂k,2〉|2 for all integers k ≥ 1 and some fixed
integer j , conditionally on X2. We conclude that

E‖�5,6‖2
2 ≤ (n − m)

{ ∞∑
j ′=1

j ′γ E|〈ϕj ′, θ − θ̂1〉|2
}

× E

∞∑
j=1

j−γ

( ∞∑
k=1

|λj − λ̂k,2|2|〈ϕj , ϕ̂k,2〉|2
)1/2

≤ (n − m)

{ ∞∑
j ′=1

j ′γ E|〈ϕj ′, θ − θ̂1〉|2
}

×
∞∑

j=1

j−γ {E‖�̂2ϕj − �ϕj‖2
2}1/2.

We consider that

E‖�̂2ϕj − �ϕj‖2
2 = E

∥∥∥∥∥ 1

n − m

n−m∑
k=1

(Xk〈Xk,ϕj 〉 − EXk〈Xk,ϕj 〉)
∥∥∥∥∥

2

2

≤ (n − m)−1E‖X1‖2
2|〈X1, ϕj 〉|2

≤ (n − m)−1c2
j 〈�ϕj ,ϕj 〉 + (n − m)−1E‖X1‖4

21(cj ,∞)(‖X1‖2)(4.2)
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≤ (n − m)−1c2
jλj + (n − m)−1

∑
k>cj−1

(k + 1)4P [‖X1‖2 ≥ k]

≤ const. · (n − m)−1(
c2
jλj + CX,0 exp(−CX,1c

CX,2
j /2)

)
for n sufficiently large where the sequence (cj )j ↑ ∞ remains to be determined.
In order to obtain those results, we impose the following:

CONDITION X. We assume that condition (3.3) holds true; Cλ,2j
−α ≥ λj ≥

Cλ,1j
−α for all integer j ≥ 1 and some α ≥ 2,Cλ,2 > Cλ,1 > 0; EX1 = 0;

P [‖X1‖2 ≥ x] ≤ CX,0 exp(−CX,1x
CX,2) for all x > 0 and some finite constants

CX,0,CX,1,CX,2 > 0.

Condition X imposes a polynomial lower bound on the sequence of the eigen-
values of �. This assumption is very common in FLR (see, e.g., [5]). When Con-
dition X is fixed the underlying inverse problem can be viewed as a moderately
ill-posed problem unlike severely ill-posed problems where exponential decay of
the eigenvalues occurs. Condition X also corresponds to the deconvolution setting
with ordinary smooth error densities in the related field of density estimation based
on contaminated data.

As an example for a stochastic process which satisfies Condition X, we mention
the random variables

X =
∞∑

j=1

j−α/2Gjϕj ,

where the ϕj , integer j , form an arbitrary orthonormal basis of L2([0,1]); the
Gj are i.i.d. real-valued centered random variables with a continuous distribution
which is concentrated on some compact interval, and EG2

1 = 1. We stipulate that
α > 2. Easy calculations yield that the coefficients j−α and ϕj are the eigenval-
ues and the eigenvectors of the corresponding covariance operator �, respectively.
Stipulating that the sequence {‖ϕj‖∞}j≥1 is bounded above (as satisfied, e.g., by
the Fourier polynomials), we can show that Condition X is fulfilled. In particular,
the random variable 〈g,X〉 is continuously distributed for any g ∈ L2([0,1]) \ {0}
since 〈g,ϕj 〉 �= 0 for at least one integer j so that the distribution of 〈g,X〉 is just
the convolution of an absolutely continuous distribution and some other distribu-
tion; hence the distribution of 〈g,ϕj 〉 has a Lebesgue density so that condition
(3.3) can be verified. All other assumptions contained in Condition X can easily
be checked. Another even more important example for design distributions are the
Gaussian processes X(t) = ∫ t

0 σ(s) dW(s), t ∈ [0,1], where W denotes a standard
Wiener process and σ is a sufficiently smooth function which is bounded from
above and below by positive constants. These processes satisfy Condition X as
well where α = 2. The decay condition can be verified via the famous reflection
principle of Wiener processes.
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Returning to the investigation of an upper bound on E‖�5,6‖2
2, the following

inequality is evident:

E‖�5,6‖2
2 ≤ (n − m)1/2

{ ∞∑
j ′=1

j ′γ E|〈ϕj ′, θ − θ̂1〉|2
}

(4.3)

×
∞∑

j=1

j−γ (
c2
jλj + CX,0 exp(−CX,1c

CX,2
j )

)1/2
.

We deduce that

E|〈ϕj ′, θ − θ̂1〉|2

= E

∣∣∣∣〈ϕj ′, θ〉 − 1{j ′≤K}m−1/2λ−1
j ′

∫
[�̂1/2

1 ϕj ′ ](t) dZ1(t)

∣∣∣∣
2

= 1{j ′>K}|〈ϕj ′, θ〉|2
+ 1{j ′≤K}

× E

∣∣∣∣λ−1
j ′ 〈�̂1θ,ϕj ′ 〉 − 〈θ,ϕj ′ 〉 + σm−1/2λ−1

j ′
∫

[�̂1/2
1 ϕj ′ ](t) dW1(t)

∣∣∣∣
2

= 1{j ′>K}|〈ϕj ′, θ〉|2
(4.4)

+ 1{j ′≤K}λ−2
j ′ {E|〈�̂1θ,ϕj ′ 〉 − 〈�θ,ϕj ′ 〉|2 + σ 2m−1E‖�̂1/2

1 ϕj ′‖2
2}

≤ 1{j ′>K}|〈ϕj ′, θ〉|2

+ 1{j ′≤K}λ−2
j ′ {m−1‖θ‖2

2E‖X1‖2
2|〈X1, ϕj ′ 〉|2 + σ 2m−1λj ′ }

≤ 1{j ′>K}|〈ϕj ′, θ〉|2
+ 1{j ′≤K}

× λ−2
j ′

{
m−1‖θ‖2

2
(
c2
j ′λj ′ + CX,0 exp(−CX,1c

CX,2
j ′ /2)

) + σ 2m−1λj ′
}
.

For further investigation of the asymptotic quality of the estimator θ̂1, some
conditions on PX and � are required. They are stated such that—combined with
Condition X—all previously imposed assumptions concerning those characteris-
tics are included.

CONDITION T. We assume that
∞∑

k=1

(1 + k2β)|〈ϕk, θ〉|2 ≤ C�

for all θ ∈ � and some constants β > (α + 1)/2 and C� < ∞, which are uniform
with respect to θ ∈ �.
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Condition T says that the θ ∈ � are uniformly well approximable with respect
to the orthonormal basis consisting of the eigenfunctions of �. The parameter β

describes the degree of this approximability. If the ϕk were some Fourier polyno-
mials, then Condition T could be interpreted as Sobolev constraints on the set of
the target functions.

We apply the parameter selection K � m1/(2β+α+1), and we fix that cj =
d0 logd1 j with some constants d0, d1 sufficiently large and that γ ∈ (0, β − α/2 −
1/2). Also, we choose m = �n/2�. Inserting that result into (4.3), we deduce by
Conditions X and T that

sup
θ∈�

E‖�5,6‖2
2 = O

(
n(α+1−2β+2γ )/(4β+2α+2) logd3 n

) = o(1)

for some d3 > 0, due to the inequality β > (α + 1)/2 and the suitable selection of
γ . Revisiting inequality (4.1), we have finally proved by Section 2, paragraph (i)
that the experiments E5,n and E6,n are asymptotically equivalent.

In the experiment E6,n, the observation of S2 allows us to construct an estimator
θ̂2 for θ as well. It is given by

θ̂2 =
K∑

k=1

(n − m)−1/2λ−1
k

∫
[�1/2ϕk](t) dS2(t)ϕk,

where the parameter K can be adopted from the estimator θ̂1. We specify the trans-
formation T6,7,n :�6,n → �7,n with

T6,7,n(x1, z1,x2, s2)

=
(

x1, z1 − m1/2
∫ ·

0
[�̂1/2

1 θ̂2](t) dt + m1/2
∫ ·

0
[�1/2θ̂2](t) dt,x2, s2

)
.

Again the shift of the second component is accessible by the other components
which are maintained under the mapping so that T6,7,n is invertible. Therefore,
we define the experiment E7,n by the observation of T6,7,n(X1,Z1,X2, S2) with
(X1,Z1,X2, S2) as under the experiment E6,n. Hence, we put (�7,n,A7,n) =
(�6,n,A6,n) and obtain that E7,n is equivalent to E6,n.

We define the experiment E8,n by the observation of (X1, S1,X2, S2) on the
probability space (�8,n,A8,n) = (�7,n,A7,n) where S1 denotes the Itô process
with S1(0) = 0 and

dS1(t) = m1/2[�1/2θ ](t) dt + σ dW1(t).

We can show that E8,n is asymptotically equivalent to E7,n analogously to the
proof of the asymptotic equivalence of E5,n and E6,n. The only remarkable modi-
fication concerns the application of the estimator θ̂2 instead of θ̂1. However, even
for that term we establish an upper bound at the same rate as for estimator θ̂1 since
the asymptotic order of m and n − m coincide.
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Taking a closer look at the data drawn from E8,n, we realize that the ran-
dom variables X1, S1,X2, S2 are independent. That occurs as we have replaced
the empirical covariance operators by the true deterministic one. Furthermore
the data sets X1,X2 do not carry any information on θ so that S1, S2 represent
a sufficient statistic for the whole empirical information obtained under E8,n.
By Section 2, paragraph (ii), we conclude that E8,n is equivalent to the exper-
iment E9,n in which only the observations S1, S2 are available. Thus we put
�9,n = C0([0,1]) × C0([0,1]) and A9,n equal to the corresponding Borel σ -
algebra.

We define the transformation T9,10,n :�9,n → �10,n with (�10,n,A10,n) =
(�9,n,A9,n) by

T9,10,n(s1, s2) = A(s1, s2)
T

with the matrix

A =
(

m1/2/n (n − m)1/2/n

m−1/2 −(n − m)−1/2

)
.

We easily verify that A is invertible so that the experiment E10,n which is defined
by the observation of (T1, T2) = T9,10,n(S1, S2) is equivalent to the experiment
E9,n. We consider the characteristic function of the L2([0,1]) × L2([0,1])-valued
random variable (T1, T2),

E exp(i〈t1, T1〉 + i〈t2, T2〉)
= E exp(i〈eT

1 AT (t1, t2)
T , S1〉)E exp(i〈eT

2 AT (t1, t2)
T , S2〉)

= exp
(
i

〈
t1,

∫ ·
0

[�1/2θ ](t) dt

〉)

× exp
(
− 1

2n
σ 2

∫ ∫
t1(x1)min{x1, x2}t1(x2) dx1 dx2

)

× exp
(
−1

2

[
1

m
+ 1

n − m

]
σ 2

∫ ∫
t2(x1)min{x1, x2}t2(x2) dx1 dx2

)

for any t1, t2 ∈ L2([0,1]) so that T1 and T2 are two Itô processes satisfying T1(0) =
T2(0) = 0 and

dT1(t) = [�1/2θ ](t) dt + n−1/2σ dW3(t),

dT2(t) = σ

(
1

m
+ 1

n − m

)1/2

dW4(t),

where W3 and W4 are two independent Wiener processes. Thus T1 and T2 are
independent, and T2 is totally uninformative with respect to the target function θ .
Applying Section 2, paragraph (ii) again, we have established equivalence of E10,n

and the experiment E11,n, which is equipped with �11,n = C0([0,1]) and the cor-
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responding Borel σ -algebra A11,n, and characterized by the observation of the
process T1, which coincides with the process Y as defined in (1.3).

Summarizing we have shown asymptotic equivalence of the experiments E1,n

and E11,n. That provides our final main result, which will be given as a theorem
below.

THEOREM 4.1. Under the Conditions X and T, the FLR experiment E1,n with
known design distribution and independent N(0, σ 2)-distributed regression errors
is asymptotically equivalent to the white noise experiment E11,n where only the Itô
process Y as in (1.3) is observed.

5. Sharp estimation for unknown PX . We can combine our results with
Theorem 1 in [11], which is due to [20], in order to derive a sharp minimax re-
sult with respect to the MISE for the FLR problem under known covariance op-
erator. It follows from there that this sharp minimax risk corresponds to the se-
quence

an = σ 2n−1
∞∑

k=1

λ−1
k

(
1 − γ (1 + k2β)1/2)

+,

where γ is the unique solution of the equation

σ 2

n

∞∑
k=1

λ−1
k (1 + k2β)1/2(

1 − γ (1 + k2β)1/2)
+ = C�γ,

under the conditions of Theorem 4.1. More concretely, there exists an estimator θ̂

of θ in the FLR model, which satisfies

sup
θ∈�

E‖θ̂ − θ‖2
2 = an

(
1 + o(1)

)
.

Thus, any other estimator in the underlying model satisfies the above equa-
tion when = is replaced by ≥. We have established sharp asymptotic con-
stants.

Critically, we mention that the loss function a−1
n ‖θ̂ − θ‖2

2 is apparently not
bounded. Still, asymptotic equivalence yields coincidence of sharp minimaxity for
the loss function min{Dn,a

−1
n ‖θ̂ − θ‖2

2} for some (Dn)n → ∞ sufficiently slowly.
We can show that, in the white noise inverse problem, the sharp constant result
is extendable to the truncated loss function. Using Theorem 4.1, we have a sharp
lower bound for the FLR model even for the truncated loss function.

However, the design distribution PX is assumed to be known and occurs in the
definition of the minimax estimator. On the other hand, the lower bound as de-
rived from Theorem 4.1 in the previous section provides a lower bound for the
FLR model in the case of unknown PX as well since nonknowledge of PX can-
not improve this lower bound. Thus if we succeed in showing that some estimator
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achieves these asymptotic properties under the assumption of unknown PX , then
sharp asymptotic minimaxity is extended to this more realistic condition. Assum-
ing that all conditions of Theorem 4.1 except the knowledge of PX hold true, we
propose the estimator

θ̂ = ∑
j

wj

1

n

n∑
l=1

Yl〈Xl, ϕ̂j 〉ϕ̂j λ̂
−1
j,ρ(5.1)

for θ where λ̂j,ρ = max{λ̂j , n
−ρ} for some ρ ∈ (0,1/2). The weights wj remain

to be specified. Using the techniques of the papers of [5] and [15], the MISE of θ̂

is equal to

E‖θ̂ − θ‖2
2 = ∑

k

E

∣∣∣∣wk

λ̂k

λ̂k,ρ

− 1
∣∣∣∣
2

|〈ϕ̂k, θ〉|2 + σ 2

n

∑
k

Ew2
k

λ̂k

λ̂2
k,ρ

.(5.2)

We stipulate that for k > nρ/α/ logn all weights wk shall be put equal to zero. For
all other k we have λk ≥ 2n−ρ for n sufficiently large so that

Eλ̂k/λ̂
2
k,ρ ≤ 1

(1 − 1/(2 + log k))λk

+ n2ρλkP [λ̂k − λk < −λk/(2 + log k)]

≤ λ−1
k + λ−1

k

(
1

log k + 1
+ (2 + logk)2O(n2ρ−1)

)
,

where we have used Markov’s inequality and that E|λ̂k − λk|2 is bounded from
above by the expected squared Hilbert–Schmidt norm of �̂ − � and, hence, by
O(n−1) (see, e.g., [1]). That requires the following assumption:

λj − λj+1 ≥ const. · j−α−1(5.3)

(see also [15]). We conclude that the second term in equation (5.2) has the same
asymptotic order as

{1 + O(1/ log logn)} · σ 2

n

∑
k

w2
kλ

−1
k + O(n−1 logα+1 n),

under the above restriction with respect to the selection of the weights. Focusing
on the first term in (5.2), we deduce by the Cauchy–Schwarz inequality that

∑
k

E

∣∣∣∣wk

λ̂k

λ̂k,ρ

− 1
∣∣∣∣
2

|〈ϕ̂k, θ〉|2 ≤
{(∑

k

E

∣∣∣∣wk

λ̂k

λ̂k,ρ

− 1
∣∣∣∣
2

|〈ϕk, θ〉|2
)1/2

+ const. ·
(∑

k

E|〈ϕ̂k − ϕk, θ〉|2
)1/2}2

.
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We consider that∑
k

E|〈ϕ̂k − ϕk, θ〉|2 = ∑
k

E

∣∣∣∣∑
j

〈ϕ̂k − ϕk,ϕj 〉〈ϕj , θ〉
∣∣∣∣
2

≤ const. · C�

∑
k,j

j−2βE|〈ϕ̂k − ϕk,ϕj 〉|2

= const. · ∑
j

j−2βE|〈ϕ̂j − ϕj ,ϕj 〉|2

+ const. · ∑
j

j−2β
∑
k �=j

E|〈ϕ̂k − ϕk,ϕj 〉|2

≤ const. · ∑
j

j−2βE‖ϕ̂j − ϕj‖2
2

+ const. · ∑
j

j−2β
∑
k �=j

E|〈ϕ̂k, ϕ̂j − ϕj 〉|2

≤ const. · ∑
j

j−2βE‖ϕ̂j − ϕj‖2
2

by exploiting the orthonormality of the ϕ̂j and the ϕj as well as Condition T
and Parseval’s identity. Bhatia, Davis and McIntosh [1] provide that the squared
L2([0,1])-distance between ϕ̂j and ϕj is bounded from above by the squared
Hilbert–Schmidt norm of �̂ − � multiplied by 8j2α+2 via condition (5.3). Thus
we have ∑

k

E|〈ϕ̂k − ϕk, θ〉|2 = O(n−1),(5.4)

where the constants contained in O(·) do not depend on θ whenever

β > α + 3/2.(5.5)

Returning to the consideration of the first term in (5.2), we conclude that its asymp-
totic order reduces to that of∑

k

E

∣∣∣∣wk

λ̂k

λ̂k,ρ

− 1
∣∣∣∣
2

|〈ϕk, θ〉|2.

Then this term is bounded from above by

∑
k

|wk − 1|2|〈ϕk, θ〉|2 + const. ·
�nρ/α/ logn�∑

k=1

|〈ϕk, θ〉|2λ−2
k E|λ̂k − λk|2

+ O(n−2βρ/α(logn)2β)

≤ O(n−2βρ/α(logn)2β) + const. · C�/n + ∑
k

|wk − 1|2|〈ϕk, θ〉|2
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by utilizing Condition T and again the results of [1]. The term O(n−2βρ/α) is
asymptotically negligible [i.e., bounded by O(1/n)] whenever ρ > α/(2α + 3) as
we have already imposed the condition (5.5). It follows that the MISE of (5.1) may
be reduced to its asymptotically efficient terms, that is,

E‖θ̂ − θ‖2
2 = {1 + o(1)}

(∑
k

|wk − 1|2|〈ϕk, θ〉|2 + σ 2

n

∑
k

w2
kλ

−1
k

)
(5.6)

+ O(n−1 logα+1 n).

The right-hand side of (5.6), however, corresponds to the MISE of an oracle es-
timator which uses the true versions of the eigenvalues and eigenfunctions of �

instead of the empirical ones. Also, it follows from [20] and [11] that the estima-
tor θ̂ as in (5.1) attains the sharp asymptotic minimax risk when the weights are
chosen as

wk = (1 − γβk)+,

when writing βk = (1 + k2β)1/2 with an appropriate deterministic parameter γ .
More precisely, we consider γn which we define by the unique zero of the function
� = �1 − �2 with

�1(x) =
∞∑

k=1

λ−1
k βk(1 − xβk)+, �2(x) = C�xn/σ 2

for x ≥ 0 where �1 and �2 are continuous montonically decreasing and increas-
ing, respectively. The selection γ = γn leads to asymptotic sharp optimality (see,
e.g., [11]). Clearly, we have γn � n−β/(2β+α+1). Otherwise, not even the conver-
gence rates are optimal as the required balance between the bias and the variance
term is violated. By condition (5.5) our additional assumption saying that that
wk ≡ 0 for k > nρ/α/ logn is verified under this optimal selection of the weights
when stipulating that γ > n−β/(2β+1) as we have assumed ρ > α/(2α + 3).

Still, the suggested selector is an oracle choice as it requires knowledge of the
true eigenvalues λj . That motivates us to consider a data-driven selector γ̂ of γ .
First we split the sample (X,Y) into two independent data sets (Xj ,Yj ), j =
1,2. The first data set (X1,Y1) consists of m pairs (Xk,Yk) where m � n(1 −
1/ logn), and (X2,Y2) contains all the other observations. We employ (X1,Y1) to
estimate the function θ while the second data set (training data) is used to provide
an selector of γ . Concretely, we fix γ̃ as the unique zero of �̂ = �̂1 − �2 where

�̂1(x) =
∞∑

k=1

(λ̂′
k,ρ)−1βk(1 − xβk)+.(5.7)

Therein, ′ indicates that the estimator is based on the second data set. Then we
define our selector of γ̂ as med{n−β/(3β+1), γ̃ , n−β/(2β+1)}. This truncation takes
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into account the a priori knowledge about the true γn so that |γ̂ − γn| ≤ |γ̃ − γn|
almost surely for n sufficiently large.

Thus determining γ̂ does not require knowledge of PX . Now let us consider the
MISE of the estimator θ̂γ̂ where the index indicates the incorporated choice of the
parameter γ . By (5.6), we derive that

E‖θ̂γ̂ − θ‖2
2

= o
(
n−2β/(2β+α+1))

+ {1 + o(1)}

×
( ∞∑

k=1

|〈ϕk, θ〉|2E|(1 − γ̂ βk)+ − 1|2 + σ 2

m

∞∑
k=1

λλ−1
k E(1 − γ̂ βk)

2+

)
,

where the terms contained in o(1) do not depend on γ . As the asymptotic order of
m and n coincides, the estimator based on m data attains the same asymptotic rates
and constants as the estimator which uses even n data, so our above calculations
remain valid. Therefore, the estimator θ̂γ̂ attains sharp minimax rates and constants
whenever

∞∑
k=1

E|(1 − γ̂ βk)+ − (1 − γnβk)+|2|〈ϕk, θ〉|2

+ 1

m

∞∑
k=1

λ−1
k E|(1 − γ̂ βk)+ − (1 − γnβk)+|2(5.8)

= o
(
n−2β/(2β+α+1)),

uniformly with respect to θ ∈ �. The first term in (5.8) is bounded from above by
const. · E|γ̂ − γn|2. The second term has the upper bound

O(cα+2β+1
n ) · E|γ̂ − γn|2 + O(1/n) ·

�const.·n1/(2β+1)�∑
k>cnn1/(2β+α+1)

λ−1
k P [γ̂ ≤ β−1

k ]

for some sequence (cn)n tending to infinity sufficiently slowly. We deduce by
Markov’s inequality that (5.8) is satisfied if

nα/(2β+1)γ −2ν
n · E|γ̂ − γn|2ν + E|γ̂ − γn|2 = o

(
n−2β/(2β+α+1))

for some fixed integer ν. The assertion |γ̃ − γn| > sn, for some positive-valued
sequence (sn)n ↓ 0 with sn/γn → 0, implies that

|�̂1(γn + sn) − �1(γn + sn)| > C�snn/σ 2

or

|�̂1(γn − sn) − �1(γn − sn)| > C�snn/σ 2 + |�1(γn) − �1(γn − sn)|.
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We have already imposed that ρ > α/(2α + 3) so that λk > n−ρ for all k ≤
(γn −sn)

−1/β . That, however, yields ‖�̂′ −�‖HS ≥ const. ·snn−ργ −1
n where ‖·‖HS

denotes the Hilbert–Schmidt norm of an operator. Therein we have used the find-
ings of [1] again and the monotonicity of the functions �̂1, �1, �2 as well as the
definitions of γn and γ̃ . We deduce by Markov’s inequality that

E|γ̂ − γn|2ν = s2ν
n + P [|γ̃ − γn| > sn]

= s2ν
n + const. · n2ρμs−2μ

n γ 2μ
n E‖�̂′ − �‖2μ

HS

for any integer μ. As all moments of ‖X1‖2 are finite by Condition T we derive
that

E‖�̂′ − �‖2μ
HS = O

(
(n − m)−μ)

,

where we recall that �̂′ is based on the training data set, thus on n − m � n/ logn

observations. As ρ < 1/2 we conclude by suitable choice of (sn)n that

E|γ̂ − γn|2ν = O([onγn]2ν),

where (on)n denotes some sequence tending to zero at an algebraic rate. Choosing
ν sufficiently large, we can finally verify (5.8) yielding the following proposition
which summarizes the investigation carried out in this section.

PROPOSITION 5.1. We consider the FLR model in the setting of Theorem 4.1
except the condition that PX is known. In addition, suppose that (5.3), (5.5) and
ρ ∈ (α/(2α + 3),1/2). Then, estimator (5.1) with the weight selector (5.7), which
does not use PX in its definition, attains the sharp minimax rate and constant with
respect to the mean integrated squared error; viewed uniformly over the function
class � which is defined via Condition T.

Hence, under some additional conditions on the model, we have established
sharp minimaxity in the case where PX is unknown. Only an arbitrary number
between α/(2α + 3) and 1/2 is supposed to be known.

6. Discussion and conclusions. We have proved equivalence of the FLR
model and a white noise model involving an empirical covariance operator in The-
orem 3.1. We mention that σ and PX can be treated as real nuisance parameters
in Section 3; more precisely, knowledge of those quantities is not needed to apply
the data transformations.

In contrast, for the asymptotic approximation in Section 4, PX must be known.
Nevertheless, Section 5 shows that, with respect to the MISE, the sharp asymptotic
minimax risk can be taken over to the case of unknown design distribution. Fur-
thermore, under specific parametric assumption on PX , the condition of known PX

can obviously be justified. Cai and Hall [5] explicitly mention Gaussian processes
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as examples for the random design functions Xj . For instance, assuming that Xj

can be represented as Xj(t) = ∫
ξ(s) dWj(s) with independent standard Wiener

processes Wj as already suggested in the previous section, we realize that the func-
tion ξ is precisely reconstrucable based on only one observation X1. Then as ξ is
known the distribution PX is known as well. Therefore, under this shape of PX ,
the assumption of known PX is not unrealistic at all. This phenomenon is typical
for the functional data approach and does not occur in multivariate linear regres-
sion with finite-dimensional covariates. From that point of view, the assumption of
known design distribution causes less trouble in FLR compared to more standard
regression problems. Still this does not address the completely nonparametric case
for PX and θ .

As an interesting restriction, we have assumed that β > (1 + α)/2 in Condi-
tion T. Therefore, the quality of the approximation of the target curve θ in the
orthonormal basis consisting of the eigenvalues of the covariance operator of the
design variables must be sufficiently high. If this basis consisted of Fourier poly-
nomials then that assumption could be interpreted as a smoothness condition on θ .
That corresponds to the theorems in [19] and [2] where Hölder conditions are im-
posed, which correspond to β > 1/2, in order to prove asymptotic equivalence
of the white noise model on one hand and density estimation and nonparamet-
ric regression on the other hand. Otherwise, counterexamles can be constructed
(see [3]). To our best knowledge our work represents the first proof of white noise
equivalence in a statistical inverse problem. It seems reasonable that the essential
condition is extended to β > (1 + α)/2 in this setting as the selection α = 0 de-
scribes the setting of direct estimation (noninverse problems). Still, the question of
whether our results are extendable to some β ≤ (1 + α)/2 remains open. In Sec-
tion 5 we have studied the case of unknown PX; however, the regularity parameter
β is still assumed to be known. Therefore, another interesting problem, which can-
not be addressed within the framework of this paper, is whether this sharp risk can
be achieved by an adaptive estimator, which does not use β and C� in its con-
struction. Approaches to adaptivity in FLR are studied in [4]; however, that report
seems to focus on optimal rates rather than optimal constants.

Also, combining Theorem 4.1 and the results of Brown and Low [2], we con-
clude that, under reasonable conditions, the FLR model is also equivalent to the
standard nonparametric regression problem, under which the data

Yj = [�1/2θ ](xj ) + σεj , j = 1, . . . , n,

are observed where the εj are i.i.d. and N(0,1)-distributed, and the homogeneous
fixed design setting xj = j/n, j = 1, . . . , n, is applied.
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