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OPTIMAL SELECTION OF REDUCED RANK ESTIMATORS OF
HIGH-DIMENSIONAL MATRICES
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We introduce a new criterion, the Rank Selection Criterion (RSC), for
selecting the optimal reduced rank estimator of the coefficient matrix in mul-
tivariate response regression models. The corresponding RSC estimator min-
imizes the Frobenius norm of the fit plus a regularization term proportional
to the number of parameters in the reduced rank model.

The rank of the RSC estimator provides a consistent estimator of the rank
of the coefficient matrix; in general, the rank of our estimator is a consistent
estimate of the effective rank, which we define to be the number of singular
values of the target matrix that are appropriately large. The consistency results
are valid not only in the classic asymptotic regime, when n, the number of
responses, and p, the number of predictors, stay bounded, and m, the number
of observations, grows, but also when either, or both, n and p grow, possibly
much faster than m.

We establish minimax optimal bounds on the mean squared errors of our
estimators. Our finite sample performance bounds for the RSC estimator
show that it achieves the optimal balance between the approximation error
and the penalty term.

Furthermore, our procedure has very low computational complexity, lin-
ear in the number of candidate models, making it particularly appealing for
large scale problems. We contrast our estimator with the nuclear norm penal-
ized least squares (NNP) estimator, which has an inherently higher computa-
tional complexity than RSC, for multivariate regression models. We show that
NNP has estimation properties similar to those of RSC, albeit under stronger
conditions. However, it is not as parsimonious as RSC. We offer a simple
correction of the NNP estimator which leads to consistent rank estimation.

We verify and illustrate our theoretical findings via an extensive simula-
tion study.

1. Introduction. In this paper, we propose and analyze dimension reduction-
type estimators for multivariate response regression models. Given m observations
of the responses Yi ∈ R

n and predictors Xi ∈ R
p , we assume that the matrices

Y = [Y1, . . . , Ym]′ and X = [X1, . . . ,Xm]′ are related via an unknown p×n matrix
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of coefficients A, and write this as

Y = XA + E,(1)

where E is a random m × n matrix, with independent entries with mean zero and
variance σ 2.

Standard least squares estimation in (1), under no constraints, is equivalent to
regressing each response on the predictors separately. It completely ignores the
multivariate nature of the possibly correlated responses, see, for instance, Izenman
(2008) for a discussion of this phenomenon. Estimators restricted to have rank
equal to a fixed number k ≤ n ∧ p were introduced to remedy this drawback. The
history of such estimators dates back to the 1950s, and was initiated by Anderson
(1951). Izenman (1975) introduced the term reduced-rank regression for this class
of models and provided further study of the estimates. A number of important
works followed, including Robinson (1973, 1974) and Rao (1980). The mono-
graph on reduced rank regression by Reinsel and Velu (1998) has an excellent,
comprehensive account of more recent developments and extensions of the model.
All theoretical results to date for estimators of A constrained to have rank equal
to a given value k are of asymptotic nature and are obtained for fixed p, indepen-
dent of the number of observations m. Most of them are obtained in a likelihood
framework, for Gaussian errors Eij . Anderson (1999) relaxed this assumption and
derived the asymptotic distribution of the estimate, when p is fixed, the errors have
two finite moments, and the rank of A is known. Anderson (2002) continued this
work by constructing asymptotic tests for rank selection, valid only for small and
fixed values of p.

The aim of our work is to develop a non-asymptotic class of methods that yield
reduced rank estimators of A that are easy to compute, have rank determined adap-
tively from the data, and are valid for any values of m,n and p, especially when
the number of predictors p is large. The resulting estimators can then be used to
construct a possibly much smaller number of new transformed predictors or can
be used to construct the most important canonical variables based on the original
X and Y . We refer to Chapter 6 in Izenman (2008) for a historical account of the
latter.

We propose to estimate A by minimizing the sum of squares ‖Y − XB‖2
F =∑

i

∑
j {Yij − (XB)ij }2 plus a penalty μr(B), proportional to the rank r(B), over

all matrices B . It is immediate to see, using Pythagoras’ theorem, that this is equiv-
alent with computing minB{‖PY − XB‖2

F + μr(B)} or mink{minB : r(B)=k ‖PY −
XB‖2

F + μk}, with P being the projection matrix onto the column space of X. In
Section 2.1, we show that the minimizer k̂ of the above expression is the number
of singular values dk(PY ) of PY that exceed μ1/2. This observation reveals the
prominent role of the tuning parameter μ in constructing k̂. The final estimator Â

of the target matrix A is the minimizer of ‖PY − XB‖2
F over matrices B of rank

k̂, and can be computed efficiently even for large p, using the procedure that we
describe in detail in Section 2.1 below.
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The theoretical analysis of our proposed estimator Â is presented in Sec-
tions 2.2–2.4. The rank of A may not be the most appropriate measure of spar-
sity in multivariate regression models. For instance, suppose that the rank of A is
100, but only three of its singular values are large and the remaining 97 are nearly
zero. This is an extreme example, and in general one needs an objective method
for declaring singular values as “large” or “small.” We introduce in Section 2.1 a
slightly different notion of sparsity, that of effective rank. The effective rank counts
the number of singular values of the signal XA that are above a certain noise level.
The relevant notion of noise level turns out to be the largest singular value of PE.
This is central to our results, and influences the choice of the tuning sequence μ.
In Appendix C, we prove that the expected value of the largest singular value of
PE is bounded by (q + n)1/2, where q ≤ m ∧ p is the rank of X. The effective
noise level is at most (m + n)1/2, for instance in the model Y = A + E, but it can
be substantially lower, of order (q + n)1/2, in model (1).

In Section 2.2, we give tight conditions under which k̂, the rank of our pro-
posed estimator Â, coincides with the effective rank. As an immediate corollary,
we show when k̂ equals the rank of A. We give finite sample performance bounds
for ‖XÂ − XA‖2

F in Section 2.3. These results show that Â mimics the behavior
of reduced rank estimates based on the ideal effective rank, had this been known
prior to estimation. If X has a restricted isometrity property, our estimate is min-
imax adaptive. In the asymptotic setting, for n + (m ∧ p) ≥ n + q → ∞, all our
results hold with probability close to one, for tuning parameter chosen proportion-
ally to the square of the noise level.

We often particularize our main findings to the setting of Gaussian N(0, σ 2)

errors Eij in order to obtain sharp, explicit numerical constants for the penalty
term. To avoid technicalities, we assume that σ 2 is known in most cases, and we
treat the case of unknown σ 2 in Section 2.4.

We contrast our estimator with the penalized least squares estimator Ã cor-
responding to a penalty term τ‖B‖1 proportional to the nuclear norm ‖B‖1 =∑

j dj (B), the sum of the singular values of B . This estimator has been studied by,
among others, Yuan et al. (2007) and Lu, Monteiro and Yuan (2010), for model
(1). Nuclear norm penalized estimators in general models y = X (A)+ ε involving
linear maps X have been studied by Candès and Plan (2010) and Negahban and
Wainwright (2009). A special case of this model is the challenging matrix comple-
tion problem, first investigated theoretically, in the noiseless case, by Candès and
Tao (2010). Rohde and Tsybakov (2010) studied a larger class of penalized estima-
tors, that includes the nuclear norm estimator, in the general model y = X (A)+ ε.

In Section 3, we give bounds on ‖XÃ − XA‖2
F that are similar in spirit to those

from Section 2. While the error bounds of the two estimators are comparable, albeit
with cleaner results and milder conditions for our proposed estimator, there is one
aspect in which the estimates differ in important ways. The nuclear norm penalized
estimator is far less parsimonious than the estimate obtained via our rank selection
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criterion. In Section 3, we offer a correction of the former estimate that yields a
correct rank estimate.

Section 4 complements our theoretical results by an extensive simulation study
that supports our theoretical findings and suggests strongly that the proposed esti-
mator behaves very well in practice, in most situations is preferable to the nuclear
norm penalized estimator and it is always much faster to compute.

Technical results and some intermediate proofs are presented in Appen-
dices A–D.

2. The rank selection criterion.

2.1. Methodology. We propose to estimate A by the penalized least squares
estimator

Â = arg min
B

{‖Y − XB‖2
F + μr(B)}.(2)

We denote its rank by k̂. The minimization is taken over all p×n matrices B . Here
and in what follows r(B) is the rank of B and ‖C‖F = (

∑
i

∑
j C2

ij )
1/2 denotes

the Frobenius norm for any generic matrix C. The choice of the tuning parameter
μ > 0 is discussed in Section 2.2. Since

min
B

{‖Y − XB‖2
F + μr(B)} = min

k

{
min

B,r(B)=k
{‖Y − XB‖2

F + μk}
}
,(3)

one needs to compute the restricted rank estimators B̂k that minimize ‖Y − XB‖2
F

over all matrices B of rank k. The following computationally efficient procedure
for calculating each B̂k has been suggested by Reinsel and Velu (1998). Let M =
X′X be the Gram matrix, M− be its Moore–Penrose inverse and let P = XM−X′
be the projection matrix onto the column space of X.

1. Compute the eigenvectors V = [v1, v2, . . . , vn], corresponding to the ordered
eigenvalues arranged from largest to smallest, of the symmetric matrix Y ′PY .

2. Compute the least squares estimator B̂ = M−X′Y .
Construct W = B̂V and G = V ′.
Form Wk = W [·,1 :k] and Gk = G[1 :k, ·].

3. Compute the final estimator B̂k = WkGk .

In step 2 above, Wk denotes the matrix obtained from W by retaining all its
rows and only its first k columns, and Gk is obtained from G by retaining its first
k rows and all its columns.

Our first result, Proposition 1 below, characterizes the minimizer k̂ = r(Â) of
(3) as the number of eigenvalues of the square matrix Y ′PY that exceed μ or,
equivalently, as the number of singular values of the matrix PY that exceed μ1/2.
The final estimator of A is then Â = B̂k̂ .

Lemma 14 in Appendix B shows that the fitted matrix XÂ is equal to∑
j≤k̂ djujv

′
j based on the singular value decomposition UDV = ∑

j djujv
′
j of

the projection PY .
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PROPOSITION 1. Let λ1(Y
′PY) ≥ λ2(Y

′PY) ≥ · · · be the ordered eigenval-
ues of Y ′PY . We have Â = B̂k̂ with

k̂ = max{k :λk(Y
′PY) ≥ μ}.(4)

PROOF. For B̂k given above, and by the Pythagorean theorem, we have

‖Y − XB̂k‖2
F = ‖Y − PY‖2

F + ‖PY − XB̂k‖2
F

and we observe that XB̂ = PY . By Lemma 14 in Appendix B, we have

‖XB̂ − XB̂k‖2
F = ∑

j>k

d2
j (XB̂) = ∑

j>k

d2
j (PY ) = ∑

j>k

λj (Y
′PY),

where dj (C) denotes the j th largest singular value of a matrix C. Then the penal-
ized least squares criterion reduces to

‖Y − PY‖2
F +

{∑
j>k

λj (Y
′PY) + μk

}

and we find that minB{‖Y − XB‖2
F + μr(B)} equals

‖Y − PY‖2
F + μn + min

k

∑
j>k

{λj (Y
′PY) − μ}.

It is easy to see that
∑

j>k{λj (Y
′PY) − μ} is minimized by taking k as the largest

index j for which λj (Y
′PY)−μ ≥ 0, since then the sum only consists of negative

terms. This concludes our proof. �

REMARK. The two matrices Wk̂ and Gk̂ , that yield the final solution Â =
Wk̂Gk̂ , have the following properties: (i) Gk̂G

′̂
k

is the identity matrix; and
(ii) W ′̂

k
MWk̂ is a diagonal matrix. Moreover, the decomposition of Â as a product

of two matrices with properties (i) and (ii) is unique, see, for instance, Theorem 2.2
in Reinsel and Vélu (1998). As an immediate consequence, one can construct new
orthogonal predictors as the columns of Z = XWk̂ . If k̂ is much smaller than p,
this can result in a significant dimension reduction of the predictors’ space.

2.2. Consistent effective rank estimation. In this section, we study the prop-
erties of k̂ = r(Â). We will state simple conditions that guarantee that k̂ equals
r = r(A) with high probability. First, we describe in Theorem 2 what k̂ estimates
and what quantities need to be controlled for consistent estimation. It turns out that
k̂ estimates the number of the singular values of the signal XA above the thresh-
old μ1/2, for any value of the tuning parameter μ. The quality of estimation is
controlled by the probability that this threshold level exceeds the largest singular
value d1(PE) of the projected noise matrix PE. We denote the j th singular value
of a generic matrix C by dj (C) and we use the convention that the singular values
are indexed in decreasing order.
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THEOREM 2. Suppose that there exists an index s ≤ r such that

ds(XA) > (1 + δ)
√

μ and ds+1(XA) < (1 − δ)
√

μ

for some δ ∈ (0,1]. Then we have

P{k̂ = s} ≥ 1 − P
{
d1(PE) ≥ δ

√
μ

}
.

PROOF. Using the characterization of k̂ given in Proposition 1, we have

k̂ > s ⇐⇒ √
μ ≤ ds+1(PY ),

k̂ < s ⇐⇒ √
μ ≥ ds(PY ).

Therefore, P{k̂ 
= s} = P{√μ ≤ ds+1(PY ) or
√

μ ≥ ds(PY )}. Next, observe that
PY = XA + PE and dk(XA) < dk(PY ) + d1(PE) for any k. Hence, ds(PY ) ≤
μ1/2 implies d1(PE) ≥ ds(XA) − μ1/2, whereas ds+1(PY ) ≥ μ1/2 implies that
d1(PE) ≥ μ1/2 − ds+1(XA). Consequently, we have

P{k̂ 
= s} ≤ P
{
d1(PE) ≥ min

(√
μ − ds+1(XA), ds(XA) − √

μ
)}

.

Invoke the conditions on ds+1(XA) and ds(XA) to complete the proof. �

Theorem 2 indicates that we can consistently estimate the index s provided
we use a large enough value for our tuning parameter μ to guarantee that the
probability of the event {d1(PE) ≤ δμ1/2} approaches one. We call s the effective
rank of A relative to μ, and denote it by re = re(μ).

This is the appropriate notion of sparsity in the multivariate regression prob-
lem: we can only hope to recover those singular values of the signal XA that are
above the noise level E[d1(PE)]. Their number, re, will be the target rank of the
approximation of the mean response, and can be much smaller than r = r(A). We
regard the largest singular value d1(PE) as the relevant indicator of the strength of
the noise. Standard results on the largest singular value of Gaussian matrices show
that E[d1(E)] ≤ σ(m1/2 +n1/2) and similar bounds are available for sub-Gaussian
matrices, see, for instance, Rudelson and Vershynin (2010). Interestingly, the ex-
pected value of the largest singular value d1(PE) of the projected noise matrix is
smaller: it is of order (q + n)1/2 with q = r(X). If E has independent N(0, σ 2)

entries the following simple argument shows why this is the case.

LEMMA 3. Let q = r(X) and assume that Eij are independent N(0, σ 2) ran-
dom variables. Then

E[d1(PE)] ≤ σ
(√

n + √
q
)

and

P{d1(PE) ≥ E[d1(PE)] + σ t} ≤ exp(−t2/2)

for all t > 0.
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PROOF. Let U�U ′ be the eigen-decomposition of P . Since P is the projec-
tion matrix on the column space of X, only the first q entries of � on the diag-
onal equal to one, and all the remaining entries equal to zero. Then, d2

1 (PE) =
λ1(E

′PE) = d2
1 (�U ′E). Since E has independent N(0, σ 2) entries, the rotation

U ′E has the same distribution as E. Hence, �U ′E can be written as a q ×n matrix
with Gaussian entries on top of a (m − q) × n matrix of zeroes. Standard random
matrix theory now states that E[d1(�U ′E)] ≤ σ(q1/2 + n1/2). The second claim
of the lemma is a direct consequence of Borell’s inequality, see, for instance, Van
der Vaart and Wellner (1996), after recognizing that d1(�U ′E) is the supremum
of a Gaussian process. �

In view of this result, we take μ1/2 > σ(n1/2 +q1/2) as our measure of the noise
level. The following corollary summarizes the discussion above and lists the main
results of this section: the proposed estimator based on the rank selection criterion
(RSC) recovers consistently the effective rank re and, in particular, the rank of A.

COROLLARY 4. Assume that E has independent N(0, σ 2) entries. For any
θ > 0, set

μ = (1 + θ)2σ 2(√
n + √

q
)2

/δ2

with δ as in Theorem 2. Then we have, for any θ > 0,

P{k̂ 
= re(μ)} ≤ exp
(−1

2θ2(n + q)
) → 0 as q + n → ∞.

In particular, if dr(XA) > 2μ1/2 and μ1/2 = (1 + θ)σ (
√

n + √
q), then

P{k̂ 
= r} ≤ exp
(−1

2θ2(n + q)
) → 0 as q + n → ∞.

REMARK. Corollary 4 holds when q + n → ∞. If q + n stays bounded, but
m → ∞, the consistency results continue to hold when q is replaced by q ln(m)

in the expression of the tuning parameter μ given above. Lemma 3 justifies this
choice. The same remark applies to all theoretical results in this paper.

REMARK. A more involved argument is needed in order to establish the con-
clusion of Lemma 3 when E has independent sub-Gaussian entries. We give this
argument in Proposition 15 presented in Appendix C. Proposition 15 shows, in par-
ticular, that when E[exp(tEij )] ≤ exp(t2/	E) for all t > 0, and for some 	E < ∞,
we have

P
{
d2

1 (PE) ≥ 32	E(q + n)
(
ln(5) + x

)} ≤ 2 exp{−x(q + n)}
for all x > 0. The conclusion of Corollary 4 then holds for μ = C0	E(n + q) with
C0 large enough. Moreover, all oracle inequalities presented in the next sections
remain valid for this choice of the tuning parameter, if E has independent sub-
Gaussian entries.
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2.3. Errors bounds for the RSC estimator. In this section, we study the perfor-
mance of Â by obtaining bounds for ‖XÂ−XA‖2

F . First, we derive a bound for the
fit ‖XB̂k − XA‖2

F , based on the restricted rank estimator B̂k , for each value of k.

THEOREM 5. Set c(θ) = 1 + 2/θ . For any θ > 0, we have

‖XB̂k − XA‖2
F ≤ min

1≤k≤min(n,p)

{
c2(θ)

∑
j>k

d2
j (XA) + 2(1 + θ)c(θ)kd2

1 (PE)

}
with probability one.

PROOF. By the definition of B̂k ,

‖Y − XB̂k‖2
F ≤ ‖Y − XB‖2

F

for all p × n matrices B of rank k. Working out the squares, we obtain

‖XB̂k − XA‖2
F ≤ ‖XB − XA‖2

F + 2〈E,XÂ − XB〉F
= ‖XB − XA‖2

F + 2〈PE,XÂ − XB〉F
with

〈C,D〉F = tr(C′D) = tr(D′C) = ∑
i

∑
j

CijDij

for generic m × n matrices C and D. The inner product 〈C,D〉F , operator norm
‖C‖2 = d1(C) and nuclear norm ‖D‖1 = ∑

j dj (D) are related via the inequality
〈C,D〉F ≤ ‖C‖2‖D‖1. As a consequence we find

〈PE,XB̂k − XB〉F ≤ d1(PE)‖XB̂k − XB‖1

≤ d1(PE)
√

2k‖XB̂k − XB‖F

≤ d1(PE)
√

2k{‖XB̂k − XA‖F + ‖XB − XA‖F }.
Using the inequality 2xy ≤ x2/a + ay2 with a > 0 twice, we obtain that ‖XB̂k −
XA‖2

F is bounded above by

1 + b

b
‖XB − XA‖2

F + 1

a
‖XB̂k − XA‖2

F + (a + b)(2k)d2
1 (PE).

Hence we obtain, for any a, b > 0, the inequality

‖XB̂k − XA‖2
F ≤ a

a − 1

{
1 + b

b
‖XB − XA‖2

F + 2(a + b)kd2
1 (PE)

}
.

Lemma 14 in the Appendix B states that the minimum of ‖XA − XB‖2
F over all

matrices B of rank k is achieved for the GSVD of A and the minimum equals∑
j>k d2

j (XA). The claim follows after choosing a = (2 + θ)/2 and b = θ/2. �
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COROLLARY 6. Assume that E has independent N(0, σ 2) entries. Set c(θ) =
1 + 2/θ . Then, for any θ, ξ > 0, the inequality

‖XB̂k − XA‖2
F

≤ min
1≤k≤min(n,p)

{
c2(θ)

∑
j>k

d2
j (XA) + 2c(θ)(1 + θ)(1 + ξ)2σ 2k(n + q)

}

holds with probability 1 − exp(−ξ2(n + q)/2). In addition,

E[‖XB̂k − XA‖2
F ] �

∑
j>k

d2
j (XA) + σ 2k(n + q).

The symbol � means that the inequality holds up to multiplicative numerical con-
stants.

PROOF. Set t = (1 + ξ)2σ 2(
√

n + √
q)2 for some ξ > 0. From Lemma 3, it

follows that

P{d2
1 (PE) ≥ t} = P

{
d1(PE) ≥ (1 + ξ)σ

(√
n + √

q
)} ≤ exp

(−ξ2(n + q)/2
)
.

The first claim follows now from this bound and Theorem 5. From Lemma 16, it
follows that E[d2

1 (PE)] ≤ ν2 +ν
√

2π +2 for ν = E[d1(PE)] ≤ σ(
√

n+√
q). This

proves the second claim. �

Theorem 5 bounds the error ‖XB̂k − XA‖2
F by an approximation error,∑

j>k d2
j (XA), and a stochastic term, kd2

1 (PE), with probability one. The approxi-
mation error is decreasing in k and vanishes for k > r(XA).

The stochastic term increases in k and can be bounded by a constant times
k(n + q) with overwhelming probability and in expectation, for Gaussian errors,
by Corollary 6 above. More generally, the same bound (up to constants) can be
proved for sub-Gaussian errors. Indeed, for C0 large enough, Proposition 15 in
Appendix C, states that P{d2

1 (PE) ≤ C0(n + q)} ≤ 2 exp{−(n + q)}.
We observe that k(n + q) is essentially the number of free parameters of the

restricted rank problem. Indeed, our parameter space consists of all p ×n matrices
B of rank k and each matrix has k(n + q − k) free parameters. Hence, we can
interpret the bound in Corollary 6 above as the squared bias plus the dimension of
the parameter space.

Remark (ii), following Corollary 8 below, shows that k(n + q) is also the min-
imax lower bound for ‖XB̂k − XA‖2

F , if the smallest eigenvalue of X′X is larger
than a strictly positive constant. This means that XB̂k is a minimax estimator under
this assumption.

We now turn to the penalized estimator Â and show that it achieves the best
(squared) bias-variance trade-off among all rank restricted estimators B̂k for the
appropriate choice of the tuning parameter μ in the penalty pen(B) = μr(B).
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THEOREM 7. We have, for any θ > 0, on the event (1 + θ)d2
1 (PE) ≤ μ,

‖XÂ − XA‖2
F ≤ c2(θ)‖XB − XA‖2

F + 2c(θ)μk(5)

for any p × n matrix B . In particular, we have, for μ ≥ (1 + θ)d2
1 (PE)

‖XÂ − XA‖2
F ≤ min

k

{
c2(θ)

∑
j>k

d2
j (XA) + 2c(θ)μk

}
(6)

and

‖XÂ − XA‖2
F ≤ 2c(θ)μr.(7)

PROOF. By the definition of Â,

‖Y − XÂ‖2
F + μr(Â) ≤ ‖Y − XB‖2

F + μr(B)

for all p × n matrices B . Working out the squares, we obtain

‖XÂ − XA‖2
F

≤ ‖XB − XA‖2
F + 2μr(B) + 2〈E,XÂ − XB〉F − μr(Â) − μr(B)

= ‖XB − XA‖2
F + 2μr(B) + 2〈PE,XÂ − XB〉F − μr(Â) − μr(B).

Next, we observe that

〈PE,XÂ − XB〉F
≤ d1(PE)‖XÂ − XB‖1

≤ d1(PE){r(XÂ) + r(XB)}1/2‖XÂ − XB‖F

≤ d1(PE){r(Â) + r(B)}1/2{‖XÂ − XA‖F + ‖XB − XA‖F }.
Consequently, using the inequality 2xy ≤ x2/a + ay2 twice, we obtain, for any
a > 0 and b > 0,

‖XÂ − XA‖2
F ≤ ‖XB − XA‖2

F + 1

a
‖XÂ − XA‖2

F + 1

b
‖XB − XA‖2

F

+ 2μr(B) + (a + b){r(Â) + r(B)}d2
1 (PE) − μ{r(Â) + r(B)}.

Hence, if (a + b)d2
1 (PE) − μ ≤ 0, we obtain

‖XÂ − XA‖2
F ≤ a

a − 1

{
1 + b

b
‖XB − XA‖2

F + 2μr(B)

}
for any a > 1 and b > 0. Lemma 14 in Appendix B evaluates the minimum of
‖XA − XB‖2

F over all matrices B of rank k and shows that it equals
∑

j>k d2
j (XA).

We conclude our proof by choosing a = 1 + θ/2 and b = θ/2. �
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REMARK. The first two parts of the theorem show that Â achieves the best
(squared) bias-variance trade-off among all reduced rank estimators B̂k if μ >

d2
1 (PE). Moreover, the index k which minimizes

∑
j>k{d2

j (XA) + μk} essentially
coincides with the effective rank re = re(μ) defined in the previous section. There-
fore, the fit of the selected estimator XÂ is comparable with that of the estimator
XB̂k with rank k = re. Since the ideal re depends on the unknown matrix A, this
ideal estimator cannot be computed. Although our estimator Â is constructed in-
dependently of re, it mimics the behavior of the ideal estimator B̂re and we say
that the bound on ‖XÂ − XA‖2

F adapts to re ≤ r .
The last part of our result is a particular case of the second part, but it is perhaps

easier to interpret. Taking the index k equal to the rank r , the bias term disappears
and the bound reduces to rd2

1 (PE) up to constants. This shows clearly the impor-
tant role played by r in the estimation accuracy: the smaller the rank of A, the
smaller the estimation error.

For Gaussian errors, we have the following precise bounds.

COROLLARY 8. Assume that E has independent N(0, σ 2) entries. Set

pen(B) = (1 + θ)(1 + ξ)2(√
n + √

q
)2

σ 2r(B)

with θ, ξ > 0 arbitrary. Let c(θ) = 1 + 2/θ . Then, we have

P

[
‖XÂ − XA‖2

F ≤ min
1≤k≤min(n,p)

{
c2(θ)

∑
j>k

d2
j (XA) + 2c(θ)μk

}]

≥ 1 − exp
{
−ξ2(n + q)

2

}
and

E[‖XÂ − XA‖2
F ]

≤ min
1≤k≤min(n,p)

[
c2(θ)

∑
j>k

d2
j (XA) + 2(1 − θ)c(θ)(1 + ξ)2σ 2(√

n + √
q
)2

k

]

+ 4(1 + θ)c(θ)min(n,p)σ 2(1 + ξ−1) exp
(−ξ2(n + q)

)
.

PROOF. Recall from the proof of Theorem 7 that

‖XÂ − XA‖2
F ≤ 2 + θ

θ

{
2 + θ

θ
‖XB − XA‖2

F + 2 pen(B) + R

}
with R defined by

R = (1 + θ){r(Â) + r(B)}d2
1 (PE) − pen(Â) − pen(B)

≤ 2(1 + θ) max
1≤k≤min(n,p)

k
{
d2

1 (PE) − (1 + ξ)2(√
n + √

q
)2

σ 2}
.
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For Ẽ = E/σ , a matrix of independent N(0,1) entries, we have

R ≤ 2(1 + θ)σ 2 max
1≤k≤min(n,p)

k
{
d2

1 (PẼ) − (1 + ξ)2(√
n + √

q
)2}

≤ 2 min(n,p)(1 + θ)σ 2(
d2

1 (PẼ) − (1 + ξ)2(√
n + √

q
)2)

+.

Apply Lemma 16 in Appendix D to deduce that

E[R] ≤ 4 min(n,p)
1 + ξ

ξ
(1 + θ)σ 2 exp

(−ξ2(n + q)/2
)
.

The conclusion follows immediately. �

REMARKS. (i) We note that for n + q large,

E[‖XÂ − XA‖2
F ] � min

1≤k≤min(n,p)

[∑
j>k

d2
j (XA) + σ 2(√

n + √
q
)2

k

]

as the remainder term in the bound of E[‖XÂ − XA‖2
F ] in Corollary 8 converges

exponentially fast in n + q , to zero.
(ii) Assuming that E has independent N(0, σ 2) entries, the RSC estimator cor-

responding to the penalty pen(B) = Cσ 2(n1/2 + q1/2)2r(B), for any C > 1, is
minimax adaptive, for matrices X having a restricted isometry property (RIP), of
the type introduced and discussed in Candès and Plan (2010) and Rohde and Tsy-
bakov (2010). The RIP implies that ‖XA‖2

F ≥ ρ‖A‖2
F , for all matrices A of rank

at most r and for some constant 0 < ρ < 1. For fixed design matrices X, this is
equivalent with assuming that the smallest eigenvalue λp(M) of the p × p Gram
matrix M = X′X is larger than ρ. To establish the minimax lower bound for the
mean squared error ‖XÂ−XA‖2

F , notice first that our model (1) can be rewritten as
yi = trace(Z′

iA)+εi , with 1 ≤ i ≤ mn, via the mapping (a, b) → i = a+(b−1)n,
where 1 ≤ a ≤ m, 1 ≤ b ≤ n, yi =: Yab ∈ R and Zi =: X′

aeb ∈ Mp×n. Here
Xa ∈ R

p denotes the ath row of X, eb is the row vector in R
n having the bth com-

ponent equal to 1 and the rest equal to zero, and Mp×n is the space of all p × n

matrices. Then, under RIP, the lower bound follows directly from Theorem 5 in
Rohde and Tsybakov (2010); see also Theorem 2.5 in Candès and Plan (2010) for
minimax lower bounds on ‖Â − A‖2

F .
(iii) The same type of upper bound as the one of Corollary 8 can be proved if

the entries of E are sub-Gaussian: take pen(B) = C(n + q)r(B) for some C large
enough, and invoke Proposition 15 in Appendix C.

(iv) Although the error bounds of ‖XÂ− XA‖F are guaranteed for all X and A,
the analysis of the estimation performance of Â depends on X. If λp(M) ≥ ρ > 0,
for some constant ρ, then, provided μ > (1 + θ)d2

1 (PE) with θ > 0 arbitrary,

‖Â − A‖2
F ≤ c(θ)

λp(M)
min
k≤r

[
c(θ)

∑
j>k

d2
j (XA) + 2μk

]



1294 F. BUNEA, Y. SHE AND M. H. WEGKAMP

follows from Theorem 7.
(v) Our results are slightly more general than stated. In fact, our analysis does

not require that the postulated multivariate linear model Y = XA+E holds exactly.
We denote the expected value of Y by � and write Y = �+E. We denote the pro-
jection of � onto the column space of X by XA, that is, P� = XA. Because mini-
mizing ‖Y −XB‖2

F +μr(B) is equivalent with minimizing ‖PY −XB‖2
F +μr(B)

by Pythagoras’ theorem, our least squares procedure estimates XA, the mean of
PY . The statements of Theorems 2 and 7 remain unchanged, except that XA is the
mean of the projection PY of Y , not the mean of Y itself.

2.4. A data adaptive penalty term. In this section, we construct a data adaptive
penalty term that employs the unbiased estimator

S2 = ‖Y − PY‖2
F /(mn − qn)

of σ 2. Set, for any θ > 0, ξ > 0 and 0 < δ < 1,

pen(B) = 1 + θ

1 − δ
(1 + ξ)2(√

n + √
q
)2

S2r(B).

Notice that the estimator S2 requires that n(m−q) be large, which holds whenever
m � q or m − q ≥ 1 and n is large. The challenging case m = q � p is left for
future research.

THEOREM 9. Assume that E is an m × n matrix with independent N(0, σ 2)

entries. Using the penalty given above we have, for c(θ) = 1 + 2/θ ,

E[‖XÂ − XA‖2
F ]

≤ min
1≤k≤min(n,p)

[
c2(θ)

∑
j>k

d2
j (XA) + 2(1 + θ)c(θ)(1 + ξ)2σ 2(√

n + √
q
)2

k

]

+ 4(1 + θ)c(θ)min(n,p)σ 2(1 + ξ−1) exp
(
−ξ2(n + q)

2

)
+ 4(1 + θ)c(θ)min(n,p)σ 2(

2 + (√
n + √

q
)2 + (√

n + √
q
)√

2π
)

× exp
{
−δ2n(m − q)

4(1 + δ)

}
.

PROOF. Set Ẽ = σ−1E. We have, for any p × n matrix B ,

‖XÂ − XA‖2
F ≤ 2 + θ

θ

[
2 + θ

θ
‖XB − XA‖2

F + 2 pen(B)

]
+ 2

2 + θ

θ
(1 + θ)σ 2

× max
1≤k≤min(n,p)

k

{
d2

1 (PẼ) − (1 + ξ)2(
√

n + √
q)2S2

(1 − δ)σ 2

}
.
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It remains to bound the expected value of

max
k≤min(n,p)

k

{
d2

1 (PẼ) − (1 + ξ)2(√
n + √

q
)2 S2

(1 − δ)σ 2

}

≤ min(n,p)

(
d2

1 (PẼ) − (1 + ξ)2(√
n + √

q
)2 S2

(1 − δ)σ 2

)
+
.

We split the expectation into two parts: S2 ≥ (1 − δ)σ 2 and its complement. We
observe first that

E

[(
d2

1 (PẼ) − (1 + ξ)2(√
n + √

q
)2 S2

(1 − δ)σ 2

)
+

1{S2≥(1−δ)σ 2}
]

≤ E
[(

d2
1 (PẼ) − (1 + ξ)2(√

n + √
q
)2)

+
]

≤ 2(1 + ξ−1)min(n,p) exp
(−ξ

(√
n + √

q
)
/2

)
,

using Lemma 16 for the last inequality. Next, we observe that

E

[(
d2

1 (PẼ) − (1 + ξ)2(√
n + √

q
)2 S2

(1 − δ)σ 2

)
+

1{S2≤(1−δ)σ 2}
]

≤ E
[
d2

1 (PẼ)1{S2≤(1−δ)σ 2}
] = E

[
d2

1 (PẼ)1{‖(I−P)Ẽ‖2
F ≤(1−δ)(nm−nq)}

]
.

Since PẼ and (I − P)Ẽ are independent, and ‖(I − P)Ẽ‖2
F has a χ2

nm−nq distrib-
ution, we find

E

[(
d2

1 (PẼ) − (1 + ξ)2(√
n + √

q
)2 S2

(1 − δ)σ 2

)
+

1{S2≤(1−δ)σ 2}
]

≤ E[d2
1 (PẼ)]P{‖(I − P)Ẽ‖2

F ≤ (1 − δ)(nm − nq)}

≤ ((√
n + √

q
)2 + √

2π
(√

n + √
q
) + 2

)
exp

{
− δ2

4(1 + δ)
n(m − q)

}
,

using Lemmas 16 and 17 in Appendix D for the last inequality. This proves the
result. �

REMARK. We see that for large values of n + q and n(m − q),

E[‖XÂ − XA‖2
F ] � min

1≤k≤min(n,p)

[∑
j>k

d2
j (XA) + σ 2(√

n + √
q
)2

k

]
as the additional terms in the theorem above decrease exponentially fast in n + q

and n(m − q). This bound is similar to the one in Corollary 8, obtained for the
RSC estimator corresponding to the penalty term that employs the theoretical value
of σ 2.
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3. Comparison with nuclear norm penalized estimators. In this section,
we compare our RSC estimator Â with the alternative estimator Ã that minimizes

‖Y − XB‖2
F + 2τ‖B‖1

over all p × n matrices B .

THEOREM 10. On the event d1(X
′E) ≤ τ , we have, for any B ,

‖XÃ − XA‖2
F ≤ ‖XB − XA‖2

F + 4τ‖B‖1.

PROOF. By the definition of Ã,

‖Y − XÃ‖2
F + 2τ‖Ã‖1 ≤ ‖Y − XB‖2

F + 2τ‖B‖1

for all m × n matrices B . Working out the squares, we obtain

‖X̃A − XA‖2
F ≤ ‖XB − XA‖2

F + 2τ‖B‖1 + 2〈X′E, Ã − B〉F − 2τ‖Ã‖1.

Since

〈X′E, Ã − B〉F ≤ ‖X′E‖2‖Ã − B‖1 ≤ τ‖Ã − B‖1

on the event d1(X′E) ≤ τ , we obtain the claim using the triangle inequality. �

We see that Ã balances the bias term ‖XA − XB‖2
F with the penalty term

τ‖B‖1, provided τ > d1(X′E). Since X′E = X′PE +X′(I −P)E = X′PE, we have
d1(X′E) ≤ d1(X)d1(PE). We immediately obtain the following corollary using the
results for d1(PE) of Lemma 3.

COROLLARY 11. Assume that E has independent N(0, σ 2) entries. For

τ = (1 + θ)d1(X)σ
(√

n + √
q
)

with θ > 0 arbitrary, we have

P{‖XÃ − XA‖2
F ≤ ‖XB − XA‖2

F + 4τ‖B‖1} ≥ 1 − exp
{−1

2θ2(n + q)
}
.

The same result, up to constants, can be obtained if the errors Eij are sub-
Gaussian, if we replace σ in the choice of τ above by a suitably large constant C.
The proof of this generalization uses Proposition 15 in Appendix C in lieu of
Lemma 3. The same remark applies for all the results in this section.

The next result obtains an oracle inequality for Ã that resembles the oracle in-
equality for the RSC estimator Â in Theorem 7. We stress the fact that Theorem 12
below requires that λp(X′X) > 0; this was not required for the derivation of the
oracle bound on ‖XÂ− XA‖2

F in Theorem 7, which holds for all X. We denote the
condition number of M = X′X by c0(M) = λ1(M)/λp(M).
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THEOREM 12. Assume that E has independent N(0, σ 2) entries. For

τ = (1 + θ)d1(X)σ
(√

n + √
q
)

with θ > 0 arbitrary, we have

‖XÃ − XA‖2
F � min

k≤r

(
r∑

j=k+1

d2
j (XA) + c0(M)kσ 2(n + q)

)
.

Furthermore,

‖Ã − A‖2
F � c0(M)

r∑
j=k+1

d2
j (A) + c0(M)

λp(M)
kσ 2(n + q).

Both inequalities hold with probability at least 1 − exp(−θ2(n + q)/2). The sym-
bol � means that the inequality holds up to multiplicative numerical constants
(depending on θ ).

To keep the paper self contained, we give a simple proof of this result in Ap-
pendix A. Similar results for the NNP estimator of A in the general model
y = X (A) + ε, where X is a random linear map, have been obtained by Negahban
and Wainwright (2009) and Candès and Plan (2010), each under different sets of
assumptions on X . We refer to Rohde and Tsybakov (2010) for more general re-
sults on Schatten norm penalized estimators of A in the model y = X (A) + ε, and
a very thorough discussion on the assumptions on X under which these results
hold.

Theorem 10 shows that the error bounds of the nuclear norm penalized (NNP)
estimator Ã and the RSC estimator Â are comparable, although it is worth pointing
out that our bounds for Â are much cleaner and obtained under fewer restrictions
on the design matrix. However, there is one aspect in which the two estimators
differ radically: correct rank recovery. We showed in Section 2.2 that the RSC
estimator corresponding to the effective value of the tuning sequence μe has the
correct rank and achieves the optimal bias-variance trade-off. This is also visible
in the left panel of Figure 1 which shows the plots of the MSE and rank of the
RSC estimate as we varied the tuning parameter of the procedure over a large grid.
The numbers on the vertical axis correspond to the range of values of the rank
of the estimator considered in this experiment, 1 to 25. The rank of A is 10. We
notice that for the same range of values of the tuning parameter, RSC has both the
smallest MSE value and the correct rank. We repeated this experiment for the NNP
estimator. The right panel shows that the smallest MSE and the correct rank are not
obtained for the same value of the tuning parameter. Therefore, a different strategy
for correct rank estimation via NNP is in order. Rather than taking the rank of Ã

as the estimator of the rank of A, we consider instead, for M = X′X,

k̃ = max{k :dk(MÃ) > 2τ }.(8)
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FIG. 1. The MSE and rank of the estimators RSC (left) and NNP (right) as a function of the tuning
parameter. The rank estimate and MSE curves are plotted together for a better view of the effect of
tuning on different estimation aspects.

THEOREM 13. Let r = r(A) and assume that dr(MA) > 4τ . Then

P{k̃ 
= r} ≤ P{d1(X
′E) > τ }.

If E has independent N(0, σ 2) entries and τ = (1 + θ)σd1(X)(
√

n + √
q), the

above probability is bounded by exp(−θ2(n + q)/2).

PROOF. After computing the sub-gradient of f (B) = ‖Y − XB‖2
F + 2τ‖B‖1,

we find that Ã is a minimizer of f (B) if and only if there exists a matrix J with
d1(J ) ≤ 1 such that X′X(Ã − A) = X′E + τUJV ′, where Ã = UDV ′ is the full
SVD and U and V are orthonormal matrices. The matrix J is obtained from D by
setting Jii = 0 if Dii = 0 and Jii ≤ 1 if Dii > 0. Therefore,

d1(MÃ − MA) ≤ d1(X
′E) + τ.

From Horn and Johnson [(1985), page 419],

|dk(MÃ) − dk(MA)| ≤ d1(MÃ − MA) ≤ 2τ

for all k, on the event d1(X′E) ≤ τ . This means that dk(MÃ) > 2τ for all k ≤ r and
dk(MÃ) < 2τ for all k > r , since dr(MA) > 4τ and dr+1(MA) = 0. The result now
follows. �

4. Empirical studies.

4.1. RSC vs. NNP. We performed an extensive simulation study to evaluate the
performance of the proposed method, RSC, and compare it with the NNP method.
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The RSC estimator Â was computed via the procedure outlined in Section 2.1.
This method is computationally efficient in large dimensions. Its computational
complexity is the same as that of PCA. Our choice for the tuning parameter μ was
based on our theoretical findings in Section 2. In particular, Corollaries 4 and 8
guarantee good rank selection and prediction performance of RSC provided that
μ is just a little bit larger than σ 2(

√
n + √

q)2. Under the assumption that q < m,
we can estimate σ 2 by S2; see Section 2.4 for details. In our simulations, we used
the adaptive tuning parameter μadap = 2S2(n + q). We experimented with other
constants and found that the constant equal to 2 was optimal; constants slightly
larger than 2 gave very similar results.

We compared the RSC estimator with the NNP estimator Ã and with the pro-
posed trimmed or calibrated NNP estimator, denoted in what follows by NNP(c).
The NNP estimator is the minimizer of the convex criterion ‖Y −XB‖2

F +2τ‖B‖1.

By the equivalent SDP characterization of the NNP-norm given in Fazel (2002),
the original minimization problem is equivalent to the convex optimization prob-
lem

min
B∈Rp×n,W1∈Sn−1,W2∈Sp−1

‖Y − XB‖2
F + τ

(
Tr(W1) + Tr(W2)

)
(9)

s.t.
[
W1 BT

B W2

]
� 0.

Therefore, the NNP estimator can be computed by adapting the general convex op-
timization algorithm SDPT3 [Toh, Todd and Tütüncü (1999)] to (9). Alternatively,
Bregman iterative algorithms can be developed; see Ma, Goldfarb and Chen (2009)
for a detailed description of the main idea. Their code, however, is specifically de-
signed for matrix completion and does not cover the multivariate regression prob-
lem. We implemented this algorithm for the simulation study presented below. The
NNP(c) is our calibration of the NNP estimator, based on Theorem 13. For a given
value of the tuning parameter τ we calculate the NNP estimator Ã and obtain the
rank estimate r̃ from (8). We then calculate the calibrated NNP(c) estimator as the
reduced rank estimator B̂r̃ , with rank equal to r̃ , following the procedure outlined
in Section 2.1.

In our simulation study, we compared the rank selection and the estimation per-
formances of the RSC estimator RSC|adap, corresponding to μadap, with the opti-
mally tuned RSC estimator, and the optimally tuned NNP and NNP(c) estimators.
The last three estimators are called RSC|val, NNP|val and NNP(c)|val. They cor-
respond to those tuning parameters μval, τval and τval, respectively, that gave the
best prediction accuracy, when prediction was evaluated on a very large indepen-
dent validation set. This comparison helps us understand the true potential of each
method in an ideal situation, and allows us to draw a stable performance compar-
ison between the proposed adaptive RSC estimator and the best possible versions
of RSC and NNP.
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We considered the following large sample-size set up and large dimensionality
set up.

EXPERIMENT 1 (m > p). We constructed the matrix of dependent variables
X = [x1, x2, . . . , xm]′ by generating its rows xi as i.i.d. realizations from a multi-
variate normal distribution MVN(0,�), with �jk = ρ|j−k|, ρ > 0, 1 ≤ j, k ≤ p.
The coefficient matrix A = bB0B1, with b > 0, B0 is a p × r matrix and B1
is a r × n matrix. All entries in B0 and B1 are i.i.d. N(0,1). Each row in
Y = [y1, . . . , ym]′ is then generated as yi = x′

iA + Ei , 1 ≤ i ≤ m, with Ei de-
noting the ith row of the noise matrix E which has m × n independent N(0,1)

entries Eij .

EXPERIMENT 2 [p > m(> q)]. The sample size in this experiment is rela-
tively small. X is generated as X0�

1/2, where �jk = ρ|j−k| ∈ R
p×p , X0 = X1X2,

X1 ∈ R
m×q , X2 ∈ R

q×p and all entries of X1,X2 are i.i.d. N(0,1). The coefficient
matrix and the noise matrix are generated in the same way as in Experiment 1.
Since p > m, this is a much more challenging setup than the one considered in
Experiment 1. Note however that q , the rank of X, is required to be strictly less
than m.

Each simulated model is characterized by the following control parameters: m

(sample size), p (number of independent variables), n (number of response vari-
ables), r (rank of A), ρ (design correlation), q (rank of the design) and b (signal
strength). In Experiment 1, we set m = 100, p = 25, n = 25, r = 10, and varied the
correlation coefficient ρ = 0.1,0.5,0.9 and signal strength b = 0.1,0.2,0.3,0.4.
All combinations of correlation and signal strength are covered in the simula-
tions. The results are summarized in Table 1. In Experiment 2, we set m = 20,
p = 100, n = 25, q = 10, r = 5, and varied the correlation ρ = 0.1,0.5,0.9 and
signal strength b = 0.1,0.2,0.3. The corresponding results are reported in Ta-
ble 2. In both tables, MSE(A) and MSE(XA) denote the 40% trimmed-means of
100 · ‖A − B̂‖2

F /(pn) and 100 · ‖XA − XB̂‖2
F /(mn), respectively. We also re-

port the median rank estimates (RE) and the successful rank recovery percentages
(RRP).

Summary of simulation results.

(i) We found that the RSC estimator corresponding to the adaptive choice of
the tuning parameter μadap = 2S2(n + q) has excellent performance. It behaves as
well as the RSC estimator that uses the parameter μ tuned on the large validation
set or the RSC estimator corresponding to the theoretical μ = 2σ 2(n + q).

(ii) When the signal-to-noise ratio SNR := dr(XA)/(
√

q + √
n) is moderate or

high, with values approximately 1, 1.5 and 2, corresponding to b = 0.2,0.3,0.4,
and for low to moderate correlation between the predictors (ρ = 0.1,0.5), RSC has
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TABLE 1
Performance comparisons of Experiment 1, in terms of mean squared errors [MSE(XA),MSE(A)],

median rank estimate (RE), and rank recovery percentage (RRP)

RSC|adap RSC|val NNP|val NNP(c)|val

b = 0.1
ρ = 0.9 MSE(XA), MSE(A) 16.6, 5.3 16.3, 5.2 11.5, 3.0 16.5, 5.3

RE, RRP 6, 0% 6, 0% 12, 0% 6, 0%

ρ = 0.5 MSE(XA), MSE(A) 18.7, 1.4 18.1, 1.4 16.2, 1.1 18.1, 1.4
RE, RRP 8, 0% 9, 40% 16.5, 0% 9, 35%

ρ = 0.1 MSE(XA), MSE(A) 19.3, 1.0 18.0, 0.9 16.9, 0.8 18.0, 0.9
RE, RRP 9, 0% 10, 75% 17, 0% 10, 65%

b = 0.2
ρ = 0.9 MSE(XA), MSE(A) 18.4, 7.0 17.9, 7.1 15.9, 5.4 17.9, 7.1

RE, RRP 8, 0% 9, 20% 16, 0% 9, 15%

ρ = 0.5 MSE(XA), MSE(A) 16.7, 1.3 16.7, 1.3 18.9, 1.5 16.7, 1.3
RE, RRP 10, 100% 10, 100% 19, 0% 10, 100%

ρ = 0.1 MSE(XA), MSE(A) 16.5, 0.9 16.5, 0.9 19.2, 1.0 16.5, 0.9
RE, RRP 10, 100% 10, 100% 18, 0% 10, 100%

b = 0.3
ρ = 0.9 MSE(XA), MSE(A) 17.4, 7.0 17.3, 6.9 17.7, 6.7 17.3, 7.0

RE, RRP 10, 65% 10, 95% 18, 0% 10, 80%

ρ = 0.5 MSE(XA), MSE(A) 16.4, 1.3 16.4, 1.3 19.8, 1.6 16.4, 1.3
RE, RRP 10, 100% 10, 100% 19, 0% 10, 100%

ρ = 0.1 MSE(XA), MSE(A) 16.4, 0.9 16.4, 0.9 19.9, 1.1 16.4, 0.9
RE, RRP 10, 100% 10, 100% 19, 0% 10, 100%

b = 0.4
ρ = 0.9 MSE(XA), MSE(A) 16.8, 6.6 16.8, 6.7 18.7, 7.4 16.8, 6.8

RE, RRP 10, 100% 10, 100% 18, 0% 10, 85%

ρ = 0.5 MSE(XA), MSE(A) 16.3, 1.3 16.3, 1.3 20.3, 1.7 16.3, 1.3
RE, RRP 10, 100% 10, 100% 20, 0% 10, 100%

ρ = 0.1 MSE(XA), MSE(A) 16.3, 0.9 16.3, 0.9 20.3, 1.1 16.3, 0.9
RE, RRP 10, 100% 10, 100% 20, 0% 10, 100%

excellent behavior in terms of rank selection and means squared errors. Interest-
ingly, NNP does not have optimal behavior in this set-up: its mean squared errors
are slightly higher than those of the RSC estimator. When the noise is very large
relative to the signal strength, corresponding to b = 0.1 in Table 1, or when the
correlation between some covariates is very high, ρ = 0.9 in Table 1, NNP may be
slightly more accurate than the RSC.

(iii) The NNP does not recover the correct rank, when its regularization para-
meter is tuned by validation. Both Tables 1 and 2 show that the correct rank r
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TABLE 2
Performance comparisons of Experiment 2, in terms of mean squared errors [MSE(XA),MSE(A)],

median rank estimate (RE), and rank recovery percentage (RRP)

RSC|adap RSC|val NNP|val NNP(c)|val

b = 0.1
ρ = 0.9 MSE(XA), MSE(A) 29.4, 3.9 29.4, 3.9 36.4, 3.9 29.4, 3.9

RE, RRP 5, 100% 5, 100% 10, 0% 5, 100%

ρ = 0.5 MSE(XA), MSE(A) 29.1, 3.9 29.1, 3.9 37.2, 3.9 29.1, 3.9
RE, RRP 5, 100% 5, 100% 10, 0% 5, 100%

ρ = 0.1 MSE(XA), MSE(A) 29.0, 3.9 29.0, 3.9 37.2, 4.0 29.0, 3.9
RE, RRP 5, 100% 5, 100% 10, 0% 5, 100%

b = 0.2
ρ = 0.9 MSE(XA), MSE(A) 28.9, 15.7 28.9, 15.7 38.7, 15.7 28.9, 15.7

RE, RRP 5, 100% 5, 100% 10, 0% 5, 100%

ρ = 0.5 MSE(XA), MSE(A) 28.6, 15.7 28.6, 15.7 39.0, 15.7 28.6, 15.7
RE, RRP 5, 100% 5, 100% 10, 0% 5, 100%

ρ = 0.1 MSE(XA), MSE(A) 28.7, 15.8 28.7, 15.8 38.7, 15.8 28.7, 15.8
RE, RRP 5, 100% 5, 100% 10, 0% 5, 100%

b = 0.3
ρ = 0.9 MSE(XA), MSE(A) 28.8, 35.3 28.8, 35.3 39.2, 35.3 28.8, 35.3

RE, RRP 5, 100% 5, 100% 10, 0% 5, 100%

ρ = 0.5 MSE(XA), MSE(A) 28.5, 35.4 28.5, 35.4 39.5, 35.4 28.5, 35.4
RE, RRP 5, 100% 5, 100% 10, 0% 5, 100%

ρ = 0.1 MSE(XA), MSE(A) 28.6, 35.5 28.6, 35.5 39.3, 35.5 28.6, 35.5
RE, RRP 5, 100% 5, 100% 10, 0% 5, 100%

(r = 10 in Experiment 1 and r = 5 in Experiment 2) is overestimated by NNP. Our
trimmed estimator, NNP(c), provides a successful improvement over NNP in this
respect. This supports Theorem 13.

In additional simulations, we found that, especially for low or moderate SNRs,
the NNP parameter tuning problem is much more challenging than the RSC para-
meter tuning. NNP cannot accurately estimate A and consistently select the rank at
the same time, for the same value of the tuning parameter. This echoes the findings
presented in Figure 1, and is to be expected: in NNP regularization, the thresh-
old value τ also controls the amount of shrinkage, which should be mild for large
samples with relatively low contamination. This is the case for moderate SNR and
moderate correlation between predictors: the tuned τ tends to be too small, so it
cannot introduce enough sparsity. The same continues to be true for slightly larger
values of τ that compensate for high noise level and very high correlation between
predictors. In summary, one may not be able to build an accurate and parsimonious
model via the NNP method, without further adjustments.
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Overall, RSC is recommended over the NNP estimators, especially when we
suspect that the SNR is not very low. With large validation tuning, NNP(c) has the
same properties as RSC – they coincide when both methods select the same rank.
But in general, the rank estimation via NNP(c) is much more difficult to tune and
much more computationally involved than RSC.

For data with low SNR, an immediate extension of the RSC estimator that in-
volves a second penalty term, of ridge-type, may induce the right amount of shrink-
age needed to offset the noise in the data. This conjecture will be investigated
carefully in future research.

4.2. Tightness of the rank consistency results. It can be shown, using argu-
ments similar to those used in the proof of Theorem 2, that

P{k̂ 
= r} ≥ P1 ≡ P
{√

μ ≤ d2r+1(PE) or d1(PE) <
√

μ − dr(XA)
}
.

On the other hand, the proof of Theorem 2 reveals that

P{k̂ 
= r} ≤ P2 ≡ P
{
d1(PE) ≥ min

(√
μ,dr(XA) − √

μ
)}

.

Suppose now that 2μ1/2 < dr(XA) and that r is small. Then P1 equals
P{d2r+1(PE) ≥ √

μ} and is close to P2 = P{d1(PE) ≥ √
μ} for a sparse model.

Of course, if μ is much larger than d2
r (XA), then P2 cannot be small. We use this

observation to argue that, if the goal is consistent rank estimation, then we can
deviate only very little from the requirement 2μ1/2 < dr(XA). This strongly sug-
gests that the sufficient condition given in Corollary 4 for consistent rank selection
is tight. We empirically verified this conjecture for signal-to-noise ratios larger
than 1 by comparing μ1 = d2

r (XA) with μu, the ideal upper bound of that interval
of values of μ that give the correct rank. The value of μu was obtained in the
simulation experiments by searching along solution paths obtained as follows. We
constructed 100 different pairs (X,A) following the simulation design outlined
in the subsection above. Each pair was obtained by varying the signal strength b,
correlation ρ, the rank of A and m,n,p. For each run we computed the solution
path, as in Figure 1 of the previous section. From the solution path we recorded the
upper value of the μ interval for which the correct rank was recovered. We plotted
the resulting (μ1,μu) pairs in Figure 2 and we conclude that the theoretical bound
on μ in Corollary 4 is tight.

APPENDIX A: PROOF OF THEOREM 12

The starting point is the inequality

‖XÃ − XA‖2
F ≤ ‖XB − XA‖2

F + 2τ {‖Ã − B‖1 + ‖B‖1 − ‖Ã‖1}
that holds on the event d1(X′E) ≤ τ . The inequality can be deduced from the proof
of Theorem 10. Then, by Lemmas 3.4 and 2.3 in Recht, Fazel and Parrilo (2010)
there exist two matrices Ã1 and Ã2 such that:
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FIG. 2. Tightness of the consistency condition.

(i) Ã = Ã1 + Ã2,
(ii) r(Ã1) ≤ 2r(B),

(iii) ‖Ã − B‖1 = ‖Ã1 − B‖1 + ‖Ã2‖1,
(iv) ‖Ã − B‖2

F = ‖Ã1 − B‖2
F + ‖Ã2‖2

F ≥ ‖Ã1 − B‖2
F ,

(v) ‖Ã‖1 = ‖Ã1‖1 + ‖Ã2‖1.

Using the display above, we find

‖XÃ − XA‖2
F

≤ ‖XB − XA‖2
F + 2τ {‖Ã1 − B‖1 + ‖Ã2‖1 + ‖B‖1 − ‖Ã1‖1 − ‖Ã2‖1}

by (i), (iii) and (v)

≤ ‖XB − XA‖2
F + 4τ‖Ã1 − B‖1

≤ ‖XB − XA‖2
F + 4τ

√
r(Ã1 − B)‖Ã1 − B‖F by Cauchy–Schwarz

≤ ‖XB − XA‖2
F + 4τ

√
3r(B)‖Ã − B‖F by (ii) and (iv).

Using λp(M)‖Ã − B‖2
F ≤ ‖XÃ − XB‖2

F and 2xy ≤ x2/2 + 2y2, we obtain

1
2‖XÃ − XA‖2

F ≤ 3
2‖XB − XA‖2

F + 24τ 2r(B)/λp(M).

The proof is complete by choosing the truncated GSVD B ′ under metric M , see
Lemma 14 below.
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APPENDIX B: GENERALIZED SINGULAR VALUE DECOMPOSITION

We consider the functional

G(B) = ‖XB0 − XB‖2
F = tr

(
(B − B0)

′M(B − B0)
)

with M = X′X = NN and B0 is a fixed p × n matrix of rank r . By the Eckhart–
Young theorem, we have the lower bound

G(B) ≥ ∑
j>k

d2
j (XB0)

for all p × n matrices B of rank k. We now show that this infimum is achieved
by the generalized singular value decomposition (GSVD) under metric M , limited
to its k largest generalized singular values. Following Takane and Hunter [(2001),
pages 399–400], the GSVD of B0 under metric M is UDV ′ where U is an p × r

matrix, U ′MU = Ir , V is an n × r matrix, V ′V = Ir and D is a diagonal r × r

matrix, and NB0 = NUDV ′. It can be computed via the (regular) SVD ŪD̄V̄ ′
of NB0. It is easy to verify that the choices U = N−Ū , where N− is the Moore–
Penrose inverse of N , D = D̄ and V = V̄ satisfy the above conditions. This means
in particular that the generalized singular values dj are the regular singular values
of NB0. Let Bk = UkDkV

′
k by retaining as usual the first k columns of U and V .

LEMMA 14. Let Bk be the GSVD of B0 under metric M , restricted to the k

largest generalized singular values. We have

‖XB0 − XBk‖2
F = ∑

j>k

d2
j (XB0).

PROOF. Since NB0 = NUDV ′ and NBk = NUkDkV
′
k , we obtain

� = NB0 − NBk = N
∑
j>k

ujv
′
j dj = NU(k)D(k)V

′
(k)

using the notation U(k) for the p × (r − k) matrix consisting of the last r − k

column vectors of U , D(k) is the diagonal (r − k) × (r − k) matrix based on the
last r − k singular values, and V(k) for the n × (r − k) matrix consisting of the last
r − k column vectors of V . Finally,

‖XB0 − XBk‖2
F = ‖�‖2

F = ∥∥NU(k)D(k)V
′
(k)

∥∥2
F

= tr
(
V(k)D(k)U

′
(k)MU(k)D(k)V

′
(k)

)
= tr

(
V(k)D(k)I(k)D(k)V

′
(k)

) = tr
(
D2

(k)

) = ∑
j>k

d2
j .

Recall that in the construction of the GSVD, the generalized singular values dj are
the singular values of NB0. Since

d2
j (NB0) = λj (B

′
0MB0) = λj (B

′
0X

′XB0) = d2
j (XB0),

the claim follows. �
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REMARK. The rank restricted estimator B̂k given in Section 2.1 is the GSVD
of the least squares estimator B̂ under the metric M = X′X, see Takane and Hwang
(2007).

APPENDIX C: LARGEST SINGULAR VALUES OF TRANSFORMATIONS
OF SUB-GAUSSIAN MATRICES

We call a random variable W sub-Gaussian with sub-Gaussian moment 	W , if

E[exp(tW)] ≤ exp(t2/	W)

for all t > 0. Markov’s inequality implies that W has Gaussian type tails:

P{|W | > t} ≤ 2 exp{−t2/(2	W)}
holds for any t > 0. Normal N(0, σ 2) random variables are sub-Gaussian with
	W = σ 2. General results on the largest singular values of matrices E with sub-
Gaussian entries can be found in the survey paper by Rudelson and Vershynin
(2010). The analysis of our estimators require bounds for the largest singular val-
ues of PE and X′E, for which the standard results on E do not apply directly.

PROPOSITION 15. Let E be a m × n matrix with independent sub-Gaussian
entries Eij with sub-Gaussian moment 	E . Let X be an m × p matrix of rank q

and let P = X(X′X)−X′ be the projection matrix on R[X]. Then, for each x > 0,

P
{
d2

1 (PE) ≥ 32	E

(
(n + q) ln(5) + x

)} ≤ 2 exp(−x).

In particular,

E[d1(PE)] ≤ 15	E

√
n + q.

PROOF. Let Sn−1 be the unit sphere in R
n. First, we note that

‖PE‖2 = sup
u∈Sp−1,v∈Sn−1

〈Pu,Ev〉 = sup
u∈U,v∈Sn−1

〈u,Ev〉

with U = PSp−1 = {u = Ps : s ∈ Sp−1}. Let M be a δ-net of U and N be a δ-net
for Sn−1 with δ = 1/2. Since the dimension of U is q and ‖u‖ ≤ 1 for each u ∈ U ,
we need at most 5q elements in M to cover U and 5n elements to cover Sn−1,
see Kolmogorov and Tihomirov (1961). A standard discretization trick, see, for
instance, Rudelson and Vershynin [(2010), proof of Proposition 2.4], gives

‖PE‖2 ≤ 4 max
u∈M,v∈N

〈u,Ev〉.
Next, we write 〈u,Ev〉 = ∑m

i=1 ui〈Ei, v〉 and note that each 〈Ei, v〉 is sub-
Gaussian with moment 	E , as

E[exp(t〈Ei, v〉)] =
n∏

j=1

E[exp(tvjEij )] ≤ exp
(
t2

∑
j

v2
j /	E

)
= exp(t2/	E).
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It follows that each term in
∑m

i=1 ui〈Ei, v〉 is sub-Gaussian, and 〈u,Ev〉 is sub-
Gaussian with sub-Gaussian moment 	E

∑m
i=1 u2

i = 	E . This implies the tail
bound

P{|〈u,Ev〉| > t} ≤ 2 exp{−t2/(2	E)}
for each fixed u and v and all t > 0. Combining the previous two steps, we obtain

P{‖PE‖2 ≥ 4t} ≤ 5n+q2 exp{−t2/(2	E)}
for all t > 0. Taking t2 = 2{ln(5)(n + q) + x}	E , we obtain the first claim. The
second claim follows from this tail bound. �

APPENDIX D: AUXILIARY RESULTS

LEMMA 16. Let X be a nonnegative random variable with E[X] = μ and
P{X − μ ≥ t} ≤ exp(−t2/2) for all t ≥ 0. Then we have

E[X2] ≤ μ2 + μ
√

2π + 2.

Moreover, for any ξ > 0, we have

E
[(

X2 − (1 + ξ)2μ2)
+

] ≤ 2(1 + ξ−1) exp(−ξ2μ2/2).

PROOF. The following string of inequalities are self-evident:

E[X2] =
∫ ∞

0
P{X2 ≥ x}dx ≤ μ2 +

∫ ∞
μ

2xP{X ≥ x}dx

≤ μ2 +
∫ ∞

0
2(x + μ) exp

(
−1

2
x2

)
dx = μ2 + μ

√
2π + 2.

This proves our first claim. The second claim is easily deduced as follows:

E
[(

X2 − (1 + ξ)2μ2)
+

] ≤ E
[
X21{X≥(1+ξ)μ}

] =
∫ ∞
(1+ξ)μ

2tP{X ≥ t}dt

≤ (1 + ξ−1)

∫ ∞
ξμ

2t exp(−t2/2)dt

= 2(1 + ξ−1) exp(−ξ2μ2/2).

The proof of the lemma is complete. �

LEMMA 17. Let Zd be a χ2
d random variable with d degrees of freedom. Then

P
{
Zd − d ≤ −x

√
2d

} ≤ exp
(
− x2

2 + 2x
√

2/d

)
.

In particular, for any 0 < t < 1,

P{Zd ≤ (1 − t)d} ≤ exp{−t2d/4(1 + t)}.
PROOF. See Cavalier et al. [(2002), page 857] for the first claim. The second

claim follows by taking x = t (d/2)1/2. �
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