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HIGHER ORDER SCRAMBLED DIGITAL NETS ACHIEVE THE
OPTIMAL RATE OF THE ROOT MEAN SQUARE ERROR

FOR SMOOTH INTEGRANDS

BY JOSEF DICK1

University of New South Wales

We study a random sampling technique to approximate integrals∫
[0,1]s f (x)dx by averaging the function at some sampling points. We fo-

cus on cases where the integrand is smooth, which is a problem which occurs
in statistics.

The convergence rate of the approximation error depends on the smooth-
ness of the function f and the sampling technique. For instance, Monte
Carlo (MC) sampling yields a convergence of the root mean square error
(RMSE) of order N−1/2 (where N is the number of samples) for functions
f with finite variance. Randomized QMC (RQMC), a combination of MC
and quasi-Monte Carlo (QMC), achieves a RMSE of order N−3/2+ε under
the stronger assumption that the integrand has bounded variation. A combi-
nation of RQMC with local antithetic sampling achieves a convergence of the
RMSE of order N−3/2−1/s+ε (where s ≥ 1 is the dimension) for functions
with mixed partial derivatives up to order two.

Additional smoothness of the integrand does not improve the rate of con-
vergence of these algorithms in general. On the other hand, it is known that
without additional smoothness of the integrand it is not possible to improve
the convergence rate.

This paper introduces a new RQMC algorithm, for which we prove that
it achieves a convergence of the root mean square error (RMSE) of order
N−α−1/2+ε provided the integrand satisfies the strong assumption that it has
square integrable partial mixed derivatives up to order α > 1 in each variable.
Known lower bounds on the RMSE show that this rate of convergence cannot
be improved in general for integrands with this smoothness. We provide nu-
merical examples for which the RMSE converges approximately with order
N−5/2 and N−7/2, in accordance with the theoretical upper bound.

1. Introduction. In this paper, we introduce a random sampling technique
to approximate multivariate integrals where the integrand is smooth. Such prob-
lems appear in statistics, for instance in maximum likelyhood estimations involv-
ing smooth density functions.

We consider the standardized problem of approximating the integral over the
unit cube,

∫
[0,1]s f (x)dx, that is, we assume that any transformations necessary
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to change from different domains and density functions have already been carried
out. The error of approximating the integral depends on the smoothness of the
integrand f and the sampling technique. It is known that the best possible rate
of convergence for any algorithm for the worst-case error is of order N−α+ε and
for the root mean square error is of order N−α−1/2+ε for functions with square
integrable partial mixed derivatives of order α in each variable (here ε > 0 is used
to hide powers of logN factors and can therefore be arbitrarily small and even
0 for the case α = 0). This means that improved rates of convergence can only
be achieved if the integrand satisfies additional smoothness assumptions. On the
other hand, if an integrand has additional smoothness, not every algorithm yields
an improved rate of convergence.

In many instances, algorithms which achieve the best possible rate of conver-
gence for integrands with a given smoothness are known. For example, Monte
Carlo (MC) algorithms use i.i.d. uniformly distributed samples x1, . . . ,xN ∈
[0,1]s to approximate the integral by 1

N

∑N
n=1 f (xn). For functions f ∈ L2([0,1]s)

the Monte Carlo method has a root mean square error (RMSE) of O(N−1/2). An
alternative to Monte Carlo is quasi-Monte Carlo (QMC). In this method, one de-
signs sample points which are more uniformly distribution with respect to some
criterion (in one dimension this criterion is the Kolmogorov–Smirnov distance be-
tween the uniform distribution and the sample point distribution). These achieve a
worst case error which decays with O(N−1+ε) for any ε > 0 for integrands with
bounded variation; see [6]. Owen [14–16] introduced a randomization of QMC
which achieves a RMSE of O(N−3/2+ε), again for functions of bounded variation.
Owen’s randomization method uses a permutation applied to digital nets (which is
a construction scheme for sample points used in quasi-Monte Carlo) called scram-
bling. These algorithms achieve the optimal rate of convergence for the class of
functions mentioned above.

A slight improvement of Owen’s scrambling method of digital nets can be ob-
tained by combining this approach with local antithetic sampling; see [18]. Therein
it was shown that one obtains a convergence of the RMSE of O(N−3/2−1/s+ε) (s is
the dimension of the domain). The latter method requires that the function f has
continuous partial mixed derivatives up to order 2 in each coordinate (note that the
last method is not optimal for integrands with this smoothness).

Using the above mentioned algorithms, no further improvement on the rate of
convergence is obtained when one assumes that the integrand has square integrable
partial mixed derivatives of order α > 1 in each variable. Thus, these algorithms
are not optimal for integrands with additional smoothness.

In this paper, we introduce a randomization of quasi-Monte Carlo algorithms
(which use digital nets as quadrature points) such that the RMSE converges with
O(N−α−1/2+ε) (for any ε > 0) if the integrand has square integrable partial mixed
derivatives up to order α in each variable. This result holds for any α > 0 and
it is known that this result is best possible; see [13]. Notice that it is necessary,
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in general and thus also for our algorithm, for the integrand to have additional
smoothness to achieve this rate of convergence.

For the reader familiar with scrambled digital nets, we briefly describe the al-
gorithm. The details on scrambled digital nets will be given in the next section.

1.1. The algorithm. The underlying idea of the new randomized QMC algo-
rithm stems from [3, 4]. Central to this method is the digit interlacing function with
interlacing factor d ∈ N given by

Dd : [0,1)d → [0,1),

(x1, . . . , xd) �→
∞∑

a=1

d∑
r=1

ξr,ab
−r−(a−1)d ,

where xr = ξr,1b
−1 + ξr,2b

−2 + · · · for 1 ≤ r ≤ d . We also define this function for
vectors by setting

Dd : [0,1)ds → [0,1)s,

(x1, . . . , xds) �→ (
Dd(x1, . . . , xd), . . . ,Dd

(
x(s−1)d+1, . . . , xsd

))
.

Let x0, . . . ,xbm−1 ∈ [0,1)ds be a randomly scrambled digital (t,m,ds) net over
the finite field Zb of prime order b (we present the theoretical background on
scrambled digital nets in the next section). Then one simply uses the sample points

yn = Dd(xn) ∈ [0,1)s for 0 ≤ n < bm.

The integral is then estimated using

Î (f ) = 1

bm

bm−1∑
n=0

f (yn).

In Theorem 10, we show that if the integrand has square integrable partial mixed
derivatives of order α ≥ 1 in each variable, then the variance of Î (f ) satisfies

Var[Î (f )] = O
(
N−2 min(d,α)−1+ε)

for any ε > 0, where N = bm is the number of sample points.
Since scrambled digital nets (based on Sobol points) are included in the

statistics toolbox of Matlab, this method is very easy to implement (an imple-
mentation can be found at http://quasirandomideas.wordpress.com/2010/07/08/
higher-order-scrambling).

1.2. Numerical results. Before we introduce the theoretical background, we
present some simple numerical results which verify the convergence results.

http://quasirandomideas.wordpress.com/2010/07/08/higher-order-scrambling
http://quasirandomideas.wordpress.com/2010/07/08/higher-order-scrambling
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FIG. 1. The lines marked by “+” show N−3/2 and the standard deviation where d = 1, the lines
marked by “◦” show N−5/2 and the standard deviation where d = 2 and the lines marked by “∗”
show N−7/2 and the standard deviation where d = 3.

EXAMPLE 1. In this example, the dimension is 1 and the integrand is given by
f (x) = xex . Figure 1 shows the RMSE from 300 independent replications. Here,
the straight lines show the functions N−3/2, N−5/2 and N−7/2. The other lines are
the RMSE where the digit interlacing factor d is given by 1 for the upper dashed
line, 2 for the dashed line in the middle and 3 for the lowest of the dashed lines.
Figure 1 shows that in each case the RMSE converges approximately with order
N−d−1/2 (for large enough N ). (The result for d = 1 appears to perform even
better than N−3/2.)

EXAMPLE 2. We consider now a two-dimensional example where the inte-
grand is given by f (x, y) = yexy

e−2 . This function was also used in [18] where the
sample points are obtained by scrambling and local antithetic sampling.

Figure 2 shows again the RMSE for 300 independent replications. The straight
lines show the functions N−3/2 and N−5/2. The two dashed lines show the RMSE
when d = 1 (upper dashed line) and when d = 2 (lower dashed line). Figure 2
shows that in each case the RMSE converges approximately with order N−d−1/2

(for large enough N ).
In the following section, we give the necessary background on QMC, digital

nets, scrambling and Walsh functions. We then prove in Section 3 what can be
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FIG. 2. The lines marked by “+” show N−3/2 and the standard deviation where d = 1, the lines
marked by “◦” show N−5/2 and the standard deviation where d = 2.

observed from the numerical results, namely, that if the integrand has square inte-
grable partial mixed derivatives of order α in each variable, then we obtain a con-
vergence of the RMSE of O(N−min(α,d)−1/2+ε) for any ε > 0. A short discussion
of the results is presented in Section 4. Some properties of the digit interlacing
function Dd necessary for the proof is presented in Appendix A and a technical
proof on the convergence of the Walsh coefficients is presented in Appendix B.

2. Background and notation. In this section, we give the necessary back-
ground on QMC methods. Some notation is required, which we now present.
Here, c,C > 0 stand for generic constants which may differ in different places.
Throughout the paper, we assume that b ≥ 2 is a prime number. We always
have k = (k1, . . . , ks), k′ = (k′

1, . . . , k
′
s), x = (x1, . . . , xs), y = (y1, . . . , ys), xn =

(xn,1, . . . , xn,s), yn = (yn,1, . . . , yn,s).

2.1. Quasi-Monte Carlo. QMC algorithms Î (f ) = 1
N

∑N−1
n=0 f (xn) are used

to approximate integrals I (f ) = ∫
[0,1]s f (x)dx. The difference to Monte Carlo is

the method by which the sample points x0, . . . ,xN−1 ∈ [0,1)s are chosen. The aim
of QMC is to chose those points such that the integration error∣∣∣∣∣

∫
[0,1]s

f (x)dx − 1

N

N−1∑
n=0

f (xn)

∣∣∣∣∣
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achieves the (almost) optimal rate of convergence as N → ∞ for a class of func-
tions f : [0,1]s → R. For instance, for the set of all such functions f which
have bounded variation in the sense of Hardy and Krause, which we write as
‖f ‖HK < ∞, it is known that the best rate of convergence for the worst case error
is

e = sup
f,‖f ‖HK<∞

∣∣∣∣∣
∫
[0,1]s

f (x)dx − 1

N

N−1∑
n=0

f (xn)

∣∣∣∣∣ � N−1+ε for all ε > 0.

(More precisely, there are constants c,C > 0 such that cN−1(logN)(s−1)/2 ≤ e ≤
CN−1(logN)s−1; see [6].)

Choosing the points x0, . . . ,xN−1 ∈ [0,1)s i.i.d. uniformly distributed as in MC
does not yield this rate of convergence. Even if a function has bounded variation
in the sense of Hardy and Krause one obtains only a convergence of order N−1/2

for i.i.d. uniformly distributed sample points.
There is an explicit construction of the sample points x0, . . . ,xN−1 for which the

optimal rate of convergence is achieved. The essential insight is that the quadrature
points need to be more uniformly distributed than what one obtains by choosing
the sample points by chance. One criterion for how uniformly a set of points PN =
{x0, . . . ,xN−1} is distributed is the star discrepancy

D∗
N(PN) = sup

z∈[0,1]s

∣∣∣∣∣ 1

N

N−1∑
n=0

1xi∈[0,z) − Vol([0, z))

∣∣∣∣∣,
where [0, z) = ∏s

i=1[0, zi) with z = (z1, . . . , zs), Vol([0, z)) = ∏s
i=1 zi , the vol-

ume of [0, z) and

1xi∈[0,z) =
{

1, if xi ∈ [0, z),
0, otherwise.

When s = 1, this becomes the Kolmogorov–Smirnov distance between the empir-
ical distribution of the points and the uniform distribution. Further, we call

δPN
(z) = 1

N

N−1∑
n=0

1xi∈[0,z) − Vol([0, z))

the local discrepancy (of PN ).
The connection of this criterion to the integration error is given by the Koksma–

Hlawka inequality∣∣∣∣∣
∫
[0,1]s

f (x)dx − 1

N

N−1∑
n=0

f (xn)

∣∣∣∣∣ ≤ D∗
N(PN)‖f ‖HK.

An explicit construction of point sets PN = {x0, . . . ,xN−1} ∈ [0,1)s for which
D∗

N(PN) ≤ CN−1(logN)s−1 is given by the concept of digital nets, which we
introduce in the next subsection. Notice that for such a point set, the Koksma–
Hlawka inequality implies the optimal rate of convergence of the integration error,
since for a given integrand, the variation ‖f ‖HK does not depend on PN and N .



1378 J. DICK

2.2. Digital nets. We introduce the basic ideas of digital nets in the following.
A comprehensive introduction to digital nets can be found in [6, 12]. The aim is to
construct a point set PN = {x0, . . . ,xN−1} such that the star discrepancy satisfies
D∗

N(PN) ≤ CN−1(logN)s−1. To do so, we discretize the problem by choosing
the point set PN such that the local discrepancy δPN

(z) = 0 for certain z ∈ [0,1]s
(those z in turn are chosen such that the star discrepancy of PN is small, as we
explain below).

It turns out that, when one chooses a base b ≥ 2 and N = bm, then for every
natural number m there exist point sets Pbm = {x0, . . . ,xbm−1} such that δPbm (z) =
0 for all z = (z1, . . . , zs) of the form

zi = ai

bdi
for 1 ≤ i ≤ s,

where 0 < ai ≤ bdi is an integer and d1 + · · · + ds ≤ m − t with d1, . . . , ds ≥ 0.
Crucially, the value of t can be chosen independently of m (but dependent on s).
A point set PN which satisfies this property is called a (t,m, s)-net in base b. An
equivalent description of (t,m, s)-nets in base b is given in the following defini-
tion.

DEFINITION 1. Let b ≥ 2, m,s ≥ 1 and t ≥ 0 be integers. A point set Pbm =
{x0, . . . ,xbm−1} ⊂ [0,1)s is called a (t,m, s)-net in base b, if for all nonnegative
integers d1, . . . , ds with d1 + · · · + ds = m − t , the elementary interval

s∏
i=1

[
ai

bdi
,
ai + 1

bdi

)
contains exactly bt points of Pbm for all integers 0 ≤ ai < bdi .

It can be shown that a (t,m, s)-net in base b satisfies

D∗
N(PN) ≤ C

ms−1

bm−1 ;
see [6, 12] for details. Explicit constructions of (t,m, s)-nets can be obtained using
the digital construction scheme. Such point sets are then called digital nets [or
digital (t,m, s)-nets if the point set is a (t,m, s)-net].

To describe the digital construction scheme, let b be a prime number and let Zb

be the finite field of order b (a prime power and the finite field Fb could be used
as well). Let C1, . . . ,Cs ∈ Z

dm×m
b be s matrices of size dm × m with elements in

Zb and d ∈ N. The ith coordinate xn,i of the nth point xn = (xn,1, . . . , xn,s) of the
digital net is obtained in the following way. For 0 ≤ n < bm let n = n0 + n1b +
· · · + nm−1b

m−1 be the base b representation of n. Let �n = (n0, . . . , nm−1)
� ∈ Z

m
b

denote the vector of digits of n. Then let

�yn,i = Ci �n.
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For �yn,i = (yn,i,1, . . . , yn,i,dm)� ∈ Z
dm
b , we set

xn,i = yn,i,1

b
+ · · · + yn,i,dm

bdm
.

The construction described here is slightly more general to the classical con-
cept to suit our needs (the classical construction scheme uses d = 1). In this
framework, we have that if {x0, . . . ,xbm−1} is a digital (t,m,ds)-net, then
{Dd(x0), . . . ,Dd(xbm−1)} is a digital (t,m, s)-net; see [5], Proposition 1.

The search for (t,m, s)-nets has now been reduced to finding suitable matrices
C1, . . . ,Cs . Explicit constructions of such matrices are available; see [6, 12].

2.3. Walsh functions. To analyze the RMSE, we use the Walsh series expan-
sions of the integrands. In this subsection, we recall some basic properties of Walsh
functions used in this paper. First, we give the definition for the one-dimensional
case.

DEFINITION 2. Let b ≥ 2 be an integer and represent k ∈ N0 in base b, k =
κa−1b

a−1 + · · · + κ0, with κi ∈ {0, . . . , b − 1}. Further let ωb = e2πi/b. Then the
kth Walsh function bwalk : [0,1) → {1,ωb, . . . ,ω

b−1
b } in base b is given by

bwalk(x) = ω
x1κ0+···+xaκa−1
b

for x ∈ [0,1) with base b representation x = x1b
−1 + x2b

−2 + · · · (unique in the
sense that infinitely many of the xi are different from b − 1).

We now extend this definition to the multi-dimensional case.

DEFINITION 3. For dimension s ≥ 2, x = (x1, . . . , xs) ∈ [0,1)s and k =
(k1, . . . , ks) ∈ N

s
0, we define bwalk : [0,1)s → {1,ωb, . . . ,ω

b−1
b } by

bwalk(x) =
s∏

j=1
bwalkj

(xj ).

As can be seen from the definition, Walsh functions are piecewise constant. For
b = 2, they are also related to Haar functions.

We need some notation to introduce some further properties of Walsh functions.
By ⊕, we denote the digitwise addition modulo b, that is, for x, y ∈ [0,1) with base
b expansions x = ∑∞

i=1 xib
−i and y = ∑∞

i=1 yib
−i , we define

x ⊕ y =
∞∑
i=1

zib
−i ,

where zi ∈ {0, . . . , b − 1} is given by zi ≡ xi + yi(modb), and let � denote the
digitwise subtraction modulo b. In the same manner, we also define a digitwise
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addition and digitwise subtraction for nonnegative integers based on the b-adic
expansion. For vectors in [0,1)s or N

s
0, the operators ⊕ and � are carried out

componentwise. Throughout this paper, we always use base b for the operations ⊕
and �. Further we call x ∈ [0,1) a b-adic rational if it can be written in a finite base
b expansion. In the following proposition, we summarize some basic properties of
Walsh functions.

PROPOSITION 4.

1. For all k, l ∈ N0 and all x, y ∈ [0,1), with the restriction that if x, y are not
q-adic rationals, then x ⊕ y is not allowed to be a b-adic rational, we have

bwalk(x) · bwall(x) = walk⊕l(x), bwalk(x) · bwalk(y) = bwalk(x ⊕ y).

2. We have∫ 1

0
bwal0(x)dx = 1 and

∫ 1

0
bwalk(x)dx = 0 if k > 0.

3. For all k, l ∈ N
s
0, we have the following orthogonality properties:∫
[0,1)s

bwalk(x)bwall(x)dx =
{

1, if k = l,
0, otherwise.

4. For any f ∈ L2([0,1)s) and any σ ∈ [0,1)s , we have∫
[0,1)s

f (x ⊕ σ )dx =
∫
[0,1)s

f (x)dx.

5. For s ∈ N, the system {bwalk : k = (k1, . . . , ks), k1, . . . , ks ≥ 0} is a complete
orthonormal system in L2([0,1]s).
The proofs of 1–3 are straightforward, and for a proof of the remaining items

see [2] or [6, 20] for more information.
Let d ≥ 1 and k1, . . . , kd ∈ N0. Let ki = κi,0 + κi,1b + · · ·, where κi,a ∈

{0, . . . , b − 1} and κi,a = 0 for a large enough. To analyze the RMSE, it is conve-
nient to define a digit interlacing function Ed for natural numbers, that is,

Ed : Nd → N,

(k1, . . . , kd) �→
∞∑

a=0

d∑
r=1

κr,ab
r−1+ad .

We also extend this function to vectors

Ed : Nds → N
s,

(k1, . . . , kds) �→ (
Ed(k1, . . . , kd), . . . ,Ed

(
kd(s−1)+1, . . . , kds

))
.

Then we have

bwalEd (k1,...,kd )(Dd(x1, . . . , xd)) =
d∏

i=1
bwalki

(xi).
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2.4. Scrambling. The scrambling algorithm which yields the optimal rate of
convergence of the RMSE uses the digit interlacing function and the scrambling
introduced by Owen [14–16], which we describe in the following.

2.4.1. Owen’s scrambling. Owen’s scrambling algorithm is easiest described
for some generic point x ∈ [0,1)s , with x = (x1, . . . , xs) and xi = ξi,1b

−1 +
ξi,2b

−2 + · · ·. The scrambled point shall be denoted by y ∈ [0,1)s , where y =
(y1, . . . , ys) and yi = ηi,1b

−1 + ηi,2b
−2 + · · ·. The point y is obtained by apply-

ing permutations to each digit of each coordinate of x. The permutation applied to
ξi,l depends on ξi,k for 1 ≤ k < l. Specifically, ηi,1 = πi(ξi,1), ηi,2 = πi,ξi,1(ξi,2),
ηi,3 = πi,ξi,1,ξi,2(ξi,3), and in general

ηi,k = πi,ξi,1,...,ξi,k−1(ξi,k),(2.1)

where πi,ξi,1,...,ξi,k−1 is a random permutation of {0, . . . , b − 1}. We assume that
permutations with different indices are chosen mutually independent from each
other and that each permutation is chosen with the same probability.

To describe Owen’s scrambling, for 1 ≤ i ≤ s let


i = {
πi,ξi,1,...ξi,k−1 :k ∈ N, ξi,1, . . . , ξi,k−1 ∈ {0, . . . , b − 1}},

where for k = 1 we set πi,ξi,1,...,ξi,k−1 = πi , be a given set of permutations and let
� = (
1, . . . ,
s). Then, when applying Owen’s scrambling using these permuta-
tions to some point x ∈ [0,1)s , we write y = �(x), where y is the point obtained by
applying Owen’s scrambling to x using the set of permutations � = (
1, . . . ,
s).
For x ∈ [0,1) we drop the subscript i and just write y = 
(x).

2.4.2. Owen’s scrambling of order d . To analyze the RMSE it is also conve-
nient to generalize Owen’s scrambling to higher order. We now describe what we
mean by Owen’s scrambling of order d ≥ 1 for a generic point x ∈ [0,1)s . The
scrambled point y ∈ [0,1)s is given by

y = Dd(�(D−1
d (x))),

that is, one applies the inverse mapping D−1
d (see Appendix A for more informa-

tion on Dd ) to the point x to obtain a point z ∈ [0,1)ds , applies Owen’s scrambling
of Section 2.4.1 to z to obtain a point w = �(z) ∈ [0,1)ds and then use the trans-
formation Dd to obtain the point y = Dd(w) ∈ [0,1)s . Assuming that the permuta-
tions are all chosen with equal probability, then the point y is uniformly distributed
in [0,1)s .

PROPOSITION 5. Let x ∈ [0,1)s and let � be a uniformly and i.i.d. set of
permutations. Then Dd(�(D−1

d (x))) is uniformly distributed in [0,1)s , that is, for
any Lebesgue measurable set G ⊆ [0,1)s , the probability that Dd(�(D−1

d (x))),
denoted by Prob[Dd(�(D−1

d (x)))] = λs(G), where λs denotes the s-dimensional
Lebesgue measure.

This result follows along the same lines as the proof of [14], Proposition 2.
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2.4.3. Owen’s lemma of order d . A key result on scrambled nets is Owen’s
lemma (see [15]) which we now generalize to include the case of scrambling of
order d . Let k ∈ N have base b representation k = κ0 + κ1b + · · · + κab

a . For
0 ≤ r < d let

kr = κrb
r + κr+dbr+d + · · · + κar b

ar ,

where ar ≤ a is the largest integer such that d divides ar − r . If a < r , we set kr =
0. For x = ξ1b

−1 + ξ2b
−2 +· · · and x′ = ξ ′

1b
−1 + ξ ′

2b
−2 +· · · and for 0 ≤ r < d let

βr be the largest integer such that ξr = ξ ′
r , ξr+d = ξ ′

r+d, . . . , ξr+βrd = ξ ′
r+βrd

and
ξr+(βr+1)d �= ξ ′

r+(βr+1)d .

LEMMA 6. Let y, y′ ∈ [0,1) be two points obtained by applying Owen’s
scrambling algorithm of order d ≥ 1 to the points x, x ′ ∈ [0,1).

(i) If k �= k′, then

E[bwalk(y)bwalk′(y′)] = 0.

(ii) If k = k′ and there exists an 0 ≤ r < d such that kr ≥ bβr+1, then

E[bwalk(y � y′)] = 0.

(iii) If k = k′ and kr < bβr+1 for 0 ≤ r < d , then

E[bwalk(y � y′)] = (1 − b)−v,

where

v = |{0 ≤ r < d :bβr ≤ kr < bβr+1}|.
The proof of this result follows immediately from [6], Lemma 13.23. In the next

section, we analyze the variance of the estimator Î (f ) = 1
bm

∑bm−1
n=0 f (yn).

3. Variance of the estimator. Let f ∈ L2([0,1]s) have the following Walsh
series expansion

f (x) ∼ ∑
k∈N

s
0

f̂ (k)bwalk(x) =: S(x, f ).(3.1)

Although we do not necessarily have equality in (3.1), the completeness of the
Walsh function system {bwalk : k ∈ N

s
0} (see [6]) implies that we do have

Var[f ] = ∑
k∈N

s
0

|f̂ (k)|2 = Var[S(·, f )].(3.2)

We estimate the integral
∫
[0,1]s f (x)dx by

Î (f ) = 1

bm

bm−1∑
n=0

f (yn),
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where y0, . . . ,ybm−1 ∈ [0,1)s is obtained by applying a random Owen scrambling
of order d to the digital (t,m, s)-net Pbm = {x0, . . . ,xbm−1} [below we shall as-
sume that there is a digital (t,m,ds)-net {z0, . . . , zbm−1} such that xn = Dd(zn)

for 0 ≤ n < bm, but for now the assumption that Pbm is a digital (t,m, s)-net is
sufficient]. From Proposition 5, it follows that

E[Î (f )] =
∫
[0,1]s

f (x)dx.

Hence, in the following, we consider the variance of the estimator Î (f ) denoted
by

Var[Î (f )] = E
[(

Î (f ) − E[Î (f )])2]
.

The following notation is needed for the lemma below. Let d ≥ 1 and l =
(l1, . . . , ls) ∈ N

ds
0 , where li = (l(i−1)d+1, . . . , lid). Let

Bd,l,s = {(k1, . . . , kds) ∈ N
ds
0 : �bli−1� ≤ ki < bli for 1 ≤ i ≤ ds}.

We set

σ 2
d,l,s(f ) = ∑

k∈Bd,l,s

|f̂ (Ed(k))|2.

Consider s = 1 for a moment. Let l ∈ N
d
0 . Then Lemma 6 implies that for

(k1, . . . , kd), (k′
1, . . . , k

′
d) ∈ Bd,l,1 we have

E
[
bwal(k1,...,kd )(�(D−1

d (x)))bwal(k1,...,kd )(�(D−1
d (x′)))

]
(3.3)

= E
[
bwal(k′

1,...,k
′
d )(�(D−1

d (x)))bwal(k′
1,...,k

′
d )(�(D−1

d (x′)))
]
.

Hence, for s ≥ 1 and l ∈ N
ds
0 , choose an arbitrary k ∈ Bd,l,s , and set

�d,l(Pbm) = 1

b2m

bm−1∑
n,n′=0

s∏
i=1

E
[
bwal(kd(i−1)+1,...,kdi )(�(D−1

d (xn,i)))

× bwal(kd(i−1)+1,...,kdi )(�(D−1
d (xn′,i)))

]
.

Equation (3.3) implies that this definition is independent of the particular choice
of k ∈ Bd,l,s . We call �d,l(Pbm) the gain coefficient (of Pbm ) (of order d).

LEMMA 7. Let d ≥ 1. Let f ∈ L2([0,1]s) and

Î (f ) = 1

bm

bm−1∑
n=0

f (yn),
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where y0, . . . ,ybm−1 ∈ [0,1)s is obtained by applying a random Owen scrambling
of order d to the digital net Pbm = {x0, . . . ,xbm−1}. Then

Var[Î (f )] = ∑
l∈N

ds
0 \{0}

σ 2
d,l,s(f )�d,l(Pbm).

PROOF. Using the linearity of expectation and Lemma 6, we get

Var[Î (f )]

= E

[ ∑
k,k′∈N

s
0\{0}

f̂ (k)f̂ (k′) 1

b2m

bm−1∑
n,n′=0

bwalk(yn)bwalk′(yn′)

]

= ∑
k,k′∈N

s
0\{0}

f̂ (k)f̂ (k′) 1

b2m

bm−1∑
n,n′=0

s∏
i=1

E[bwalki
(yn,i)bwalk′

i
(yn′,i)]

= ∑
k∈N

s
0\{0}

|f̂ (k)|2 1

b2m

bm−1∑
n,n′=0

s∏
i=1

E[bwalki
(yn,i)bwalki

(yn′,i)]

= ∑
l∈N

ds
0 \{0}

∑
k∈Bd,l,s

|f̂ (Ed(k))|2

× 1

b2m

bm−1∑
n,n′=0

s∏
i=1

E
[
bwal(kd(i−1)+1,...,kdi )(�(D−1

d (xn,i)) � �(D−1
d (xn′,i)))

]
= ∑

l∈N
ds
0 \{0}

σ 2
d,l,s(f )�d,l(Pbm).

Hence, the result follows. �

To obtain a bound on the variance Var[Î (f )], we prove bounds on σd,l,s(f ) and
�d,l(Pbm), which we consider in the following two subsections.

3.1. A bound on the gain coefficients of order d . In this section, we prove a
bound on �d,l(Pbm), where the point set is a digital (t,m, s)-net as constructed
in [4].

LEMMA 8. Let {z0, . . . , zbm−1} be a digital (t,m,ds)-net over Zb. Let xn =
Dd(zn) for 0 ≤ n < bm. Then the gain coefficients of order d for the digital net
Pbm = {x0, . . . ,xbm−1} satisfy

�d,l(Pbm) ≤
⎧⎨⎩

0, if |l|1 ≤ m − t ,
b|q|−|l|1, if m − t < |l|1 ≤ m − t + |q|,
b−m+t , if |l|1 > m − t + |q|.
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PROOF. Let k = (k1, . . . , kds) and l = (lq,0) for some q ⊆ {1, . . . , s}. Then
from the proof of [6], Corollary 13.7 and [6], Lemma 13.8, it follows that

�d,l(Pbm) = 1

b2m

bm−1∑
n,n′=0

s∏
i=1

E
[
bwal(kd(i−1)+1,...,kdi )(�(D−1

d (xn,i)))

× bwal(k′
d(i−1)+1,...,k

′
di )

(�(D−1
d (xn′,i)))

]
= 1

b2m

bm−1∑
n,n′=0

s∏
i=1

E[bwalk(�(zn))bwalk(�(zn′))]

=
⎧⎨⎩

0, if |l|1 ≤ m − t ,
b|q|−|l|1, if m − t < |l|1 ≤ m − t + |q|,
b−m+t , if |l|1 > m − t + |q|.

Hence, the result follows. �

3.2. Higher order variation. In this subsection, we state a bound on σd,l,s(f ).
The rate of decay of σd,l,s(f ) depends on the smoothness of the function f . We
measure the smoothness using a variation based on finite differences, which we
introduce in the following. Since the smoothness of the function f may be un-
known, we cannot assume that we can choose d to be the smoothness. Hence, in
the following we use α to denote the smoothness of the integrand f .

3.2.1. Finite differences. We use a slight variation from classical finite differ-
ences. Let f : [0,1] → R and let z1, z2, . . . ∈ (−1,1) be a sequence of numbers.
Then we define �0(x)f = f (x) and for α ≥ 1 we set

�α(x; z1, . . . , zα)f = �α−1(x + zα; z1, . . . , zα−1)f − �α−1(x; z1, . . . , zα−1)f.

For instance, we have

�1(x; z1)f = f (x + z1) − f (x),

�2(x; z1, z2)f = f (x + z1 + z2) − f (x + z2) − f (x + z1) + f (x),

and in general

�α(x; z1, . . . , zα)f = ∑
v⊆{1,...,α}

(−1)|v|f
(
x + ∑

i∈v

zi

)
,

where |v| denotes the number of elements in v. We always assume that x +∑
i∈v zi ∈ [0,1] for all v ⊆ {1, . . . , α}.
If f is α times continuously differentiable, then the mean value theorem implies

that

�α(x; z1, . . . , zα)f = zα�α−1(ζ1; z1, . . . , zα−1)
df

dx
,
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where min(x, x + zα) ≤ ζ1 ≤ max(x, x + zα). By induction, it then follows that

�α(x; z1, . . . , zα)f = z1 · · · zα

dαf

dxα
(ζα),

where

x + min
v⊆{1,...,α}

∑
i∈v

zi ≤ ζα ≤ x + max
v⊆{1,...,α}

∑
i∈v

zi .

We generalize the difference operator to functions f : [0,1]s → R. Let α > 0
be a nonnegative integer. Let �i,α be the one-dimensional difference operator �α

applied to the ith coordinate of f . For α = (α1, . . . , αs) ∈ {0, . . . , α}s and 1 ≤ i ≤ s

let zi,1, . . . , zi,αi
∈ (−1,1). Then we define

�α(x; (z1,1, . . . , z1,α1), . . . , (zs,1, . . . , zs,αs ))f

= �1,α1(x1; z1,1, . . . , z1,α1) · · ·�s,αs (xs; zs,1, . . . , zs,αs )f

= ∑
v1⊆{1,...,α1}

· · · ∑
vs⊆{1,...,αs}

(−1)|v1|+···+|vs |

× f

(
x1 + ∑

i1∈v1

z1,i1, . . . , xs + ∑
is∈vs

zs,is

)
.

If f has continuous mixed partial derivatives up to order α in each variable,
then, as for the one-dimensional case, we have

�α(x, (z1,1, . . . , z1,α1), . . . , (zs,1, . . . , zs,αs ))f
(3.4)

=
s∏

i=1

αi∏
ri=1

zi,ri

∂α1+···+αsf

∂x
α1
1 · · · ∂x

αs
s

(ζ1,α1, . . . , ζs,αs ),

where we set
∏αi

ri=1 zi,ri = 1 for αi = 0 and where

xi + min
v⊆{1,...,αi}

∑
r∈v

zi,r ≤ ζi,αi
≤ xi + max

v⊆{1,...,αi}
∑
r∈v

zi,r

for 1 ≤ i ≤ s. Again we assume that xi + ∑
r∈v zi,r ∈ [0,1] for all v ⊆ {1, . . . , αi},

ζi,αi
∈ [0,1] for all 0 ≤ αi ≤ α and 1 ≤ i ≤ s.

3.2.2. Variation. Let f : [0,1]s → R and α > 0 be a nonnegative integer. Let
J = ∏αs

i=1[ ai

bli
, ai+1

bli
), with 0 ≤ ai < bli and li ∈ N for 1 ≤ i ≤ αs. Apart from

at most a countable number of points, the set Dα(J ) is the product of a union
of intervals. Let α = (α1, . . . , αs) ∈ {1, . . . , α}s . Then we define the generalized
Vitali variation by

V (s)
α (f ) = sup

P

( ∑
J∈P

Vol(Dα(J )) sup
∣∣∣∣�α(t; z1, . . . , zs)f∏s

i=1
∏αi

r=1 zi,r

∣∣∣∣2)1/2

,(3.5)
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where the first supremum supP is extended over all partitions of [0,1)αs into sub-
cubes of the form J = ∏αs

i=1[ ai

bli
, ai+1

bli
) with 0 ≤ ai < bli and li ∈ N for 1 ≤ i ≤ αs,

and the second supremum is taken over all t ∈ Dα(J ) and zi = (zi,1, . . . , zi,αi
)

with zi,r = τi,rb
−α(li−1)−r where τi,r ∈ {1 − b, . . . , b − 1} \ {0} for 1 ≤ r ≤ αi and

1 ≤ i ≤ s and such that all the points at which f is evaluated in �α(t; z1, . . . , zs)

are in Dα(
∏αs

i=1[b−li+1�ai/b�, b−li+1(�ai/b� + 1)).
In Appendix A it is shown that Vol(Dα(J )) = Vol(J ), the volume (i.e.,

Lebesgue measure) of J . Hence, if the partial derivative ∂α1+···+αs f

∂x
α1
1 ···∂x

αs
s

are continu-

ous for a given (α1, . . . , αs) ∈ {1, . . . , α}s , then it can be shown that (3.4) and the
mean value theorem imply that the sum (3.5) is a Riemann sum for the integral

V (s)
α (f ) =

(∫
[0,1]s

∣∣∣∣ ∂α1+···+αsf

∂x
α1
1 · · · ∂x

αs
s

(x)

∣∣∣∣2 dx
)1/2

.

For ∅ �= u ⊆ {1, . . . , s}, let |u| denote the number of elements in the set u and let
V

(|u|)
αu (fu;u) be the generalized Vitali variation with coefficient αu ∈ {1, . . . , α}|u|

of the |u|-dimensional function

fu(xu) =
∫
[0,1]s−|u|

f (x)dx{1,...,s}\u.

For u = ∅, we have f∅ = ∫
[0,1]s f (x)dx and we define V

(|∅|)
α (f∅;∅) = |f∅|.

Then

Vα(f ) =
( ∑

u⊆{1,...,s}

∑
α∈{1,...,α}|u|

(
V (|u|)

α (fu;u)
)2

)1/2

is called the generalized Hardy and Krause variation of f of order α. A function
f for which Vα(f ) is finite is said to be of bounded variation (of order α).

If the partial derivatives ∂α1+···+αs f

∂x
α1
1 ···∂x

αs
s

are continuous for all (α1, . . . , αs) ∈ {0, . . . ,

α}s , then variation coincides with the norm

Vα(f ) =
( ∑

u⊆{1,...,s}

∑
α∈{1,...,α}|u|

∫
[0,1]|u|

∣∣∣∣∫[0,1]s−|u|
∂

∑
i∈u αi f∏

i∈u ∂x
αi

i

dx{1,...,s}\u
∣∣∣∣2 dxu

)1/2

.

3.2.3. The decay of the Walsh coefficients for functions of bounded variation.
The following lemma gives a bound on σd,l,s(f ) for functions f of bounded vari-
ation of order α.

LEMMA 9. Let α,d ∈ N. Let f : [0,1]s → R with Vα(f ) < ∞. Let b ≥ 2 be
an integer. Let l = (l1, . . . , lds) ∈ N

ds
0 and let K = {i ∈ {1, . . . , ds} : li > 0}. Let

Ki = K ∩ {(i − 1)d + 1, . . . , id} and αi = min(α, |Ki |) for 1 ≤ i ≤ s. Let γ ′
j =

(b−1)b−j+(i−1)d−(lj−1)d for j ∈ Ki and 1 ≤ i ≤ s. Let γi,1 < γi,2 < · · · < γi,αi
for
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1 ≤ i ≤ s be such that {γi,1, . . . , γi,αi
} = {γj : j ∈ Ki}, that is, {γi,j : 1 ≤ j ≤ αi} is

just a reordering of the elements of the set {γj : j ∈ Ki}. Set γ (l) = ∏s
i=1

∏αi

j=1 γi,j .
Then

σd,l,s(f ) ≤ 2s max(d−α,0)γ (l)Vα(f ).

The proof of this result is technical and is therefore deferred to Appendix B.

3.3. Convergence rate. We can now use Lemmas 7–9 to prove the main result
of the paper.

THEOREM 10. Let α,d ∈ N. Let f : [0,1]s → R satisfy Vα(f ) < ∞. Let

Î (f ) = 1

bm

bm−1∑
n=0

f (yn),

where y0, . . . ,ybm−1 ∈ [0,1)s with yn = Dd(�(xn)) and x0, . . . ,xbm−1 ∈ [0,1)ds

is a digital (t,m,ds)-net and the permutations in � are chosen uniformly and
i.i.d. Then

Var[Î (f )] ≤ Cb,s,αVα(f )
(m − t)min(α,d)s+s

b−(2 min(α,d)+1)(m−t)
,

where Cb,s,α > 0 is a constant which depends only on α,b, d, s, but not on m.

PROOF. Let d ≤ α. Then from Lemmas 7–9 and the fact that Vd(f ) ≤ Vα(f )

we obtain that

Var[Î (f )] ≤ Vα(f )(b − 1)2dsbs+d(d−1)b−(m−t+1)
∑

l∈N
ds
0 ,|l|1>m−t

b−2d|l|1

≤ Vα(f )(b − 1)2dsbs+d(d−1)b−(m−t+1)
∞∑

k=m−t+1

b−2dk

(
k + ds − 1

ds − 1

)

≤ Vα(f )(b − 1)2ds(b2d − 1)−dsb2d2s+s+d(d−1)b−(2d+1)(m−t+1)

×
(

m − t + ds

ds − 1

)
where we used [6], Lemma 13.24. Since(

m − t + ds

ds − 1

)
= (m − t + ds) · · · (m − t + 2)

(ds − 1) · · ·1
≤ (m − t + 2)ds−1

we obtain

Var[Î (f )] ≤ Cα,b,d,sVα(f )b−(2d+1)(m−t)(m − t + 2)ds−1

for some constant Cα,b,d,s > 0 which depends only on α,b, d, s.
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Let now d > α. In the following we sum over all l = (l1, . . . , ls) ∈ N
ds
0 , where

li = (l(i−1)d+1, . . . , lid), and such that l1 + · · · + lds > m − t . Let l′(i−1)d+1 ≥
l′(i−1)d+2 ≥ · · · ≥ l′id be such that {l′(i−1)d+1, . . . , l

′
id} = {l(i−1)d+1, . . . , lid}, that is,

the l′i are just a reordering of the elements li . There are at most (d!)s reorderings
which yield the same l′1, . . . , l′s . Then we have

αi∏
j=1

γi,j ≤ (b − 1)αi b(d−1)+(d−2)+···+(d−αi)
αi∏

j=1

b−dl′i

≤ (b − 1)αbd(d−1)/2b
−d

∑αi
j=1 l′(i−1)d+j .

Hence, we have

Var[Î (f )] ≤ Vα(f )4s(d−α)(b − 1)2αbs+d(d−1)(d!)sb−(m−t+1)

(3.6)
× ∑

l∈N
ds
0 ,|l|1>m−t

l ordered

b
−2d

∑s
i=1

∑α
j=1 l(i−1)d+j ,

where l = (l1, . . . , lds) ordered means that l(i−1)d+1 ≥ · · · ≥ lid for 1 ≤ i ≤ s.
Hence, we have

m − t < l1 + · · · + lds ≤ d

α

s∑
i=1

α∑
j=1

l(i−1)d+j .

Let now ki = l(i−1)d+1 + · · · + l(i−1)d+α . Then ki ≥ αl(i−1)d+j for α < j ≤ d and
k1 + · · · + ks ≥ α(m − t)/d . Hence,∑

l∈N
ds
0 ,|l|1>m−t

l ordered

b
−2d

∑s
i=1

∑α
j=1 l(i−1)d+j

≤ ∑
k1,...,ks∈N0,k1+···+ks>α(m−t)/d

b−2d(k1+···+ks)

×
s∏

i=1

(
ki + α − 1

α − 1

)(
ki

α
+ 1

)s(d−α)

≤ ∑
p1,...,ps∈N0,p1+···+ps>α(m−t)

b−2(p1+···+ps)

×
s∏

i=1

( �pi/d� + α − 1
α − 1

)(⌈
pi

αd

⌉
+ 1

)s(d−α)

≤ ∑
p1,...,ps∈N0,p1+···+ps>α(m−t)

b−2(p1+···+ps)

(
pi

d
+ 2

)sd
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≤
∞∑

p=α(m−t)+1

b−2p

(
p + s − 1

s − 1

)(
p

d
+ 2

)sd

≤
∞∑

p=α(m−t)+1

b−2p(p + 2)sd+s−1

≤ b−2α(m−t)(α(m − t) + 2
)sd+s(

s(d + 1) − 1
)

× max
(
1,

(
s(d + 1) − 1

)s(d+1)−1(
α(m − t) + 1

)−(s(d+1)−1)

× (logb)−(s(d+1)−1)).
Thus, the result follows from (3.6). �

4. Discussion. In this paper, we have extended the results of [16, 18], by
introducing an algorithm and proving that this algorithm can take advantage of
the smoothness of the integrand α, where α ∈ N can be arbitrarily large. Theo-
rem 10 shows the convergence rate of the standard deviation of the estimator Î (f )

of O(N−min(α,d)−1/2(logN)s min(α+1,d+1)/2). The numerical results in Section 1.2
using some toy examples also exhibit this rate of convergence. The upper bound is
best possible (apart from the power of the logN factor), since there is also a lower
bound on the standard deviation; see [13].

The improvement in the rate of convergence in [18] has been obtained by us-
ing variance reduction techniques. Conversely, one might now ask whether the
methods developed here can be used to obtain new variance reduction techniques.
(Some similarities between this approach and antithetic sampling can be found in
[5].) This is an open question for future research.

Since the classical scrambling by Owen [14] is computationally to expensive,
variations of this scrambling scheme have been introduced which can easily be
implemented. Matoušek [10, 11] describes an alternative scrambling which uses
fewer permutations and is therefore easier to implement; see also [8, 21]. Another
scrambling scheme which can be implemented is by Tezuka and Faure [19]. See
also [9, 17, 18] for overviews of various scramblings. The idea is to reduce the
number of permutations required such that Owen’s lemma still holds. Since the
proof of Lemma 6 follows along the same lines as the proof of Owen’s lemma, the
simplified scramblings mentioned above also apply here.

The only alternative algorithm which achieves the same convergence rate of
the RMSE as proven here is based on using an approximation A(f ) to the inte-
grand f and then applying MC to A(f ) − f . The integral is then approximated
by Î (A(f ) − f ) + ∫

[0,1]s A(f )(x)dx where
∫
[0,1]s A(f )(x)dx can be calculated

analytically. See [1, 7] for details.
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APPENDIX A: PROPERTIES OF THE DIGIT INTERLACING FUNCTION

The digit interlacing function has several properties which we investigate in the
following and which we use below.

LEMMA 11. Let d > 1. Then the mapping Dd : [0,1)ds → [0,1)s is injective
but not surjective.

PROOF. It suffices to show the result for s = 1. First, note that the digit expan-
sion of Dd(x1, . . . , xd) is never of the form c1b

−1 +· · ·+ cjb
−j+1 + (b−1)b−j +

(b − 1)b−j−d + (b − 1b−j−2d + · · ·, since this would imply that there is a xj0 ,
1 ≤ j0 ≤ d , which is a b-adic rational. But in this case we use the finite digit ex-
pansions of xj0 and hence no vector (x1, . . . , xd) gets mapped to this real number.
Thus Dd is not surjective.

To show that Dd is injective, let (x1, . . . , xd) �= (y1, . . . , yd) ∈ [0,1)d . Hence,
there exists an 1 ≤ i ≤ d such that xi �= yi , and hence there is a k ≥ 1 such that
xi,k �= yi,k , where xi = xi,1b

−1 + xi,2b
−2 + · · · and yi = yi,1b

−1 + yi,2b
−2 + · · ·

(and where we use the finite expansions for b-adic rationals). Thus, the digit expan-
sions of Dd(x1, . . . , xd) and Dd(y1, . . . , yd) differ at least at one digit and hence
Dd(x1, . . . , xd) �= Dd(y1, . . . , yd). �

(Notice that a countable number of elements could be excluded from the set
[0,1)s such that Dd becomes bijective.)

LEMMA 12. Let d ≥ 1 and J = ∏ds
i=1[ai, bi) ⊆ [0,1]ds with ai ≤ bi for 1 ≤

i ≤ ds. Let λn denote the Lebesgue measure on R
n. Then λds(J ) = λs(Dd(J )).

PROOF. The result is trivial for d = 1. Let now d > 1 and consider s = 1. Let
J = ∏d

i=1[aib
−νi , (ai + 1)b−νi ), where 0 ≤ ai < bνi is an integer and

ai

bνi
= ai,1

b
+ ai,2

b2 + · · · + ai,νi

bνi

for some integers νi ≥ 0. Let ν = (ν1, . . . , να), |ν|∞ = max1≤i≤s νi and |ν|1 =
ν1 + · · · + νs . Then λd(J ) = b−|ν|1 .

Consider now Dd(J ). Let 0 ≤ c < bd|ν|∞ and

cb−d|ν|∞ = c1

b
+ c2

b2 + · · · + cd|ν|∞
bd|ν|∞

with c1, . . . , cd|ν|∞ ∈ {0, . . . , b − 1}. We have

Dd(J ) = ⋃[
c

bd|ν|∞ ,
c + 1

bd|ν|∞

)
,
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where the union is over all c with expansion as above and where c1, . . . , cd|ν|∞ ∈
{0, . . . , b − 1} with the restriction that ai,k = c(k−1)d+i for 1 ≤ k ≤ νi and 1 ≤ i ≤
d . Hence, there are d|ν|∞ − |ν|1 digits cj free to choose. Therefore,

λ1(Dd(J )) = λ1

([
c

bd|ν|∞ ,
c + 1

bd|ν|∞

))
bd|ν|∞−|ν|1 = b−|ν|1 .

Therefore, the result holds for intervals of the form J .
It follows that the result holds for intervals of the form J = ∏ds

i=1[aib
−νi , (ai +

1)b−νi ), since this interval is simply a product of the previously considered inter-
vals.

Let now J = ∏ds
i=1[ai, bi) ⊆ [0,1)ds , with ai < bi for 1 ≤ i ≤ ds, be an arbi-

trary interval. Since this interval can be written as a disjoint union of the elemen-
tary intervals used above, the result also holds for these intervals.

Let ∅ �= I ⊆ {1, . . . , ds} and ai = bi for i ∈ I . Then λds(J ) = 0. On the other
hand, define

b′
i =

{
ai + b−ν, for i ∈ I ,
bi, otherwise,

where ν is large enough such that b′
i < 1 for all 1 ≤ i ≤ ds. Set J ′ = ∏ds

i=1[ai, b
′
i).

Then

0 ≤ λs(Dd(J )) ≤ λs(Dd(J ′)) = λds(J
′) ≤ b−ν → 0 as ν → ∞.

Hence, λs(Dd(J )) = 0. �

APPENDIX B: PROOF OF LEMMA 9

Assume first that d ≥ α. Let l = (l1, . . . , lds) ∈ N
ds
0 and let K = {i ∈ {1, . . . ,

ds} : li > 0}. Let Ki = K ∩ {(i − 1)d + 1, . . . , (i − 1)d + d}. First, assume that
Ki �= ∅ for i = 1, . . . , s.

Let l − 1K = ((l1 − 1)+, . . . , (lds − 1)+) ∈ N
ds
0 , where (x)+ = max(x,0). Let

Al = {a = (a1, . . . , ads) ∈ N
ds
0 : 0 ≤ ai < bli for 1 ≤ i ≤ ds} and

[
ab−l, (a + 1)b−l) :=

ds∏
i=1

[
aib

−li , (ai + 1)b−li
)
.

Let q = (q1, . . . , qαs), where qi = �ai/b�. In the following we write [qb−l+1, (q +
1)b−l+1) for

∏αs
i=1[b−li+1�ai/b�, b−li+1(�ai/b� + 1)). Further let

Dd

([
ab−l, (a + 1)b−l)) = {

Dd(x) ∈ [0,1)s : x ∈ [
ab−l, (a + 1)b−l)}.

Let x ∈ Dd([ab−l, (a + 1)b−l)), then∑
k∈Al

f̂ (Ed(k))bwalEd (k)(x) =
∫
[0,1]s

f (t)
∑

k∈Al

bwalEd (k)(x � t) dt

= b|l|1
∫
Dd ([ab−l,(a+1)b−l])

f (t) dt.
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For l ∈ N
ds
0 and a ∈ Al let

cl,a =
∫
Dd ([ab−l,(a+1)b−l])

f (t) dt.

For x ∈ Dd([ab−l, (a + 1)b−l)) let

g(x) := ∑
u⊆K

(−1)|u| ∑
k∈Al−(1u,0)

f̂ (Ed(k))bwalEd (k)(x)

= ∑
u⊆K

(−1)|u|b|l−(1u,0)|1cl−(1u,0),(�au/b�,a{1,...,ds}\u),

where (�au/b�,a{1,...,ds}\u) is the vector whose ith coordinate is �ai/b� if i ∈ u

and ai if i ∈ {1, . . . , ds} \ u.
Using Plancherel’s identity, we obtain

σ 2
d,l,s,r(f ) = ∑

u⊆K

(−1)|u| ∑
k∈Al−(1u,0)

|f̂ (Ed(k))|2 =
∫ 1

0
|g(x)|2 dx

= ∑
a∈Al

b−|l|1
∣∣∣∣ ∑
u⊆K

(−1)|u|b|l−(1u,0)|1cl−(1u,0),(�au/b�,a{1,...,ds}\u)

∣∣∣∣2

= b|l|1 ∑
a∈Al

∣∣∣∣ ∑
u⊆K

(−1)|u|b−|u|cl−(1u,0),(�au/b�,a{1,...,ds}\u)

∣∣∣∣2.
We can simplify the inner sum further. Let e = b�a/b�, that is, the ith compo-

nent of e is given by ei = b�ai/b�. Further, let d = a−e, that is, the ith component
of d is given by di = ai − ei . Then we have∑

u⊆K

(−1)|u|b−|u|cl−(1u,0),(�au/b�,a{1,...,ds}\u)

= ∑
u⊆K

(−1)|u|b−|u| ∑
ku∈A1u

cl,e+(ku,d{1,...,ds}\u)

= ∑
u⊆K

(−1)|u|b−|u|b−ds+|u| ∑
k∈A1

cl,e+(ku,d{1,...,ds}\u)

= b−ds
∑

k∈A1

∑
u⊆K

(−1)|u|cl,a+(ku−du,0{1,...,ds}\u)

= b−ds
∑

k∈A1

∫
Ea,l

∑
u⊆K

(−1)|u|f
(
t + Dd

(
b−l(ku − du,0{1,...,ds}\u

)))
dt,

where Ea,l = Dd([ab−l, (a + 1)b−l)) and where we extend the digit interlacing
function Dd to negative values by using digits in {1−b, . . . ,0} in case a component
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is negative. To shorten the notation, we set

δk(t) = ∑
u⊆K

(−1)|u|f
(
t + Dd

(
b−l(ku − du,0{1,...,αs}\u

)))
.

Therefore,

σ 2
d,l,s(f ) ≤ b|l|1−2ds

∑
a∈Al

∑
k∈A1

∫
Dd ([ab−l,(a+1)b−l))

|δk(t)|dt

× ∑
k′∈A1

∫
Dd ([ab−l,(a+1)b−l))

|δk′(t)|dt

= b|l|1−2ds
∑

k,k′∈A1

∑
a∈Al

∫
Dd ([ab−l,(a+1)b−l))

|δk(t)|dt

×
∫
Dd ([ab−l,(a+1)b−l))

|δk′(t)|dt.

Using Cauchy–Schwarz’ inequality, we have∫
Dd ([ab−l,(a+1)b−l])

|δk(t)| dt

≤
(∫

Dd ([ab−l,(a+1)b−l])
1 dt

)1/2(∫
Dd ([ab−l,(a+1)b−l])

|δk(t)|2 dt
)1/2

= b−|l|1/2
(∫

Dd ([ab−l,(a+1)b−l])
|δk(t)|2 dt

)1/2

.

Let Ba,k = (
∫
Dd ([ab−l,(a+1)b−l]) |δk(t)|2 dt)1/2. Then we have

σ 2
d,l,s(f ) ≤ b−2ds

∑
k,k′∈A1

∑
a∈Al

Ba,kBa,k′

≤ max
k,k′∈A1

∑
a∈Al

Ba,kBa,k′

= max
k∈A1

∑
a∈Al

B2
a,k,

where the last inequality follows as the Cauchy–Schwarz inequality is an equality
for two vectors which are linearly dependent. Let k∗ be the value of k ∈ A1 for
which the sum

∑
a∈Al

B2
a,k takes on its maximum. Hence,

σ 2
d,l,s(f ) ≤ ∑

a∈Al

∫
Dd ([ab−l,(a+1)b−l])

|δk∗(t)|2 dt.

The following lemma relates the function δk to the divided differences intro-
duced above.
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LEMMA 13. Let l, a, e, q, K and K1, . . . ,Ks be defined as above. For t ∈
Dd([ab−l, (a + 1)b−l)) we have

|δk∗(t)| ≤ 2s(d−α) sup |�α(t′; z1, . . . , zs)f |,
where α = (α1, . . . , αs) with αi = min(|Ki |, α), and the supremum is taken over all
t′ ∈ Dd([ab−l, (a + 1)b−l)) and zi = (zi,1, . . . , zi,αi

) with zi,ri = τi,ri b
−d(li−1)−ri

where τi,ri ∈ {1 − b, . . . , b − 1} \ {0} for 1 ≤ ri ≤ |Ki | and 1 ≤ i ≤ s and
such that all the points at which f is evaluated in �α(t′; z1, . . . , zs) are in
Dα([qb−l+1K , (q+1)b−l+1K )). Furthermore, we may assume that |zi,1| < |zi,2| <
· · · < |zi,|Ki || for 1 ≤ i ≤ s.

PROOF. We show that δk∗(t) can be written as divided differences. Since the
divided difference operators are applied to each coordinate separately, it suffices
to show the result for s = 1. In this case, we have

δk∗(t) = ∑
u⊆K

(−1)|u|f
(
t + Dd

(
b−l(k∗

u − du,0{1,...,d}\u
)))

,

where now K = {i ∈ {1, . . . , d} : li > 0}.
Let l = (l1, . . . , ld). Let t = t1

b
+ t2

b2 + · · ·, a = (a1, . . . , ad) and aj = aj,lj +
aj,lj−1b + · · · + aj,1b

lj−1. Then for t ∈ Dd([ab−l, (a + 1)b−l)) we have

tj+(l−1)d = aj,l for 1 ≤ l ≤ lj and j ∈ K.

Further, we have dj = aj,lj for j ∈ K . Let

I = {j + (l − 1)d : 1 ≤ l ≤ lj , j ∈ K}.
Then for t ∈ Dd([ab−l, (a + 1)b−l)) and u ⊆ K we have

t + Dd

(
b−l(ku − du,0)

) = ∑
j∈K

lj−1∑
l=1

aj,l

bj+(l−1)d
+ ∑

j∈u

kj

j+(lj−1)d

+ ∑
j∈K\u

aj,lj

bj+(lj−1)d
+ ∑

j∈N\I

tj

bj
.

For given t ∈ Dd([ab−l, (a + 1)b−l)) let

τu = t + Dd

(
b−l(k∗

u − du,0{1,...,d}\u
))

.

Let k∗ = (k∗
1 , . . . , k∗

d) and

zj = k∗
j − aj,lj

bj+(lj−1)d
for j ∈ K.

Notice that if zj = 0, then δk∗(t) = 0 and hence we can exclude this case. Then for
v ⊂ u ⊆ K we have

τu − τv = ∑
j∈u\v

zj .
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Therefore,

δk∗(t) = ∑
u⊆K

(−1)|u|f
(
t + Dd

(
b−l(k∗

u − du,0{1,...,d}\u
)))

= ∑
u⊆K

(−1)|u|f (τu) = ∑
u⊆K

(−1)|u|f
(
τ∅ + (τu − τ∅)

)
= ∑

u⊆K

(−1)|u|f
(
t + ∑

j∈u

zj

)
= �|K|(t; z′)f,

where z′ = (zj )j∈K .
Notice that the ordering of the elements in z′ does not change the value of

�|K|(t; z′). Hence, assume that the elements in z′ are ordered such that z′
1 > z′

2 >

· · · > z′|K|. For the case where |K| > α, we obtain from the definition of the divided
differences that

�|K|(t; z′) = ∑
u⊆{|K|+1,...,α}

(−1)|u|�α

(
t + ∑

j∈u

z′
j ; (z′

1, . . . , z
′
α)

)
.

By taking the triangular inequality and the supremum over all t ′ in {t +∑
j∈u z′

j :u ⊆ {|K| + 1, . . . , α}}, we obtain

�|K|(t; z′) ≤ 2α−|K| sup
t ′

|�α(t ′; (z′
1, . . . , z

′
α))|.

Consider now the general case s ≥ 1 and K = {i ∈ {1, . . . , ds} : li > 0}. Let
Ki = K ∩ {(i − 1)d + 1, . . . , (i − 1)d + d} and α′

i = |Ki | for 1 ≤ i ≤ s. Let α′ =
(α′

1, . . . , α
′
s). Let

zj = k∗
j − aj,lj

bj−(i−1)d+(lj−1)d
for j ∈ Ki and 1 ≤ i ≤ s

and z′
i = (zj )j∈Ki

for 1 ≤ i ≤ s. Then we obtain

δk∗(t) = �α′(t; z′
1, . . . , z′

s)f.

Define now αi = min(α,α′
i) for 1 ≤ i ≤ s and α = (α1, . . . , αs). Notice that

α′
i ≤ d and therefore

s∑
i=1

(α′
i − αi) ≤ s(d − α).

Notice that �α′
i

can be expressed as a sum an alternating sum of 2α′
i−αi summands

�αi
.

By taking the triangular inequality, we therefore obtain

|δk∗(t)| = |�α′(t; z1, . . . , zs)f | ≤ 2s(d−α) sup |�α(t′; z1, . . . , zs)|,
where the supremum is taken over all admissible choices of z1, . . . , zs and t′.
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Hence,

σ 2
d,l,s(f ) ≤ 2s(d−α)

∑
a∈Al

∫
Dd ([ab−l,(a+1)b−l])

sup |�α(t′; z1, . . . , zs)f |2 dt,

where the supremum is over the same set as in Lemma 13. Therefore,

σ 2
d,l,s(f ) ≤ 2s(d−α)

∑
a∈Al

Vol
(
Dd

([ab−l, (a + 1)b−l])) sup |�α(t′; z1, . . . , zs)f |2

≤ 2s(d−α)
∑

q∈Al−1K

Vol
(
Dd

([qb−l+1K , (q + 1)b−l+1K ]))
× sup |�α(t′; z1, . . . , zs)f |2.

Let γ ′
j = (b − 1)b−j+(i−1)d−(lj−1)d for j ∈ Ki and 1 ≤ i ≤ s. Let γi,1 < γi,2 <

· · · < γi,αi
for 1 ≤ i ≤ s be such that {γi,1, . . . , γi,αi

} = {γj : j ∈ Ki}, that is,
{γi,j : 1 ≤ j ≤ αi} is just a reordering of the elements of the set {γj : j ∈ Ki}. Set
γ (l) = ∏s

i=1
∏αi

j=1 γi,j . Then

σ 2
α,l,s(f ) ≤ 2s(d−α)γ 2(l)

× ∑
e∈Al−1K

Vol
(
Dα

([qb−l+1K , (q + 1)b−l+1K ]))

× sup
|�α(t; z1, . . . , zs)f |2∏

i∈K |zi |2
≤ 2s(d−α)γ 2(l)V 2

α (f ),

where the supremum is over all admissible t and z1, . . . , zs as described in the
lemma.

Consider now the case where Ki = ∅ for some 1 ≤ i ≤ s. Let R = {i ∈
{1, . . . , s} :Ki = ∅}. Then the result follows by replacing f with the function∫
[0,1]|R| f (x)dxR in the proof above.

Let now d < α. Then Vd(f ) ≤ Vα(f ), and hence the result follows by using the
proof above with d = α. This completes the proof. �
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