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EXPONENTIAL SCREENING AND OPTIMAL RATES OF SPARSE
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In high-dimensional linear regression, the goal pursued here is to esti-
mate an unknown regression function using linear combinations of a suitable
set of covariates. One of the key assumptions for the success of any statisti-
cal procedure in this setup is to assume that the linear combination is sparse
in some sense, for example, that it involves only few covariates. We con-
sider a general, nonnecessarily linear, regression with Gaussian noise and
study a related question, that is, to find a linear combination of approximat-
ing functions, which is at the same time sparse and has small mean squared
error (MSE). We introduce a new estimation procedure, called Exponential
Screening, that shows remarkable adaptation properties. It adapts to the lin-
ear combination that optimally balances MSE and sparsity, whether the latter
is measured in terms of the number of nonzero entries in the combination
(�0 norm) or in terms of the global weight of the combination (�1 norm).
The power of this adaptation result is illustrated by showing that Exponen-
tial Screening solves optimally and simultaneously all the problems of ag-
gregation in Gaussian regression that have been discussed in the literature.
Moreover, we show that the performance of the Exponential Screening esti-
mator cannot be improved in a minimax sense, even if the optimal sparsity is
known in advance. The theoretical and numerical superiority of Exponential
Screening compared to state-of-the-art sparse procedures is also discussed.

1. Introduction. The theory of estimation in high-dimensional statistical
models under the sparsity scenario has been considerably developed during the
recent years. One of the main achievements was to derive sparsity oracle inequal-
ities (SOI), that is, bounds on the risk of various sparse estimation procedures
in terms of the �0 norm (number of nonzero components) of the estimated vectors
or their approximations [see Bickel, Ritov and Tsybakov (2009), Bunea, Tsybakov
and Wegkamp (2007a, 2007b), Candes and Tao (2007), Koltchinskii (2010, 2009a,
2009b), van de Geer (2008), Zhang and Huang (2008), Zhang (2009) and refer-
ences therein]. The main message of these results was to demonstrate that if the
number of nonzero components of a high-dimensional target vector is small, then
it can be reasonably well estimated even when the ambient dimension is larger
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than the sample size. However, there were relatively few discussions of the opti-
mality of these bounds; they were mainly based on specific counter-examples or
referred to the paper by Donoho and Johnstone (1994a), which treats the Gaussian
sequence model. The latter approach is, in general, insufficient as we will show be-
low. An interesting point related to the optimality issue is that some of the bounds
in the papers mentioned above involve not only the �0 norm but also the �1 norm
of the target vector, which is yet another characteristic of sparsity. Thus, a natural
question is whether the �1 norm plays an intrinsic role in the SOI or it appears
there due to the techniques employed in the proof.

In this paper, considering the regression model with fixed design, we will show
that the role of �1 norm is indeed intrinsic. Once we have a “rather general SOI”
in terms the �0 norm, a SOI in terms of the �1 norm follows as a consequence.
This means that we can write the resulting bound with the rate which is equal to
the minimum of the �0 and �1 rates (see Theorem 3.2). Unfortunately, the above
mentioned “rather general SOI” is not available in the literature for the previously
known sparse estimation procedures. We therefore suggest a new procedure called
the Exponential Screening (ES), which satisfies the desired bound. It is based on
exponentially weighted aggregation of least squares estimators with suitably cho-
sen prior. The idea of using exponentially weighted aggregation for sparse esti-
mation is due to Dalalyan and Tsybakov (2007). Dalalyan and Tsybakov (2007,
2008, 2009, 2010) suggested several procedures of this kind based on continuous
sparsity priors. Our approach is different because we use a discrete prior in the
spirit of earlier work by George (1986a, 1986b), Leung and Barron (2006), Giraud
(2008). Unlike George (1986a, 1986b), Leung and Barron (2006), Giraud (2008),
we focus on high-dimensional models and treat explicitly the sparsity issue. Be-
cause of the high dimensionality of the problem, we need efficient computational
algorithms, and therefore we suggest a version of the Metropolis–Hastings algo-
rithm to approximate our estimators (Section 7.1). Regarding the sparsity issue,
we prove that our method benefits simultaneously from three types of sparsity.
The first one is expressed by the small rank of the design matrix X, the second
by the small number of nonzero components of the target vector and the third
by its small �1 norm. Finally, we mention that in a work parallel to ours, Alquier
and Lounici (2010) consider exponentially weighted aggregates with priors involv-
ing both discrete and continuous components and suggest another version of the
Metropolis–Hastings algorithm to compute them.

The contributions of this paper are the following:

(i) We propose the ES estimator which benefits simultaneously from the
above-mentioned three types of sparsity. This follows from the oracle inequali-
ties that we prove in Section 3. We also provide an efficient and fast algorithm
to approximately compute the ES estimator and show that it outperforms several
other competitive estimators in a simulation study.
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(ii) We show that the ES estimator attains the optimal rate of sparse estimation.
To this end, we establish a minimax lower bound which coincides with the upper
bound on the risk of the ES estimator on the intersection of the �0 and �1 balls
(Theorem 5.3).

(iii) As a consequence, we find optimal rates of aggregation for the regression
model with fixed design. We consider the five main types of aggregation, which are
the linear, convex, model selection, subset selection and D-convex aggregation [cf.
Nemirovski (2000), Tsybakov (2003), Bunea, Tsybakov and Wegkamp (2007b),
Lounici (2007)]. We show that the optimal rates are different from those for the
regression model with random design established in Tsybakov (2003). Indeed, they
turn out to be moderated by the rank of the regression matrix X. The rates are faster
for the smaller ranks. See Section 6.

This paper is organized as follows. After setting the problem and the notation in
Section 2, we introduce the ES estimator in Section 3 and prove that it satisfies a
SOI with a remainder term obtained as the minimum of the �0 and the �1 rate. This
result holds with no assumption on the design matrix X, except for simple normal-
ization. We put it into perspective in Section 4 where we compare it with weaker
SOI for the BIC and the Lasso estimators. In Sections 5.1 and 5.2 we discuss the
optimality of SOI. In particular, Section 5.1 comments on why a minimax result in
Donoho and Johnstone (1994a) with normalization depending on the unknown pa-
rameter is not suitable to treat optimality. Instead, we propose to consider minimax
optimality on the intersection of �0 and �1 balls. In Section 5.2 we prove the corre-
sponding minimax lower bound for all estimators and show rate optimality of the
ES estimator in this sense. Section 6 discusses corollaries of our main results for
the problem of aggregation; we show that the ES estimator solves simultaneously
and optimally the five problems of aggregation mentioned in (iii) above. Finally,
Section 7 presents a simulation study demonstrating a good performance of the ES

estimator in numerical experiments.

2. Model and notation. Let Z := {(x1, Y1), . . . , (xn, Yn)} be a collection of
independent random couples such that (xi, Yi) ∈ X × R, where X is an arbitrary
set. Assume the regression model

Yi = η(xi) + ξi, i = 1, . . . , n,

where η : X → R is the unknown regression function and the errors ξi are inde-
pendent Gaussian N (0, σ 2). The covariates are deterministic elements x1, . . . , xn

of X . Consider the equivalence relation ∼ on the space of functions f : X → R

such that f ∼ g if and only if f (xi) = g(xi) for all i = 1, . . . , n. Denote by Q1 : n

the quotient space associated with this equivalence relation and define the norm
‖ · ‖ by

‖f ‖2 := 1

n

n∑
i=1

f 2(xi), f ∈ Q1 : n.
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Notice that ‖ · ‖ is a norm on the quotient space but only a seminorm on the whole
space of functions f : X → R. Hereafter, we refer to it as a norm. We also define
the associated inner product

〈f,g〉 := 1

n

n∑
i=1

f (xi)g(xi).

Let H := {f1, . . . , fM}, be a dictionary of M ≥ 1 given functions fj : X → R.
We approximate the regression function η by a linear combination fθ (x) =∑M

j=1 θjfj (x) with weights θ = (θ1, . . . , θM), where possibly M 	 n.
We denote by X, the n × M design matrix with elements Xi,j = fj (xi),

i = 1, . . . , n, j = 1, . . . ,M . We also introduce the column vectors f = (η(x1), . . . ,

η(xn))

, Y = (Y1, . . . , Yn)


 and ξ = (ξ1, . . . , ξn)

. Let | · |p denote the �p norm

in R
d for p,d ≥ 1 and M(θ) denote the �0 norm of θ ∈ R

M , that is, the number
of nonzero elements of θ ∈ R

M . For two real numbers a and b we use the notation
a ∧ b := min(a, b), a ∨ b := max(a, b); we denote by [a] the integer part of a and
by 
a� the smallest integer greater than or equal to a.

3. Sparsity pattern aggregation and Exponential Screening. A sparsity
pattern is a binary vector p ∈ P := {0,1}M . The terminology comes from the fact
that the coordinates of any such vectors can be interpreted as indicators of pres-
ence (pj = 1) or absence (pj = 0) of a given feature indexed by j ∈ {1, . . . ,M}.
We denote by |p| the number of ones in the sparsity pattern p and by R

p the space
defined by

R
p = {θ · p : θ ∈ R

M} ⊂ R
M,

where θ · p ∈ R
M denotes the Hadamard product between θ and p and is defined

as the vector (θ · p)j = θj pj , j = 1, . . . ,M .
For any p ∈ P , let θ̂p be any least squares estimator defined by

θ̂p ∈ arg min
θ∈Rp

|Y − Xθ |22.(3.1)

The following simple lemma gives an oracle inequality for the least squares esti-
mator. Let rk(X) ≤ M ∧ n denote the rank of the design matrix X.

LEMMA 3.1. Fix p ∈ P . Then any least squares estimator θ̂p defined in (3.1)
satisfies

E‖f
θ̂p

− η‖2 = min
θ∈Rp

‖fθ − η‖2 + σ 2 Rp

n
≤ min

θ∈Rp
‖fθ − η‖2 + σ 2 |p| ∧ R

n
,(3.2)

where Rp is the dimension of the linear subspace {Xθ : θ ∈ R
p} and R = rk(X).

Moreover, the random variables ξ1, . . . , ξn need not be Gaussian for (3.2) to hold.
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Proof of the lemma is straightforward in view of the Pythagorean theorem.
Let π = (πp)p be a probability measure on P , which we will further call a prior.

The sparsity pattern aggregate (SPA) estimator is defined as fθ̃SPA , where

θ̃ SPA :=
∑

p∈P θ̂p exp((−1/(4σ 2))
∑n

i=1(Yi − f
θ̂p

(xi))
2 − Rp/2)πp∑

p∈P exp((−1/(4σ 2))
∑n

i=1(Yi − f
θ̂p

(xi))2 − Rp/2)πp
.

As shown in Leung and Barron (2006), the following oracle inequality holds:

E‖fθ̃SPA − η‖2 ≤ min
p∈P : πp �=0

{
E‖f

θ̂p
− η‖2 + 4σ 2 log(π−1

p )

n

}
.(3.3)

Now, we consider a specific choice of the prior π

πp :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1

H

( |p|
2eM

)|p|
, if |p| < R,

1

2
, if |p| = M ,

0, otherwise,

(3.4)

where R = rk(X), we use the convention 00 = 1 and H = 2
∑R

k=0
(M

k

)
( k

2eM
)k is

a normalization factor. In this paper we study the SPA estimator with the prior
defined in (3.4). We call it the Exponential Screening (ES) estimator, and denote
by θ̃ES the estimator θ̃ SPA with the prior (3.4). The ES estimator is a mixture of least
squares estimators corresponding essentially to sparsity patterns p with small size
and small residual sum of squares. Note that the weight 1/2 is assigned to the least
squares estimator on the whole space (case where |p| = M) and can be changed to
any other constant in (0,1) without modifying the rates presented below, as long
as H is modified accordingly.

Since
(M

k

) ≤ ( eM
k

)k , we obtain that H ≤ 4. Using this and considering separately
the cases |p| ≤ 1 and |p| ≥ 2, we obtain that the remainder term in (3.3) satisfies

4σ 2 log(π−1
p )

n
≤ 4σ 2

n

[
|p| log

(
2eM

|p| ∨ 1

)
+ log 4

]

≤ 8σ 2|p|
n

log
(

1 + eM

|p| ∨ 1

)
(3.5)

+ 8σ 2

n
log 2

for sparsity patterns p such that |p| < R. Together with (3.3), this inequality yields
the following theorem.
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THEOREM 3.1. For any M ≥ 1, n ≥ 1, the Exponential Screening estimator
satisfies the following sparsity oracle inequality:

E‖fθ̃ES − η‖2 ≤ min
θ∈RM

{
‖fθ − η‖2 + σ 2R

n

∧ 9σ 2M(θ)

n
log

(
1 + eM

M(θ) ∨ 1

)}
(3.6)

+ 8σ 2

n
log 2,

where R ≤ M ∧ n denotes the rank of the design matrix X.

PROOF. Combining the result of Lemma 3.1 and (3.3) with the sparsity prior
defined in (3.4), we obtain that E‖fθ̃ES − η‖2 is bounded from above by

min
θ∈RM

M(θ)<R

{
‖fθ − η‖2 + 9σ 2 M(θ)

n
log

(
1 + eM

M(θ) ∨ 1

)}
+ 8σ 2

n
log 2(3.7)

and by

min
θ∈RM

{
‖fθ − η‖2 + σ 2 R

n

}
+ 4σ 2

n
log 2.(3.8)

Combining (3.7) and (3.8) concludes the proof. �

An interesting corollary of Theorem 3.1 is obtained for the linear regression
model where it is assumed that η = fθ∗ for some θ∗ ∈ R

M . In this case (3.6) yields

E‖fθ̃ES − fθ∗‖2 ≤ σ 2R

n
∧ 9σ 2M(θ∗)

n
log

(
1 + eM

M(θ∗) ∨ 1

)
+ 8σ 2

n
log 2.

However, even in this parametric case, Theorem 3.1 provides a stronger result.
Indeed, if there exists θ ′ ∈ R

M , such that

‖fθ ′ − fθ∗‖2 + σ 2R

n
∧ 9σ 2M(θ ′)

n
log

(
1 + eM

M(θ ′) ∨ 1

)
(3.9)

<
σ 2R

n
∧ 9σ 2M(θ∗)

n
log

(
1 + eM

M(θ∗) ∨ 1

)
,

then Theorem 3.1 gives a tighter bound on E‖fθ̃ES − fθ∗‖2. A vector θ ′ ∈ R
M that

satisfies (3.9) exists when fθ∗ can be well approximated by fθ ′ , and θ ′ is much
sparser than θ∗.

While the sparsity oracle inequality (3.6) indicates that the ES estimator adapts
to the underlying sparsity when measured in terms of the number of nonzero co-
efficients M(θ), it is also adaptive to the sparsity when measured in terms of the
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�1 norm |θ |1 = ∑
j |θ |j . This can become an advantage when θ has many small

coefficients so that |θ |1 � M(θ). Indeed, the following theorem shows that the ES

estimator also enjoys adaptation in terms of its �1 norm.

THEOREM 3.2. Assume that max1≤j≤M ‖fj‖ ≤ 1. Then for any M ≥ 1, n ≥ 1
the Exponential Screening estimator satisfies

E‖fθ̃ES − η‖2 ≤ min
θ∈RM

{‖fθ − η‖2 + ϕn,M(θ)}
(3.10)

+ σ 2

n

(
9 log(1 + eM) + 8 log 2

)
,

where ϕn,M(0) := 0, and, for θ �= 0,

ϕn,M(θ) := σ 2R

n
∧ 9σ 2M(θ)

n
log

(
1 + eM

M(θ) ∨ 1

)
(3.11)

∧ 11σ |θ |1√
n

√
log

(
1 + 3eMσ

|θ |1√n

)
.

Furthermore, for any θ ∈ R
M , such that 〈fθ , η〉 ≤ ‖fθ‖2, we have

E‖fθ̃ES − η‖2 ≤ ‖fθ − η‖2 + ψn,M(θ) + 8σ 2

n
log 2,(3.12)

where ψn,M(0) := 0, and, for θ �= 0,

ψn,M(θ) := σ 2R

n
∧ 9σ 2M(θ)

n
log

(
1 + eM

M(θ) ∨ 1

)
(3.13)

∧ 11σ |θ |1√
n

√
log

(
1 + 3eMσ

|θ |1√n

)
∧ 4|θ |21.

In particular, if there exists θ∗ ∈ R
M such that η = fθ∗ , we have

E‖fθ̃ES − fθ∗‖2 ≤ ψn,M(θ∗) + 8σ 2

n
log 2.(3.14)

The proof of Theorem 3.2 is obtained by combining Theorem 3.1 and Lem-
ma A.2 in the Appendix. For brevity, the constants derived from Lemma A.2 are
rounded up to the closest integer.

It is easy to see that in fact Lemma A.2 implies a more general result. Not nec-
essarily fθ̃ES , but, in general, any estimator satisfying a SOI of the type (3.6) also
obeys the oracle inequality of the form (3.10), that is, enjoys adaptation simulta-
neously in terms of the �0 and �1 norms. This remains still a theoretical proposal,
since we are not aware of estimators satisfying (3.6) apart from fθ̃ES . However,
there are estimators for which coarser versions of (3.6) are available as discussed
in the next section.
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4. Sparsity oracle inequalities for the BIC and Lasso estimators. The aim
of this section is to put Theorem 3.2 in perspective by discussing weaker results in
the same spirit for two popular estimators, namely, the BIC and the Lasso estima-
tors.

We consider the following version of the BIC estimator [cf. Bunea, Tsybakov
and Wegkamp (2007b)]:

θ̂BIC ∈ arg min
θ∈RM

{
1

n
|Y − Xθ |22 + pen(θ)

}
,(4.1)

where

pen(θ) := 2σ 2

n

{
1 + 2 + a

1 + a

√
L(θ) + 1 + a

a
L(θ)

}
M(θ)

with for some a > 0 and L(θ) = 2 log( eM
M(θ)∨1). Combining Theorem 3.1 in Bunea,

Tsybakov and Wegkamp (2007b) and Lemma A.2 in the Appendix we get the
following corollary.

COROLLARY 4.1. Assume that max1≤j≤M‖fj‖ ≤ 1. Then there exists a pos-
itive numerical constant C such that for any M ≥ 2, n ≥ 1 and any a > 0 the BIC

estimator satisfies

E‖f
θ̂BIC − η‖2 ≤ (1 + a) min

θ∈RM

{
‖fθ − η‖2 + C

1 + a

a
ϕn,M(θ)

}
+ Cσ 2

n
,(4.2)

where ϕn,M is defined in (3.11).

We note that Theorem 3.1 in Bunea, Tsybakov and Wegkamp (2007b) is stated
with R = M and with the additional assumption that all the functions fj are uni-
formly bounded. Nevertheless, this last condition is not used in the proof in Bunea,
Tsybakov and Wegkamp (2007b), and the result trivially extends to the framework
that we consider here. The SOI (4.2) ensures adaptation to sparsity simultaneously
in terms of the �0 and �1 norms. However, it is less precise than the SOI in Theo-
rem 3.2 because the leading constant (1 + a) is strictly greater than 1 and the rate
deteriorates as the leading constant approaches 1, that is, as a → 0. Also the com-
putation of the BIC estimator is a hard combinatorial problem, exponential in M ,
and it can be efficiently solved only when the dimension M is small.

Consider now the Lasso estimator θ̂L, that is, a solution of the minimization
problem

θ̂L ∈ arg min
θ∈RM

{
1

n
|Y − Xθ |22 + λ|θ |1

}
,(4.3)

where λ > 0 is a tuning parameter. This problem is convex, and there exist several
efficient algorithms of computing θ̂L in polynomial time.
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Our aim here is to present results in the spirit of Theorem 3.2 for the Lasso.
They have a weaker form than for the ES estimator and for the BIC. In the next
theorem, we give a SOI in terms of the �1 norm that is similar to those that we
have presented for the ES and BIC estimators, but it is stated in probability rather
than in expectation and the logarithmic factor in the rate is less accurate. Note that
it does not require any restrictive condition on the dictionary f1, . . . , fM .

THEOREM 4.1. Assume that max1≤j≤M ‖fj‖ ≤ 1. Let M ≥ 2, n ≥ 1 and let

θ̂L be the Lasso estimator defined by (4.3) with λ = Aσ

√
logM

n
, where A > 2

√
2.

Then with probability at least 1 − M1−A2/8 we have

‖f
θ̂L − η‖2 ≤ min

θ∈RM

{
‖fθ − η‖2 + 2Aσ

|θ |1√
n

√
logM

}
.(4.4)

PROOF. From the definition of θ̂L by a simple algebra we get

‖f
θ̂L − η‖2 ≤ ‖fθ − η‖2 + 2

n
|(θ̂L − θ)
X
ξ | + λ(|θ |1 − |θ̂L|1) ∀θ ∈ R

M.

Next, note that P(A) ≥ 1 − M1−A2/8 for the random event A = {| 2
n

X
ξ |∞ ≤ λ}
[cf. Bickel, Ritov and Tsybakov (2009), equation (B.4)]. Therefore,

‖f
θ̂L − η‖2 ≤ ‖fθ − η‖2 + λ|θ̂L − θ |1 + λ(|θ |1 − |θ̂L|1) ∀θ ∈ R

M

with probability at least 1−M1−A2/8. Thus, (4.4) follows by the triangle inequality
and the definition of λ. �

The rate |θ |1√
n

√
logM in (4.4) is slightly worse than the corresponding �1 term of

the rate of ES estimator [cf. (3.11) and (3.13)].
In contrast to Theorem 4.1, a SOI in terms of the �0 norm for the Lasso is

available only under strong conditions on the dictionary f1, . . . , fM . Following
Bickel, Ritov and Tsybakov (2009), we say that the restricted eigenvalue condition
RE(s, c0) is satisfied for some integer s such that 1 ≤ s ≤ M , and a positive number
c0 if we have

κ(s, c0) := min
J0⊆{1,...,M},

|J0|≤s

min
��=0,

|�Jc
0
|1≤c0|�J0 |1

|X�|2√
n|�J0 |2

> 0.

Here |J | is the cardinality of the index set J and we denote by �J the vector in
R

M that has the same coordinates as � on J and zero coordinates on the com-
plement J c of J . A typical SOI in terms of the �0 norm for the Lasso is given in
Theorem 6.1 of Bickel, Ritov and Tsybakov (2009). It guarantees that, under the
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condition RE(s, 3 + 4/a) and the assumptions of Theorem 4.1, with probability at
least 1 − M1−A2/8, we have

‖f
θ̂L − η‖2 ≤ (1 + a)

× min
θ∈RM : M(θ)≤s

{
‖fθ − η‖2(4.5)

+ C(1 + a)

aκ2(s,3 + 4/a)

M(θ) logM

n

}

for all a > 0 and some constant C > 0 depending only on A and σ . This oracle
inequality is substantially weaker than (3.10) and (4.2). Indeed, it is valid under
assumption RE(s, 3 + 4/a), which is a strong condition. Furthermore, the rank of
the matrix X does not appear, the minimum in (4.5) is taken over the set of sparsity
s linked to the properties of the matrix X, and the minimal restricted eigenvalue
κ(s,3 + 4/a) appears in the denominator. This contrasts with inequalities (3.10),
(4.2) and (4.4) which hold under no assumption on X, except for simple normal-
ization, max1≤j≤M ‖fj‖ ≤ 1. Finally, the leading constant in (4.5) is strictly larger
than 1, and the same comments as for the BIC apply in this respect.

5. Discussion of the optimality.

5.1. Deficiency of the approach based on function normalization. Section 3
provides upper bounds on the risk of ES estimator. A natural question is whether
these bounds are optimal. At first sight, to show the optimality it seems sufficient
to prove that there exists θ ∈ R

M and η such that, for any estimator T ,

E‖T − η‖2 ≥ ‖fθ − η‖2 + cψn,M(θ),

where c > 0 is some constant independent of n and M . This can be also written in
the form

inf
T

sup
η

sup
θ∈RM

E‖T − η‖2 − ‖fθ − η‖2

ψn,M(θ)
≥ c,(5.1)

where infT denotes the infimum over all estimators. We note that it is possible to
prove (5.1) under some assumptions on the dictionary f1, . . . , fM . However, we
do not consider these type of results because they do not lead to a valid notion
of optimality. Indeed, since the rate ψn,M(θ) is a function of parameter θ , there
exist infinitely many different rate functions ψn,M(·) for which (5.1) can be proved
and complemented by the corresponding upper bounds. To illustrate this point,
consider a basic example defined by the following conditions:

(i) M = n;
(ii) η = fθ∗ for some θ∗ ∈ R

n;
(iii) the Gram matrix 
 = X
X/n is equal to the n × n identity matrix;
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(iv) σ 2 = 1.

This will be further referred to as the diagonal model. It can be equivalently
written as a Gaussian sequence model,

yi = θi + 1√
n
εi, i = 1, . . . , n,(5.2)

where (y1, . . . , yn)

 = X
Y/n and ε1, . . . , εn are i.i.d. standard Gaussian random

variables.
Clearly, estimation of η in the diagonal model is equivalent to estimation of θ∗

in model (5.2), and we have the isometry ‖fθ −η‖ = |θ − θ∗|2. Moreover, it is easy
to see that we can consider w.l.o.g. only estimators T of the form T = f

θ̂
for some

statistic θ̂ , and that (5.1) for the diagonal model follows from a simplified bound

inf
θ̂

sup
θ∈Rn

Eθ |θ̂ − θ |22
ψn(θ)

≥ c,(5.3)

where we write Eθ to specify the dependence of the expectation upon θ , inf
θ̂

de-
notes the infimum over all estimators, and for brevity ψn(θ) = ψn,n(θ).

Results such as (5.3) are available in Donoho and Johnstone (1994a) where it is
proved that, for the diagonal model,

inf
θ̂

sup
θ∈Rn

Eθ |θ̂ − θ |22
ψ01

n (θ)
= 1 + o(1)(5.4)

as n → ∞, where

ψ01
n (θ) = 2 logn

{
1

n
+

n∑
i=1

min
(
θ2
i ,

1

n

)}
.(5.5)

The expression in curly brackets in (5.5) is the risk of 0–1 (or “keep-or-kill”) or-
acle, that is, the minimal risk of the estimators θ̂ whose components θ̂j are either
equal to yj or to 0. A relation similar to (5.4), with the infimum taken over a class
of thresholding rules, is proved in Foster and George (1994).

Result (5.4) is often wrongly interpreted as the fact that the factor 2 logn is
the “unavoidable” price to pay for sparse estimation. In reality this is not true,
and (5.4) cannot be considered as a basis of valid notion of optimality. Indeed,
using the results of Section 3, we are going to construct an estimator whose risk
is O(ψ01

n (θ)) for all θ , and is of order o(ψ01
n (θ)) for some θ (cf. Theorem 5.2

below). So, this estimator improves upon (5.4) not only in constants but in the rate;
in particular, the exact asymptotic constant appearing in (5.4) is of no importance.
The reason is that the lower bound for (5.4) in Donoho and Johnstone (1994a) is
proved by restricting θ to a small subset of R

n, and the behavior of the risk on
other subsets of R

n can be much better.



742 P. RIGOLLET AND A. TSYBAKOV

Define the rate

ψ∗
n(θ) = min

[
M(θ) logn

n
, |θ |1

√
logn

n
, |θ |21

]
+ 1

n
,

which is an asymptotic upper bound on the rate in (3.13) for M = n, n → ∞.

THEOREM 5.1. Consider the diagonal model. Then the Exponential Screen-
ing estimator satisfies

lim sup
n→∞

sup
θ∈Rn

Eθ |θ̃ES − θ |22
ψ01

n (θ)
≤ 2(5.6)

and

lim inf
n→∞ inf

θ∈Rn

Eθ |θ̃ES − θ |22
ψ01

n (θ)
= 0.(5.7)

Furthermore,

lim
n→∞ inf

θ∈Rn

ψ∗
n(θ)

ψ01
n (θ)

= 0.(5.8)

PROOF. We first prove (5.6). From (3.3), Lemma 3.1 and (3.5) we obtain

Eθ |θ̃ES − θ∗|22 ≤ min
θ∈Rn

{
|θ − θ∗|22 + M(θ)

n

(
1 + 4 log(2en)

)} + 4 log 2

n

for any θ∗ ∈ R
n. Let θ ∈ R

n be the vector with components θj = θ∗
j I (|θ∗

j | >

1/
√

n) where I (·) denotes the indicator function. Then

|θ − θ∗|22 =
n∑

j=1

|θ∗
j |2I (|θ∗

j | ≤ 1/
√

n
)

and

M(θ)

n
=

n∑
j=1

1

n
I
(|θ∗

j | > 1/
√

n
)
.

Therefore,

Eθ |θ̃ES − θ∗|22 ≤ (
1 + 4 log(2en)

) n∑
j=1

min
(
|θ∗

j |2, 1

n

)
+ 4 log 2

n
,

which implies (5.6). Next, (5.7) is an immediate consequence of (5.8). To prove
(5.8) we consider, for example, the set �n = {θ ∈ R

n :a/
√

n ≤ |θj | ≤ b/
√

n for all
θj �= 0} where 0 < a < b < ∞ are constants. For all θ ∈ �n we have

ψ∗
n(θ) ≤ |θ |1

√
logn

n
+ 1

n
≤ bM(θ)

√
logn

n
+ 1

n
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and

ψ01
n (θ) ≥ 2

(
min(a2,1)M(θ) + 1

) logn

n
,

so that

lim
n→∞ sup

θ∈�n

ψ∗
n(θ)

ψ01
n (θ)

= 0.(5.9)

Hence, (5.8) follows. �

Theorem 5.1 shows that the normalizing function (rate) ψ01
n (θ) and the result

(5.4) cannot be considered as a benchmark. Indeed, the risk of the ES estimator is
strictly below this bound. It attains the rate ψ01

n (θ) everywhere on R
n [cf. (5.6)]

and has strictly better rate on some subsets of R
n [cf. (5.8), (5.9)]. In particular,

the ES estimator improves upon the soft thresholding estimator, which is known to
asymptotically attain the bound (5.4) [cf. Donoho and Johnstone (1994a)]. This is
a kind of inadmissibility statement for the rate ψ01

n (θ).
Observe also that the improvement that we obtain is not a “marginal” effect

regarding signals θ with small intensity. Indeed, (5.9) is stronger than (5.8), and
the set �n is rather massive. In particular, the �0 norm M(θ) in the definition of
�n can be arbitrary, so that �n contains elements θ with the whole spectrum of
�1 norms, from small |θ |1 = a/

√
n to very large |θ |1 = bM/

√
n = b

√
n. Various

other examples of �n satisfying (5.9) can be readily constructed.
So far, we were interested only in the rates. The fact that the constant in (5.6)

is equal to 2 was of no importance in this argument since on some subsets of
R

n we can improve the rate. Notice that one can construct estimators having the
same properties as those proved for θ̃ES in Theorem 5.1 with constant 1 instead
of 2 in (5.6). In other words, one can construct an estimator θ̃∗ whose risk is at
least as small as ψ01

n (θ)(1 + o(1)) everywhere on R
n and attains strictly faster

rate o(ψ01
n (θ)) on some subsets of R

n. Such an estimator θ̃∗ can be obtained by
aggregating θ̃ES with the soft thresholding estimator, as shown in the next theorem.

THEOREM 5.2. Consider the diagonal model. Then there exists a randomized
estimator θ̃∗ such that

lim sup
n→∞

sup
θ∈Rn

Eθ |θ̃∗ − θ |22
ψ̃n(θ)

≤ 1,(5.10)

where the expectation includes that over the randomizing distribution, and where
the normalizing functions ψ̃n satisfy

lim inf
n→∞ inf

θ∈Rn

ψ01
n (θ)

ψ̃n(θ)
≥ 1(5.11)
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and

lim inf
n→∞ sup

θ∈Rn

ψ01
n (θ)

ψ̃n(θ)
= ∞.(5.12)

The proof of this theorem is given in the Appendix.

5.2. Minimax optimality on the intersection of �0 and �1 balls. The rate in the
upper bound of Theorem 3.2 is the minimum of terms depending on the �0 norm
M(θ) and on the �1 norm |θ |1 [cf. (3.13)]. We would like to derive a corresponding
lower bound, that is, to show that this rate of convergence cannot be improved in
a minimax sense. Since both �0 and �1 norms are present in the upper bound,
a natural approach is to consider minimax lower bounds on the intersection of �0

and �1 balls. Here we prove such a lower bound under some assumptions on the
dictionary H = {f1, . . . , fM} or, equivalently, on the matrix X. Along with the
lower bound for one “worst case” dictionary H, we also state it uniformly for all
dictionaries in a certain class.

5.2.1. Assumptions on the dictionary. Recall first that all the results from Sec-
tion 3 hold under the only condition that the dictionary H is composed of functions
fj such that ‖fj‖ ≤ 1. This condition is very mild compared to the assumptions
that typically appear in the literature on sparse recovery using �1 penalization such
as the Lasso or the Dantzig selector. Bühlmann and van de Geer (2009) review
a long list of such assumptions, including the restricted isometry (RI) property
given, for example, in Candes (2008) and the restricted eigenvalue (RE) condi-
tion of Bickel, Ritov and Tsybakov (2009) described in Section 4. We call them
for brevity the L-conditions. Loosely speaking, they ensure that for some integer
S ≤ M , the design matrix X forms a quasi-isometry from a suitable subset Ap of
R

p into R
n for any p such that |p| ≤ S. Here “quasi-isometry” means that there

exist two positive constants κ and κ such that

κ|θ |22 ≤ |Xθ |22
n

≤ κ|θ |22 ∀θ ∈ Ap.(5.13)

While the general thinking is that a design matrix X satisfying an L-condition is fa-
vorable, we establish below that, somewhat surprisingly, such matrices correspond
to the least favorable case.

We now formulate a weak version of the RI condition. For any integer M ≥ 2
and any 0 < u ≤ M let Pu denote the set of vectors θ ∈ {−1,0,1}M such that
M(θ) ≤ u. For any constants 0 < κ ≤ 1 and 0 < t ≤ (M ∧ n)/2 let D(t, κ) be the
class of design matrices X defined by the following conditions:

(i) max1≤j≤M‖fj‖ ≤ 1;
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(ii) there exist κ, κ > 0, such that κ/κ ≥ κ and

κ|θ |22 ≤ |Xθ |22
n

≤ κ|θ |22 ∀θ ∈ P2t .(5.14)

Note that t ≤ t ′ implies D(t ′, κ) ≤ D(t, κ). Examples of matrices X that satisfy
(5.14) are given in the next subsection.

In the next subsection we show that the upper bound of Theorem 3.2 matches
a minimax lower bound which holds uniformly over the class of design matrices
D(S, κ).

5.2.2. Minimax lower bound. Denote by Pη the distribution of (Y1, . . . , Yn)

where Yi = η(xi) + ξi, i = 1, . . . , n, and by Eη the corresponding expectation. For
any δ > 0 and any integers S ≥ 1, n ≥ 1,M ≥ 1,R ≥ 1 such that R ≤ M ∧ n,
define the quantity

ζn,M,R(S, δ) := σ 2R

n
∧ σ 2S

n
log

(
1 + eM

S

)
(5.15)

∧ σδ√
n

√
log

(
1 + eMσ

δ
√

n

)
∧ δ2.

Note that ζn,M,R(S, δ) = ψn,M(θ) where ψn,M is the function (3.13) with M(θ) =
S and |θ |1 = δ. Let m ≥ 1 be the largest integer satisfying

m ≤ δ
√

n

σ
√

log(1 + eM/m)
,(5.16)

if such an integer exists. If there is no m ≥ 1 such that (5.16) holds, we set m = 0.
Note that m ≤ δ

√
n/σ .

THEOREM 5.3. Fix δ > 0 and integers n ≥ 1,M ≥ 2, 1 ≤ S ≤ M . Fix κ > 0
and let H be any dictionary with design matrix X ∈ D(S ∧m,κ), where m = m∨1
and m is defined in (5.16). Then, for any estimator Tn, possibly depending on
δ, S,n,M and H, there exists a numerical constant c∗ > 0, such that

sup
θ∈R

M+ \{0}
M(θ)≤S

|θ |1≤δ

sup
η

{Eη‖Tn − η‖2 − ‖fθ − η‖2} ≥ c∗κζn,M,rk(X)(S, δ),(5.17)

where rk(X) denotes the rank of X and R
M+ is the positive cone of R

M . Moreover,

sup
θ∈R

M+ \{0}
M(θ)≤S

|θ |1≤δ

Efθ ‖Tn − fθ‖2 ≥ c∗κζn,M,rk(X)(S, δ).(5.18)
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The proof of this theorem is given in Section A.3 of the Appendix. It is worth
mentioning that the result of Theorem 5.3 is stronger than the minimax lower
bounds discussed in Section 5.1 [cf. (5.3)] in the sense that even if η = fθ∗ ,
θ∗ ∈ R

M , where M(θ∗) and |θ∗|1 are known a priori, the rate cannot be improved.
Let us fix some positive constant κ ≤ 1 and define R̃ = 1 + [ R

C0
log(1 + eM

R
)]

for some constant C0 > 0 to be chosen small enough. We now show that for
each choice of R ≥ 1 such that R̃ ≤ M ∧ n, there exists at least one matrix
X ∈ D(R/2, κ) such that R ≤ rk(X) ≤ R̃. A basic example is the following. Take
the elements Xi,j = fj (xi), i = 1, . . . , n, j = 1, . . . ,M , of matrix X as

Xi,j =
⎧⎪⎨
⎪⎩ ei,j

√
n

R̃
, if i ≤ R̃,

0, otherwise,

(5.19)

where ei,j ,1 ≤ i ≤ n,1 ≤ j ≤ M are i.i.d. Rademacher random variables, that is,
random variables taking values 1 and −1 with probability 1/2. First, it is clear that
then ‖fj‖ ≤ 1, j = 1, . . . ,M . Next, condition (ii) in the definition of D(R/2, κ)

follows from the results on RI properties of Rademacher matrices. Many such
results have been derived and we focus only on that of Baraniuk et al. (2008)
because of its simplicity. Indeed, Theorem 5.2 in Baraniuk et al. (2008) ensures
not only that for an integer S ′ ≤ M ∧ n there exist design matrices in D(S′/2, κ)

but also that most of the design matrices X with i.i.d. Rademacher entries ei,j are
in D(S′/2, κ) for some κ > 0 as long as there exists a constant C0 small enough
such that the condition

S′

M ∧ n
log

(
1 + eM

S′
)

< C0(5.20)

is satisfied. Specifically, Theorem 5.2 in Baraniuk et al. (2008) ensures that if X′
is the R̃ × M matrix composed of the first R̃ rows of X with elements as defined
in (5.19), and

R

R̃
log

(
1 + eM

R

)
≤ C0(5.21)

holds for small enough C0, then

κ
n

R̃
|θ |22 ≤ |X′θ |22

R̃
≤ κ

n

R̃
|θ |22 ∀θ :M(θ) ≤ R

with probability close to 1 which in turn implies (ii) with t = R/2. As a result,
the above construction yields X ∈ D(R/2, κ) that has rank bracketed by R and R̃

since (5.21) holds by our definition of R̃.
In what follows, C0 is the constant in (5.20) small enough to ensure that Theo-

rem 5.2 in Baraniuk et al. (2008) holds, and we assume w.l.o.g. that C0 < 1.
Using the above remarks and Theorem 5.3 we obtain the following result.
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THEOREM 5.4. Fix δ > 0 and integers n ≥ 1,M ≥ 2,1 ≤ S ≤ M,R ≥ 1.
Moreover, assume that 1 + R

C0
log(1 + eM/R) ≤ M ∧ n. Then there exists a dic-

tionary H composed of functions fj with max1≤j≤M ‖fj‖ ≤ 1, R ≤ rk(X) ≤
1 + R

C0
log(1 + eM/R), and a constant c∗ > 0 such that

inf
Tn

sup
θ∈R

M+ \{0}
M(θ)≤S

|θ |1≤δ

sup
η

{Eη‖Tn − η‖2 − ‖fθ − η‖2} ≥ c∗ζn,M,rk(X)(S, δ),(5.22)

where the infimum is taken over all estimators. Moreover,

inf
Tn

sup
θ∈R

M+ \{0}
M(θ)≤S

|θ |1≤δ

Efθ ‖Tn − fθ‖2 ≥ c∗ζn,M,rk(X)(S, δ).(5.23)

PROOF. Fix a positive constant κ ≤ 1 and let X be a random matrix con-
structed as in (5.19) so that the rank of X is bracketed by R and R̃ and X ∈
D(R/2, κ). We consider two cases. Assume first that S ≤ R/2 so that X ∈
D(R/2, κ) ⊂ D(S, κ) ⊆ D(S ∧ m,κ) and the result follows trivially from The-
orem 5.3. Next, if S ≥ R/2, observe that

rk(X) ≤ R̃ ≤ 1 + R

C0
log

(
1 + eM

R

)
≤ 2

C0
R log

(
1 + 2eM

R

)

(we used here that C0 < 1), so that

rk(X) ∧ S log
(

1 + eM

S

)
≤ rk(X) ≤ 2

C0

(
rk(X) ∧ R log

(
1 + 2eM

R

))
.

It yields ζn,M,rk(X)(S, δ) ≤ Cζn,M,rk(X)(R/2, δ) and the result follows from Theo-
rem 5.3, which ensures that

inf
Tn

sup
θ∈R

M+ \{0}
M(θ)≤S

|θ |1≤δ

sup
η

{Eη‖Tn − η‖2 − ‖fθ − η‖2}

≥ c∗κζn,M,rk(X)(R/2, δ) ≥ c∗ζn,M,rk(X)(S, δ). �

As a consequence of Theorem 5.4 we get a lower bound on the �0 ball B0(S) =
{θ :M(θ) ≤ S} by formally setting δ = ∞ in (5.22)

sup
η

sup
θ∈RM

M(θ)≤S

{Eη‖Tn − η‖2 − ‖fθ − η‖2}

(5.24)

≥ c∗
σ 2

n

[
rk(X) ∧ S log

(
1 + eM

S

)]
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and the same type of bound can be derived from (5.23). Analogous considerations
lead to the following lower bound on the �1 ball B1(δ) = {θ : |θ |1 ≤ δ} when setting
S = M :

sup
η

sup
θ∈RM

|θ |1≤δ

{Eη‖Tn − η‖2 − ‖fθ − η‖2}

(5.25)

≥ c∗
(

σ 2rk(X)

n
∧ σδ√

n

√
log

(
1 + eMσ

δ
√

n

)
∧ δ2

)
,

and the same type of bound can be derived from (5.23).
Consider now the linear regression, that is, assume that there exists θ∗ such

that η = fθ∗ . Comparing (3.14) with (5.18) we find that for δ ≥ 1/
√

n the rate
ζn,M,rk(X)(S, δ) is the minimax rate of convergence on B0(S) ∩ B1(δ) and that the
ES estimator is rate optimal. Moreover, it is rate optimal separately on B0(S) and
B1(δ), and the minimax rates on these sets are given by the right-hand sides of
(5.24) and (5.25), respectively.

For the diagonal model (cf. Section 5.1), asymptotic lower bounds and exact
asymptotics of the minimax risk on �q balls were studied by Donoho et al. (1992)
for q = 0 and by Donoho and Johnstone (1994b) for 0 < q < ∞. These results
were further refined by Abramovich et al. (2006). In the �0 case, Donoho et al.
(1992) exhibit a minimax rate over B0(S) that is asymptotically equivalent to

2σ 2 S

n
log

(
n

S

)
as M = n → ∞.

In the �1 case, Donoho and Johnstone (1994b) prove that the minimax rate over an
�1 ball with radius δ is asymptotically equivalent to

δσ√
n

√
2 log

(
σ
√

n

δ

)
as M = n → ∞.

In both cases, the above rates are equivalent, up to a numerical constant, to the
asymptotics of the right-hand sides of (5.24) and (5.25) under the diagonal model.
We note that the results of those papers are valid under some restrictions on as-
ymptotical behavior of S (resp., δ) as a function of n.

Recently Raskutti, Wainwright and Yu (2009) extended the study of asymptotic
lower bounds on �q balls (0 ≤ q ≤ 1) to the nondiagonal case with M �= n. Their
results hold under some restrictions on the joint asymptotic behavior of n,M and
S (resp., δ). The minimax rates on the �0 and �1 balls obtained in Raskutti, Wain-
wright and Yu [(2009), Theorem 3] are similar to (5.24) and (5.25) but, because of
the specific asymptotics, some effects are wiped out there. For example, the �1 rate
in Raskutti, Wainwright and Yu (2009) is δ

√
(logM)/n, whereas (5.25) reveals an

elbow effect that translates into different rates for σ rk(X) ≤ δ
√

n. Furthermore,
the dependence on the rank of X does not appear in Raskutti, Wainwright and
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Yu (2009), since under their assumptions rk(X) = n. Theorem 5.3 above gives a
stronger result since it is (i) nonasymptotic, (ii) it explicitly depends on the rank
rk(X) of the design matrix and (iii) it holds on the intersection of the �0 and �1
balls. Moreover, Theorem 3.2 shows that the �0 − �1 lower bound is attained by
one single estimator: the Exponential Screening estimator. Alternatively, Raskutti,
Wainwright and Yu (2009) treat the two cases separately, providing two lower
bounds and two different estimators that attain them in some specific asymptot-
ics.

6. Universal aggregation. Combining the elements of a dictionary H =
{f1, . . . , fM} to estimate a regression function η originates from the problem of
aggregation introduced by Nemirovski (2000). It can be generally described as
follows. Given � ⊂ R

M , the goal of aggregation is to construct an estimator f̂n

that satisfies an oracle inequality of the form

E‖f̂n − η‖2 ≤ min
θ∈�

‖fθ − η‖2 + C�n,M(�), C > 0,(6.1)

with the smallest possible (in a minimax sense) remainder term �n,M(�), in
which case �n,M(�) is called optimal rate of aggregation [cf. Tsybakov (2003)].
Nemirovski (2000) identified three types of aggregation: (MS) for model selec-
tion, (C) for convex and (L) for linear. Bunea, Tsybakov and Wegkamp (2007b)
also considered another collection of aggregation problems, denoted by (LD) for
subset selection and indexed by D ∈ {1, . . . ,M}. To each of these problems corre-
sponds a given set � ⊂ R

M and an optimal remainder term �n,M(�). For (MS)
aggregation, � = �(MS) = B0(1)∩B1(1) = {e1, . . . , eM}, where ej is the j th vec-
tor of the canonical basis of R

M . For (C) aggregation, � = �(C) is a convex
compact subset of the simplex B1(1) = {θ ∈ R

M : |θ |1 ≤ 1}. The main example
of {fθ , θ ∈ �(C)} is the set of all convex combinations of the fj ’s. For (L) aggre-
gation, � = �(L) = R

M = B0(M), so that {fθ , θ ∈ �(L)} is the set of all linear
combinations of the fj ’s. Given an integer D ∈ {1, . . . ,M}, for (LD) aggregation,
� = �(LD) = B0(D) = {θ ∈ R

M :M(θ) ≤ D}. For this problem, {fθ , θ ∈ �(LD)} is
the set of all linear combinations of at most D of the fj ’s.

Note that all these sets � are of the form B0(S) ∩ B1(δ) for specific values of S

and δ. This allows us to apply the previous theory.
Table 1 presents the four different choices for � together with the optimal

remainder terms given by Bunea, Tsybakov and Wegkamp (2007b). For (MS),
(C) and (L) aggregation they coincide with optimal rates of aggregation origi-
nally proved in Tsybakov (2003) for the regression model with i.i.d. random de-
sign and integral L2 norm in the risk. A fifth type of aggregation called the D-
convex aggregation, which we denote by (CD) was studied by Lounici (2007).
In this case, � = �(LD) is a convex compact subset of B1(1) ∩ B0(D), so that
{fθ , θ ∈ �(LD)} can be, as a typical example, the set of convex combinations of at
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TABLE 1
Sets of parameters �(MS),�(C),�(L) and �(LD) and

corresponding optimal rates of aggregation presented in Bunea,
Tsybakov and Wegkamp (2007b). Note that Bunea, Tsybakov and
Wegkamp (2007b) considered a slightly different definition in the

(C) case: �(C) = B1(1) ∩ R
M+ leading to the same rate

Problem � �n,M(�)

(MS) �(MS) = B0(1) ∩ B1(1)
logM

n

(C) �(C) = B1(1) M
n ∧

√
1
n log(1 + eM√

n
)

(L) �(L) = B0(M) M
n

(LD) �(LD) = B0(D) D
n log(1 + eM

D
)

most D of the fj ’s. Lounici (2007) proves minimax lower bounds together with
an upper bound that departs from the lower bound by logarithmic terms. However,
the results hold in the i.i.d. random design setting and do not extend to our setup.
While several papers use different estimators for different aggregation problems
[see Tsybakov (2003), Rigollet (2009)], one contribution of Bunea, Tsybakov and
Wegkamp (2007b) was to show that the BIC estimator defined in Section 4 satisfies
oracle inequalities of the form

E‖f
θ̂BIC − η‖2 ≤ (1 + a)min

θ∈�
‖fθ − η‖2 + C

1 + a

a2 �n,M(�),(6.2)

simultaneously for all the sets � presented in Table 1. Here a and C are positive
constants. Moreover, for the Lasso estimator defined in (4.3), Bunea, Tsybakov
and Wegkamp (2007b) show less precise inequalities under the assumption the
matrix X
X is positive definite, where X is the design matrix defined in Section 2.
Note that these oracle inequalities are not sharp since the leading constant is 1 + a

and not 1, whereas letting a → 0 results in blowing up the remainder term. The
following theorem shows that the Exponential Screening estimator satisfies sharp
oracle inequalities (i.e., with leading constant 1) that hold simultaneously for the
five problems of aggregation.

THEOREM 6.1. Assume that max1≤j≤M ‖fj‖ ≤ 1. Then for any M ≥ 2,
n ≥ 1, D ≤ M and � ∈ {�(MS),�(C),�(L),�(LD),�(LD)} the Exponential
Screening estimator satisfies the following oracle inequality:

E‖fθ̃ES − η‖2 ≤ min
θ∈�

‖fθ − η‖2 + C�∗
n,M(�),
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where C > 0 is a numerical constant and

�∗
n,M(�) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ 2R

n
∧ σ 2 logM

n
, if � = �(MS),

σ 2R

n
∧

√
σ 2

n
log

(
1 + eMσ√

n

)
, if � = �(C),

σ 2R

n
, if � = �(L),

σ 2R

n
∧ σ 2D

n
log

(
1 + eM

D

)
, if � = �(LD),

σ 2R

n
∧

√
σ 2

n
log

(
1 + eMσ√

n

)

∧ σ 2D

n
log

(
1 + eM

D

)
, if � = �(LD).

The proof of Theorem 6.1 follows directly from (3.10) and (3.11).
We also observe that �∗

n,M(�) is to within a constant factor of �∗
n,M(�) ∧ 1

since σ 2R
n

≤ σ 2(M∧n)
n

≤ σ 2.
Using Theorems 5.3 and 5.4 it is not hard to show that the rates �∗

n,M(�) ∧ 1
for �∗

n,M(�) listed in Theorem 6.1 are optimal rates of aggregation in the sense
of Tsybakov (2003). Indeed, it means to prove that there exists a dictionary H
satisfying the assumptions of Theorem 5.4, and a constant c > 0 such that the
following lower bound holds:

inf
Tn

sup
η

{
Eη‖Tn − η‖2 − min

θ∈�
‖fθ − η‖2

}
≥ c

(
�∗

n,M(�) ∧ 1
)
,(6.3)

where the infimum is taken over all estimators. An important observation here is
that the left-hand side of (6.3) is greater than or equal to

inf
Tn

sup
θ∈�

Efθ ‖Tn − fθ‖2.(6.4)

It remains to note that a lower bound for (6.4) with the rate �∗
n,M(�) ∧ 1 follows

directly from Theorem 5.4 [cf. also (5.24) and (5.25)] applied with the values S

and δ corresponding to the definition of �.
Interestingly, the rates given in Theorem 6.1 are different from those in Table 1,

and also from those for the regression model with i.i.d. random design established
in Tsybakov (2003) and Lounici (2007). Indeed, they depend on the rank R of the
regression matrix X, and the bounds are better when the rank is smaller. This is
quite natural since the distance ‖fθ̃ES − η‖ is the “empirical distance” depending
on X. One can easily understand it from the analogy with the behavior of the
ordinary least squares estimator [cf. Lemma 3.1]. Alternatively, the distance used
in Tsybakov (2003) and Lounici (2007) for the i.i.d. random design setting is the
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L2(PX)-distance where PX is the marginal distribution of Xi’s, and no effects
related to the rank can occur. As concerns Table 1, the optimality of the rates given
there is proved in Bunea, Tsybakov and Wegkamp (2007b) only for M ≤ n and
X
X/n equal to the identity matrix, in which case R = M and thus the effect of
R is not visible.

7. Implementation and numerical illustration. In this section, we propose
an implementation of the ES estimator together with a numerical experiment both
on artificial and real data. We suppose throughout that the sample is fixed, so that
the least squares estimators θp,p ∈ P , are fixed vectors.

7.1. Implementation via Metropolis approximation. Recall that the ES estima-
tor θ̃ES is the following mixture of least squares estimators:

θ̃ES :=
∑

p∈P θ̂p exp((−1/(4σ 2))
∑n

i=1(Yi − f
θ̂p

(xi))
2 − Rp/2)πp∑

p∈P exp((−1/(4σ 2))
∑n

i=1(Yi − f
θ̂p

(xi))2 − Rp/2)πp
,(7.1)

where P := {0,1}M , π is the prior (3.4), and θ̂p is the least squares estimator
on R

p.
Recall also that the prior π defined in (3.4) assigns weight 1/2 to the ordinary

least squares estimator θ̂1, where 1 = (1, . . . ,1) ∈ P . It is not hard to check from
the proof of Theorem 3.1 that it allows us to cap the rates by σ 2R/n. While this
upper bound has important theoretical consequences, in the examples that we con-
sider in this section, we typically have R = n so that the dependence of the rates
in R is inconsequential. As a result, in the rest of the section, we consider the
following simpler prior:

π̃p :=
⎧⎨
⎩

2

H

( |p|
2eM

)|p|
, if |p| < R,

0, otherwise.
(7.2)

Exact computation of fθ̃ES requires the computation of 2R−1 least squares estima-
tors. In many applications this number is prohibitively large and we need to resort
to a numerical approximation. Notice that θ̃ES is obtained as the expectation of the
random variable θ̂P where P is a random variable taking values in P with proba-
bility mass function ν given by

νp ∝ exp

(
− 1

4σ 2

n∑
i=1

(
Yi − f

θ̂p
(xi)

)2 − Rp

2

)
π̃p, p ∈ P .

This Gibbs-type distribution can be expressed as the stationary distribution of the
Markov chain generated by the Metropolis–Hastings (MH) algorithm [see, e.g.,
Robert and Casella (2004), Section 7.3]. We now describe the MH algorithm em-
ployed here. Consider the M-hypercube graph G with vertices given by P . For
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Fix p0 = 0 ∈ R
M . For any t ≥ 0, given pt ∈ P ,

1. Generate a random variable Qt with distribution q(·|pt ).
2. Generate a random variable

Pt+1 =
{

Qt , with probability r(pt ,Qt ),
pt , with probability 1 − r(pt ,Qt ),

where

r(p,q) = min
(

νq

νp
,1

)
.

3. Compute the least squares estimator θ̂Pt+1 .

FIG. 1. The Metropolis–Hastings algorithm on the M-hypercube.

any p ∈ P , define the instrumental distribution q(·|p) as the uniform distribution
on the neighbors of p in G , and notice that since each vertex has the same number
of neighbors, we have q(p|q) = q(q|p) for any p,q ∈ P . The MH algorithm is de-
fined in Figure 1. We use here the uniform instrumental distribution for the sake of
simplicity. Our simulations show that it yields satisfactory results both in perfor-
mance and in the speed. Another choice of q(·|·) can potentially further accelerate
the convergence of the MH algorithm.

The following theorem ensures the ergodicity of the Markov chain generated by
the MH algorithm.

THEOREM 7.1. For any function p �→ θp ∈ R
M , the Markov chain (Pt )t≥0

defined by the MH algorithm satisfies

lim
T →∞

1

T

T0+T∑
t=T0+1

θPt = ∑
p∈P

θpνp, ν-almost surely,

where T0 ≥ 0 is an arbitrary integer.

PROOF. The chain is clearly ν-irreducible, so the result follows from Robert
and Casella (2004), Theorem 7.4, page 274. �

In view of this result, we approximate θ̃ES = ∑
p∈P θpνp by

˜̃
θES

T = 1

T

T0+T∑
t=T0+1

θ̂Pt ,

which is close to θ̃ES for sufficiently large T . One salient feature of the MH algo-
rithm is that it involves only the ratios νq/νp where p and q are two neighbors in G .
Since

νq

νp
= exp

(
1

4σ 2

n∑
i=1

[(
Yi − f

θ̂p
(xi)

)2 − (
Yi − f

θ̂q
(xi)

)2] + Rp − Rq

2

)
π̃q

π̃p
,
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the MH algorithm benefits from the choice (7.2) of the prior π̃ in terms of speed.
Indeed, for this prior, we have

π̃q

π̃p
=

(
1 + ω

|p|
)|q|( |p|

2eM

)ω

,

and ω = |q| − |p| ∈ {−1,1} when p and q are two neighbors in G . In this respect,
the choice of the prior π̃ as in (7.2) is better than the suggestions in Leung and
Barron (2006) and Giraud (2008) who consider priors that require the computation
of the combinatoric quantity

(M
|p|

)
. Moreover, the choice (7.2) yields slightly better

constants and improves the remainder terms in the oracle inequalities of Section 3,
as compared to what would be obtained with those priors.

As a result, the MH algorithm in this case takes the form of a stochastic greedy
algorithm with averaging, which measures a tradeoff between sparsity and predic-
tion to decide whether to add or remove a variable. In all subsequent examples, we
use a pure MATLAB implementation of the ES estimator. While the benchmark
estimators considered below employ a C-based code optimized for speed, we ob-
served that a safe implementation of the MH algorithm (three time more iterations
than needed) exhibited an increase of computation time of at most a factor two.

7.2. Numerical experiments.

7.2.1. Sparse recovery. While our results for the ES estimator hold under no
assumption on the dictionary, we first compare the behavior of our algorithm in
a well-known example where the L-conditions on the dictionary are satisfied and
therefore sparse recovery by �1-penalized techniques is theoretically achievable.

Consider the model Y = Xθ∗ + σξ , where X is an n × M matrix with inde-
pendent Rademacher or standard Gaussian entries and ξ ∈ R

n is a vector of inde-
pendent standard Gaussian random variables and is independent of X. The vector
θ∗ is given by θ∗

j = 1(j ≤ S) for some fixed S so that M(θ∗) = S. The variance
is chosen as σ 2 = S/9 following the numerical experiments of Candes and Tao
(2007), Section 4. For different values of (n,M,S), we run the ES algorithm on
500 replications of the problem and compare our results with several other popular
estimators in the sparse recovery literature. We limit our choice to estimators that
are readily implemented in R or MATLAB. The considered estimators are:

1. the Lasso estimator with regularization parameter σ
√

8(logM)/n as indicated
in Bickel, Ritov and Tsybakov (2009);

2. the cross-validated Lasso estimator (LassoCV) with regularization parameter
obtained by ten-fold cross-validation;

3. the Lasso–Gauss estimator (Lasso–G) corresponding to the Lasso estimator
computed in 1 and threshold value given by σ

√
(2 logM)/n;

4. the cross-validated Lasso–Gauss estimator (LassoCV–G) corresponding to the
Lasso estimator computed in 2 and threshold value given by σ

√
(2 logM)/n;
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5. the MC+ estimator of Zhang (2010) with regularization parameter σ ×√
(2 logM)/n;

6. the SCAD estimator of Fan and Li (2001) with regularization parameter
σ
√

(2 logM)/n.

The Lasso–Gauss estimators in 3 and 4 are obtained using the following two-step
procedure. In the first step, a Lasso estimator (Lasso or LassoCV) is computed and
only coordinates larger than the threshold σ

√
2(logM)/n are retained in a set J .

In the second step, the Lasso–Gauss estimators are obtained by constrained least
squares under the constraint that coordinates β̂j /∈ J are equal to 0. Indeed, it is
usually observed that the Lasso estimator induces a strong bias by over-shrinking
large coefficients and the Lasso–Gauss procedure is a practically efficient remedy
to this issue. By construction, the SCAD and MC+ estimators should not suffer
from such a shrinkage. The Lasso estimators are based on the l1-ls package
in MATLAB [Koh, Kim and Boyd (2008)]. The MC+ and SCAD estimators are
implemented in the plus package in R [Zhang and Melnik (2009)].

The performance of each of the seven estimators generically denoted by θ̂ is
measured by its prediction error |X(θ̂ − θ∗)|22/n = ‖f

θ̂
− fθ∗‖2. Moreover, even

though the estimation error |θ̂ − θ∗|22 is not studied above, we also report its values
in Table 3, for a better comparison with other simulation studies. We considered the
cases (n,M,S) ∈ {(100,200,10), (200,500,20)}. The Metropolis approximation
˜̃
θES

T was computed with T0 = 3000, T = 7000, which should be in the asymptotic
regime of the Markov chain since Figure 3 shows that on a typical example, the
right sparsity pattern is recovered after about 2000 iterations.

Figure 2 displays comparative boxplots for both Gaussian and Rademacher de-
sign matrix. In particular, it shows that ES outperforms all six other estimators and
has less variability across repetitions.

Figure 3 illustrates a typical behavior of the ES estimator for one particular
realization of X and ξ . For better visibility, both displays represent only the 50

first coordinates of ˜̃
θES

T , with T = 7000 and T0 = 3000. The left-hand side display
shows that the sparsity pattern is well recovered and the estimated values are close
to one. The right-hand side display illustrates the evolution of the intermediate
parameter θ̂Pt for t = 1, . . . ,5000. It is clear that the Markov chain that runs on
the M-hypercube graph gets trapped in the vertex that corresponds to the sparsity
pattern of θ∗ after only 2000 iterations. As a result, while the ES estimator is not
sparse itself, the MH approximation to the ES estimator may output a sparse solu-
tion. A covariate Xj is considered to be selected by an estimator θ̂ , if |θ̂j | > 1/n.
Hence, for any two vectors θ(1), θ (2) ∈ R

M define θ(1)� θ(2) ∈ {0,1}M as the bi-
nary vector with j th coordinate given by(

θ(1)� θ(2))
j = 1

(∣∣θ(1)
j

∣∣ > 1/n, θ
(2)
j = 0

) + 1
(
θ

(1)
j = 0,

∣∣θ(2)
j

∣∣ > 1/n
)
.

The performance of an estimator θ̂ in terms of model selection is measured by the
number M(θ̂� θ∗) of variables that are incorrectly selected or incorrectly left out of
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FIG. 2. Boxplots of |X(θ̂ − θ∗)|22/n over 500 realizations for the ES, Lasso, cross-validated Lasso
(LassoCV), Lasso–Gauss (Lasso–G), cross-validated Lasso–Gauss (LassoCV–G), MC+ and SCAD

estimators. Left: (n,M,S) = (100,200,10), right: (n,M,S) = (200,500,20), top: Gaussian design,
bottom: Rademacher design.

FIG. 3. Typical realization for (M,n,S) = (500,200,20) and Gaussian design. Left: value of the
˜̃
θES
T , T = 7000, T0 = 3000. Right: value of θ̂Pt

for t = 1, . . . ,5000. Only the first 50 coordinates are
shown for each vector.
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the model. Among the four procedures considered here, MC+ uniformly dominates
the other three in terms of model selection. Table 4 displays the relative average
model selection error (RAMS) over 500 repetitions of each of the experiments
described above

RAMS(θ̂) =
∑500

i=1 M(θ̂(i)� θ∗)∑500
i=1 M(θ̂(i),MC+� θ∗)

,(7.3)

where for each repetition i of the experiment, θ̂ (i),MC+ denotes the MC+ estimator
and θ̂ (i) is one of the four estimators: ES, Lasso, MC+ or SCAD.

While MC+ uniformly dominates the three other procedures, the model selec-
tion properties of ES are better than Lasso but not as good as SCAD and the relative
performance of ES improves when the problem size increases. The superiority of
MC+ and SCAD does not come as a surprise as these procedures are designed for
variable selection. However, ES makes up for this deficiency by having much better
estimation and prediction properties.

To conclude this numerical experiment in the linear regression model, notice
that we used the knowledge of the variance parameter σ 2 to construct the estima-
tors, except for those based on cross-validation. In particular, ES depends on σ 2

and it is necessary to be able to implement it without such a knowledge. While an
obvious solution consists in resorting to cross-validation or bootstrap, such pro-
cedures tend to become computationally burdensome. We propose the following
estimator for σ 2. Let θES(σ 2) denote the estimator obtained by replacing σ 2 with
any upper bound σ 2 ≥ σ 2 in the definition (7.1) of the ES estimator. Define

σ̂ 2 = inf
{
s2 :

∣∣∣∣ |Y − XθES(s2)|22
n − Mn(θES(s2))

− s2
∣∣∣∣ > α

}
,

where α > 0 is a tolerance parameter and for any θ ∈ R
M , Mn(θ) = ∑M

j=1 1(|θj | >
1/n). As a result, the proposed estimator σ̂ 2 is the smallest positive value that
departs from the usual estimator for the variance by more than α. The motivation
for this estimator comes from the following heuristics, which is loosely inspired by
Zhang (2010), Section 5.2. It follows from the results of Leung and Barron (2006)
that θES(σ 2) satisfies the oracle inequalities of Section 3 and thus of Section 6
with σ 2 replaced by σ 2. As a consequence, we can use any upper bound σ 2 ≥ σ 2

to compute an estimator θES(σ 2) and thus, an estimator of the variance based on
the residuals. Our heuristics consists in choosing the smallest upper bound that
is inconsistent with the estimator based on the residuals. Figure 4 and Table 5
summarize the performance of the variance estimator σ̂ 2 and the corresponding
ES estimator θES(σ̂ 2) for α = 1.

Note that in Table 5, the obtained values are comparable to those in Tables 2
and 3. In particular, it is remarkable that the ES estimator with estimated variance
still has smaller prediction and estimation errors in these experiments than the
other six estimators considered methods.
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FIG. 4. Boxplots of the estimated variance σ̂ 2 based on 500 replications of each of the four ex-
periments described above. The horizontal dashed lines indicate the value of the true parameter
σ 2 = S/9. Left: σ 2 = 1.11. Right: σ 2 = 2.22.

7.2.2. Handwritten digits dataset. The aim of this subsection is to illustrate
the performance of the ES algorithm on a real dataset and to compare it with the
state-of-the-art procedure in sparse estimation, namely the Lasso. While sparse
estimation is the object of many recent statistical studies, it is still hard to find a
freely available benchmark dataset where M 	 n. We propose the following real
dataset originally introduced in LeCun et al. (1990) and, in the particular instance
of this paper, obtained from the webpage of the book by Hastie, Tibshirani and
Friedman (2001). We observe a grayscale image of size 16 × 16 pixels of the
handwritten digit “6” (see Figure 6) which is artificially corrupted by a Gaussian
noise. Formally, we can write

Y = μ + σξ,(7.4)

TABLE 2
Means and standard deviations of |X(θ̂ − θ∗)|22/n over 500 realizations for the ES, Lasso,
cross-validated Lasso (LassoCV), Lasso–Gauss (Lasso–G), cross-validated Lasso–Gauss

(LassoCV–G), MC+ and SCAD estimators. Top: Gaussian design, bottom: Rademacher design

(M,n,S) ES Lasso LassoCV Lasso–G LassoCV–G MC+ SCAD

(100,200,10) 0.12 1.47 0.99 0.75 0.35 0.41 0.86
(0.07) (0.31) (0.40) (0.77) (0.53) (0.20) (0.40)

(200,500,20) 0.24 3.39 1.81 2.55 0.70 1.07 2.37
(0.10) (0.50) (0.50) (1.45) (0.76) (0.35) (0.64)

(100,200,10) 0.12 1.48 0.99 0.70 0.30 0.39 0.83
(0.06) (0.31) (0.38) (0.79) (0.47) (0.19) (0.39)

(200,500,20) 0.24 3.32 1.76 2.34 0.66 1.05 2.37
(0.09) (0.49) (0.49) (1.44) (0.74) (0.33) (0.61)
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TABLE 3
Means and standard deviations of |θ̂ − θ∗|22 over 500 realizations

for the ES, Lasso, cross-validated Lasso (LassoCV), Lasso–Gauss (Lasso–G),
cross-validated Lasso–Gauss (LassoCV–G), MC+ and SCAD estimators.

Top: Gaussian design, bottom: Rademacher design

(M,n,S) ES Lasso LassoCV Lasso–G LassoCV–G MC+ SCAD

(100,200,10) 0.14 2.06 1.42 1.08 0.48 0.56 1.30
(0.12) (0.72) (0.66) (1.22) (0.84) (0.34) (0.81)

(200,500,20) 0.27 4.72 2.73 3.62 0.93 1.45 3.51
(0.13) (1.24) (0.88) (2.29) (1.13) (0.63) (1.33)

(100,200,10) 0.13 1.99 1.37 0.94 0.38 0.51 1.21
(0.07) (0.71) (0.60) (1.19) (0.68) (0.35) (0.81)

(200,500,20) 0.26 4.50 2.60 3.20 0.82 1.38 3.44
(0.11) (1.14) (0.80) (2.20) (1.00) (0.56) (1.22)

TABLE 4
Relative average model selection error (RAMS) defined in (7.3) over 500 realizations for the ES,

Lasso, MC+ and SCAD estimators. Top: Gaussian design, bottom: Rademacher design

Design (M,n,S) ES Lasso MC+ SCAD

Gauss. (100,200,10) 10.54 12.43 1.00 3.56
Gauss. (200,500,20) 9.26 15.81 1.00 6.04

Rad. (100,200,10) 13.18 15.80 1.00 3.59
Rad. (200,500,20) 10.07 16.18 1.00 6.18

TABLE 5
Means and standard deviations of prediction error |X(θES(σ̂ 2) − θ∗)|22/n and estimation error

|θES(σ̂ 2) − θ∗|22 over 500 realizations for the ES estimator θES(σ̂ 2) with estimated variance

Design (M,n,S) |X(θES(σ̂ 2) − θ∗)|22/n |θES(σ̂ 2) − θ∗|22
Gauss. (100,200,10) 0.12 0.14

(0.09) (0.14)
Gauss. (200,500,20) 0.26 0.31

(0.19) (0.32)

Rad. (100,200,10) 0.12 0.13
(0.07) (0.08)

Rad. (200,500,20) 0.25 0.28
(0.11) (0.14)
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FIG. 5. Left: histogram of the M(M −1)/2 correlation coefficients between different images in the
database. Right: the upper left corner of size 200 × 200 of the full correlation matrix. Notice that
only the absolute value of the correlation coefficients is discriminative in terms of color. The dark,
off-diagonal regions are characteristic of correlated features.

where Y ∈ R
256 is the observed image, μ ∈ [0,1]256 is the true image, σ > 0 and

ξ ∈ R
256 is a standard Gaussian vector. Therefore the number of observations is

equal to the number of pixels: n = 256. The goal is to reconstruct μ using linear
combinations of vectors x1, . . . , xM ∈ [0,1]256 that form a dictionary of size M =
7290. Each vector xj is a 16 × 16 grayscale image of a handwritten digit from 0
to 9. As a result, xj ’s are strongly correlated as illustrated by the correlation matrix
displayed in Figure 5. The digit “6” is a notably hard instance due to its similarity
with the digits “0” and with some instances of the digit “5” (see Figure 9). Given
an estimator θ̂ , the performance is measured by the prediction error |μ − Xθ̂ |22,
where X is the n × M design matrix formed by horizontal concatenation of the
column vectors x1, . . . , xM ∈ R

n.
Figures 6 and 7 illustrate the reconstruction of this digit by the ES, Lasso

and Lasso–Gauss estimators for σ = 0.5 and σ = 1, respectively. The lat-
ter two estimators were computed with fixed regularization parameter equal to
σ
√

8(logM)/n and the threshold for the Lasso–Gauss estimator was taken equal
to σ

√
2(logM)/n. It is clear from those figures that the Lasso estimator recon-

structs the noisy image and not the true one indicating that the regularization pa-
rameter σ

√
8(logM)/n may be too small for this problem.

FIG. 6. Reconstruction of the digit “6” with σ = 0.5.
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FIG. 7. Reconstruction of the digit “6” with σ = 1.0.

For both σ = 0.5 and σ = 1, the experiment was repeated 250 times and the
predictive performance of ES was compared with that of the Lasso and Lasso–
Gauss estimators. The results are represented in Figure 8 and Table 6.

To conclude, we mention a byproduct of this simulation study. The coefficients
of θ̃ES can be used to perform multi-class classification following the idea of
Wright et al. (2009). The procedure consists of performing a majority vote on
the features xj that are positively weighted by θ̃ES, that is, such that θ̃ES

j > 0. For
the particular instance illustrated in Figure 6(c), we see in Figure 9 that only a few
features xj receive a large positive weight and that a majority of those correspond
to the digit “6.”

APPENDIX

A.1. Lemmas for the upper bound. The following lemma is obtained by a
variant of the “Maurey argument” [cf. also Barron (1993), Bunea, Tsybakov and
Wegkamp (2007b), Bickel, Ritov and Tsybakov (2008) for similar but somewhat
different results].

FIG. 8. Boxplots of the predictive performance |μ − Xθ̂ |22 of the ES, Lasso and Lasso–Gauss
(Lasso–G) estimators computed from 250 replications of the model (7.4) with μ corresponding to
the digit “6.” Left: σ = 0.5. Right: σ = 1. Notice that each graph uses a different scale.
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TABLE 6
Means and standard deviations for |μ − Xθ̂ |22 over 250 realizations of the ES, Lasso and

Lasso–Gauss estimators to reconstruct the digit “6”

ES Lasso Lasso–Gauss

σ = 0.5 26.57 59.49 40.55
(4.57) (5.28) (14.58)

σ = 1.0 51.70 239.39 82.95
(12.32) (22.12) (24.40)

LEMMA A.1. For any θ∗ ∈ R
M \ {0}, any integer k ≥ 1 and any function f

we have

min
θ : |θ |1=|θ∗|1

M(θ)≤k

‖f − fθ‖2 ≤ ‖f − fθ∗‖2 + |θ∗|21
min(k,M(θ∗))

.

PROOF. Fix θ∗ ∈ R
M \ {0} and an integer k ≥ 1. Set K = min(k,M(θ∗)).

Consider the multinomial parameter p = (p1, . . . , pM)
 ∈ [0,1]M with pj =
|θ∗

j |/|θ∗|1, j = 1, . . . ,M , where θ∗
j are the components of θ∗. Let κ = (κ1, . . . ,

κM)
 ∈ {0,1, . . . ,M}M be the random vector with multinomial distribution
M(K,p), that is, let κj = ∑K

s=1 1(Is = j) where I1, . . . , IK are i.i.d. random
variables taking value j ∈ {1, . . . ,M} with probability pj , j = 1, . . . ,M . In par-
ticular, we have E (κj ) = Kpj , j = 1, . . . ,M , where E denotes the expectation
with respect to the multinomial distribution. As a result, for the random vector
θ ∈ R

M with the components θj = κj sign(θ∗
j )|θ∗|1/K we have E (θj ) = θ∗

j for
j = 1, . . . ,M with the convention that sign(0) = 0. Moreover, using the fact that
Var(κj ) = Kpj(1 −pj ) and Cov(κj , κl) = −npjpl for j �= l [see, e.g., Bickel and

FIG. 9. Coefficients of ˜̃
θES
T , T = 10,000 and the corresponding image.
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Doksum (2006), equation (A.13.15), page 462] we find that the covariance matrix
of θ is given by

�∗ = E [(θ − θ∗)(θ − θ∗)
] = |θ∗|1
K

diag(|θ∗
j |) − 1

K
|θ∗||θ∗|
,

where |θ∗| = (|θ∗
j |, . . . , |θ∗

j |)
. Using a bias–variance decomposition together with
the assumption maxj ‖fj‖ ≤ 1, it yields that, for any function f ,

E ‖f − fθ‖2 = ‖f − fθ∗‖2 + 1

n

n∑
i=1

F(xi)

�∗F(xi) ≤ ‖f − fθ∗‖2 + |θ∗|21

K
,

where F(xi) = (f1(xi), . . . , fM(xi))

, i = 1, . . . , n. Moreover, since θ is such that

|θ |1 = |θ∗|1 and M(θ) ≤ K , the lemma follows. �

LEMMA A.2. Fix M,n ≥ 1 and assume that maxj ‖fj‖ ≤ 1. For any function
η and any constant ν > 0 we have

min
θ∈RM

{
‖fθ − η‖2 + ν2 M(θ)

n
log

(
1 + eM

M(θ) ∨ 1

)}
(A.1)

≤ min
θ∈RM

{‖fθ − η‖2 + c̃ϕn,M(θ)},

where c̃ = (3 + 1
e
), ϕn,M(0) = 0 and for θ �= 0,

ϕn,M(θ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min

[
ν|θ |1√

n

√
log

(
1 + eMν

|θ |1√n

)
, |θ |21

]
,

if 〈fθ , η〉 ≤ ‖fθ‖2,

ν|θ |1√
n

√
log

(
1 + eMν

|θ |1√n

)
+ ν2 log(1 + eM)

c̃n
,

otherwise.

(A.2)

PROOF. Set

A = min
θ∈RM

{
‖fθ − η‖2 + ν2 M(θ)

n
log

(
1 + eM

M(θ) ∨ 1

)}
.

It suffices to consider R
M \ {0} instead of R

M since A ≤ ‖f0 − η‖2 + c̃ϕn,M(0) =
‖η‖2. Fix θ∗ ∈ R

M \ {0} and define

x∗ = |θ∗|1√n/� where � = ν

√
log

(
1 + eMν

|θ∗|1√n

)
.

Assume first x∗ ≤ 1. In this case we have

|θ∗|21 ≤ ν
|θ∗|1√

n

√
log

(
1 + eMν

|θ∗|1√n

)
.(A.3)
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The previous display yields that ϕn,M(θ∗) = |θ∗|21. Moreover, if 〈fθ∗, η〉 ≤ ‖fθ∗‖2,
it holds

‖η‖2 ≤ ‖fθ∗ − η‖2 + ‖fθ∗‖2 ≤ ‖fθ∗ − η‖2 + |θ∗|21.
As a result,

A ≤ ‖η‖2 ≤ ϕn,M(θ∗) if 〈fθ∗, η〉 ≤ ‖fθ∗‖2 and x∗ ≤ 1.(A.4)

Set k∗ = 
x∗�, that is, k∗ is the minimal integer greater than or equal to x∗. Using
the monotonicity of the mapping t �→ t

n
log(1 + eM

t
) for t > 0, and Lemma A.1

we get, for any θ∗ ∈ R
M \ {0} such that k∗ ≤ M(θ∗),

A ≤ min
θ∈RM

{
‖fθ − η‖2 + ν2 M(θ)

n
log

(
1 + eM

M(θ) ∨ 1

)}

≤ min
1≤k≤M(θ∗)

min
θ : M(θ)≤k

{
‖fθ − η‖2 + ν2 k

n
log

(
1 + eM

k

)}

≤ ‖fθ∗ − η‖2 + min
1≤k≤M(θ∗)

{
ν2 k

n
log

(
1 + eM

k

)
+ |θ∗|21

k

}

≤ ‖fθ∗ − η‖2 + ν2 k∗

n
log

(
1 + eM

k∗
)

+ |θ∗|21
k∗ .

On the other hand, if θ∗ ∈ R
M \ {0} and k∗ > M(θ∗), we use the simple bound

A ≤ ‖fθ∗ − η‖2 + ν2 M(θ∗)
n

log
(

1 + eM

M(θ∗) ∨ 1

)

≤ ‖fθ∗ − η‖2 + ν2 k∗

n
log

(
1 + eM

k∗
)
.

In view of the last two displays, to conclude the proof it suffices to show that

ν2 k∗

n
log

(
1 + eM

k∗
)

+ |θ∗|21
k∗ ≤ c̃ϕn,M(θ∗)(A.5)

for all θ∗ ∈ R
M \ {0}. Note first that if x∗ ≤ 1, then k∗ = 1 and

ν2 k∗

n
log

(
1 + eM

k∗
)

+ |θ∗|21
k∗ ≤ ν2 log(1 + eM)

n
+ ν

|θ∗|1√
n

√
log

(
1 + eMν

|θ∗|1√n

)

≤ c̃ϕn,M(θ∗),
where we used (A.3) in the first inequality. Together with (A.4), this proves that
A ≤ ‖fθ∗ − η‖2 + c̃ϕn,M(θ∗) for all θ∗ ∈ R

M \ {0} such that x∗ ≤ 1. Thus, to
complete the proof of the lemma we only need to consider the case x∗ > 1. For
x∗ > 1 we have

ϕn,M(θ∗) ≥ ν
|θ∗|1√

n

√
log

(
1 + eMν

|θ∗|1√n

)
.
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As a result, we have

|θ∗|21
k∗ ≤ |θ∗|1�√

n
≤ ϕn,M(θ∗).(A.6)

Moreover, it holds k∗ ≤ 2x∗ = 2|θ∗|1√n/� and since the function t �→ t
n

log(1 +
eM
t

) is increasing, we obtain

k∗

n
log

(
1 + eM

k∗
)

≤ 2|θ∗|1
�
√

n
log

(
1 + eM�

2|θ∗|1√n

)
.

Thus, for � ≤ ν we have

k∗

n
log

(
1 + eM

k∗
)

≤ 2|θ∗|1
�
√

n
log

(
1 + eMν

2|θ∗|1√n

)
≤ 2|θ∗|1�

ν2
√

n
≤ 2

ν2 ϕn,M(θ∗).

For � > ν we use the inequality log(1 + ab) ≤ log(1 + a) + logb,∀a ≥ 0, b ≥ 1,
to obtain

k∗

n
log

(
1 + eM

k∗
)

≤ 2|θ∗|1
�
√

n

[
log

(
1 + eMν

2|θ∗|1√n

)
+ log

(
�

ν

)]

≤ 2|θ∗|1√
n

(
�

ν2 + log(�/ν)

�

)
≤

(
2 + 1

e

) |θ∗|1�
ν2

√
n

≤
(

2 + 1

e

)
1

ν2 ϕn,M(θ∗).

Thus, in both cases k∗
n

log(1+ eM
k∗ ) ≤ (2+1/e)ν−2ϕn,M(θ∗). Combining this with

(A.6) we get (A.5). �

A.2. Proof of Theorem 5.2. Applying the randomization scheme described
in Nemirovski [(2000), page 211] we create from the sample y1, . . . , yn satisfying
(5.2) two independent subsamples with “equivalent” sizes 
n(1−1/ log logn)� and
n − 
n(1 − 1/ log logn)�. We use the first subsample to construct the ES estimator
and the soft thresholding estimator θ̂ SOFT, the latter attaining asymptotically the
rate ψ01

n (θ) for all θ ∈ R
n. We then use the second subsample to aggregate them,

for example, as described in Nemirovski (2000). Then the aggregated estimator
denoted by θ̃∗ satisfies, for all θ ∈ R

n,

Eθ |θ̃∗ − θ |22 ≤ min{Eθ |θ̂ SOFT − θ |22,Eθ |θ̃ES − θ |22} + C log logn

n

≤ min(ψ01
n (θ),ψ∗

n(θ))
(
1 + o(1)

) + C log logn

n
,

where C > 0 is an absolute constant and o(1) → 0 as n → ∞ uniformly in θ ∈ R
n.

Set

ψ̃n(θ) = min(ψ01
n (θ),ψ∗

n(θ)) + C log logn

n
.
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Then (5.10) follows immediately. Next, ψ01
n (θ) ≥ 2(logn)/n, so that for all

θ ∈ R
n,

ψ01
n (θ)

ψ̃n(θ)
≥ ψ01

n (θ)

ψ01
n (θ) + C(log logn)/n

≥ 2(logn)/n

2(logn)/n + C(log logn)/n
,

which implies (5.11). Finally, to prove (5.12) it is enough to notice that since
ψ01

n (θ) ≥ 2(logn)/n,

ψ̃n(θ)

ψ01
n (θ)

≤ ψ∗
n(θ) + C(log logn)/n

ψ01
n (θ)

≤ ψ∗
n(θ)

ψ01
n (θ)

+ C log logn

2 logn

and to use (5.8).

A.3. Proof of Theorem 5.3. Clearly (5.17) follows from (5.18) since in the
latter η is fixed and equal to one particular function η = fθ .

We now prove (5.18). Let H = {f1, . . . , fM} be any dictionary in D(S ∧ m,κ)

with the corresponding κ and κ such that κ/κ = κ . For any k ∈ {1, . . . ,M}, let �k

be the subset of P = {0,1}M defined by

�k := {p ∈ P : |p| = k}.(A.7)

We consider the class of functions

Fk(δ) :=
{
f = δ

k
τ fp : p ∈ �k

}
,

where 0 < τ ≤ 1 will be chosen later. Note that functions in Fk(δ) are of the form
fθ with θ ∈ R

M+ \ {0}, M(θ) = k and |θ |1 = τδ ≤ δ. Thus, to prove (5.18), it is
sufficient to show that, for any estimator Tn,

sup
η∈G

Eη‖Tn − η‖2 > c∗κζn,M,rk(X)(S, δ)(A.8)

for some subset G ⊂ FS̄ (δ) where S = [S ∧m∧ (M/2)] and [·] denotes the integer
part. Note that S ≥ 1 since M ≥ 2 and S ∧ m ≥ 1.

In what follows we will use the fact that for f,g ∈ FS̄ (δ) the difference f −g is
of the form fθ with some θ ∈ P2S̄ , so that in view of (5.14), ‖f − g‖2 is bracketed
by the multiples of |θ |22 with this value of θ .

We now consider three cases, depending on the value of the integer m defined
in (5.16).

Case (1): m = 0. Use Lemma A.3 to construct a subset G(1) ⊆ F1(δ) ⊆ FS̄ (δ)

with cardinality s(1) ≥ (1 + eM)C1 and such that

‖f − g‖2 ≥ τ 2δ2κ

2
∀f,g ∈ G(1), f �= g.(A.9)
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Since m = 0, inequality (5.16) is violated for m = 1, so that

δ2 <
σ 2

n
log(1 + eM) ≤ σ 2

nC1
log

(
s(1)

)
.(A.10)

Case (2): m ≥ 1, S ∧ (M/2) ≥ m. Then m = m = S and m ≤ M/2, so that we
have min(m,M − m) = m, and Lemma A.3 guarantees that there exists G(2) ⊆
Fm(δ) = FS̄ (δ) with cardinality s(2) ≥ (1 + eM/m)C1m and such that

‖f − g‖2 ≥ τ 2δ2κ

4m
∀f,g ∈ G(2), f �= g.

To bound from below the quantity δ2/m, observe that from the definition of m we
have

δ2

m
≥ δσ√

n

√
log

(
1 + eM

m

)
≥ δσ√

n

√
log

(
1 + eMσ

δ
√

n

)
.(A.11)

The previous two displays yield

‖f − g‖2 ≥ τ 2κδσ

4
√

n

√
log

(
1 + eMσ

δ
√

n

)
.(A.12)

Note that in this case

m + 1 >
δ
√

n

σ
√

log(1 + eM/(m + 1))
,

so that

δ2

m
≤ 2δ2

m + 1
< 2(m + 1)

σ 2

n
log

(
1 + eM

m + 1

)
(A.13)

≤ 4m
σ 2

n
log

(
1 + eM

m

)
≤ 4σ 2

nC1
log

(
s(2)

)
.

Case (3): m ≥ 1, S ∧ (M/2) < m. Then S = [S ∧ (M/2)] < m. Moreover, we
have min(S,M − S) = S and using Lemma A.3, for any positive δ ≤ δ we can
construct G(3) ⊆ FS̄ (δ) with cardinality s(3) ≥ (1 + eM/S)C1S̄ and such that

‖f − g‖2 ≥ τ 2δ2κ

4S
∀f,g ∈ G(3), f �= g.

Take

δ := σ
S√
n

√
log

(
1 + eM

S

)
≤ σ

m√
n

√
log

(
1 + eM

m

)
≤ δ,
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where, in the last inequality, we used the definition of m. Next, note that S =
[S ∧ (M/2)] ≥ S/4 since M ≥ 2. Then

‖f − g‖2 ≥ τ 2κσ 2S

4n
log

(
1 + eM

S

)
≥ τ 2κσ 2S

16n
log

(
1 + 4eM

S

)
.(A.14)

In addition, we have

δ2

S
= S

σ 2

n
log

(
1 + eM

S

)
≤ σ 2

nC1
log

(
s(3)

)
.(A.15)

Since the random variables ξi, i = 1, . . . , n, are i.i.d. Gaussian N (0, σ 2), for any
f,g ∈ G(j), j ∈ {1,2,3}, the Kullback–Leibler divergence K(Pf ,Pg) between Pf

and Pg is given by

K(Pf ,Pg) = n

2σ 2 ‖f − g‖2 ≤ nτ 2δ2
(j)κ

σ 2k(j)

,

where δ(1) = δ(2) = δ, δ(3) = δ, k(1) = 1, k(2) = m,k(3) = S. Using, respectively,
(A.10) in case (1), (A.13) in case (2) and (A.15) in case (3), and choosing τ 2 =
min(C1/(32κ),1) (note that we need τ ≤ 1 by construction) we obtain

K(Pf ,Pg) ≤ 4τ 2κ

C1
log s(j) ≤ log s(j)

8
∀f,g ∈ G(j), j = 1,2,3.(A.16)

Combining (A.9), (A.12) and (A.14) together with (A.16), we find that the condi-
tions of Theorem 2.7 in Tsybakov (2009) are satisfied and use it to obtain (A.8).

A.4. A lemma for minimax lower bound. Here we give a result related to
subset extraction, which is a generalization of the Varshamov–Gilbert lemma used
to prove minimax lower bounds [see, e.g., a recent survey in Tsybakov (2009),
Chapter 2]. For any M ≥ 1, k ∈ {1, . . . ,M − 1}, let �M

k be the subset of {0,1}M
defined by

�M
k :=

{
ω ∈ {0,1}M :

M∑
j=1

ωj = k

}
.

The next lemma belongs to Reynaud-Bouret (2003). The version presented here
can be found in Rigollet and Tsybakov (2010), Lemma 8.3.

LEMMA A.3. Let M ≥ 2 and 1 ≤ k ≤ M be two integers and define k =
min(k,M − k). Then there exists a subset � of �M

k such that the Hamming dis-
tance ρ(ω,ω′) = ∑M

j=1 1(ωj �= ω′
j ) satisfies

ρ(ω,ω′) ≥ k + 1

4
∀ω,ω′ ∈ � :ω �= ω′,
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and s = card(�) satisfies

log(s) ≥ C1k log
(

1 + eM

k

)

for some numerical constant C1 > 0.
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