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GLOBAL UNIFORM RISK BOUNDS FOR WAVELET
DECONVOLUTION ESTIMATORS

BY KARIM LOUNICI AND RICHARD NICKL

University of Cambridge

We consider the statistical deconvolution problem where one observes n

replications from the model Y = X + ε, where X is the unobserved random
signal of interest and ε is an independent random error with distribution ϕ.
Under weak assumptions on the decay of the Fourier transform of ϕ, we
derive upper bounds for the finite-sample sup-norm risk of wavelet decon-
volution density estimators fn for the density f of X, where f : R → R is
assumed to be bounded. We then derive lower bounds for the minimax sup-
norm risk over Besov balls in this estimation problem and show that wavelet
deconvolution density estimators attain these bounds. We further show that
linear estimators adapt to the unknown smoothness of f if the Fourier trans-
form of ϕ decays exponentially and that a corresponding result holds true for
the hard thresholding wavelet estimator if ϕ decays polynomially. We also an-
alyze the case where f is a “supersmooth”/analytic density. We finally show
how our results and recent techniques from Rademacher processes can be
applied to construct global confidence bands for the density f .

1. Introduction. Consider the statistical deconvolution model

Y = X + ε,(1.1)

where X is a real-valued random variable with unknown probability density f :
R → R

+ and ε is an error term independent of X that is distributed according to
the probability measure ϕ on R. The law P of Y equals the convolution f ∗ ϕ

and we denote its density by g. Let Y1, . . . , Yn be i.i.d. replications of Y in the
model (1.1) and denote by Pn the associated empirical measure. The deconvolution
problem is about recovering the unknown density f from the noisy observations
(Y1, . . . , Yn). It has been extensively studied: we refer to Carroll and Hall [9],
Stefanski [37], Stefanski and Carroll [38], Fan [14, 15], Diggle and Hall [12],
Goldenshluger [22], Pensky and Vidakovic [36], Delaigle and Gijbels [11], Hesse
and Meister [24], Johnstone et al. [25], Johnstone and Raimondo [26], Bissantz
et al. [3], Bissantz and Holzmann [4], Meister [30], Butucea and Tsybakov [7, 8]
and Pensky and Sapatinas [35], also to the monograph Meister [31], as well as to
Cavalier [10] for a survey of the literature on general inverse problems in statistics,
of which deconvolution is a special case.
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One key lesson from the aforementioned literature is that a lower bound on the
regularity of the signal ε is necessary to be able to estimate f with reasonable
accuracy. This lower bound is often quantified by a lower bound on the decay of
the Fourier transform F [ϕ] of ϕ and Fourier inversion techniques are applied to
construct estimators for f .

Most of the literature on this problem (with some notable exceptions, to be
discussed below) deals with the L2-theory, that is, involves the loss function
d2(f̂ , f ) = ∫

(f̂ − f )2 and is often restricted to the case of periodic and hence
compactly supported f . These restrictions are theoretically convenient, in par-
ticular since Fourier analysis-based methods can be used without too much dif-
ficulty, using the Parseval–Plancherel isometry. However, a sound understand-
ing of the local behavior of deconvolution estimators seems to be of significant
statistical importance. In particular a theory that could deal with sup-norm loss
d(f̂ , f ) = supx∈R |f̂ (x) − f (x)| could be used in the construction of confidence
bands for the object f of statistical interest. A fortiori it is not at all clear whether
the intuitions from L2-theory carry over to pointwise and uniform loss functions
in generality, bearing in mind that L2-convergence properties of Fourier series can
give a completely inadequate picture of their pointwise or uniform behaviour.

In the present article, we use methods from empirical process theory to derive
finite-sample sup-norm risk bounds for deconvolution density estimators based on
Fourier inversion with Meyer (or similar band-limited) wavelets. These estimators
were studied in Pensky and Vidakovic [36] and Johnstone et al. [25], and have
since been successfully used in inverse problems. Our results hold under min-
imal assumptions on the density f and the distribution ϕ: we require f to be
bounded, which is unavoidable if one considers sup-norm loss, and we assume
that the Fourier transform of ϕ is nonzero on the intervals of support of the Meyer
wavelet, which is necessary to define any estimator based on Fourier inversion and
which also makes f identifiable. Our risk bounds imply rates of convergence for
the deconvolution density estimator that are optimal in global sup-norm loss, with-
out any moment or support restrictions whatsoever, both in the severely ill-posed
case (where linear methods suffice), as well as in the moderately ill-posed case
(where we propose a suitable thresholding method). To be more precise, given the
law ϕ of the error term and a density f belonging to some Besov body B(s,L)

with unknown s > 0, we devise purely data-driven estimators f̂n such that, for
every n ∈ N,

sup
f ∈B(s,L)

E sup
x∈R

|f̂n(x) − f (x)| ≤ rn(s, ϕ,L),

where rn(s, ϕ,L) is the minimax rate of convergence in sup-norm loss over the
given Besov body and given the error law ϕ. We also obtain a result of this kind for
the case where f is “supersmooth,” that is, has an exponentially decaying Fourier
transform. To the best of our knowledge, the minimax lower bounds derived in this
article are also new.
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We should note that the main delicate mathematical point in this work is to
link the L2-based procedure of Fourier inversion to a pointwise, or even uniform,
control of the random fluctuations of the centered linear density estimator; this
problem is already implicit in the conditions on F [ϕ] and f imposed by Stefan-
ski and Caroll [38], Fan [14] and Goldenshluger [22], who considered pointwise
loss. Even stronger assumptions were imposed in the nice paper Bissantz et al. [3],
wherein the limiting (extremal-type) distribution of the uniform deviations over
compact sets of certain kernel deconvolution density estimators for f is derived—
this is the only result that we are aware of in the literature on deconvolution esti-
mation that deals with sup-norm loss in the moderately ill-posed case (Stefanski
[37] deals only with the simpler severely ill-posed case). Our empirical process
approach gives results under minimal conditions and also yields the relevant con-
centration inequalities that allow for a satisfactory treatment of adaptation, which
the results in Bissantz et al. [3] do not address. We should note that applying em-
pirical process tools in this setting is not at all straightforward: the usual approach
would be to show that certain kernels are of bounded variation and thus the asso-
ciated sets of translates and dilates are of Vapnik–Chervonenkis type (e.g., Nolan
and Pollard [34], Einmahl and Mason [13], Giné and Guillou [16]), but this does
not seem viable in the deconvolution problem, due to the fact that the bounded
variation norm does not possess a nice Fourier-analytical characterization. We can,
however, solve this problem by combining recent results on VC properties of func-
tions of quadratic variation in Giné and Nickl [19] with Littlewood–Paley theory
and the fact that wavelet bases are compatible with both the L2- and L∞-structure
simultaneously; see Lemma 1 for this key result.

Our results can be used to construct confidence bands in the deconvolution
problem and we discuss this in some detail below, as well as relations to work
in [3, 4]. We suggest a new approach to nonparametric confidence bands based on
Rademacher symmetrization, in a similar vein as in recent work of Koltchinskii
[29]. While these confidence bands may be conservative, they allow for an explicit
finite-sample analysis under minimal assumptions.

Let us finally remark that this article also contains new results for the standard
density estimation problem (where ϕ equals Dirac measure δ0 at 0). In this field,
our results contribute in several respects: first, Vapnik–Chervonenkis properties of
wavelet projection kernels have thus far only been derived for Daubechies wavelets
[19] and Battle–Lemarié wavelets [21], and the present article achieves the same
for wavelets with compactly supported Fourier transform (e.g., Meyer wavelets).
Furthermore, our main adaptation result, Theorem 4, is completely free of any
moment conditions and thus shows, as may have been suspected, that the moment
conditions imposed in Theorem 8 in [19] are not necessary. Finally, the confidence
bands we suggest can also be used for regular wavelet density estimators and we
are not aware of any other results on global confidence bands in density estimation,
except for the rather technical ones in [17].
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2. Main results. We start with some preliminary definitions and facts. For
any Lebesgue integrable function h ∈ L1(R), the Fourier transform F [h] of h is
defined as F [h](t) = ∫

R
h(x)e−itx dx, t ∈ R, and we use the natural extension

of F to L2(R). We further denote by F−1 the inverse Fourier transform so that
F−1Ff = f for f ∈ L2(R). The Fourier transform of the density g from (1.1) is
then given by

F [g](t) = F [f ](t)F [ϕ](t)(2.1)

for every t ∈ R. Another standard property of the Fourier transform we shall fre-
quently use is its scaling property: for h ∈ L1(R) and α ∈ R \ {0}, the function
hα(x) := h(αx) has Fourier transform F [hα](t) = α−1F [h](α−1t).

Let φ and ψ be, respectively, a scaling function and the associated wavelet
function of a multiresolution analysis. We refer to [23, 32] for the basic theory of
wavelets that we shall use freely in this article. The dilated and translated scaling
and wavelet functions at resolution level j and scale position k/2j are defined as
φjk(x) = 2j/2φ(2j x − k), ψjk(x) = 2j/2ψ(2j x − k), j, k ∈ Z. Now, denote by
〈·, ·〉 the inner product in the Hilbert space L2(R). The density f can be formally
expanded into its wavelet series

f = ∑
k∈Z

αjk(f )φjk +
∞∑
l=j

∑
k∈Z

βlk(f )ψlk,

where the coefficients are given by αjk(f ) = 〈f,φjk〉, βlk(f ) = 〈f,ψlk〉,
l, j, k ∈ Z. As is well known, the regularity properties of a function f can be
measured by the decay of their wavelet coefficients. We define Besov spaces as
follows.

DEFINITION 1. Let 1 ≤ p,q ≤ ∞, s > 0 or let s = 0 and q = 1. Let φ and ψ

be the Meyer scaling function and mother wavelet, respectively (see, e.g., Section 2
of [36] for a definition). The Besov space Bs

pq(R) is defined as the set of functions

{
f ∈ Lp(R) :‖f ‖s,p,q = ‖α0·‖p +

( ∞∑
l=0

(
2l(s+1/2−1/p)

∥∥βl(·)(f )
∥∥
p

)q)1/q

< ∞
}
,

where ‖ · ‖p are the norms of the sequence spaces 	p(Z), and with the usual mod-
ification in the case q = ∞. Moreover, for any L > 0, the Besov ball of radius L

is defined as B(s,p, q,L) = {f ∈ Lp(R) :‖f ‖s,p,q ≤ L}.

2.1. Minimax lower bounds over Besov bodies. Before we construct explicit
estimators for the density f of X in the deconvolution model (1.1), we derive a
result that gives a benchmark for the best performance of any estimator f̃n. More
precisely, we derive lower bounds for the minimax rate of convergence of f̃n − f
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in sup-norm loss, uniformly over Besov bodies of densities f under various as-
sumptions on the error law ϕ. We will subsequently show that these lower bounds
can be attained by certain wavelet-based estimators and are thus optimal.

To this end, define the minimax L∞-risk over the Hölder class B(s,L) :=
B(s,∞,∞,L) ∩ {f : R → [0,∞),

∫
R

f (x) dx = 1} as

Rn(B(s,L)) = inf
f̃n

sup
f ∈B(s,L)

E sup
x∈R

|f̃n(x) − f (x)|,(2.2)

where the infimum is taken over all possible estimators f̃n. Note that an esti-
mator in the deconvolution problem means any measurable function of a sample
Y1, . . . , Yn from density f ∗ ϕ that takes values in the space of bounded functions
on R.

We shall make the following assumption on F [ϕ] to establish the lower bounds.

CONDITION 1. There exist constants C,C′ > 0, w,w′ ∈ R and t1, c0 ≥ 0 such
that F [ϕ](t) is differentiable for every t satisfying |t | > t1 and

|F [ϕ](t)| ≤ C(1 + t2)−w/2e−c0|t |α ,
as well as

|(F [ϕ])′(t)| ≤ C′(1 + t2)−w′/2e−c0|t |α .

This condition is weaker than the standard ones employed in deconvolution
problems to establish lower bounds (cf. [8, 14]), where an additional condition
is imposed on the second derivative of F [ϕ]. It covers the usual candidates for
ϕ, including the case ϕ = δ0 which corresponds to classical density estimation
(w = c0 = 0).

The following theorem distinguishes the “moderately ill-posed” case, where
F [ϕ] decays only polynomially, from the “severely ill-posed” case, where F [ϕ]
decays exponentially fast, and shows that the optimal rates of estimation in the
sup-norm depend both on the smoothness of f and the decay of F [ϕ].

THEOREM 1. Let Condition 1 be satisfied. Then, for any s,L > 0, there exists
a constant c := c(s,L,C,C′, α,w,w′, c0) > 0 such that for every n ≥ 2, we have

Rn(B(s,L)) ≥ c

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
1

logn

)s/α

, if c0 > 0,(
logn

n

)s/(2s+2w+1)

, if c0 = 0 and w′ ≥ w ≥ 0.

One may be interested in replacing the Hölder class B(s,L) by a more general
Besov body, B(r,p, q,L), r > 1/p, of densities. It follows from the proof of The-
orem 1 that the minimax rate over B(r,p, q,L) equals the one for B(s,L) with
s = r − 1/p and the Sobolev embedding Br

pq(R) ⊂ Bs∞∞(R) will imply that our
upper risk bounds derived in the following sections attain this rate. We thus restrict
ourselves to B(s,L) without loss of generality.
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2.2. Uniform fluctuations of wavelet deconvolution estimators.

2.2.1. The linear wavelet deconvolution estimator. Recall the model (1.1). We
now show, following [36], how one can estimate f from a sample of P by “decon-
volving” P or, rather, a suitable approximation of it, on a wavelet basis φ,ψ that
satisfies the following condition.

CONDITION 2. Assume φ,ψ ∈ Lp(R) for every 1 ≤ p ≤ ∞, and for some
0 < a′ < a, we have supp(F [φ]) ⊂ [−a, a], as well as supp(F [ψ]) ⊂ [−a,−a] \
[−a′, a′]. Assume, further, that

c(φ) := sup
x∈R

∑
k

|φ(x − k)| < ∞, c(ψ) := sup
x∈R

∑
k

|ψ(x − k)| < ∞.(2.3)

This condition is satisfied for Meyer wavelets with a = 8π/3 and a′ = 2π/3
(these choices are not optimal, but feasible)—see, for instance, Section 2 in [36]—
but other band-limited wavelet bases are also admissible.

If K(y,x) := ∑
k∈Z φ(y−k)φ(x−k), then the functions Kj(y, x) := 2jK(2j y,

2j x), j ∈ N, are the kernels of the orthogonal projections of L2(R) onto the closed
subspaces Vj ⊂ L2(R) spanned by {φjk :k ∈ Z}. We write, for x ∈ R, j ≥ 0 possi-
bly real-valued,

Kj(f )(x) = ∑
k∈Z

2jφ(2j x − k)

∫
R

φ(2j y − k)f (y) dy =
∫

R

Kj(x, y)f (y) dy,

where the second equality holds pointwise, in view of (2.3).
Suppose the Fourier transform of the error law ϕ satisfies |F [ϕ]| > 0 on

supp(F [φ](2−j (·))). We then have, from Plancherel’s theorem, that

Kj(f )(x) = 2j
∑
k

φ(2j x − k)

∫
R

φ(2j y − k)f (y) dy

= ∑
k

φ(2j x − k)
1

2π

∫
R

F [φ0k](2−j t)F [f ](t) dt

(2.4)

= ∑
k

φ(2j x − k)
1

2π

∫
R

F [φ0k](2−j t)F [g](t)(F [ϕ](t))−1 dt

= 2j
∑
k

φ(2j x − k)

∫
R

φ̃jk(y)g(y) dy =
∫

R

K∗
j (x, y)g(y) dy,

where the (nonsymmetric) kernel K∗
j is given by

K∗
j (x, y) = 2j

∑
k∈Z

φ(2j x − k)φ̃jk(y)



WAVELET DENSITY DECONVOLUTION 207

with

φ̃jk(x) = F−1
[
F [φ0k](2−j ·)

2jF [ϕ]
]
(x) = φ0k(2

j ·) ∗ F−1
[1[−2j a,2j a]

F [ϕ]
]
(x).(2.5)

We should note that Young’s inequality for convolutions implies, for fixed j , that
‖φ̃jk‖∞ < ∞, and then also ‖K∗

j ‖∞ < ∞, which justifies the above operations.
Since we have a sample Y1, . . . , Yn from the density g, the identity (2.4) sug-

gests a natural estimator of f , namely the wavelet deconvolution density estimator

fn(x, j) = 1

n

n∑
m=1

K∗
j (x, Ym), x ∈ R, j ≥ 0.(2.6)

2.2.2. Uniform moment and exponential bounds for the fluctuations of fn −
Efn. We start with some results for the uniform deviations

sup
x∈R

|fn(x, j) − Efn(x, j)| ≤ c(φ)2j sup
k∈Z

∣∣∣∣∣1

n

n∑
m=1

(
φ̃jk(Ym) − Eφ̃jk(Y )

)∣∣∣∣∣,(2.7)

where the inequality follows from (2.3). This suggests to study the empirical
process indexed by the class of functions F = {φ̃jk :k ∈ Z}. In fact, some fur-
ther scaling depending on the error distribution ϕ will be useful to obtain a class
with constant envelope.

The rather intricate Fourier-analytical definition of φ̃jk in (2.5) makes it difficult
to apply standard results from empirical process theory. What is needed is that F
be a Vapnik–Chervonenkis (VC-type) class of functions. In the classical density
estimation case (where F [ϕ] = 1), this follows from results in Nolan and Pollard
[34] for translates of a fixed function of bounded variation. We could, however, not
control the bounded variation norm of φ̃jk for general ϕ in a way that would be use-
ful, mainly because the bounded variation norm does not interact well with Fourier
transforms. Recent results by Giné and Nickl [19] show that the bounded variation
condition in Nolan and Pollard [34] can be replaced by p-variation for general
1 ≤ p < ∞, and the case p = 2, which corresponds to “quadratic variation,” can
be linked in a more efficient way to Fourier analysis by using Littlewood–Paley
theory.

The following key lemma shows that F , suitably normalized, is indeed a
VC-type class of functions, under minimal conditions on F [ϕ]. Denote by
N(ε, F ,L2(Q)) the ε-covering numbers of a class of functions F with respect
to the L2(Q)-distance.

LEMMA 1. Suppose that φ,ψ satisfy Condition 2 and that |F [ϕ](t)| > 0 on
[−2j a,2j a]. Define

δj := min
t∈[−2j a,2j a]

|F [ϕ](t)|(2.8)
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(which exists and is positive for every j since ϕ is a probability measure). Then
the class Hj = {δj φ̃jk :k ∈ Z}, j ≥ 0, is uniformly bounded by the constant U and
satisfies, for every 0 < ε < A, supQ N(ε, Hj ,L

2(Q)) ≤ (A/ε)v for finite positive
constants A,v,U depending only on φ,ψ , and where the supremum extends over
all probability measures Q on R.

Combining this lemma with moment bounds for empirical processes indexed by
VC-type classes of functions in [13, 16], as well as with Talagrand’s [39] inequal-
ity, we obtain the following result.

PROPOSITION 1. Suppose that φ,ψ satisfy Condition 2, that |F [ϕ](t)| > 0
on [−2j a,2j a], let δj be as in (2.8) and define j ′ = max(1, j). Let fn(x, j) be
the deconvolution wavelet density estimator from (2.6) and assume that X has a
bounded density f : R → [0,∞). Then there exists a constant L′, depending only
on φ,ψ,p, such that for every n ≥ 1, every j ≥ 0 and 1 ≤ p < ∞,

(
E

(
sup
x∈R

|fn(x, j) − Efn(x, j)|
)p)1/p ≤ L′ 1

δj

(
G

√
2j j ′
n

+ 2j j ′

n

)
,

where G = max(‖g‖1/2∞ ,1). In addition, there exists a constant C, depending only
on φ,ψ , such that for every j ≥ 0 and u > 0,

Pr
{

sup
x∈R

|fn(x, j) − Efn(x, j)| ≥ C

δj

(
G

√
(1 + u)

2j j ′
n

+ (1 + u)
2j j ′

n

)}
(2.9)

≤ e−(1+u)j ′
.

The constant C is unspecified here, although it could be computed explicitly.
Obtaining realistic constants is an intricate matter, but one can use symmetrization
techniques to circumvent this problem; see Proposition 3 below.

2.2.3. Uniform fluctuations of the empirical wavelet coefficients. The tech-
niques from the previous section allow us to establish similar uniform estimates
for the deviations of the empirical wavelet deconvolution coefficients β̂lk from
their means. Such results are particularly interesting for nonlinear thresholding
procedures that we shall study below.

We have, for ψ satisfying Condition 2,

βlk(f ) = 2l/2
∫

R

ψ(2lx − k)f (x) dx = 2l/2

2π

∫
R

2−l F [ψ0k](2−l ·)
F [ϕ] (t)F [g](t) dt

= 2l/2
∫

R

F−1
[
2−l F [ψ0k](2−l ·)

F [ϕ]
]
(x)g(x) dx =: 2l/2

∫
R

ψ̃lk(x)g(x) dx.
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A natural unbiased estimator of βlk ≡ βlk(f ) is therefore

β̂lk(f ) = 2l/2

n

n∑
m=1

ψ̃lk(Ym)(2.10)

and the object of interest in this subsection is the random variable supk∈Z |β̂lk −
βlk|. We should note that for wavelets satisfying Condition 2 (e.g., Meyer
wavelets), and even if g has compact support, the last supremum is over an in-
finite set, so empirical process techniques are particularly useful. Lemma 1 and
Proposition 1 have the following analogs for ψ̃ .

LEMMA 2. Suppose that φ,ψ satisfy Condition 2, that |F [ϕ](t)| > 0 on
[−2la,2la] and let δl be as in (2.8). Then the class Dl = {δlψ̃lk :k ∈ Z}, l ≥ 0,

is uniformly bounded by a fixed constant U and satisfies, for every 0 < ε < A,
supQ N(ε, Dl ,L

2(Q)) ≤ (A/ε)v for constants U,A,v depending only on φ,ψ .

PROPOSITION 2. Suppose that φ,ψ satisfy Condition 2, that |F [ϕ](t)| > 0
on [−2la,2la], let δl be as in (2.8) and define l′ = max(l,1). Assume that X has
a bounded density f : R → [0,∞). Then, for every n ≥ 1, for every l ≥ 0 and
1 ≤ p < ∞, we have

(
E sup

k∈Z

|β̂lk − βlk|p
)1/p ≤ L′′ 1

δl

(
G

√
l′
n

+ 2l/2l′

n

)
,

where L′′ > 0 depends only on p,φ,ψ and where G is as in Proposition 1. In
addition, there exists a constant D, depending only on φ,ψ, such that for every
l ≥ 0 and u > 0,

Pr
{

sup
k∈Z

|β̂lk − βlk| ≥ D

δl

(
G

√
(1 + u)

l′
n

+ (1 + u)
2l/2l′

n

)}
≤ e−(1+u)l′ .(2.11)

2.3. Optimal estimation over Hölder classes. We now show how the risk
bounds from the previous section imply optimal rates of convergence for densities
f ∈ Bs∞∞(R) in the deconvolution problem, under the standard decay conditions
on F [ϕ] from the inverse problem literature.

We first consider the case where the error law ϕ decays exponentially fast. In
this “severely ill-posed” case, one can find a universal choice of j for which the
linear estimator attains the exact minimax rate, even without having to know the
value s.

THEOREM 2. Suppose that φ,ψ satisfy Condition 2 and assume that
|F [ϕ](t)| ≥ Ce−c0|t |α for every t ∈ R and some C,c0, α > 0. Let fn(·, jn)
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be the estimator defined in (2.6), where jn = 1
α

log2(ν logn) for some ν sat-
isfying c0a

αν < 1/2. Then there exists a constant L′′′, depending only on
s,L,φ,ψ, c0,C,α, ν, such that for every n ≥ 2, we have

sup
f ∈B(s,L)

E sup
x∈R

|fn(x, jn) − f (x)| ≤ L′′′
(

1

logn

)s/α

.

We now turn to the case where F [ϕ] decays polynomially, the so-called “mod-
erately ill-posed” case. Here, the linear estimator fn is only minimax optimal if
one knows the value of s.

THEOREM 3. Suppose that φ,ψ satisfy Condition 2 and assume that
|F [ϕ](t)| ≥ C(1 + |t |2)−w/2 for every t ∈ R and some C > 0, w ≥ 0. Let fn(·, jn)

be the estimator defined in (2.6) with j = jn satisfying 2jn � (n/ logn)1/(2s+2w+1).
Then there exists a constant C′, depending only on s,L,φ,ψ,C,w, such that for
every n ≥ 2, we have

sup
f ∈B(s,L)

E sup
x∈R

|fn(x, jn) − f (x)| ≤ C′
(

logn

n

)s/(2s+2w+1)

.

The question arises as to whether we can achieve this rate of convergence with-
out having to know the value of s in our choice of jn so that we can adapt to
the unknown smoothness s of f . This can be done using the wavelet thresholding
deconvolution estimator proposed in Johnstone et al. [25] in the periodic setting,
defined as follows: for j1 positive integers, to be specified below, the hard thresh-
olding estimator equals

f T
n (x) = fn(x,0) +

j1−1∑
l=0

∑
k

β̂lk1|β̂lk |>τ
ψlk(x),(2.12)

where β̂lk was introduced in Section 2.2. The threshold τ is chosen such that τ =
τ(n, l,w, κ) = κ2wl

√
(logn)/n, where κ = Gκ ′, with G from Proposition 1 and

κ ′ a “large enough” constant that depends only on w,C,φ,ψ . If G is unknown,
then it can be replaced by an estimate, as in [21].

THEOREM 4. Suppose that φ,ψ satisfy Condition 2. Suppose that ϕ is such
that |F [ϕ](t)| ≥ C(1 + |t |2)−w/2 for every t ∈ R and some C > 0, w ≥ 0. Let f T

n

be the thresholded estimator in (2.12) with(
n

logn

)1/(2w+1)

≤ 2j1 ≤ 2
(

n

logn

)1/(2w+1)

, j1 > 0.

We then have, for every n ≥ 2 and every s > 0, that

sup
f ∈B(s,L)

E sup
x∈R

|f T
n (x) − f (x)| ≤ D

(
logn

n

)s/(2w+2s+1)

,(2.13)

where D > 0 depends only on s,L,φ,ψ,w,C.
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2.4. Extensions and applications.

2.4.1. Estimation of a supersmooth density. In the last sections, we established
the minimax rate of estimation of a density in Bs∞∞(R) for the sup-norm error,
both in the moderately and severely ill-posed cases, and constructed estimators
that attain this rate. It was pointed out in [36] for the L2-error that the linear and
thresholded estimators attain faster rates of convergence if we consider classes
of supersmooth densities instead of the usual Besov spaces. In this section, we
investigate this phenomenon for the sup-norm error. We show that the minimax
rate of convergence for the sup-norm is the same as that obtained for the L2-error
up to an additional

√
log logn factor and that wavelet estimators can attain this rate.

For simplicity, and to highlight the main ideas, we only consider the nonadaptive
case.

Assume that f belongs to the class of supersmooth densities,

Ac̃0,s(L) =
{
f : R → [0,∞),

∫
R

f = 1,

∫
R

|F [f ](t)|2 exp(2c̃0|t |s) dt ≤ 2πL

}
,

where c̃0, s,L > 0. In the moderately ill-posed case, we have the following result.

COROLLARY 1. Let φ,ψ satisfy Condition 2. Assume that f ∈ Ac̃0,s(L) for
some c̃0, s,L > 0 and that |F [ϕ](t)| ≥ C(1 + |t |2)−w/2 for every t ∈ R and some
C > 0, w ≥ 0. Let fn(·, jn) be the estimator defined in (2.6) with j = jn satisfying

2jn =
(

1

2(a′)s c̃0
logn

)1/s

.

Then there exists a constant C′, depending only on φ,ψ, c̃0, s,L,C,w, such that
for every n ≥ 3, we have

sup
f ∈Ac̃0,s (L)

E sup
x∈R

|fn(x, jn) − f (x)| ≤ C′
(

log logn

n

)1/2

(logn)(w+1/2)/s .

The rates we obtained for the sup-norm error are similar to those obtained by [7,
8] and [36] for the L2-error, up to the presence of the additional factor

√
log logn.

This additional factor can be heuristically explained by the presence of the quan-
tity

√
j in the deviation term δ−1

j (2j j/n)1/2 derived in Proposition 1. The next

theorem implies that this
√

log logn factor is indeed necessary.

THEOREM 5. Fix 0 < s ≤ 1 and c̃0,L > 0. Assume that ϕ satisfies Con-
dition 1 with c0 = 0 and w′ ≥ w ≥ 0. There then exists a positive constant
c := c(s, c̃0,L,C,C′,w,w′) such that

inf
f̃n

sup
f ∈Ac̃0,s (L)

E sup
x∈R

|f̃n(x) − f (x)| ≥ c

(
log logn

n

)1/2

(logn)(w+1/2)/s .
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We can also obtain a faster rate of convergence in the severely ill-posed case for
supersmooth densities, balancing the bias bound from Proposition 4 below with
the variance bound from Proposition 1 above. We can then obtain similar results
as in [7, 8], with additional logarithmic terms in the rate of convergence, due to the
fact that we consider sup-norm loss instead of L2-loss.

2.4.2. Confidence bands. One of the main statistical challenges in the non-
parametric deconvolution problem is the construction of confidence bands for f

(cf. [3, 4]). In [3], the exact uniform (over compact subsets of R) limit distribution
of certain linear kernel-based deconvolution estimators for f is derived, assuming
that f satisfies

∫
R

|F [f ](u)||u|r du < ∞ for r > 0 and that g is once differen-
tiable with bounded derivative, and if the Fourier transform of the error variable
decays exactly like a polynomial, that is, |F [ϕ](t)| � C|t |−w for some C > 0,
w ≥ 0. If the underlying smoothness r of f is known, then these results can be
used to construct asymptotic confidence bands for f that shrink at certain rates of
convergence.

We suggest here an alternative approach to confidence bands in the nonparamet-
ric deconvolution problem. Instead of extreme value theory, we use concentration
inequalities and Rademacher processes. This allows for almost assumption-free
results and has the advantage that the confidence band can be shown to be valid on
the whole real line and for every sample size n. On the downside, these bands are
likely to be too conservative in the limit.

One fundamental problem of using concentration inequalities (as in Proposi-
tion 1) in practice is that often, no reasonable values for the leading constant C

are available. To circumvent this problem, we use here an idea that goes back to
Koltchinskii [28, 29] and Bartlett, Boucheron and Lugosi [1]; see also Giné and
Nickl [21], where this approach was introduced in density estimation. Define a
Rademacher process and the associated supremum,{

1

n

n∑
m=1

εmK∗
j (x, Ym)

}
x∈R

, Rn(j) := sup
x∈R

∣∣∣∣∣1

n

n∑
m=1

εmK∗
j (x, Ym)

∣∣∣∣∣,
with (εm)nm=1 an i.i.d. Rademacher sequence, independent of the Ym’s (and de-
fined on a large product probability space). Rn can be computed in practice by first
simulating n i.i.d. random signs, applying these signs to the summands K∗

j (x, Ym)

of the wavelet deconvolution density estimator (2.6) and maximizing the result-
ing function. Similarly, one can consider EεRn(j), the expectation of Rn(j) with
respect to the Rademacher variables only, which is a stochastically more stable
quantity.

We shall use the fact that this is the supremum of a centered process which
can be shown to concentrate around 2E‖fn(·, j) − Efn(·, j)‖∞. To describe the
concentration property, recall δj from (2.8) and define the random variable

σR(n, j, z) = 6Rn(j) + D1

δj

√
2j‖g‖∞(z + log 2)

n
+ D2

δj

2j (z + log 2)

n
,(2.14)
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where D1 = 10c(φ)‖φ‖1
√

a/π ≤ 5.7c(φ)‖φ‖1
√

a, D2 = 44c(φ)

√
a/2π2 ≤

11c(φ)
√

a and c(φ) as in (2.3). If ‖g‖∞ is unknown, it can be replaced by
‖fn(·, jn)‖∞ in practice so that σR is completely data-driven. We start with a
confidence band C̄n = [fn(·, j) − σR(n, j, z), fn(·, j) + σR(n, j, z)] for the mean
Efn of fn.

PROPOSITION 3. Let fn(x, j) be the estimator from (2.6) and suppose that
|F [ϕ]| > 0 on [−2j a,2j a]. Assume that X has a bounded density f : R → [0,∞).
We then have, for every n ≥ 1, every j ∈ N and every z > 0, that

Pr
{

sup
x∈R

|fn(x, j) − Efn(x, j)| ≥ σR(n, j, z)
}

≤ e−z.

Moreover, the band C̄n has expected diameter

2EσR(n, j, z) ≤ Cδ−1
j

(√
2j j

n
+ 2j j

n

)

for every z > 0, every n ∈ N, every j ≥ 1 and some constant C depending only on
‖g‖∞, φ,ψ, z.

Proposition 3 still holds true when Rn(j) is replaced by EεRn(j), the expecta-
tion of Rn(j) with respect to the Rademacher variables only. (This follows from
combining the proof of Proposition 3 with the arguments in the proof of Proposi-
tion 2 in [21].)

We did not try to optimize the constants in the choice of σR and they are likely
to be suboptimal, as they depend on the constants in the lower-deviation version
of Talagrand’s inequality, where sharp constants are not yet known. A “practical”
choice may be to replace the 6 in front of Rn by 4 and to ignore the third “Pois-
sonian” term in (2.14).

We again emphasize that we simply need |F [ϕ](t)| to be bounded from below
on the fixed interval [−2j a,2j a] for our results to hold and we do not need any
support or moment assumptions on f . In particular, this nonasymptotic result can
even be used in principle when F [ϕ] equals zero eventually, by choosing j small
enough.

If f ∈ Bs∞∞(R), with s known, then the last proposition can be readily applied
for the construction of confidence bands Cn for the unknown density f using un-
dersmoothing (just as in [3]) and these bands can be shown to shrink at the optimal
rate of convergence depending on the smoothness of f . We do not detail this here,
nor do we address the more difficult problem of adaptive confidence bands: us-
ing Proposition 3, such results can be obtained in the same way as in the case of
density estimation considered in [20].

Instead, and for sake of illustration, let us construct a nonasymptotic confi-
dence band in the supersmooth case f ∈ Ac̃0,s(L), s, c̃0 known, with moderately
ill-posed error distribution.



214 K. LOUNICI AND R. NICKL

COROLLARY 2. Let f,ϕ,fn(·, jn) and jn be as in Corollary 1. Let σR(n, j, z)

be as in (2.14) above and define the confidence band

Cn(x, z) = [fn(x, jn) ± (1 + δ)σR(n, jn, z)], x ∈ R,

where δ is any positive real number. Then, for every z > 0 and every n ∈ N,

Pr{f (x) ∈ Cn(x, z) ∀x ∈ R} ≥ 1 − e−z − vn,

where [c′′′ ≡ c′′′(φ,ψ, c̃0, s), as in Proposition 4]

vn ≡ Pr
{
σR(n, jn, z) ≤ c′′′

δ

√
L

(logn)(1−s)/s

n

}

satisfies vn → 0 as n → ∞.
Moreover, if |Cn(z)| is the maximal diameter of Cn(x, z), then

E|Cn(z)| ≤ C

(
log logn

n

)1/2

(logn)(w+1/2)/s,

where C depends on c̃0, s,L, δ, z,‖g‖∞.

Since limvn = 0, this confidence band has asymptotic coverage for δ > 0 ar-
bitrary, but more is true: vn equals zero from some n onward and one can, in
principle, even obtain coverage for every fixed sample size n by choosing δ in
dependence of L (and of the constants that define σR).

3. Proofs.

3.1. Proof of Theorem 1. Our proof adapts to the present situation standard
lower bound techniques as in [8, 14, 35]. We recall that the Kullback–Leibler di-
vergence between two distributions P and Q is defined by

K(P |Q) =
⎧⎨
⎩

∫
log

(
dP

dQ

)
dP, if P � Q,

+∞, elsewhere.

To establish lower bounds for the minimax risk (2.2), we use the following lemma
(see Theorem 2.5 on page 99 of [40])—actually, an adaptation of it—to the decon-
volution problem at hand.

LEMMA 3. Let d be a metric on B(s,L). Let rn be a sequence of positive
real numbers and let C ⊂ B(s,L) be a finite set of probability densities such that
card(C) ≥ 2 and ∀f,g ∈ C , f �= g ⇒ d(f, g) ≥ 4rn > 0. Further, let ϕ be a fixed
probability measure and let P n

f ∗ϕ be the product probability measure correspond-
ing to a sample of size n from the law f ∗ ϕ, f ∈ C , and assume that the KL
divergences satisfy, for every f ∈ C and some f0 ∈ C ,

K(P n
f ∗ϕ|P n

f0∗ϕ) ≤ 1

16
log(card(C)).
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Then,

inf
f̂n

sup
f ∈C

Ed(f̂n, f ) ≥ c1rn,

where inf
f̂n

denotes the infimum over all estimators based on a sample of size n

from the density f ∗ ϕ and where c1 > 0 is a constant that depends only on s,L.

We use this lemma to prove Theorem 1. Let ψ be the Meyer wavelet. Fix
s,L > 0 and let j ∈ N be arbitrary (to be chosen later). Define the set of func-
tions C = {fk, k = 0, . . . ,2j − 1} as follows: consider the standard Cauchy density
p(x) = 1/π(1 + x2), set f0(x) = 1

η
p(x

η
) for η > 0 and for any k = 1, . . . ,2j − 1,

fk(x) = f0(x)+c′2−j (s+1/2)ψjkM
, where kM = Mk for some integer M ≥ 1 spec-

ified below. We show that the constants η, c′ > 0 can be chosen such that fk is a
density on R and, in fact, belongs to B(s,L) for every k = 1, . . . ,2j − 1 and
every integer M . Clearly, fk integrates to 1 since ψ is orthogonal on constants. We
next prove fk ∈ B(s,L) for all k and suitable c′, η. First, we have ‖f0‖s,∞,∞ ≤ L

2
for η ≥ 1 large enough and depending only on s,L,ψ,φ, in view of F [f0](u) =
e−η|u|, Definition 1, |βlk(f0)| = |(1/2π)

∫
R

e−η|u|F [ψlk](u)| ≤ 2−l/2‖ψ‖1e
−|2la′|η

with a′ = 2π/3 and a similar estimate for αk(f0). Thus, we have, for 0 < c′ ≤ L/2,

‖fk‖s,∞,∞ ≤ ‖f0‖s,∞,∞ + ∥∥c′2−j (s+1/2)ψjkM

∥∥
s,∞,∞ ≤ L

2
+ c′ ≤ L.

Having chosen η, we can choose c′ ≤ L/2 suitably small but positive and depend-
ing on η and ψ so that fk > 0 on R for any k. This is easily established by using the
fact that the Meyer wavelet decays faster at infinity than any polynomial [i.e., the
estimate |ψ(x)| ≤ CN/(1 + |x|2)N/2 for every N ∈ N and every x ∈ R], whereas
f0(x) decays at infinity like x−2.

To proceed with the proof, we set γj = c′2−j (s+1/2). We first prove the sep-
aration property in sup-norm for the fk’s. For any distinct fk, fk′ , we have
‖fk − fk′‖∞ = γj 2j/2‖ψ(· − Mk) − ψ(· − Mk′)‖∞. By definition of the Meyer
wavelet, we have, for any k �= k′,

sup
x

|ψ(x − Mk) − ψ(x − Mk′)| = sup
x

∣∣ψ(x) − ψ
(
x + M(k − k′)

)∣∣
≥ ‖ψ‖∞ − ∣∣ψ(

xmax + M(k − k′)
)∣∣

for some xmax ∈ arg maxx |ψ(x)|. By the decay property of the Meyer wavelets
mentioned above, there exists a numerical constant M ≥ 1, large enough but finite,
such that for any x satisfying |x| ≥ M , we have |ψ(xmax + x)| ≤ ‖ψ‖∞/2. Thus,
we have, for any k �= k′,

‖fk − fk′‖∞ ≥ γj 2j/2 ‖ψ‖∞
2

= 2−js c′‖ψ‖∞
2

.
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We now check the second condition of Lemma 3. Let (Y1, . . . , Yn) be an
i.i.d. sample with distribution P n

k admitting the density
∏n

i=1(fk ∗ ϕ)(yi) with
respect to the Lebesgue measure on R

n. Fubini’s theorem and the fact that ψ is
orthogonal on constants give, for k ∈ Z, that

∫
R
(ψjk ∗ ϕ)(y) dy = 0. Thus, by de-

finition of the Kullback–Leibler divergence and the inequality log(1 + x) ≤ x for
x > −1, we obtain, for any k = 1, . . . ,2j − 1, that

K(P n
k |P n

0 ) = n

∫
R

log
(

fk ∗ ϕ

f0 ∗ ϕ
(y)

)
(fk ∗ ϕ)(y) dy

= n

∫
R

log
(

1 + γj

ψjkM
∗ ϕ

f0 ∗ ϕ
(y)

)
(fk ∗ ϕ)(y) dy

(3.1)

≤ nγj

∫
R

(ψjkM
∗ ϕ)(y)

(
1 + γj

ψjkM
∗ ϕ

f0 ∗ ϕ
(y)

)
dy

≤ nγ 2
j

∫
R

(ψjkM
∗ ϕ)2

f0 ∗ ϕ
(y) dy.

To proceed, we observe that f0 being Cauchy implies that (f0 ∗ ϕ)(y) ≥ c1/(1 +
y2) for some c1 > 0 and every y ∈ R. This is obviously true for y in any compact
set [−A,A], and for |y| > A, it follows from

lim inf|y|→∞(1 + y2)f0 ∗ ϕ(y) ≥ 1

ηπ

∫
R

lim inf|y|→∞
1 + y2

1 + [(y − x)/η]2 dϕ(x) = η

π
,

in view of Fatou’s lemma. Consequently, we have∫
R

(ψjkM
∗ ϕ)2

f0 ∗ ϕ
(y) dy ≤ 1

c1

∫
R

(1 + y2)(ψjkM
∗ ϕ)2(y) dy.

Let us first consider the quantity
∫
R
(ψjkM

∗ ϕ)2(y) dy. Plancherel’s theorem gives∫
R

(ψjkM
∗ ϕ)2(y) dy = c2

∫
R

|F [ψjkM
](t)|2|F [ϕ](t)|2 dt

(3.2)
≤ c32−j‖ψ‖2

1

∫
supp(F [ψjkM

])
(1 + t2)−we−2c0|t |α dt

for some constants c2, c3 > 0 depending only on C,π .
For the quantity

∫
R

y2(ψjkM
∗ ϕ)2(y) dy, we obtain similarly, using in addition

the spectral representation of the differential operator, that∫
R

(yψjkM
∗ ϕ)2(y) dy

= c2

∫
R

|(F [ψjkM
](t)F [ϕ](t))′|2 dt

= c2

∫
R

∣∣(F [ψjkM
]′(t)F [ϕ](t) + F [ψjkM

](t)F [ϕ]′(t))∣∣2 dt(3.3)
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= c2

∫
R

∣∣(2−3j/2F [ψ0kM
]′(2−j t)F [ϕ](t) + F [ψjkM

](t)F [ϕ]′(t))∣∣2 dt

≤ 2c42−3j

(∫
R

|xψ(x)|dx

)2 ∫
supp(F [ψjkM

])
(1 + t2)−we−2c0|t |α dt

+ 2c42−j‖ψ‖2
1

∫
supp(F [ψjkM

])
(1 + t2)−w′

e−2c0|t |α dt,

where c4 depends only on C,C′,w′, π . Combining (3.1)–(3.3) and the explicit
formula for the support of the Meyer wavelet, we can bound K(P n

k |P n
0 ) by

c5nγ 2
j 2−j

(∫ (8π/3)2j

(2π/3)2j
(1 + t2)−we−2c0|t |α dt +

∫ (8π/3)2j

(2π/3)2j
(1 + t2)−w′

e−2c0|t |α dt

)
,

where c5 > 0 depends only on C,C′,w′, π,‖ψ‖1,
∫
R

|xψ(x)|dx. It remains to
estimate the size of these integrals and select j appropriately and we distinguish
the moderately and severely ill-posed cases.

In the moderately ill-posed case (c0 = 0, w′ ≥ w ≥ 0), we have K(P n
k |P n

0 ) ≤
c6(c

′)2n2−j (2s+2w+1) for some constant c6 > 0 independent of n, j . Taking 2j �
(n/ logn)1/(2s+2w+1) and c′ > 0 small enough (independent of n and j ) in the def-
inition of γj gives K(P n

k |P n
0 ) ≤ c6(c

′)2(logn) ≤ 1
16 log(card(C)), where we recall

that card(C) = 2j . The separation rate rn for this choice of jn becomes, for any
k, k′ distinct,

‖fk − fk′‖∞ ≥ c7

(
logn

n

)s/(2s+2w+1)

:= rn

for some constant c7 > 0 independent of n. This proves Theorem 1 for the moder-
ately ill-posed case.

For the severely ill-posed case (c0 > 0), we similarly obtain that K(P n
k |P n

0 ) ≤
c8(c

′)2n2−jc(s,w,w′)2−d02jα
with d0 = (2c0(2π/3)α)/ log 2 and constants c8 > 0,

c(s,w,w′) independent of n, j . Taking jnα = log2(
ν
d0

log2 n) with ν > 1 large
enough gives

K(P n
k |P n

0 ) ≤ c9(c
′)2(log2 n)c

′(s,w,w′)n1−ν ≤ 1
16 log(card(C)),

where c9 > 0, c′(s,w,α) are nonnegative constants independent of j, n. For this
choice of jn, the separation rates rn become, for any k, k′ distinct,

‖fk − fk′‖∞ ≥ c10

(
1

logn

)s/α

,

where c10 > 0 is independent of n. This concludes the proof of the theorem.
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3.2. Proofs of VC properties.

PROOF OF LEMMA 1. Set

ηj (x) = F−1
(

1[−2j a,2j a]
1

F [ϕ]
)
(x),

which is bounded and continuous, and rewrite

φ̃jk(x) = φ0k(2
j ·) ∗ ηj (x)

=
∫

R

φ(2j x − 2j y − k)ηj (y) dy

=
∫

R

2−j/2φj0(x − y − 2−j k)ηj (y) dy

= 2−j/2φj0 ∗ ηj (x − 2−j k)

so that it is sufficient to study the class consisting of translates of the fixed function
2−j/2φj0 ∗ ηj . First, note that δj φ̃jk , k ∈ Z, is uniformly bounded in view of the
last estimate and since

(2−j/2δj )‖φj0 ∗ ηj‖∞ ≤ (2−j/2δj )‖φj0‖2‖ηj‖2 ≤ √
2a/2π,(3.4)

where we have used Young’s convolution inequality and Plancherel’s theorem.
To prove the entropy bound, we will show that φj0 ∗ ηj has finite quadratic

variation (i.e., 2-variation). In fact, to obtain a bound on the quadratic variation that
is independent of j , we renormalize and show that the function (2−j/2δj )φj0 ∗ ηj

has quadratic variation bounded by a constant D that depends only on φ. This
will complete the proof of the lemma by using Lemma 1 in [19], which states
that the set of dilates and translates of a fixed function h of bounded p-variation,
1 ≤ p < ∞, is of VC-type with constants A,v depending only on p and the p-
variation norm of h.

We will prove that (2−j/2δj )φj0 ∗ ηj has bounded quadratic variation by show-

ing that it is contained in the (homogeneous) Besov space Ḃ
1/2
21 (R), which is suf-

ficient, in view of the continuous embedding of Ḃ
1/2
21 (R) into the space V 2(R) of

functions of quadratic variation (a result due to Peetre—see Theorem 5 in [5] for
a proof, also the proof of Theorem 2 in [33], which applies to p = 2 as well). The
seminorm ‖ · ‖̇1/2,2,1 of Ḃ

1/2
21 (R) has the following Littlewood–Paley characteriza-

tion:

‖h‖̇1/2,2,1 = ∑
l∈Z

2l/2‖F−1[γlF [h]]‖2,

where γl is a dyadic partition of unity with γl supported in [2l−1,2l+1] (see, e.g.,
Theorem 6.3.1 and Lemma 6.1.7 in [2]). We bound the Littlewood–Paley norm:
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using the fact that F [2−j/2φj0] = 2−jF [φ](2−j ·) and Plancherel’s theorem, in-
troducing the notation 〈u〉 = (1 + |u|2)1/2 and in view of the support of γl , we
have the bound

δj

∑
l

2l/2∥∥F−1[γlF [2−j/2φj0 ∗ ηj ]]∥∥2

= 1

2π
2−j δj

∑
l

2l/2
∥∥∥∥γlF [φ](2−j ·)1[−2j a,2j a](F [ϕ])−1 〈u〉1/2

〈u〉1/2

∥∥∥∥
2

≤ c2−j δj

∑
l

∥∥γlF [φ](2−j ·)1[−2j a,2j a](F [ϕ])−1〈u〉1/2∥∥
2

≤ c2−j
∑

l

√∫ 2j a

−2j a
γ 2
l (u)|F [φ](2−ju)|2〈u〉du

≤ c(a)2−j/2
∑

l

‖F−1[γlF [φ](2−j ·)]‖2

= c(a)
∑

l

‖F−1[γlF [φj0]]‖2 ≤ c(a)‖φj0‖̇0,2,1.

To bound the last quantity, we use the inequality ‖ · ‖̇0,2,1 ≤ ‖ · ‖0,2,1 (which fol-
lows from Definition 1 and results in [32], Section 6.10). By orthogonality of the
wavelet basis (j ∈ N, without loss of generality),

‖φj0‖0,2,1 =
√∑

k

|〈φj0, φ0k〉|2 +
j−1∑
l=0

√∑
k

|〈ψlk,φj0〉|2.

The first term on the right-hand side is bounded by ‖K0(φj0)‖2 ≤ ‖φj0‖2 ≤ 1 since
K0 is an L2-projection. For the second term, we note, writing ψk for ψ(· − k) and
using the change of variables 2j x = u and Condition 2, that

∑
k

|〈ψlk,φj0〉|2 = ∑
k

(
2l/22j/2

∫
ψk(2

lx)φ(2j x) dx

)2

= ∑
k

(
2l/22−j/2

∫
ψk(2

l−ju)φ(u)du

)2

≤ 2l2−j sup
k

∣∣∣∣
∫

ψk(2
l−ju)φ(u)du

∣∣∣∣c(ψ)‖φ‖1

≤ C2(ψ,φ)2l−j

so that
j−1∑
l=0

√∑
k

|〈ψlk,φj0〉|2 ≤ C(ψ,φ)2−j/2
j−1∑
l=0

2l/2 ≤ C(ψ,φ).
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This shows that 2−j/2δj‖φj0 ∗ ηj ‖̇1/2,2,1 is bounded by a fixed constant that de-
pends only on φ,ψ , which completes the proof of the entropy bound. The proof of
Lemma 2 is the same (in fact, it is simpler since, in the last step, by orthogonality,
only the resolution level l has to be considered). �

3.3. Proofs of Propositions 1 and 2.

PROOF OF PROPOSITION 1. We recall (2.7) and observe that Hj is bounded
by the fixed constant U . We prove j > 0; the case j = 0 is the same, except for
notation. Using the moment inequality (57) in [19] and Lemma 1, we obtain

E sup
k∈Z

∣∣∣∣∣2j

n

n∑
m=1

(
φ̃jk(Ym) − Eφ̃jk(Y )

)∣∣∣∣∣ = 2j

δjn
E

∥∥∥∥∥
n∑

m=1

(
h(Ym) − Eh(Y )

)∥∥∥∥∥
Hj

≤ C(v)2j

δjn

(
σ

√
n log

AU

σ
+ log

AU

σ

)

≤ C(v,A,U)

δj

(√
G2 2j j

n
+ 2j j

n

)
,

where σ 2 ≥ suph∈Hj
Eh2(Y ) is obtained as follows: using Plancherel’s theorem,

Eh2(Y ) = δ2
j

∫
R

φ̃2
jk(x)g(x) dx ≤ δ2

j‖g‖∞‖φ̃jk‖2
2

= 1

2π
δ2
j 2−2j‖g‖∞

∫ 2j a

−2j a
|F [φ0k](2−ju)|2|F [ϕ](u)|−2 du

≤ 1

2π
2−2j‖g‖∞

∫ 2j a

−2j a
|F [φ0k](2−ju)|2 du

≤ 1

2π
2−j‖g‖∞

∫ a

−a
|F [φ0k](v)|2 dv

= 2−j‖g‖∞ ≤ 2−jG2 ≡ σ 2,

a bound which does not depend on h. The claim for general p follows from stan-
dard arguments for uniformly bounded empirical processes, using, for instance,
Proposition 3.1 in [18].

We now prove the second statement. For every u′ > 0, Talagrand’s inequality in
Bousquet’s version [6] applied to Z = 2j

δj n
‖∑n

m=1(h(Ym) − Eh(Y ))‖Hj
yields

Pr
{
Z ≥ EZ +

√√√√2u′
δj

(
G2 2j

nδj

+ 2U2j

n
EZ

)
+ U2ju′

3δjn

}
≤ e−u′

.
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Now, the first statement of the proposition and taking u′ = (1 + u)j ′ imply, after
some elementary computations, that

Pr
{

sup
x∈R

|fn(x, j) − Efn(x, j)| ≥ C

δj

(
G

√
2j j ′(1 + u)

n
+ 2j j ′(1 + u)

n

)}

≤ e−(1+u)j ′
,

which completes the proof. �

PROOF OF PROPOSITION 2. The proof is the same as that of Proposition 1
(up to some obvious modifications). �

3.4. Proofs of Theorems 2 and 3. First, consider Theorem 2. The bias is

sup
x∈R

|f (x) − Efn(x, jn)| = ‖f − Kjn(f )‖∞ ≤ C12−jns ≤ C′
1

(
1

ν logn

)s/α

,

where C′
1 > 0 depends only on ‖f ‖s,∞,∞ (see Theorem 9.4 in [23]). For the “vari-

ance” term, Proposition 1 and our choice for jn give

E sup
x∈R

|fn(x, jn) − Efn(x, jn)|

≤ L′′′′ec0a
α2jnα

(
G

√
(ν logn)1/α

log2(ν logn)

αn
+ (ν logn)1/α log2(ν logn)

αn

)

≤ L′′′′′Gnc0a
αν

√
n

√
(logn)1/α log logn = o

((
1

logn

)s/α)
.

Using Proposition 1 and the above bias-variance decomposition, the proof of
Theorem 3 is similar to that of Theorem 2 and is left to the reader.

3.5. Proof of Theorem 4. For simplicity of notation, we suppress the suprema
over B(s,L) in most of what follows—uniformity of the bound follows from track-
ing all of the constants involved and noting that any density in B(s,L) is bounded
by a fixed constant U that depends only on s,L. We have

sup
f ∈B(s,L)

E‖f T
n − f ‖∞ ≤ sup

f ∈B(s,L)

E sup
y∈R

|fn(y,0) − Efn(y,0)|

+ sup
f ∈B(s,L)

E

∥∥∥∥∥
j1−1∑
l=0

∑
k

(
β̂lk1|β̂lk |>τ(l)

− βlk(f )
)
ψlk

∥∥∥∥∥∞
+ sup

f ∈B(s,L)

‖Kj1(f ) − f ‖∞.

The first term in the right-hand side is treated in Proposition 1, which implies
that supf ∈B(s,L) E supy∈R |fn(y,0) − Efn(y,0)| ≤ c

√
1/n, which is of smaller
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order than the right-hand side in (2.13). For the third, “deterministic,” term,
we have, from standard approximation results for wavelets (Theorem 9.4 in
[23]), ‖Kj1(f ) − f ‖∞ ≤ c(L)2−j1s ≤ c′(L)((logn)/n)s/(2w+1), which is again
of smaller order than the right-hand side in (2.13).

The quantity inside the expectation of the supremum of the second term can be
decomposed, for any f ∈ B(s,L), as

j1−1∑
l=0

∑
k

(β̂lk − βlk)ψlk

(
1|β̂lk |>τ,|βlk |>τ/2 + 1|β̂lk |>τ,|βlk |≤τ/2

)

−
j1−1∑
l=0

∑
k

βlkψlk

(
1|β̂lk |≤τ,|βlk |>2τ

+ 1|β̂lk |≤τ,|βlk |≤2τ

)
and we denote these terms (I)–(IV).

We first treat the “large deviation” terms (II) and (III). For (II), using (2.3) and
the Cauchy–Schwarz inequality, we have

E sup
y∈R

∣∣∣∣∣
j1−1∑
l=0

∑
k

(β̂lk − βlk)ψlk(y)1|β̂lk |>τ,|βlk |≤τ/2

∣∣∣∣∣
≤ E

[j1−1∑
l=0

sup
k

|β̂lk − βlk| sup
k

1|β̂lk |>τ,|βlk |≤τ/2 sup
y∈R

∑
k

|ψlk(y)|
]

(3.5)

≤
j1−1∑
l=0

2l/2c(ψ)
[
E sup

k

|β̂lk − βlk|2
]1/2[

E sup
k

1|β̂lk |>τ,|βlk |≤τ/2

]1/2
.

We have, using the second part of Proposition 2, choosing κ ′ large enough depend-
ing only on a,w,C,φ,ψ and using the fact that (2l l/n)1/2 is bounded by a fixed
constant independent of l,

E sup
k

1|β̂lk |>τ,|βlk |≤τ/2

≤ E
(
sup
k

1|β̂lk−βlk |>τ/2

)

≤ Pr
(

sup
k

|β̂lk − βlk| > κ ′

2aw
G2lwaw

√
logn

n

)
(3.6)

≤ Pr
(

sup
k

|β̂lk − βlk| > c(a,w,C)κ ′G 1

δl

√
logn

n

)

≤ Pr
(

sup
k

|β̂lk − βlk| > c(a,w,C)κ ′

δl

G

√
[1 + (logn/l′) − 1]l′

n

)

≤ e−2 logn.
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Now, combining (3.5) and (3.6) with the first part of Proposition 2 yields the bound

c

j1−1∑
l=0

2l(w+(1/2))G

√
l′
n

e− logn ≤ C′Ge− logn

√
logn

n
2j1(w+1/2)

≤ C′′

n
= o(n−1/2)

for (II).
For term (III), using (3.6), as well as

∑
k |βlk| ≤ c(ψ)2l/2 for any density f , we

have

E sup
y∈R

∣∣∣∣∣
j1−1∑
l=0

∑
k

βlkψlk(y)1|β̂lk |≤τ,|βlk |>2τ

∣∣∣∣∣
≤

j1−1∑
l=0

2l/2‖ψ‖∞
∑
k

|βlk|Pr(|β̂lk| ≤ τ, |βlk| > 2τ)

≤ C ′′′e−2 logn
j1−1∑
l=0

2l ≤ C′′′′n−2(n/ logn)1/(2w+1) = o(n−1/2).

We now bound (I). Let j1(s) be such that 0 ≤ j1(s) ≤ j1 − 1 and

2j1(s) � (n/ logn)1/(2s+2w+1)(3.7)

[such j1(s) exists by the definitions]. Proposition 2 and (2.3) give

E sup
y∈R

∣∣∣∣∣
j1(s)−1∑

l=0

∑
k

(β̂lk − βlk)ψlk(y)1|β̂lk |>τ,|βlk |>τ/2

∣∣∣∣∣
≤

j1(s)−1∑
l=0

E sup
k

|β̂lk − βlk|2l/2c(ψ)

≤ DG

j1(s)−1∑
l=0

2lw

√
2l l′
n

≤ D′G2j1(s)w

√
2j1(s)j1(s)

n
≤ D′′G

(
logn

n

)s/(2s+2w+1)

,

where D′′ > 0 depends only on ψ,φ,C,w. For the second part of (I), using the
fact that Definition 1 implies

sup
k

|βlk(f )| ≤ D(L)2−l(s+1/2)(3.8)
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for f ∈ B(s,L), the definition of τ and Proposition 2, we obtain

E sup
y∈R

∣∣∣∣∣
j1−1∑

l=j1(s)

∑
k

(β̂lk − βlk)ψlk(y)1|β̂lk |>τ,|βlk |>τ/2

∣∣∣∣∣
≤

j1−1∑
l=j1(s)

E sup
k

|β̂lk − βlk|2

κ
2−lw

√
n

logn
sup
k

|βlk|2l/2c(ψ)

≤ D′′′
j1−1∑

l=j1(s)

2−ls ≤ D′′′′
(

logn

n

)s/(2s+2w+1)

,

where D′′′′ depends only on L, s, κ ′, φ,ψ,C.
To complete the proof, we control the term (IV). Again using (3.8), we have

sup
y∈R

∣∣∣∣∣
j1−1∑
l=0

∑
k

βlkψlk(y)1|β̂lk |≤τ,|βlk |≤2τ

∣∣∣∣∣
≤ c(ψ)

j1−1∑
l=0

sup
k

2l/2|βlk|1|βlk |≤2τ(3.9)

≤ c′
j1−1∑
l=0

min
(

2l(w+1/2)

√
logn

n
,2−ls

)
.

Since the antagonistic terms in the minimum are strictly monotone in l, the l∗ ∈ R

for which they are maximal is the one where they are equal so that 2l∗ � 2j1(s)

[cf. (3.7)]. If we denote by [l∗] the integer part of l∗, then the last sum is bounded
by

c′
[l∗]∑
l=0

2l(w+1/2)

√
logn

n
+ c′

j1−1∑
l=[l∗]+1

2−ls ≤ c′′
(

logn

n

)s/(2w+2s+1)

.

3.6. Proofs for Section 2.4. The following proposition is the wavelet-analog
of a similar result in Proposition 1 in [7] for kernel regularizations.

PROPOSITION 4. Let φ,ψ satisfy Condition 2. Let f ∈ Ac̃0,s(L) for some
c̃0, s,L > 0. We then have, for every j ≥ 0, that

‖Kj(f ) − f ‖∞ ≤ c′′′√L2j (1−s)/2e−c̃0(a
′)s2js

,

where the constant c′′′ > 0 depends only on φ,ψ, c̃0, s.
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PROOF. Using (2.3), Plancherel’s theorem and the fact that f ∈ Ac̃0,s(L), we
have

‖Kj(f ) − f ‖∞ ≤ c(ψ)
∑
l≥j

2l/2 sup
k∈Z

|βlk(f )|

= c′ ∑
l≥j

2l/2 sup
k∈Z

∣∣∣∣
∫

R

F [ψlk](u)Ff (u)du

∣∣∣∣
≤ c′ ∑

l≥j

sup
k∈Z

∫
R

|F [ψ](2−lu)||Ff (u)|du

≤ c′‖ψ‖1
∑
l≥j

∫
R\[−2la′,2la′]

|Ff (u)|ec̃0|u|s e−c̃0|u|s du

≤ c′′‖ψ‖1
√

L
∑
l≥j

√∫ ∞
2la′

e−2c̃0u
s
du

and the result follows from the inequality
∫ ∞
a e−cus

du ≤ C(c, s)a1−se−cas
for

a, s > 0. �

PROOF OF COROLLARY 1. Decomposing the sup-norm error of the linear
estimator into “bias” and “variance” terms and applying Propositions 1 and 4, we
have, for any j ≥ 0,

E sup
x∈R

|fn(x, j) − f (x)|

≤ sup
x∈R

|Efn(x, j) − f (x)| + E sup
x∈R

|fn(x, j) − Efn(x, j)|

≤ c′′′√Le−c̃0(a
′)s2js

2j (1−s)/2 + c
1

δj

(
G

√
2j j ′
n

+ 2j j ′

n

)

≤ C′
(
e− logn/2(logn)(1−s)/2s + 2jw

√
2j j ′
n

)
,

where C′ > 0 depends only on C, s,L, c̃0, a,w. The result follows immediately
for s ≥ 1 and for s < 1 in view of the fact that (1 − s)/2s < (w + 1/2)/s for all
s > 0. �

PROOF OF THEOREM 5. The proof of this theorem follows the one of Theo-
rem 1 up to the following modifications. Let p be the standard Cauchy density. Fix
0 < ν < 1/2. Since F [p](u) = e−|u|, we see from the scaling property of Fourier
transforms and since s ≤ 1 that there exists a constant η = η(ν) large enough such
that f0 = (1/η)p(·/η) ∈ Ac̃0,s(ν

2L).
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As in the proof of Theorem 1, we consider the functions fk(x) = f0(x) +
γjψjkM

, 1 ≤ k ≤ 2j − 1, kM = kM , M ≥ 1 with γj = c′√L
√

j2jwe−c̃0[as+1]2js
.

We have fk ∈ Ac̃0,s(L) for every k if c′ > 0 is a constant taken small enough and
depending only on ν, a,‖ψ‖1 since∫

R

|F [fk](t)|2e2c̃0|t |s dt

≤ 2
∫

R

|F [f0](t)|2e2c̃0|t |s dt + 2γ 2
j

∫
R

|F [ψj,k](t)|2e2c̃0|t |s dt

≤ 4πν2L + 2γ 2
j 2−j‖ψ‖2

1

∫ a2j

a′2j
e2c̃0|t |s dt

≤ 4πν2L + 2(c′)2Lj22jwe−2c̃0[as+1]2js‖ψ‖2
1a2j e2c̃0a

s2js

≤ 2πL.

Take 2js = 1
2c̃0[as+1] logn. The proof of Theorem 1 then implies, ∀k �= k′, ‖fk −

fk′‖∞ ≥ c3
√

(log logn)/n(logn)(w+1/2)/s for some constant c3 > 0 independent
of n. Next, for any k, the Kullback–Leibler divergence between P n

k and P n
0 satis-

fies

K(P n
k |P n

0 ) ≤ c4nγ 2
j 2−2jw = c4(c

′)2Lnj22jwe−2c̃0[as+1]2js

2−2jw ≤ c4(c
′)2Lj.

This and Lemma 3 together yield the result for c′ > 0 chosen small enough inde-
pendently of n, k. �

PROOF OF PROPOSITION 3. We use Proposition 5 below. Note that

‖fn(j) − Efn(j)‖∞ = sup
x∈R

∣∣∣∣∣1

n

n∑
m=1

(
K∗

j (x, Ym) − EK∗
j (x, Y )

)∣∣∣∣∣.(3.10)

The class {K∗
j (x, ·) :x ∈ R} has envelope U(j) = 2j δ−1

j c(φ)
√

a/2π2 in view of
(2.3) and (3.4). Since Proposition 5 deals with classes of functions bounded by
1/2, we have to rescale, that is, we consider the class G := Gj = {K∗

j (x, ·)/2U(j) :
x ∈ R}, which is uniformly bounded by 1/2. Furthermore, the upper bound for the
weak variances supg∈G Eg2(Y ) ≤ σ 2 can be taken to be 2−j (π/2)‖φ‖2

1‖g‖∞ in
view of the estimate

E(K∗
j (x, Y ))2 ≤ 2j‖g‖∞c(φ)2‖φj0‖2

1‖ηj‖2
2

≤ ‖g‖∞c(φ)2‖φ‖2
1δ

−2
j 2j (a/π),

which uses Young’s inequality (and the definition of ηj from the proof of
Lemma 1).



WAVELET DENSITY DECONVOLUTION 227

To prove the inequality, set d(φ) = c(φ)

√
a/2π2 and d ′(φ) = d(φ)‖φ‖1

√
2π

so that

Pr
{
‖fn(j, ·) − Efn(j, ·)‖∞

≥ 6Rn(j) + 10d ′(φ)

δj

√
2j‖g‖∞(z + log 2)

n
+ 44

δj

2j d(φ)(z + log 2)

n

}

= Pr

{∥∥∥∥∥1

n

n∑
m=1

(K∗
j (·, Ym) − EK∗

j (·, Y ))

2U(j)

∥∥∥∥∥∞

≥ 6Rn(j)

2U(j)
+ 10‖φ‖1

√
π‖g‖∞(z + log 2)

2j+1n
+ 22

z + log 2

n

}
,

but this quantity equals the probability in Proposition 5 below for F = G .
For the second claim of the proposition, we only have to show that ERn(j) has,

up to constants, the required order as a function of j, n. But this follows readily
from the usual desymmetrization inequality for Rademacher processes (cf., e.g.,
expression (23) in [21]), as well as from Proposition 1. �

PROOF OF COROLLARY 2. The result follows from standard arguments (com-
bining Propositions 3 and 4). �

3.7. A concentration inequality using Rademacher processes. We start with
the following inequality, which is a Bernstein-type version of similar inequalities
in [29] and complements the results in [21]. Let ‖H‖F = supf ∈F |H(f )| for any
set F and functions H : F → R.

PROPOSITION 5. Let X1, . . . ,Xn be i.i.d. with law P on a measurable space
(S, A). Let F be a countable class of real-valued measurable functions defined on
S, uniformly bounded by 1/2, and let σ 2 ≥ supf ∈F Ef 2(X). We have, for every
n ∈ N and x > 0, that e−x is greater than or equal to

Pr

{∥∥∥∥∥1

n

n∑
i=1

(
f (Xi) − Pf

)∥∥∥∥∥
F

≥ 6

∥∥∥∥∥1

n

n∑
i=1

εif (Xi)

∥∥∥∥∥
F

+ 10

√
(x + log 2)σ 2

n
+ 22

x + log 2

n

}
.

PROOF. We first recall the lower-deviation version of Talagrand’s inequal-
ity, as given in [27], and a simple consequence of it. Using the notation Z =
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‖∑
(f (Xi) − Pf )‖F , we have, using the inequalities

√
a + b ≤ √

a + √
b and√

ab ≤ (a + b)/2, that

e−x ≥ Pr
{
Z ≤ EZ −

√
2x(nσ 2 + 2EZ) − x

}
≥ Pr

{
Z ≤ 0.5EZ −

√
2xnσ 2 − 3x

}
= Pr

{∥∥∥∥∥1

n

n∑
i=1

(
f (Xi) − Pf

)∥∥∥∥∥
F

≤ 0.5E

∥∥∥∥∥1

n

n∑
i=1

(
f (Xi) − Pf

)∥∥∥∥∥
F

−
√

2xσ 2

n
− 3x

n

}

and one likewise proves, using the upper-deviation version of Talagrand’s inequal-
ity [6],

e−x ≥ Pr

{∥∥∥∥∥1

n

n∑
i=1

(
f (Xi) − Pf

)∥∥∥∥∥
F

(3.11)

≥ 1.5E

∥∥∥∥∥1

n

n∑
i=1

(
f (Xi) − Pf

)∥∥∥∥∥
F

+
√

2xσ 2

n
+ 7x

3n

}
.

To prove the proposition, observe that

Pr
{∥∥∥∥1

n

∑(
f (Xi) − Pf

)∥∥∥∥
F

≥ 6
∥∥∥∥1

n

∑
εif (Xi)

∥∥∥∥
F

+ 10

√
xσ 2

n
+ 22x

n

}

≤ Pr
{∥∥∥∥1

n

∑(
f (Xi) − Pf

)∥∥∥∥
F

≥ 3E

∥∥∥∥1

n

∑
εif (Xi)

∥∥∥∥
F

+ 1.5

√
xσ 2

n
+ 0.15

22x

n

}

+ Pr
{

6
∥∥∥∥1

n

∑
εif (Xi)

∥∥∥∥
F

− 3E

∥∥∥∥1

n

∑
εif (Xi)

∥∥∥∥
F

< −8.5

√
xσ 2

n
− 0.85

22x

n

}

≤ Pr
{∥∥∥∥1

n

∑(
f (Xi) − Pf

)∥∥∥∥
F

≥ 1.5E

∥∥∥∥1

n

∑(
f (Xi) − Pf

)∥∥∥∥
F

+
√

2xσ 2

n
+ 7x

3n

}

+ Pr
{∥∥∥∥1

n

∑
εif (Xi)

∥∥∥∥
F

< 0.5E

∥∥∥∥1

n

∑
εif (Xi)

∥∥∥∥
F

−
√

2xσ 2

n
− 3x

n

}
,
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where we have used the standard Rademacher symmetrization inequality (e.g., (23)
in [21]). The first quantity on the right-hand side of the last inequality is less than or
equal to e−x , by (3.11). For the second term, note that the first displayed inequality
in this proof also applies to the randomized sums

∑n
i=1 εif (Xi), by taking G =

{g(τ, x) = τf (x) :f ∈ F }, τ ∈ {−1,1}, instead of F and the probability measure
P̄ = 2−1(δ−1 + δ1)×P instead of P . It is easy to see that σ can be taken to be the
same as for F . This gives the overall bound 2e−x and a change of variables in x

gives the final bound. �
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