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IDENTIFYING THE FINITE DIMENSIONALITY
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The curve time series framework provides a convenient vehicle to ac-
commodate some nonstationary features into a stationary setup. We propose
a new method to identify the dimensionality of curve time series based on
the dynamical dependence across different curves. The practical implemen-
tation of our method boils down to an eigenanalysis of a finite-dimensional
matrix. Furthermore, the determination of the dimensionality is equivalent to
the identification of the nonzero eigenvalues of the matrix, which we carry
out in terms of some bootstrap tests. Asymptotic properties of the proposed
method are investigated. In particular, our estimators for zero-eigenvalues en-
joy the fast convergence rate n while the estimators for nonzero eigenvalues
converge at the standard

√
n-rate. The proposed methodology is illustrated

with both simulated and real data sets.

1. Introduction. A curve time series may consist of, for example, annual
weather record charts, annual production charts or daily volatility curves (from
morning to evening). In these examples, the curves are segments of a single long
time series. One advantage to view them as a curve series is to accommodate some
nonstationary features (such as seasonal cycles or diurnal volatility patterns) into
a stationary framework in a Hilbert space. There are other types of curve series
that cannot be pieced together into a single long time series; for example, daily
mean-variance efficient frontiers of portfolios, yield curves and intraday asset re-
turn distributions. See also an example of daily return density curves in Section 4.2.
The goal of this paper is to identify the finite dimensionality of curve time series
in the sense that the serial dependence across different curves is driven by a finite
number of scalar components. Therefore, the problem of modeling curve dynamics
is reduced to that of modeling a finite-dimensional vector time series.

Throughout this paper, we assume that the observed curve time series, which
we denote by Y1(·), . . . , Yn(·), are defined on a compact interval I and are subject
to errors in the sense that

Yt (u) = Xt(u) + εt (u), u ∈ I,(1.1)
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where Xt(·) is the curve process of interest. The existence of the noise term εt (·)
reflects the fact that curves Xt(·) are seldom perfectly observed. They are often
only recorded on discrete grids and are subject to both experimental error and
numerical rounding. These noisy discrete data are smoothed to yield “observed”
curves Yt (·). Note that both Xt(·) and εt (·) are unobservable.

We assume that εt (·) is a white noise sequence in the sense that E{εt (u)} = 0 for
all t and Cov{εt (u), εs(v)} = 0 for any u, v ∈ I provided t �= s. This is guaranteed
since we may include all the dynamic elements of Yt (·) into Xt(·). Likewise, we
may also assume that no parts of Xt(·) are white noise since these parts should be
absorbed into εt (·). We also assume that∫

I
E{Xt(u)2 + εt (u)2}du < ∞,(1.2)

and both

μ(u) ≡ E{Xt(u)}, Mk(u, v) ≡ Cov{Xt(u),Xt+k(v)}(1.3)

do not depend on t . Furthermore, we assume that Xt(·) and εt+k(·) are uncorre-
lated for all integer k. Under condition (1.2), Xt(·) admits the Karhunen–Loéve
expansion

Xt(u) − μ(u) =
∞∑

j=1

ξtjϕj (u),(1.4)

where ξtj = ∫
I {Xt(u)−μ(u)}ϕj (u) du with {ξtj , j ≥ 1} being a sequence of scalar

random variables with E(ξtj ) = 0, Var(ξtj ) = λj and Cov(ξti , ξtj ) = 0 if i �= j . We
rank {ξtj , j ≥ 1} such that λj is monotonically decreasing as j increases.

We say that Xt(·) is d-dimensional if λd �= 0 and λd+1 = 0, where d ≥ 1 is
a finite integer; see Hall and Vial (2006). The primary goal of this paper is to
identify d and to estimate the dynamic space M spanned by the (deterministic)
eigenfunctions ϕ1(·), . . . , ϕd(·).

Hall and Vial (2006) tackle this problem under the assumption that the curves
Y1(·), . . . , Yn(·) are independent. Then the problem is insoluble in the sense that
one cannot separate Xt(·) from εt (·) in (1.1). This difficulty was resolved in Hall
and Vial (2006) under a “low noise” setting which assumes that the noise εt (·)
goes to 0 as the sample size goes to infinity. Our approach is different and it
does not require the “low noise” condition, since we identify d and M in terms
of the serial dependence of the curves. Our method relies on a simple fact that
Mk(u, v) = Cov{Yt (u), Yt+k(v)} for any k �= 0, which automatically filters out the
noise εt (·); see (1.3). In this sense, the existence of dynamic dependence across
different curves makes the problem tractable.

Dimension reduction plays an important role in functional data analysis. The
most frequently used method is the functional principal component analysis in
the form of applying the Karhunen–Loéve decomposition directly to the observed
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curves. The literature in this field is vast and includes Besse and Ramsay (1986),
Dauxois, Pousse and Romain (1982), Ramsay and Dalzell (1991), Rice and Sil-
verman (1991) and Ramsay and Silverman (2005). In spite of the methodological
advancements with independent observations, the work on functional time series
has been of a more theoretical nature; see, for example, Bosq (2000). The available
inference methods focus mostly on nonparametric estimation for some character-
istics of functional series [Part IV of Ferraty and Vieu (2006)]. As far as we are
aware, the work presented here represents the first attempt on the dimension reduc-
tion based on dynamic dependence, which is radically different from the existing
methods. Heuristically, our approach differs from functional principal components
analysis in one fundamental manner; in principal component analysis the objec-
tive is to find the linear combinations of the data which maximize variance. In
contrast, we seek for the linear combinations of the data which represent the serial
dependence in the data. Although we confine ourselves to square integrable curve
series in this paper, the methodology may be extended to a more general functional
framework including, for example, a surface series which is particularly important
for environmental study; see, for example, Guillas and Lai (2010). A follow-up
study in this direction will be reported elsewhere.

The rest of the paper is organized as follows. Section 2 introduces the pro-
posed new methodology for identifying the finite-dimensional dynamic structure.
Although the Karhunen–Loéve decomposition (1.4) serves as a starting point, we
do not seek for such a decomposition explicitly. Instead the eigenanalysis is per-
formed on a positive-definite operator defined based on the autocovariance func-
tion of the curve process. Furthermore, computationally our method boils down
to an eigenanalysis of a finite matrix thus requiring no computing of eigenfunc-
tions in a functional space directly. The relevant theoretical results are presented
in Section 3. As our estimation for the eigenvalues are essentially quadratic, the
convergence rate of the estimators for the zero-eigenvalues is n while that for the
nonzero eigenvalues is standard

√
n. Numerical illustration using both simulated

and real datasets is provided in Section 4. Given the nature of the subject con-
cerned, it is inevitable to make use of some operator theory in a Hilbert space. We
collect some relevant facts in Appendix A. We relegate all the technical proofs to
Appendix B.

2. Methodology.

2.1. Characterize d and M via serial dependence. Let L2(I) denote the
Hilbert space consisting of all the square integrable curves defined on I equipped
with the inner product

〈f,g〉 =
∫

I
f (u)g(u)du, f, g ∈ L2(I).(2.1)

Now Mk defined in (1.3) may be viewed as the kernel of a linear operator acting
on L2(I), that is, for any g ∈ L2(I), Mk maps g(u) to ǧ(u) ≡ ∫

I Mk(u, v)g(v) dv.
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For notational economy, we will use Mk to denote both the kernel and the operator.
Appendix A lists some relevant facts about operators in Hilbert spaces.

For M0 defined in (1.3), we have a spectral decomposition of the form

M0(u, v) =
∞∑

j=1

λjϕj (u)ϕj (v), u, v ∈ I,(2.2)

where λ1 ≥ λ2 ≥ · · · ≥ 0 are the eigenvalues and ϕ1, ϕ2, . . . are the corresponding
orthonormal eigenfunctions (i.e., 〈ϕi, ϕj 〉 = 1 for i = j , and 0 otherwise). Hence,∫

I
M0(u, v)ϕj (v) dv = λjϕj (u), j ≥ 1.

Furthermore, the random curves Xt(·) admit the representation (1.4). We assume
in this paper that Xt(·) is d-dimensional (i.e., λd+1 = 0). Therefore,

M0(u, v) =
d∑

j=1

λjϕj (u)ϕj (v), Xt(u) = μ(u) +
d∑

j=1

ξtjϕj (u).(2.3)

It follows from (1.1) that

Yt (u) = μ(u) +
d∑

j=1

ξtjϕj (u) + εt (u).(2.4)

Thus, the serial dependence of Yt (·) is determined entirely by that of the d-
vector process ξ t ≡ (ξt1, . . . , ξtd)′ since εt (·) is white noise. By the virtue of the
Karhunen–Loéve decomposition, Eξ t = 0 and Var(ξ t ) = diag(λ1, . . . , λd).

For some prescribed integer p, let

M̂k(u, v) = 1

n − p

n−p∑
j=1

{Yj (u) − Ȳ (u)}{Yj+k(v) − Ȳ (v)},(2.5)

where Ȳ (·) = n−1 ∑
1≤j≤n Yj (·) and k = 1, . . . , p. The reason for truncating

the sums in (2.5) at n − p as opposed to n − k is to ensure a duality op-
eration which simplifies the computation for eigenfunctions; see Remark 2 at
the end of Section 2.2.2. The conventional approach to estimate d and M =
span{ϕ1(·), . . . , ϕd(·)} is to perform an eigenanalysis on M̂0 and let d̂ be the num-
ber of nonzero eigenvalues and M̂ be spanned by the d̂ corresponding eigenfunc-
tions; see, for example, Ramsay and Silverman (2005) and references therein.
However, this approach suffers from complications due to fact that M̂0 is not a
consistent estimator for M0, as Cov{Yt (u), Yt (v)} = M0(u, v)+Cov{εt (u), εt (v)}.
Therefore, M̂0 needs to be adjusted to remove the part due to εt (·) before the eige-
nanalysis may be performed. Unfortunately, this is a nontrivial matter since both
Xt(·) and εt (·) are unobservable. An alternative is to let the variance of εt (·) decay
to 0 as the sample size n goes to infinity; see Hall and Vial (2006).
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We adopt a different approach based on the fact that Cov{Yt (u), Yt+k(v)} =
Mk(u, v) for any k �= 0, which ensures that M̂k is a legitimate estimator for Mk ;
see (1.3) and (2.5).

Let �k = E(ξ tξ
′
t+k) ≡ (σ

(k)
ij ) be the autocovariance matrix of ξ t at lag k. It is

easy to see from (1.3) and (2.3) that Mk(u, v) = ∑d
i,j=1 σ

(k)
ij ϕi(u)ϕj (v). Define a

nonnegative operator

Nk(u, v) =
∫

I
Mk(u, z)Mk(v, z) dz =

d∑
i,j=1

w
(k)
ij ϕi(u)ϕj (v),(2.6)

where Wk = (w
(k)
ij ) = �k�

′
k is a nonnegative definite matrix. Then it holds for any

integer k that ∫
I
Nk(u, v)ζ(v) dv = 0 for any ζ(·) ∈ M⊥,(2.7)

where M⊥ denotes the orthogonal complement of M in L2(I). Note (2.7) also
holds if we replace Nk by the operator

K(u, v) =
p∑

k=1

Nk(u, v),(2.8)

which is also a nonnegative operator on L2(I).

PROPOSITION 1. Let the matrix �k0 be full-ranked for some k0 ≥ 1. Then the
assertions below hold.

(i) The operator Nk0 has exactly d nonzero eigenvalues, and M is the linear
space spanned by the corresponding d eigenfunctions.

(ii) For p ≥ k0, (i) also holds for the operator K .

REMARK 1. (i) The condition that rank(�k) = d for some k ≥ 1 is implied
by the assumption that Xt(·) is d-dimensional. In the case where rank(�k) < d for
all k, the component with no serial correlations in Xt(·) should be absorbed into
white noise εt (·); see similar arguments on modeling vector time series in Peña
and Box (1987) and Pan and Yao (2008).

(ii) The introduction of the operator K in (2.8) is to pull together the informa-
tion at different lags. Using single Nk may lead to spurious choices of d̂ .

(iii) Note that
∫

I K(u, v)ζ(v) dv = 0 if and only if
∫

I Nk(u, v)ζ(v) dv = 0 for
all 1 ≤ k ≤ p. However, we cannot use Mk directly in defining K since it does not
necessarily hold that

∫
I

∑
1≤k≤p Mk(u, v)g(v) �= 0 for all g ∈ M. This is due to

the fact that Mk are not nonnegative definite operators.

2.2. Estimation of d and M.

2.2.1. Estimators and fitted dynamic models. Let ψ1, . . . ,ψd be the orthonor-
mal eigenfunctions of K corresponding to its d nonzero eigenvalues. Then they
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form an orthonormal basis of M; see Proposition 1(ii) above. Hence, it holds that

Xt(u) − μ(u) =
d∑

j=1

ξtjϕj (u) =
d∑

j=1

ηtjψj (u),

where ηtj = ∫
I {Xt(u) − μ(u)}ψj(u)du. Therefore, the serial dependence of

Xt(·) [and also that of Yt (·)] can be represented by that of the d-vector process
ηt ≡ (ηt1, . . . , ηtd)

′. Since (ξtj , ϕj ) cannot be estimated directly from Yt (see Sec-
tion 2.1 above), we estimate (ηtj ,ψj ) instead.

As we have stated above, Mk for k �= 0 may be directly estimated from the
observed curves Yt ; see (2.5). Hence, a natural estimator for K may be defined as

K̂(u, v) =
p∑

k=1

∫
I
M̂k(u, z)M̂k(v, z) dz

= 1

(n − p)2

n−p∑
t,s=1

p∑
k=1

{Yt (u) − Ȳ (u)}{Ys(v) − Ȳ (v)}(2.9)

× 〈Yt+k − Ȳ , Ys+k − Ȳ 〉,
see (2.8), (2.6), (2.5) and (2.1).

By Proposition 1, we define d̂ to be the number of nonzero eigenvalues of K̂ (see
Section 2.2.3 below) and M̂ to be the linear space spanned by the d̂ corresponding
orthonormal eigenfunctions ψ̂1(·), . . . , ψ̂d̂ (·). This leads to the fitting

Ŷt (u) = Ȳ (u) +
d̂∑

j=1

η̂tj ψ̂j (u), u ∈ I,(2.10)

where

η̂tj =
∫

I
{Yt (u) − Ȳ (u)}ψ̂j (u) du, j = 1, . . . , d̂.(2.11)

Although ψ̂j are not the estimators for the eigenfunctions ϕj of M0 defined in
(2.2), M̂ = span{ψ̂1(·), . . . , ψ̂d(·)} is a consistent estimator of M = span{ϕ1(·),
. . . , ϕd(·)} (Theorem 2 in Section 3 below).

In order to model the dynamic behavior of Yt (·), we only need to model the
d̂-dimensional vector process η̂t ≡ (η̂t1, . . . , η̂t d̂ )′; see (2.10) above. This may be
done using VARMA or any other multivariate time series models. See also Tiao
and Tsay (1989) for applying linear transformations in order to obtain a more
parsimonious model for η̂t .

The integer p used in (2.5) may be selected in the same spirit as the maximum
lag used in, for example, the Ljung–Box–Pierce portmanteau test for white noise.
In practice, we often choose p to be a small positive integer. Note that k0 fulfilling
the condition of Proposition 1 is often small since serial dependence decays as the
lag increases for most practical data.
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2.2.2. Eigenanalysis. To perform an eigenanalysis in a Hilbert space is not a
trivial matter. A popular pragmatic approach is to use an approximation via dis-
cretization, that is, to evaluate the observed curves at a fine grid and to replace
the observed curves by the resulting vectors. This is an approximate method; ef-
fectively transform the problem to an eigenanalysis for a finite matrix. See, for
example, Section 8.4 of Ramsay and Silverman (2005). Below we also transform
the problem into an eigenanalysis of a finite matrix but not via any approximations.
Instead we make use of the well-known duality property that AB′ and B′A share
the same nonzero eigenvalues for any matrices A and B of the same sizes. Further-
more, if γ is an eigenvector of B′A, Aγ is an eigenvector of AB′ with the same
eigenvalue. In fact, this duality also holds for operators in a Hilbert space. This
scheme was adopted in Kneip and Utikal (2001) and Benko, Hardle and Kneip
(2009).

We present a heuristic argument first. To view the operator K̂(·, ·) defined in
(2.9) in the form of AB′, let us denote the curve Yt (·) − Ȳ (·) as an ∞ × 1 vector
Yt with Y′

tYs = 〈Yt − Ȳ , Ys − Ȳ 〉; see (2.1). Put Yk = (Y1+k, . . . ,Yn−p+k). Then
K̂(·, ·) may be represented as an ∞ × ∞ matrix

K̂ = 1

(n − p)2 Y0

p∑
k=1

Y ′
k Yk Y ′

0.

Applying the duality with A = Y0 and B′ = ∑
1≤k≤p Y ′

k Yk Y ′
0, K̂ shares the same

nonzero eigenvalues with the (n − p) × (n − p) matrix

K∗ = 1

(n − p)2

p∑
k=1

Y ′
k Yk Y ′

0Y0,(2.12)

where the (t, s)th element of Y ′
k Yk is Y′

t+kYs+k = 〈Yt+k − Ȳ , Ys+k − Ȳ 〉 and
k = 0,1, . . . , p. Furthermore, let γ j = (γ1j , . . . , γn−p,j )

′, j = 1, . . . , d̂ , be the
eigenvectors of K∗ corresponding to the d̂ largest eigenvalues. Then

n−p∑
t=1

γtj {Yt (·) − Ȳ (·)}, j = 1, . . . , d̂,(2.13)

are the d̂ eigenfunctions of K̂(·, ·). Note that the functions in (2.13) may not be
orthogonal with each other. Thus, the orthonormal eigenfunctions ψ̂1(·), . . . , ψ̂d̂ (·)
used in (2.10) may be obtained by applying a Gram–Schmidt algorithm to the
functions given in (2.13).

The heuristic argument presented above is justified by result below. The formal
proof is relegated to Appendix B.

PROPOSITION 2. The operator K̂(·, ·) shares the same nonzero eigenvalues
with matrix K∗ defined in (2.12) with the corresponding eigenfunctions given in
(2.13).
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REMARK 2. The truncation of the sums in (2.5) at (n − p) for different k is
necessary to ensure the applicability of the above duality operation. If we truncated
the sum for M̂k at (n− k) instead, Y ′

k Yk would be of different sizes for different k,
and K∗ in (2.12) would not be well defined.

2.2.3. Determination of d via statistical tests. Although the number of
nonzero eigenvalues of operator K(·, ·) defined in (2.8) is d [Proposition 1(ii)],
the number of nonzero eigenvalues of its estimator K̂(·, ·) defined in (2.9) may
be much greater than d due to random fluctuation in the sample. One empirical
approach is to take d̂ to be the number of “large” eigenvalues of K̂ in the sense
that the (d̂ + 1)th largest eigenvalue drops significantly; see also Theorem 3 in
Section 3 and Figure 1 in Section 4.1. Hyndman and Ullah (2007) proposed to
choose d by minimizing forecasting errors. Below, we present a bootstrap test to
determine the value of d .

Let θ1 ≥ θ2 ≥ · · · ≥ 0 be the eigenvalues of K . If the true dimensionality is d =
d0, we expect to reject the null hypothesis θd0 = 0, and not to reject the hypothesis
θd0+1 = 0. Suppose we are interested in testing the null hypothesis

H0 : θd0+1 = 0,(2.14)

where d0 is a known integer, obtained, for example, by visual observation of the
estimated eigenvalues θ̂1 ≥ θ̂2 ≥ · · · ≥ 0 of K̂ . Hence, we reject H0 if θ̂d0+1 > lα ,
where lα is the critical value at the α ∈ (0,1) significance level. To evaluate the
critical value lα , we propose the following bootstrap procedure.

1. Let Ŷt (·) be defined as in (2.10) with d̂ = d0. Let ε̂t (·) = Yt (·) − Ŷt (·).
2. Generate a bootstrap sample from the model

Y ∗
t (·) = Ŷt (·) + ε∗

t (·),
where ε∗

t are drawn independently (with replacement) from {̂ε1, . . . , ε̂n}.
3. Form an operator K∗ in the same manner as K̂ with {Yt } replaced by {Y ∗

t },
compute the (d0 + 1)th largest eigenvalue θ∗

d0+1 of K∗.

Then the conditional distribution of θ∗
d0+1, given the observations {Y1, . . . , Yn}, is

taken as the distribution of θ̂d0+1 under H0. In practical implementation, we repeat
Steps 2 and 3 above B times for some large integer B , and we reject H0 if the
event that θ∗

d0+1 > θ̂d0+1 occurs not more than [αB] times. The simulation results
reported in Section 4.1 below indicate that the above bootstrap method works well.

REMARK 3. The serial dependence in Xt could provide an alternative method
for testing hypothesis (2.14). Under model (2.4), the projected series of the curves
Yt (·) on any direction perpendicular to M is white noise. Put Ut = 〈Yt , ψ̂d0+1〉, t =
1, . . . , n. Then Ut would behave like a (scalar) white noise under H0. However, for
example, the Ljung–Box–Pierce portmanteau test for white noise coupled with the
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standard χ2-approximation does not work well in this context. This is due to the
fact that the (d + 1)th largest eigenvalue K̂ is effectively the extreme value of the
estimates for all the zero-eigenvalues of K . Therefore, ψ̂d0+1 is not an estimate for
a fixed direction, which makes the χ2-approximation for the Ljung–Box–Pierce
statistic mathematically invalid. Indeed some simulation results, not reported here,
indicate that the χ2-approximation tends to underestimate the critical values for
the Ljung–Box–Pierce test in this particular context.

3. Theoretical properties. Before presenting the asymptotic results, we first
solidify some notation. Denote by (θj ,ψj ) and (θ̂j , ψ̂j ) the (eigenvalue, eigen-
function) pairs of K and K̂ , respectively [see (2.8) and (2.9)]. We always arrange
the eigenvalues in descending order, that is, θj > θj+1. As the eigenfunctions of K

and K̂ are unique only up to sign changes, in the sequel, it will go without saying
that the right versions are used. Furthermore, recall that θj = 0 for all j ≥ d + 1.
Thus, the eigenfunctions ψj are not identified for j ≥ d +1. We take this last point
into consideration in our theory. We always assume that the dimension d ≥ 1 is a
fixed finite integer, and p ≥ 1 is also a fixed finite integer.

For simplicity in the proofs, we suppose that E{Yt (·)} = μ(·) is known and
thus set Ȳ (·) = μ(·). Straightforward adjustments to our arguments can be made
when this is not the case. We denote by ‖L‖S the Hilbert–Schmidt norm for any
operator L; see Appendix A. Our asymptotic results are based on the following
regularity conditions:

C1. {Yt (·)} is strictly stationary and ψ-mixing with the mixing coefficient de-
fined as

ψ(l) = sup
A∈F 0∞,B∈F ∞

l ,P (A)P (B)>0
|1 − P(B|A)/P (B)|,

where F j
i = σ {Yi(·), . . . , Yj (·)} for any j ≥ i. In addition, it holds that

∑∞
l=1 l ×

ψ1/2(l) < ∞.
C2. E{∫I Yt (u)2 du}2 < ∞.
C3. θ1 > · · · > θd > 0 = θd+1 = · · · , that is, all the nonzero eigenvalues of K

are different.
C4. Cov{Xs(u), εt (v)} = 0 for all s, t and u, v ∈ I .

THEOREM 1. Let conditions C1–C4 hold. Then as n → ∞, the following as-
sertions hold:

(i) ‖K̂ − K‖S = Op(n−1/2).
(ii) For j = 1, . . . , d , |θ̂j − θj | = Op(n−1/2) and(∫

I
{ψ̂j (u) − ψj(u)}2 du

)1/2
= OP (n−1/2).
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(iii) For j ≥ d + 1, θ̂j = Op(n−1).
(iv) Let {ψj : j ≥ d + 1} be a complete orthonormal basis of M⊥, and put

fj (·) =
∞∑

i=d+1

〈ψi, ψ̂j 〉ψi(·).

Then for any j ≥ d + 1,(∫
I

{
d∑

i=1

〈ψi, ψ̂j 〉ψi(u)

}2

du

)1/2

=
(∫

I
{ψ̂j (u) − fj (u)}2 du

)1/2

= Op(n−1/2).

REMARK 4. (a) In the above theorem, assertions (i) and (ii) are standard. (In
fact, those results still hold for d = ∞.)

(b) Assertion (iv) implies that the estimated eigenfunctions ψ̂d+j , j ≥ 1, are
asymptotically in the orthogonal complement of the dynamic space M.

(c) The fast convergence rate n in assertion (iii) deserves some further expla-
nation. To this end, we consider a simple analogue: let A1, . . . ,An be a sample of
stationary random variables, and we are interested in estimating μ2 = (EAt)

2 for
which we use the estimator Ā2 = (n−1 ∑n

t=1 At)
2 = n−2 ∑n

s,t=1 AsAt . Then under
appropriate regularity conditions, it holds that

|Ā2 − μ2| ≤ |μ||Ā − μ| + |Ā2 − Āμ| = |μ| · Op(n−1/2) + Op(n−1)(3.1)

as |Ā − μ| = Op(n−1/2) and |Ā2 − Āμ| = Op(n−1). The latter follows from a
simple U -statistic argument; see Lee (1990). It is easy to see from (3.1) that |Ā2 −
μ2| = Op(n−1/2) if μ �= 0, and |Ā2 − μ2| = Op(n−1) if μ = 0. In our context, the
operator K̂ = ∑p

k=1

∫
I Mk(u, r)Mk(v, r) = (n − p)−2 ∑p

k=1
∑n−p

s,t=1 ZikZ
∗
jk(u, v),

where Ztk(u, v) = {Yt (u) − μ(u)}{Yt+k(v) − μ(v)} and ZikZ
∗
jk(u, v) = ∫

I Zik(u,

r)Zjk(v, r) dr , is similar to Ā2, and hence the convergence properties stated in
Theorem 1(iii) [and also (ii)]. The fast convergence rate, which is termed as “super-
consistent” in econometric literature, is illustrated via simulation in Section 4.1
below; see Figures 4–7. It makes the identification of zero-eigenvalues easier; see
Figure 1.

With d known, let M̃ = span{ψ̂1(·), . . . , ψ̂d(·)}, where ψ̂1(·), . . . , ψ̂d(·) are the
eigenfunctions of K̂ corresponding to the d largest eigenvalues. In order to mea-
sure the discrepancy between M and M̃, we introduce the following metric. Let
N1 and N2 be any two d-dimensional subspaces of L2(I). Let {ζi1(·), . . . , ζid(·)}
be an orthonormal basis of Ni , i = 1,2. Then the projection of ζ1k onto N2 may
be expressed as

d∑
j=1

〈ζ2j , ζ1k〉ζ2j (u).
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Its squared norm is
∑d

j=1(〈ζ2j , ζ1k〉)2 ≤ 1. The discrepancy measure is defined as

D(N1, N2) =
√√√√√1 − 1

d

d∑
j,k=1

(〈ζ2j , ζ1k〉)2.(3.2)

It is clear that this is a symmetric measure between 0 and 1. It is independent of
the choice of the orthonormal bases used in the definition, and it equals 0 if and
only if N1 = N2. Let Z be the set consisting of all the d-dimensional subspaces
in L2(I). Then (Z,D) forms a metric space in the sense that D is a well-defined
distance measure on Z (see Lemma 4 in Appendix B below).

THEOREM 2. Let the conditions of Theorem 1 hold. Suppose that d is known.
Then as n → ∞, it holds that D(M̃, M) = Op(n−1/2).

REMARK 5. Our estimation of M is asymptotically adaptive to d . To this
end, let d̂ be a consistent estimator of d in the sense that P(d̂ = d) → 1, and
M̂ = span{ψ̂1, . . . , ψ̂d̂} be the estimator of M with d estimated by d̂ . Since d̂ may
differ from d , we use the modified metric D̃, defined in (4.1) below, to measure
the difference between M̂ and M. Then it holds for any constant C > 0 that

P {n1/2|D̃(M̂, M) − D(M̃, M)| > C}
≤ P {n1/2|D̃(M̂, M) − D(M̃, M)| > C|d̂ = d}P(d̂ = d) + P(d̂ �= d)

≤ P {n1/2|D̃(M̂, M) − D(M̃, M)| > C|d̂ = d} + o(1).

Note that when d̂ = d , M̂ = M̃ and thus D̃(M̂, M) = D(M̂, M). Hence the
conditional probability on the RHS of the above expression is 0. This together
with Theorem 2 yield D̃(M̂, M) = Op(n−1/2).

One such consistent estimator of d may be defined as d̂ = #{j : θ̂j ≥ ε}, where
ε = ε(n) > 0 satisfies the conditions in Theorem 3 below.

THEOREM 3. Let the conditions of Theorem 1 hold. Let ε → 0 and ε2n → ∞
and as n → ∞. Then P(d̂ �= d) → 0.

4. Numerical properties.

4.1. Simulations. We illustrate the proposed method first using the simulated
data from model (1.1) with

Xt(u) =
d∑

i=1

ξtiϕi(u), εt (u) =
10∑

j=1

Ztj

2j−1 ζj (u), u ∈ [0,1],

where {ξti , t ≥ 1} is a linear AR(1) process with the coefficient (−1)i(0.9 −
0.5i/d), the innovations Ztj are independent N(0,1) variables and

ϕi(u) = √
2 cos(πiu), ζj (u) = √

2 sin(πju).
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We set sample size n = 100,300 or 600, and the dimension parameter d = 2,4
or 6. For each setting, we repeat the simulation 200 times. We use p = 5 in defining
the operator K̂ in (2.9). For each of the 200 samples, we replicate the bootstrap
sampling 200 times.

The average of the ordered eigenvalues of K̂ obtained from the 200 replications
are plotted in Figure 1. For a good visual illustration, we only plot the ten largest
eigenvalues. It is clear that drop from the dth largest eigenvalue to the (d + 1)st

FIG. 1. The average estimated eigenvalues over the 200 replications with sample sizes n = 100
(solid lines), 300 (dotted lines) and 600 (dashed lines).
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FIG. 2. The boxplots of the P -values for the bootstrap tests of the hypothesis that (a) the d th largest
eigenvalue of K is 0, and (b) the (d + 1)th largest eigenvalue of K is 0. The horizontal lines mark
the 1% (dotted line), 5% (solid lines) and 10% (dashed lines) significance levels, respectively.

is very pronounced. Furthermore, the estimates for zero-eigenvalues with different
sample size are much closer than those for nonzero eigenvalues. This evidence is
in line with the different convergence rates presented in Theorem 1(ii) and (iii).
We apply the bootstrap method to test the hypothesis that the dth or the (d + 1)st
largest eigenvalue of K (θd and θd+1, resp.) are 0. The results are summarized
in Figure 2. The bootstrap test cannot reject the true null hypothesis θd+1 = 0.
The false null hypothesis θd = 0 is routinely rejected when n = 600 or 300; see
Figure 2(a). However, the test does not work when the sample size is as small
as 100.

To measure the accuracy of the estimation for the factor loading space M, we
need to modify the metric D defined in (3.2) first, as d̂ may be different from d .
Let N1, N2 be two subspaces in L2(I) with dimension d1 and d2, respectively. Let
{ζi1, . . . , ζidi

} be an orthonormal basis of Ni , i = 1,2. The discrepancy measure
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FIG. 3. The boxplots for the estimated error D̃ defined in (4.1).

between the two subspaces is defined as

D̃(N1, N2) =
√√√√√1 − 1

max(d1, d2)

d1∑
k=1

d2∑
j=1

(〈ζ2j , ζ1k〉)2.(4.1)

It can be shown that D̃(N1, N2) ∈ [0,1]. It equals 0 if and only if N1 = N2, and 1
if and only if N1 ⊥ N2. Obviously, D̃(N1, N2) = D(N1, N2) when d1 = d2 = d .
We computed D̃(M̂, M) in the 200 replications for each setting. Figure 3 presents
the boxplots of those D̃-values. It is noticeable that the D̃ measure decreases as
the sample size n increases. It is interesting to note too that the accuracy of the
estimation is independent of the dimension d .

To further illustrate the different convergence rates in estimating nonzero and
zero eigenvalues, as stated in Theorem 1, we generate 10,000 samples with dif-
ferent sample sizes from model (1.1) with d = 1, ξt = 0.5ξt−1 + ηt , where
ηt ∼ N(0,1), ϕ(u) = √

2 cos(πu), and εt (·) is the same as above. In defining the
operator K , we let p = 1. Then the operator K has only one nonzero eigenvalue
θ = 2. Figure 4 depicts the standardized histograms and the kernel density esti-
mators of

√
n(θ̂1 − θ), computed from the 10,000 samples. It is evident that those

distributions resemble normal distributions when the sample size is 200 or greater.
This is in line with Theorem 1(ii) which implies that

√
n(θ̂1 − θ) converges to a

nondegenerate distribution.
Figure 5 displays the distribution of

√
nθ̂2, noting θ2 = 0. It is clear that

√
nθ̂2

converges to zero as n increases, indicating the fact that the normalized factor
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FIG. 4. Standardized histograms overlaid by kernel density estimators of
√

n(θ̂1 − θ).

√
n is too small to stabilize the distribution. In contrast, Figure 6 exhibits that

the distribution of nθ̂2 stabilizes from the sample size as small as n = 50; see
Theorem 1(iii). In fact, the profile of the distribution with n = 10 looks almost the
same as that with n = 2000.

Figure 7 displays boxplots of the absolute estimation errors of the eigenvalues.
With the same sample size, the estimation errors for the nonzero eigenvalue are
considerably greater that those for the zero eigenvalue.
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FIG. 5. Standardized histograms overlaid by kernel density estimators of
√

nθ̂2.

4.2. A real data example. To further illustrate the methodology developed in
this paper, we set upon the task of modeling the intraday return densities for the
IBM stock in 2006. To this end, we have obtained the intraday prices via the
WRDS database. We only use prices between 09:30–16:00 since the market is not
particularly active outside of these times. There are n = 251 trading days in the
sample and a total of 2,786,650 observations. The size of this dataset is 73.7 MB.

Since high frequency prices are not equally spaced in time, we compute
the returns using the prices at the so-called previous tick times in every 5
minute intervals. More precisely, we set the sampling times at τ1 = 09:35, τ2 =
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FIG. 6. Standardized histograms overlaid by kernel density estimators of nθ̂2.

09:40, . . . , τm = 16:00 with m = 78. Denote by Xi(tij ) the stock price on the ith
day at the time tij , j = 1, . . . , ni and i = 1, . . . , n. The previous tick times on the
ith day are defined as

τil = max{tij : tij ≤ τl, j = 1, . . . , ni}, l = 1, . . . ,m.

The lth return on the ith day is then defined as Zil = log{Xi(τil)/Xi(τi,l−1)}.



CURVE TIME SERIES 3369

FIG. 7. Boxplots of estimation errors: (a) Errors for nonzero eigenvalue |θ̂1 − θ |; (b) Errors for
zero-eigenvalue θ̂2. To add clarity to the display, the outliers are not plotted.

We then estimate the intraday return densities using the standard kernel method

Yi(u) = (mhi)
−1

m∑
j=1

K

(
Zij − u

hi

)
, i = 1, . . . , n,(4.2)

where K(u) = (
√

2π)−1 exp(−u2/2) is a Gaussian kernel and hi is a bandwidth.
We set I = [−0.002,0.002] as the support for Yi(·). Let σ̂i be the sample stan-
dard deviation of {Zij , j = 1, . . . ,m} and ĥi = 1.06σ̂im

−1/5 be Silverman’s rule
of thumb bandwidth choice for day i. Then for each i, we employ three levels of
smoothness by setting hi in (4.2) equal to 0.5ĥi , ĥi and 2ĥi . Figure 8 displays the
observed densities for the first 8 days of the sample.

To identify the finite dimensionality of Yt (·), we apply the methodology devel-
oped in this paper. We set p = 5 in (2.8). Figure 9 displays the estimated eigenval-
ues. With all three bandwidths used, the first two eigenvalues are much larger than
the remaining ones. Furthermore, there is no clear cut-off from the third eigenvalue
onwards. This suggests to take d̂ = 2. The bootstrap tests, reported in Table 1, lend
further support to this assertion. Indeed for all levels of smoothness adopted, the
bootstrap test rejects the null H0 : θ2 = 0 but cannot reject the hypothesis θj = 0
for j = 3,4 or 5. Note that it is implied by θ3 = 0 that θ3+k = 0 for k ≥ 1. Indeed,
we tested θ3+k = 0 only for illustrative purposes.

Table 2 contains the P -values from testing the hypothesis that the estimated
loadings, η̂tj in (2.11) are white noise using the Ljung–Box–Pierce portmanteau
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FIG. 8. Estimated densities, Yi(·), using bandwidths hi = ĥi (solid lines), 0.5ĥi (dashed lines) and
2ĥi (dotted lines).

FIG. 9. Estimated eigenvalues θ̂j using bandwidths ht = 0.5ĥt (solid lines), ĥt (dashed lines) and
2ĥt (dotted lines).
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TABLE 1
P -values from applying the bootstrap test in Section 2.2.3 to the

intraday return density example

ht = 0.5̂ht ht = ̂ht h = 2̂ht

H0 : θ1 = 0 0.00 0.00 0.00
H0 : θ2 = 0 0.00 0.00 0.00
H0 : θ3 = 0 0.35 0.15 0.18
H0 : θ4 = 0 0.62 0.73 0.74
H0 : θ5 = 0 0.68 0.91 0.93

test. Although we should interpret the results of this test with caution (see Re-
mark 3 in Section 2.2.3), they provide further evidence that there is a considerable
amount of dynamic structure in the two-dimensional subspace corresponding to
the first two eigenvalues θ1 and θ2, and there is little or none dynamic structure in
the directions corresponding to θ3 and θ4. Collating all the relevant findings, we
comfortably set d̂ = 2 in our analysis.

Figure 10 displays the first d̂(= 2) estimated eigenfunctions ψ̂j in (2.13). Al-
though the estimated curves Yt (·) in Figure 8 are somehow different for different
bandwidths, the shape of the estimated eigenfunctions is insensitive to the choice
of bandwidth.

Figure 11 displays time series plots of the estimated loadings η̂t1 and η̂tj . Again
the estimated loadings with three levels of bandwidth are almost indistinguishable
from each other. Furthermore, the ACF and PACF of the series η̂tj = (η̂t1, η̂t2)

′ are
also virtually identical for all three choices of h. These graphics are displayed in
Figures 12 and 13.

TABLE 2
P -values from testing the hypothesis H0 : η̂tj is white noise using the Ljung–Box–Pierce

portmanteau test. The test statistic is given by Qj = n(n + 2)
∑q

k=1 sj (k)2/(n − k), where sj (k) is

the sample autocorrelation of η̂tj at lag k. Under H0, Qj has an asymptotic χ2
q -distribution

ht 0.5̂ht
̂ht 2̂ht

q 1 3 5 1 3 5 1 3 5

η̂t1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
η̂t2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
η̂t3 0.11 0.08 0.04 0.09 0.08 0.02 0.07 0.06 0.02
η̂t4 0.05 0.25 0.28 0.22 0.33 0.47 0.53 0.56 0.63
η̂t5 0.22 0.19 0.39 0.30 0.47 0.58 0.73 0.77 0.81
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FIG. 10. Estimated eigenfunctions (a) ψ̂1 and (b) ψ̂2 using bandwidths ht = 0.5ĥt (solid lines),
ĥt (dashed lines) and 2ĥt (dotted lines).

FIG. 11. Estimated loadings (a) η̂t1 and (b) η̂t2 using bandwidths ht = 0.5ĥt (solid lines),
ĥt (dashed lines) and 2ĥt (dotted lines).
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FIG. 12. ACF of η̂tj using bandwidthsht = 0.5ĥt (solid lines), ĥt (dashed lines) and 2ĥt (dotted
lines).

We now fit a VAR model to the estimated loadings, η̂t :

η̂t =
τ∑

k=1

Akη̂t−k + et .(4.3)

Since the estimated loadings η̂tj , as defined in (2.11), have mean zero by construc-
tion, there is no intercept term in the model. We choose the order τ in (4.3) by
minimizing the AIC. The AIC values for the order τ = 0,1, . . . ,10 are given in
Table 3. With all three bandwidths used, the AIC chooses τ = 3, and the multi-
variate portmanteau test (with lag values 1, 3 and 5) of Li and McLeod (1981) for
the residual of the fitted VAR models are insignificant at the 10% level. The Yule–
Walker estimates of the parameter matrices, Ak = (ak,ij ) in (4.3), with the order
τ = 3 are given in Table 4.

To summarize, we found that the dynamic behavior of the IBM intraday return
densities in 2006 was driven by two factors. These factors series are modeled well
by a VAR(3) process. We note that with all the three levels of smoothness adopted
in the initial density estimation, these conclusions were unchanged.

Finally, we make a cautionary remark on the implied true curves Xt(·) in the
above analysis. We take the unknown true daily densities as Xt(·). We see those
densities as random curves, as the distribution of the intraday returns tomorrow
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FIG. 13. PACF of η̂tj using bandwidths ht = 0.5ĥt (solid lines), ĥt (dashed lines) and 2ĥt (dotted
lines).

depends on the distributions of today, yesterday and so on, but is not entirely de-
termined by them. Now in model (1.1), E{εt (u)} = E{Yt (u)}−E{Xt(u)} �≡ 0. But
this does not affect the analysis performed in identifying the dimensionality of the
curves; see also Pan and Yao (2008). Note that (2.10) provides an alternative esti-
mator for the true density Xt(·) based on the dynamic structure of the curve series.
It can be used, for example, to forecast the density for tomorrow. However, an ob-
vious normalization should be applied since we did not make use the constraint∫

I Xt(u)du = 1 in constructing (2.10).

TABLE 3
AIC values from fitting the VAR model in (4.3). The figures in this table have been centered at the

minimum AIC value

τ = 0 τ = 1 τ = 2 τ = 3 τ = 4 τ = 5

ht = 0.5ĥt 131.33 40.39 9.98 0.00 7.86 10.38
ht = ĥt 133.04 41.32 9.53 0.00 7.47 10.08
ht = 2ĥt 135.47 40.83 9.58 0.00 7.00 8.94
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TABLE 4
Estimated parameter matrices Ak = (ak,ij ) from fitting the VAR model in (4.3)

j 1 2

ht 0.5̂ht
̂ht 2̂ht 0.5̂ht

̂ht 2̂ht

a1,1j 0.08 0.07 0.01 −0.14 −0.16 −0.22
a1,2j −0.08 −0.05 0.03 0.24 0.26 0.33

a2,1j 0.35 0.39 0.38 0.06 0.09 0.08
a2,2j −0.36 −0.43 −0.43 −0.05 −0.10 −0.11

a3,1j 0.08 0.05 0.02 −0.13 −0.15 −0.18
a3,2j −0.16 −0.13 −0.11 0.14 0.15 0.17

APPENDIX A

In this section, we provide the relevant background on operator theory used in
this work. More detailed accounts may be found in Dunford and Schwartz (1988).

Let H be a real separable Hilbert space with respect to some inner product 〈·, ·〉.
For any V ⊂ H, the orthogonal complement of V is given by

V ⊥ = {x ∈ H : 〈x, y〉 = 0,∀y ∈ V}.
Note that V ⊥⊥ = V where V denotes the closure of V . Clearly, if V is finite dimen-
sional then V ⊥⊥ = V .

Let L be a linear operator from H to H. For x ∈ H, denote by Lx the image of
x under L. The adjoint of L is denoted by L∗ and satisfies

〈Lx,y〉 = 〈x,L∗y〉, x, y ∈ H.(A.1)

L is said to be self adjoint if L∗ = L and nonnegative definite if

〈Lx,x〉 ≥ 0 ∀x ∈ H.

The image and null space of L are defined as Im(L) = {y ∈ H :y = Lx,x ∈ H}
and Ker(L) = {x ∈ H :Lx = 0}, respectively. Note that Ker(L∗) = (Im(L))⊥,
Ker(L) = (Im(L∗))⊥ and Ker(L∗) = Ker(LL∗). We define the rank of L to be
r(L) = dim(Im(L)) and we say that L is finite dimensional if r(L) < ∞.

A linear operator L is said to be bounded if there exists some finite constant
� > 0 such that for all x ∈ H

‖Lx‖ < �‖x‖,
where ‖ · ‖ is the norm induced on H by 〈·, ·〉. We denote the space of bounded
linear operators from H to H by B = B(H, H) and the uniform topology on B is
defined by

‖L‖B = sup
‖x‖≤1

‖Lx‖, L ∈ B.
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Note that all bounded linear operators are continuous, and the converse also
holds.

An operator L ∈ B is said to be compact if there exists two orthonormal se-
quences {ej } in {fj } of H and a sequence of scalars {λj } decreasing to zero such
that

Lx =
∞∑

j=1

λj 〈ej , x〉fj , x ∈ H,

or more compactly

L =
∞∑

j=1

λjej ⊗ fj .(A.2)

Note that if H = L2(I) equipped with the inner product defined in (2.1), then

(Lx)(u) =
∞∑

j=1

λj 〈ej , x〉fj (u).

Clearly, Im(L) = sp{fj : j ≥ 1} and Ker(L) = sp{ej : j ≥ 1}⊥.
The Hilbert–Schmidt norm of a compact linear operator L is defined as ‖L‖S =

(
∑∞

j=1 λ2
j )

1/2. We will let S denote the space consisting of all the operators with a
finite Hilbert–Schmidt or nuclear norm. Clearly, we have the inequalities ‖ · ‖S ≥
‖·‖B , and thus the inclusions S ⊂ B. Note that B is a Banach space when equipped
with their respective norms. Furthermore, S is a Hilbert space with respect to the
inner product

〈L1,L2〉S =
∞∑

i,j=1

〈L1gi, hj 〉〈L2gi, hj 〉, L1,L2 ∈ S,

where {gi} and {hj } are any orthonormal bases of H.

APPENDIX B

In this section, we provide the proofs for the propositions in Section 2 and the
theorems in Section 3. Throughout the proofs, we may use C to denote some
(generic) positive and finite constant which may vary from line to line. We in-
troduce some technical lemmas first.

LEMMA 1. Let L be a finite-dimensional operator such that for some se-
quences of orthonormal vectors {ej }, {fj }, {gj } and {hj } and some sequences
of decreasing scalars {θj } and {λj }, L admits the spectral decompositions L =∑d

j=1 θj ej ⊗ fj = ∑d ′
j=1 λjgj ⊗ hj . Then it holds that d ′ = d .
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PROOF. Note that if d �= d ′ then both Im(L) and Im(L∗
k) will be of different

dimensions under the alternative characterizations due to linear independence of
{ej }, {fj }, {gj } and {hj }. Thus, it must hold that d = d ′. �

LEMMA 2. Let L be a linear operator from H to H, where H is a separable
Hilbert space. Then it holds that Im(LL∗) = Im(L).

PROOF. Using the facts about inner product spaces and linear operators stated
in Appendix A, we have

Im(LL∗) = (Im(LL∗))⊥⊥ = (Im((LL∗)∗))⊥⊥

= (Ker(LL∗))⊥ = (Ker(L∗))⊥

= (Im(L))⊥⊥ = Im(L),

which concludes the proof. �

For the sake of the simplicity in presentation of the proofs, we adopt the the
standard notation for Hilbert spaces. For any f ∈ L2(I), we write ‖f ‖ = √〈f,f 〉
[see (2.1)], and denote Mkf ∈ L2(I) the image of f under the operator Mk in the
sense that

(Mkf )(u) =
∫

I
Mk(u, v)f (v) dv.

The operators Nk,K, M̂k and K̂ may be expressed in the same manner. Note now
that the adjoint operator of Mk is

(M∗
k f )(u) =

∫
I
Mk(v,u)f (v) dv.

See (A.1). Furthermore, Nk = MkM
∗
k in the sense that Nkf = MkM

∗
k f ; see (2.6).

Similarly, K̂ = ∑p
k=1 M̂kM̂

∗
k ; see (2.9).

PROOF OF PROPOSITION 1. (i) To save notational burden, we set k ≡ k0. We
only need to show Im(Nk) = M. Since Nk = MkM

∗
k , it follows from Lemma 2

that Im(Nk) = Im(MkM
∗
k ) = Im(Mk) as Nk and Mk are finite dimensional and

thus their images are closed.
Now, recall from Section 2.1 that Mk may be decomposed as

Mk =
d∑

i,j=1

σ
(k)
ij ϕi ⊗ ϕj .(B.1)

See also (A.2). Thus, from (B.1), we may write

Mk =
d∑

i=1

λ
(k)
i ϕi ⊗ ρ

(k)
i ,(B.2)
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where

ρik =
∑d

j=1 σ
(k)
ij ϕj

‖∑d
j=1 σ

(k)
ij ϕj‖

, λ
(k)
i =

∥∥∥∥∥
d∑

j=1

σ
(k)
ij ϕi

∥∥∥∥∥.
From (B.1), it is clear that Im(Mk) ⊆ M, which is finite dimensional. Thus, Mk is
compact and therefore admits a spectral decomposition of the form

Mk =
dk∑

j=1

θ
(k)
j ψ

(k)
j ⊗ φ

(k)
j(B.3)

with (φ
(k)
j ,ψ

(k)
j ) forming the adjoint pair of singular functions of Mk correspond-

ing to the singular value θ
(k)
j . Clearly, dk ≤ d . Thus, if dk < d , Im(Mk) ⊂ M since

from (B.3), Im(Mk) = span{φ(k)
j : j = 1, . . . , dk} and any subset of dk < d linearly

independent elements in a d-dimensional space can only span a proper subset of
the original space.

Now to complete the proof, we only need to show that the set of {ρ(k)
j } in (B.2)

is linearly independent for some k. If this can be done, then we are in a position to
apply Lemma 1. Let β be an arbitrary vector in R

d and put ϕ = (ϕ1, . . . , ϕd)′ and
ρk = (ρ

(k)
1 , . . . , ρ

(k)
d )′, then the linear independence of the set {ρ(k)

i } can easily be
seen as the equation

βρk = β�kϕ = 0

has a nontrivial solution if and only if β�k = 0. However, since �k is of full rank
by assumption, it follows that it is invertible and the only solution is the trivial one
β = 0. Thus, Lemma 1 implies dk = d and the result follows from noting that any
linearly independent set of d elements in a d-dimensional vector space forms a
basis for that space.

(ii) Similar to the proof of part (i) above, we only need to show Im(K) = M.
Note that for any f ∈ L2(I), 〈MkM

∗
k f, f 〉 = 〈M∗

k f,M∗
k f 〉 = ‖M∗

k f ‖2 ≥ 0, thus
the composition Nk = MkM

∗
k is nonnegative definite which implies that K is

also nonnegative definite. Therefore, Im(K) = ⋃p
k=1 Im(Nk). From here, the re-

sult given in part (i) of the proposition concludes the proof. �

PROOF OF PROPOSITION 2. Let θ̂j be a nonzero eigenvalue of K∗, and
γ j = (γ1j , . . . , γn−p,j )

′ be the corresponding eigenvector, that is, K∗γ j = γ j θ̂j .
Writing this equation component by component, we obtain that

1

(n − p)2

n−p∑
i,s=1

p∑
k=1

〈Yt+k − Ȳ , Ys+k − Ȳ 〉〈Ys − Ȳ , Yi − Ȳ 〉γij = γtj θ̂j(B.4)
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for t = 1, . . . , n − p; see (2.12). For ψ̂j defined in (2.13),

(K̂ψ̂j )(u) =
∫

I
K̂(u, v)ψ̂j (v) dv

= 1

(n − p)2

n−p∑
t,s=1

p∑
k=1

{Yt (u) − Ȳ (u)}〈Ys − Ȳ , ψ̂j 〉

× 〈Yt+k − Ȳ , Ys+k − Ȳ 〉

= 1

(n − p)2

n−p∑
t,s,i=1

p∑
k=1

{Yt (u) − Ȳ (u)}γij 〈Ys − Ȳ , Yi − Ȳ 〉

× 〈Yt+k − Ȳ , Ys+k − Ȳ 〉;
see (2.9). Plugging (B.4) into the right-hand side of the above expression, we ob-
tain that

(K̂ψ̂j )(u) =
n−p∑
t=1

{Yt (u) − Ȳ (u)}γtj θ̂j = ψ̂j (u)θ̂j ,

that is, ψ̂j is an eigenfunction of K̂ corresponding to the eigenvalue θ̂j . �

As we shall see, the operator K̂ = ∑p
k=1 M̂kM̂

∗
k may be written as a functional

of empirical distributions of Hilbertian random variables. Thus, we require an aux-
iliary result to deal with this form of process. To this end, we extend the V -statistic
results of Sen (1972) to the setting of Hilbertian valued random variables. Further
details about V -statistics may be found in Lee (1990).

Let H be a real separable Hilbert space with norm ‖ · ‖ generated by an inner
product 〈·, ·〉. Let Xt ∈ X be a sequence of strictly stationary and Hilbertian ran-
dom variables whose distribution functions will be denoted by P(x), x ∈ H. Note
that the spaces X and H may differ. Let φ : X m → H be Bochner integrable and
symmetric in each of its m(≥2) arguments. Now consider the functional

θ(P ) =
∫

X m
φ(x1, . . . , xm)

m∏
j=1

P(dxj ),

defined over P = {P :‖θ(P )‖ < ∞}. As an estimator of θ(P ), consider the V -
statistic defined by

Vn = n−m
n∑

i1=1

· · ·
n∑

im=1

φ(Xi1, . . . ,Xim).

Now for c = 0,1, . . . ,m, we define the functions

φc(x1, . . . , xc) =
∫

X m−c
φ(x1, . . . , xc, xc+1, . . . , xm)

m∏
j=c+1

P(dxj )



3380 N. BATHIA, Q. YAO AND F. ZIEGELMANN

and

gc(x1, . . . , xc) =
c∑

d=0

(−1)c−d
∑

1≤j1<···<jd≤c

φd(Xj1, . . . ,Xjd
).

In order to construct the canonical decomposition of Vn, we use Dirac’s δ-measure
to define the empirical measure Pn as follows:

Pn(A) = n−1(
δX1(A) + · · · + δXn(A)

)
, A ∈ X .

Then for c = 1, . . . ,m, we set

Vnc =
∫
Xc

φc(x1, . . . , xc)

c∏
j=1

(
Pn(dxj ) − P(dxj )

)

= n−c
n∑

i1=1

· · ·
n∑

ic=1

gc(Xi1, . . . ,Xic),

then we have

Vn − θ(P ) =
m∑

c=1

(
m

c

)
Vnc.(B.5)

In particular, note that

Vn1 = 1

n

n∑
i=1

g1(Xi).

Decomposition (B.5) is the Hoeffding representation of the statistic Vn. It plays a
central role in the proof of Lemma 3 below. We are now in a position to state some
regularity conditions which form the basis of the result.

• A1. {Xt } is strictly stationary and ψ-mixing with ψ-mixing coefficients satisfy-
ing the condition

∑∞
l=1 lm−1ψ1/2(l) < ∞.

• A2.
∫

X m ‖φ(x1, . . . , xm)‖2 ∏m
j=1 P(dxj ) < ∞.

• A3. E‖g1(X1)‖2 + 2
∑∞

k=2 E〈g1(X1), g1Xk〉 �= 0.

LEMMA 3. Let conditions A1–A3 hold. Then for c = 1, . . . ,m it holds that
E‖Vnc‖2 = O(n−c).

PROOF. We make use of (B.5). Let {ej : j ≥ 1} be an orthonormal basis of H.
Then

E‖Vnc‖2 =
∞∑

j=1

E〈ej ,Vnc〉2,(B.6)
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where 〈ej ,Vnc〉 is the R valued V -statistic

〈ej ,Vnc〉 = n−c
n∑

i1=1

· · ·
n∑

ic=1

〈ej , gc(Xi1, . . . ,Xic)〉.

Now under conditions A1–A3, Lemma 3.3 in Sen (1972) yields

E〈ej ,Vnc〉2 ≤ Cn−c
∫

X c
〈ej , φc(x1, . . . , xc)〉2

c∏
j=1

P(dxj )(B.7)

for all j ≥ 1. Now inserting the estimate in (B.7) into (B.6) yields

E‖Vnc‖2 ≤ Cn−c
∞∑

j=1

∫
X c

〈ej , φc(x1, . . . , xc)〉2
c∏

j=1

P(dxj )

≤ Cn−c
∫

X c
‖φc(x1, . . . , xc)‖2

c∏
j=1

P(dxj )

≤ Cn−c
∞∑

j=1

∫
X c

‖φ(x1, . . . , xm)‖2
m∏

j=1

P(dxj )

= O(n−c)

as required. �

PROOF OF THEOREM 1. (i) Since p is fixed and finite, we may set n ≡ n−p.
Let Ztk = (Yt − μ) ⊗ (Yt+k − μ) ∈ S . Now consider the kernel ρ : S × S → S
given by

ρ(A,B) = AB∗, A,B ∈ S.(B.8)

Now note that from (B.8),

M̂kM̂k = n−2
n∑

i=1

n∑
j=1

ρ(Zik,Zjk),

which in light of the preceding discussion is simply a S valued von Mises func-
tional. Then d ≥ 1 it holds that Mk �= 0, an application of Lemma 3 yields

E‖M̂kM̂
∗
k − MkM

∗
k ‖2

S = O(n−1).(B.9)

Note that if d = 0, the rate in (B.9) would be n−2, that is, the kernel ρ would
possess the property of first order degeneracy. Now by (B.9) and the Chebyshev
inequality, we have

‖K̂ − K‖S ≤
p∑

k=1

‖M̂kM̂k − MkM
∗
k ‖S = Op(n−1/2).

(ii) Given ‖K̂ − K‖S = Op(n−1/2), Lemma 4.2 in Bosq (2000) implies the
supj≥1 |θ̂j − θj | ≤ ‖K̂ − K‖S = Op(n−1/2). Condition C3 ensures that ψj is an
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identifiable statistical parameter for j = 1, . . . , d . From here, Lemma 4.3 in Bosq
(2000) implies ‖ψ̂j − ψj‖ ≤ C‖K̂ − K‖S = Op(n−1/2).

(iii) First, note that by Lemma 3 we have

E‖M̂kM̂
∗
k − M̂kM

∗
k ‖2

S = O(n−2).(B.10)

Put K̃ = ∑p
k=1 M̂kMk . Then by (B.10) and the Chebyshev inequality, we have

‖K̂ − K̃‖S ≤
p∑

k=1

‖M̂kM̂
∗
k − M̂kM

∗
k ‖S = Op(n−1).(B.11)

The estimate in (B.11) will prove to be crucial in deriving the results for θ̂j when
j ≥ d + 1.

Now, extend ψ1, . . . ,ψd to a complete orthonormal basis of H. Then it holds
that

n∑
j=1

θ̂j =
∞∑

j=1

〈ψj , K̂ψj 〉,(B.12)

and by recalling that θj = 0 for j > d

d∑
j=1

θj =
d∑

j=1

〈ψj ,Kψj 〉.(B.13)

Note that span{ψj : j > d} = M⊥ and Kψj = 0 for all j > d since Ker(K) =
M⊥. Thus, from (B.12) and (B.13), we have

n∑
j=1

θ̂j − θj =
∞∑

j=1

〈ψj , (K̂ − K)ψj 〉.(B.14)

Now we will show that

θ̂j − θj = 〈ψj , (K̂ − K)ψj 〉 + Op(n−1), j = 1, . . . , d.(B.15)

Let Kj = 〈ψj , (K̂ − K)ψ̂j 〉. Then using the relations Kψj = θjψj and K̂ψ̂j =
θ̂j ψ̂j along with the fact that K is self adjoint, we have

|Kj − (θ̂j − θj )| = |〈ψj , K̂ψ̂j 〉 − 〈Kψj, ψ̂j 〉 − (θ̂j − θj )|
= |(θ̂j − θj )(〈ψj , ψ̂j 〉 − 1)|(B.16)

= |θ̂j − θj ||〈ψj , ψ̂j 〉 − 1|.
Note that

|〈ψj , ψ̂j 〉 − 1| = |〈ψj , ψ̂j − ψj 〉| ≤ ‖ψj‖‖ψ̂j − ψj‖ = ‖ψ̂j − ψj‖.(B.17)

Thus, from the results in (b) above (B.16) and (B.17), we have |Kj − (θ̂j − θj )| ≤
|θ̂j − θj |‖ψ̂j − ψj‖ = Op(n−1) for j = 1, . . . , d .
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Next, we have

|〈ψj , (K̂ − K)ψj 〉 − Kj | = |〈ψj − ψ̂j , (K̂ − K)ψj 〉|
≤ ‖ψj − ψ̂j‖‖(K̂ − K)ψj‖
≤ ‖ψj − ψ̂j‖‖K̂ − K‖S ,

from which the results in (i) and (ii) |〈ψj , (K̂ − K)ψj 〉 − Kj | = Op(n−1), thus
proving (B.15).

Now from (B.15) we have
d∑

j=1

θ̂j − θj =
d∑

j=1

〈ψj , (K̂ − K)ψj 〉 + Op(n−1),

and thus from (B.11) and (B.14)
n∑

j=d+1

θ̂j =
∞∑

j=d+1

〈ψj , (K̂ − K)ψj 〉 + Op(n−1)

=
∞∑

j=d+1

〈ψj , (K̃ − K)ψj 〉 + Op(n−1).

By noting that ψj ∈ M⊥ for j ≥ d +1 and Ker(Mk) = Ker(K̃) = Ker(K) = M⊥,
it holds that

∑∞
j=d+1〈ψj , (K̃ − K)ψj 〉 = 0. Thus,

∑n
j=d+1 θ̂j = Op(n−1) and the

result follows from noting that θ̂i ≤ ∑n
j=d+1 θ̂j for i = 1, . . . , d .

(iv) Let �M and �M⊥ denote the projection operators onto M and M⊥, re-
spectively. Since x = �M(x) + �M⊥(x) for any x ∈ L2(I), we have

‖�M(ψ̂i)‖2 = ‖ψ̂i − �M⊥(ψ̂i)‖2 =
d∑

j=1

〈ψ̂i,ψj 〉2(B.18)

for all i ≥ 1. Now note that for i ≥ d + 1

‖K(ψ̂i)‖ = ‖(K − K̂)(ψ̂i) + ψ̂i θ̂i‖
≤ ‖(K − K̂)(ψ̂i)‖ + |θ̂i |‖ψ̂i‖(B.19)

≤ 2‖K − K̂‖B,

where the final inequality follows from the definition of ‖ · ‖B and Lemma 4.2 in
Bosq (2000) by noting that θi = 0 for all i ≥ d + 1.

Next, we have for i ≥ d + 1

‖K(ψ̂i)‖2 =
∞∑

j=1

〈K(ψ̂i),ψj 〉2 =
∞∑

j=1

θ2
j 〈ψ̂i,ψj 〉2

(B.20)

=
d∑

j=1

θ2
j 〈ψ̂i,ψj 〉2 ≥ θ2

d

d∑
j=1

〈ψ̂i,ψj 〉2,
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since θ1 > · · · > θd . Combining (B.18), (B.19) and (B.20) yields

‖�M(ψ̂d0+1)‖2 = ‖ψ̂d0+1 − �M⊥(ψ̂d0+1)‖2 ≤ C‖K − K̂‖B,

from which (i) yields the result. �

LEMMA 4. The function D defined in (3.2) is a well-defined distance measure
on ZD .

PROOF. Nonnegativity, symmetry and the identity of indiscernibles are ob-
vious. It only remains to prove the subadditivity property. For any L ∈ S , note
that ‖L‖S = √

tr(L∗L), where tr denotes the trace operator. Now, for any Xi ∈ Z ,
i = 1,2,3, let �Xi

denote its corresponding d-dimensional projection operators
defined as follows:

�Xi
=

d∑
j=1

ζij ⊗ ζij ,

where {ζij : j = 1, . . . , d} is some orthonormal basis of Xi . Now the triangle in-
equality for the Hilbert–Schmidt norm yields

‖�X1 − �X3‖S ≤ ‖�X1 − �X2‖S + ‖�X2 − �X3‖S .

Since the projection operators are self adjoint, we have√
tr(�2

X1
) + tr(�2

X3
) − 2 tr(�X1�X3)

≤
√

tr(�2
X1

) + tr(�2
X2

) − 2 tr(�X1�X2)

+
√

tr(�2
X2

) + tr(�2
X3

) − 2 tr(�X2�X3).

Now tr(�2
Xi

) = tr(�Xi
) = d and tr(�Xi

�Xj
) = ∑d

k,l=1〈ζik, ζjl〉2 for i, j = 1,2,3.
These last facts along with the definition of D in (3.2) give

D(X1, X3) ≤ D(X1, X2) + D(X2, X3),

which concludes the proof. �

PROOF OF THEOREM 2. From the definition of D in (3.2), note that
√

2dD(M̂, M) = ‖�M̂ − �M‖S ,(B.21)

where �M̂ = ∑d
j=1 ψ̂j ⊗ ψ̂j and �M = ∑d

j=1 φj ⊗ φj with φ1, . . . , φd form-

ing any orthonormal basis of M. Now if �1
M and �2

M are any projection op-
erators onto M, then by virtue of Lemma 4 it holds that ‖�1

M − �2
M‖S =√

2dD(M, M) = 0. Thus, we may proceed as if �M in (B.21) was formed with
eigenfunctions of K , that is, φj = ψj for j = 1, . . . , d .
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Now, we have∥∥∥∥∥
d∑

j=1

ψ̂j ⊗ ψ̂j −
d∑

j=1

ψj ⊗ ψj

∥∥∥∥∥
S

≤
d∑

j=1

‖ψ̂j ⊗ ψ̂j − ψj ⊗ ψj‖S ,(B.22)

that is, ψ̂j ⊗ ψ̂j (resp., ψj ⊗ ψj ) is the projection operator onto the eigensub-
space generated by θ̂j (resp., θj ). Now by part (i) of Theorem 1, ‖K̂ − K‖S =
Op(n−1/2). Thus, Theorem 2.2 in Mas and Menneteau (2003) implies that ‖ψ̂j ⊗
ψ̂j − ψj ⊗ ψj‖S = Op(n−1/2) for j = 1, . . . , d . This last fact along with (B.21)
and (B.22) yield D(M̂, M) = Op(n−1/2). �

PROOF OF THEOREM 3. We first note that from (B.9), the triangle inequality
and the cr inequality, we have

E‖K̂ − K‖2
S = O(n−1).(B.23)

As θ̂1 ≥ θ̂2 ≥ · · · ≥ 0 (with strict inequality holding with probability one), it holds
that {d̂ > d} = {θ̂d+1 > ε}. Now since θd+1 = 0, it holds that θ̂d+1 = |θ̂d+1 −
θd+1| ≤ ‖K̂ − K‖S by Lemma 4.2 in Bosq (2000). Collecting these last few facts
and applying the Chebyshev inequality yields

P(d̂ > d) ≤ ε−2E‖K̂ − K‖2
S = O((ε2n)−1)(B.24)

by (B.23). Next, we turn to P(d̂ < d). Due to the ordering of the eigenvalues, it
holds that {d̂ < d} = {θ̂d−1 < ε}. Therefore,

P(d̂ < d) = P(θ̂d−1 < ε)

= P(θd−1 − θ̂d−1 > θd−1 − ε)
(B.25)

≤ P(|θd−1 − θ̂d−1| > θd−1 − ε)

≤ P(‖K̂ − K‖S > θd−1 − ε),

where the final inequality follows from Lemma 4.2 in Bosq (2000). Now since
θd−1 > 0 and ε → 0 as n → ∞, it holds that θd−1 − ε > 0 for large enough n.
Thus, by (B.24) and an application of the Chebyshev inequality to (B.23), we have

P(d̂ < d) ≤ (θd−1 − ε)−2E‖K̂ − K‖2
S = O(n−1).(B.26)

From (B.24) and (B.25), it follows that

P(d̂ �= d) = P(d̂ < d) + P(d̂ > d) = O((ε2n)−1) → 0.

This completes the proof. �
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