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ADAPTIVE NONPARAMETRIC BAYESIAN INFERENCE USING
LOCATION-SCALE MIXTURE PRIORS

BY R. DE JONGE AND J. H. VAN ZANTEN1

Eindhoven University of Technology

We study location-scale mixture priors for nonparametric statistical prob-
lems, including multivariate regression, density estimation and classification.
We show that a rate-adaptive procedure can be obtained if the prior is prop-
erly constructed. In particular, we show that adaptation is achieved if a kernel
mixture prior on a regression function is constructed using a Gaussian kernel,
an inverse gamma bandwidth, and Gaussian mixing weights.

1. Introduction. In Bayesian nonparametrics, the use of location-scale mix-
tures of kernels for the construction of priors on probability densities is well esth-
ablished. The methodology is used in a variety of practical settings, and in recent
years there has been substantial progress on the the mathematical, asymptotic the-
ory for kernel mixture priors as well; cf. [3, 5, 6, 15, 23, 29]. At the present time, we
have a well-developed understanding of important aspects including consistency,
convergence rates, rate-optimality and adaptation properties. A similar, parallel
development has taken place in the area of beta mixture priors; cf. [4, 14, 20, 21].

A discrete location-scale mixture of a fixed probability density p on R
d can be

expressed as

x �→
m∑

j=1

wj

1

σd
p

(
x − xj

σ

)
,(1.1)

where m ∈ N, x1, . . . , xm ∈ R
d , w1, . . . ,wm ≥ 0 and

∑
wj = 1, and σ > 0. A prior

on densities is obtained by putting prior distributions on m, the locations xj , the
scale σ and the weights wj . When p satisfies some regularity conditions, a wide
class of probability densities can be well approximated by mixtures of the form
(1.1). This indicates that if the priors on the coefficients are suitably chosen, the
resulting prior and posterior on probability densities can be expected to have good
asymptotic properties. The cited papers give precise conditions under which this
is indeed the case.
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Obviously, a much wider class of functions is well approximated by mixtures
of the form (1.1) if we lift the restriction that the weights wj should be nonnega-
tive and sum up to 1. This suggests that location-scale mixtures might be attractive
priors not just in the setting of density estimation, but for instance also in nonpara-
metric regression. Although this idea has been proposed in the applied literature;
cf., for example, [11, 22], it does not seem to have attracted a great deal of at-
tention. The few examples do show however that the approach can yield quite
satisfactory results.

In the paper [22], location-scale mixture priors are used in an astrophysical set-
ting for the analysis of data from galatic radio sources. The statistical problem
essentially boils down to a bivariate, nonparametric, fixed design regression prob-
lem. The use of a mixture prior is natural in that particular application because it
reflects the idea that the function of interest, which describes the strength of the
magnetic field caused by our planet and its “neighborhood” in space, is in fact an
aggregate of contributions from a large number of locations, with different weights,
which can be positive or negative.

Another reason for using a location-scale mixture prior in multivariate regres-
sion, instead of for instance the popular Gaussian squared exponential or Matérn
priors, are computational advantages. Conditional on the gridsize m the prior only
involves finitely many terms, so no artificial truncation or approximation is neces-
sary for computation. As argued also in [22], the mixture prior allows to avoid the
inversion or decomposition of nontrivial and often ill-behaved n×n matrices (with
n the sample size), which can become cumbersome already for moderate sample
sizes (cf. also the discussion in [1]). In the astrophysical application of [22], the
sample size is of the order 1500 and it is shown that samples of this order can be
dealt with effectively using kernel mixture priors.

On the theoretical side, little or nothing seems to be known for kernel mixture
priors in a regression setting. In the present paper, we therefore take up the study of
asymptotic properties, in order to assess the fundamental potential of the method-
ology and to provide a theoretical underpinning of its use in practice. We will show
that if the kernel and the priors on locations and scales are appropriately chosen,
kernel mixture priors yield posteriors with very good asymptotic properties. It is
well known that for the estimation of an α-regular function of d variables, the best
possible rate of convergence is of the order n−α/(d+2α), where n is the number
of observations available. We will prove that up to a logarithmic factor, this opti-
mal rate can be attained with location-scale mixture priors. More importantly, the
near optimal rate can be achieved by a prior that does not depend on the unknown
smoothness level α of the regression function. In other words, we can obtain a
fully adaptive procedure.

The bounds for the convergence rates that we will obtain depend crucially on
the smoothness of the kernel p that is used. For kernels with only a finite degree
of regularity, we get suboptimal rates. We only obtain the optimal minimax rate
(up to a logarithmic factor) for kernels that are infinitely smooth, in the sense that
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they admit an analytic extension to a strip in complex space. The standard normal
kernel is an example of an optimal choice in this respect. We also have to put
(mild) conditions on the priors on the grid size m and the scale σ . In particular, the
popular inverse gamma choice for the scale is included in our setup.

Perhaps surprising is the fact that although we use a probability density p to
construct the mixtures, we can still achieve adaptation to all smoothness levels. In-
tuition from kernel estimation might suggest that when p is a centered probability
density, we have good approximation behavior for regression functions with reg-
ularity at most 2, and that for more regular functions we should use higher order
kernels. This turns out not to be the case however. To prove this fact, we adapt
an observation of Rousseau, who uses a similar idea to prove that for densities on
the unit interval, using appropriate mixtures of beta densities yields adaptation to
all smoothness levels; see [21]. The recent preprint [15], which was written at the
same time and independently of the present work, employs the same idea to prove
adaptation for kernel mixture priors for density estimation. In the present paper,
we extend the technique to a multivariate setting (see Lemma 3.4 ahead).

The literature on Bayesian adaptation is still relatively young. Earlier papers
include [2, 9, 10, 12, 17, 21] and [26]. Priors that yield adaptation across a contin-
uum of regularities in nonparametric regression have been exhibited in [12], where
priors based on spline expansions are considered, and [26], which uses randomly
rescaled Gaussian processes as priors.

The location-scale priors we consider in this paper are conditionally Gaussian,
since we will put Gaussian priors on the mixing weights. This allows us to use the
machinery for Gaussian process priors developed in [27] and [28] in our proofs.
Other technical ingredients include metric entropy results for spaces of analytic
functions, as can be found, for instance, in [13], and the connection between metric
entropy and small deviations results for Gaussian process (cf. [16, 18]). We will
obtain a general result for a conditionally Gaussian kernel mixture process, which
can in fact be used in a variety of statistical settings. To illustrate this, we present
rate of contraction results not just for nonparametric regression, which is our main
motivation, but also for density estimation and classification settings.

In the next section, we present the main results of the paper. In Section 2.1, we
state a general result for a conditionally Gaussian location-scale mixture process
whose law will be used to define the kernel mixture prior in the various statistical
settings. Rate of contraction results for nonparametric regression, density estima-
tion and classification are given in Section 2.2. The proof of the general theorem
can be found in Section 3.

1.1. Notation.

• �z, �z: imaginary and real part of a complex number z.
• N0 = N ∪ {0}.
• For k ∈ N

d
0 : k. = k1 + · · · + kd , k! = k1! · · ·kd !.
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• f ∗ g: convolution of f and g.
• a ∨ b = max{a, b}, a ∧ b = min{a, b}, a+ = a ∨ 0.
• C(X): continuous functions on X.
• Cα(X) for α > 0 and X ⊆ R

d : functions on X with bounded partial derivatives
up to the order β , which is the largest integer strictly smaller than α, and such
that the partial derivatives of order β are Hölder continuous of order α − β .
For f ∈ Cα(X) we denote by ‖f ‖α the associated Hölder norm of f ; cf. [25],
Section 2.7.1. The Hölder ball of radius R > 0 is defined as Cα

R(X) = {f ∈
Cα(X) :‖f ‖α ≤ R}.

2. Main results.

2.1. General result for Gaussian location-scale mixtures. On a common prob-
ability space, let M be an N-valued random variable, � a (0,∞)-valued random
variable and (Zk :k ∈ N

d) standard Gaussian random variables, all independent.
The stochastic process W indexed by [0,1]d is defined by

W(x) = ∑
k∈{1,...,M}d

Zk

1

Md/2

1

�d
p

(
x − k/M

�

)
(2.1)

for x ∈ [0,1]d , where p : Rd → R is a function that belongs to the class Pγ of
γ -regular kernels defined as follows.

DEFINITION 2.1. For γ ∈ (d/2,∞], an integrable function p on R
d belongs

to Pγ if
∫
Rd p(x) dx = 1, it is uniformly Lipschitz on R

d , it has finite moments of
every order, and it satisfies one of the following conditions, depending on whether
γ < ∞ or γ = ∞:

• For γ < ∞: p belongs to Cγ (Rd).
• For γ = ∞: p is the restriction to R

d of a function that is defined on the set
S = {(z1, . . . , zd) ∈ C

d : |�zj | ≤ 1 for j = 1, . . . , d}, and that is bounded and
analytic on S.

Examples of kernels belonging to Pγ for γ < ∞ are abundant. Using Fourier
inversion, it is not difficult to see that an integrable function p belongs to P∞ if it
has a characteristic function

ψ(λ) =
∫

Rd
ei(λ,x)p(x) dx,

which is infinitely often differentiable at 0, which satisfies ψ(0) = 1, and which
satisfies the exponential moment condition∫

Rd
e‖λ‖|ψ(λ)|dλ < ∞.
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The prime example is the standard normal density on R
d , which is easily seen to

belong to P∞. Note that we do not require that p ≥ 0 in Definition 2.1. So, in
fact, higher order kernels are allowed as well.

The index γ of the class of kernels quantifies the regularity of the kernel that is
employed. We will see that this regularity influences the rate of convergence that
we can obtain for the corresponding location-scale mixture prior. The restriction
γ > d/2 is connected to the fact that in order to obtain bounds for the process W

independent of M , we want the process in (2.1) to be well defined if the sum is
taken over all k in N

d .
For ε > 0, the metric entropy of a set B in a metric space with metric d is

defined as logN(ε,B,d), where N(ε,B,d) is the minimum number of balls of
radius ε needed to cover B . Fix 0 < a < b < 1 and define X = [a, b]d . Let dγ =
2d(d + γ )/(2γ − d) and δγ = d/(2γ − d).

THEOREM 2.2. Suppose that p ∈ Pγ for γ ∈ (d/2,∞], that P(M = m) ≥
Cm−s for some C > 0, s > 1, and that � has a Lebesgue density g that, for some
D1,D2,D3,D4 > 0 and q, r ≥ 0, satisfies

D1σ
−qe−D2(1/σ )dγ (log 1/σ )r ≤ g(σ) ≤ D3σ

−qe−D4(1/σ )dγ (log 1/σ )r(2.2)

for all σ in a neighborhood of 0.
Then if w0 ∈ Cα(X ) for α > 0, there exist for every constant C > 1 measurable

subsets Bn of C([0,1]d) and a constant D > 0 such that, for n large enough,

logN(εn,Bn,‖ · ‖∞) ≤ Dnε2
n,(2.3)

P(W /∈ Bn) ≤ e−Cnε2
n,(2.4)

P

(
sup

x∈X
|W(x) − w0(x)| ≤ εn

)
≥ e−nε2

n .(2.5)

Here if γ < ∞,

εn = n−α/(dγ +2α(1+δγ )), εn = n−(α(1−(dδγ )/(2γ )))/((dγ +2α(1+δγ ))(1+d/(2γ ))),

and if γ = ∞,

εn = n−α/(d+2α) log(r∨(1+d))/(2+d/α) n,

εn = n−α/(d+2α) log(r∨(1+d))/(2+d/α)+(1+d−r)/2+ n.

A few remarks about the result are in order. First of all, the process W is indexed
by the unit cube, but the supremum in (2.5) is over the strictly smaller set X .
This is due to the fact that to obtain good enough approximations of the given
function w0 defined on X by location-scale mixtures of the kernel p, we also
need kernels centered at points just outside the set X . A result like (2.5) with the
supremum over the entire unit cube is only possible under additional assumptions
on the boundary behavior of the function w0.
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Theorem 2.2 connects to existing results for nonparametric Bayes procedures,
which give sufficient conditions of the form (2.3)–(2.5) for having a certain rate of
posterior contraction; cf., for example, [7, 8, 24]. In the next subsection, we will
single out the most important particular cases. In all cases, the statistical results
will state that the posterior will asymptotically concentrate on balls of radius of the
order εn around the true parameter (relative to a natural statistical metric depending
on the specific setting). Note that in the case γ < ∞, this means we only obtain a
rate if (dδγ )/(2γ ) < 1, which is true if and only if γ > (1/4)(1+√

5)d ≈ (0.81)d .
In particular, the choice γ ≥ d suffices to have consistency. As the smoothness γ of
the kernel p that is employed is increased, the rate of contraction improves. Since
dγ → d and δγ → 0 as γ → ∞, the power of n−1 in the expression for the rate εn

tends to α/(d + 2α) as γ → ∞, which corresponds to the optimal minimax rate
of convergence for estimating an α-regular function of d variables. If an analytic
kernel p ∈ P∞ is used the minimax rate n−α/(d+2α) itself is attained, up to a
logarithmic factor.

The proof of the theorem is deferred to Section 3. In the next subsection, we give
the precise rate of contraction result for nonparametric regression, density estima-
tion and classification settings. The first case, which was the original motivation
for this study, is worked out in some detail. The analogous results for the second
and third settings are presented more briefly, to avoid unnecessary duplications.

2.2. Rate of contraction results for specific statistical settings.

2.2.1. Regression with Gaussian errors. Consider a multivariate regression
problem where we have known design points x1, x2, . . . ∈ X = [a, b]d for some
a < b and d ∈ N, and we observe real-valued variables Y1, . . . , Yn satisfying the
regression relation

Yi = θ(xi) + εi

for θ :X → R an unknown regression function and error variables εi that are
independent and Gaussian, with mean 0 and variance τ 2. We assume that 0 < a <

b < 1, so that the design space X is strictly contained in the interior of the unit
cube in R

d .
As prior on the regression function, we employ the law � that the sto-

chastic process W defined by (2.1) generates on the space C(X ) of continu-
ous functions on X . The total prior  on the pair (θ, τ ) is then defined by
(dθ, dτ) = �(dθ) × T (dτ), for T a prior on a compact interval that is
assumed to contain the true value τ0, with a Lebesgue density that is bounded
away from 0.

The posterior distribution for (θ, τ ) given the data Y1, . . . , Yn is denoted by
(· | Y1, . . . , Yn). By Bayes formula, it is given by the expression

(B | Y1, . . . , Yn) =
∫
B L(θ, τ ;Y1, . . . , Yn)(dθ, dτ)∫
L(θ, τ ;Y1, . . . , Yn)(dθ, dτ)

,



3306 R. DE JONGE AND J. H. VAN ZANTEN

where

L(θ, τ ;Y1, . . . , Yn) = 1

(2πτ 2)n/2 exp

(
− 1

2τ 2

n∑
i=1

(
Yi − θ(xi)

)2
)

is the likelihood. For a given sequence of positive numbers εn ↓ 0, the posterior
is said to contract around the true parameter (θ0, τ0) at the rate εn if for L > 0
sufficiently large,



(
(θ, τ ) :

1

n

n∑
j=1

(
θ(xj ) − θ0(xj )

)2 + |τ − τ0|2 > L2ε2
n | Y1, . . . , Yn

)
P(θ0,τ0)−→ 0

as n → ∞, where the convergence is in probability under the true distribution
governed by (θ0, τ0). This means in particular that asymptotically, the marginal
posterior for θ is concentrated on balls with radius of the order εn around the
true regression function θ0, where we use the natural L2-norm associated to the
empirical measure of the design points to measure distance.

The next theorem follows from Theorem 2.2, in combination with the results in
[7] (slightly adapted like Theorem 2.1 of [5] in the density estimation case; cf. also
the discussion following Theorem 3.1 of [26]).

THEOREM 2.3. Suppose that the conditions of Theorem 2.2 are fulfilled. Then
if θ0 ∈ Cα(X ) for α > 0, the posterior contracts at the rate

n−α(1−(dδγ )/(2γ ))/((dγ +2α(1+δγ ))(1+d/(2γ ))),

if γ < ∞, or at the rate

n−α/(d+2α) log(r∨(1+d))/(2+d/α)+(1+d−r)/2+ n,

if γ = ∞.

As discussed above already the choice p ∈ P∞ yields the best rate of contrac-
tion, namely the optimal minimax rate, up to a logarithmic factor. Also note that
the prior does not depend on the unknown regularity α of the true regression func-
tion, so the procedure is rate-adaptive. Observe that for p ∈ P∞ and r = 1 + d we
obtain the rate (n/ log1+d n)−α/(d+2α). If r is strictly larger or smaller than 1 + d ,
we get a slightly worse rate, in the sense that the power of the logarithm in our
upper bound for the rate increases.

In the following corollary, we single out the important special case of a standard
Gaussian kernel and an inverse gamma prior (or a power of it in the multivariate
case) on the scale.

COROLLARY 2.4. Suppose that p is the standard Gaussian density on R
d ,

�d is inverse gamma, and M is such that P(M = m) ≥ Cm−s for some C > 0 and
s > 1. Then if θ0 ∈ Cα(X ) for α > 0, the posterior contracts at the rate

n−α/(d+2α) log(4α+4αd+d+d2)/(4α+2d) n.
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PROOF. Simply note that the standard normal kernel belongs to P∞ and that
if �d has an inverse gamma law, then (2.2) is satisfied with r = 0. �

2.2.2. Density estimation. Let X1, . . . ,Xn be a sample from a positive density
f0 on the set X = [a, b]d , for 0 < a < b < 1. The aim is to estimate the unknown
density.

We consider the prior  on densities defined as the law that is generated on the
function space C(X ) by the random function

x �→ eW(x)∫
X eW(y) dy

(2.6)

for W the process defined by (2.1). In this case, we say that the posterior (· |
X1, . . . ,Xn) contracts around the true density f0 at the rate εn if for all L > 0
large enough,


(
f :h(f,f0) > Lεn | X1, . . . ,Xn

) Pf0→ 0

as n → ∞, where h is the Hellinger distance.
Theorem 2.2, the general rate of contraction results for Bayesian density estima-

tion (cf. [5, 8]) and the relations between the uniform norm on the paths of W and
the relevant statistical metrics on the densities (2.6) (cf. [27]) yield the following
result.

THEOREM 2.5. In this setting, the assertions of Theorem 2.3 and Corol-
lary 2.4 are true for θ0 = logf0.

2.2.3. Classification. Consider i.i.d. observations (X1, Y1), . . . , (Xn,Yn),
where the Xi take values in the set X = [a, b]d , 0 < a < b < 1, and the Yi take
values in {0,1}. The aim is to estimate the regression function r0(x) = P(Y1 = 1 |
X1 = x).

As prior on r0, we use the law  of the process �(W), where W is as in (2.1)
and the link function � : R → (0,1) is the logistic or normal distribution function.
Let (· | (X1, Y1), . . . , (Xn,Yn)) denote the corresponding posterior and let G be
the distribution of the covariate X1. With ‖ · ‖2,G the associated L2-norm, we say
that the posterior contracts around the truth r0 at the rate εn if for all large enough
L > 0,


(
r :‖r − r0‖2,G > Lεn | (X1, Y2), . . . , (Xn,Yn)

) Pr0→ 0

as n → ∞.
Theorem 2.2, the general rate of contraction results (cf. [8]) and the relations

between the relevant norms (cf. [27]) yield the following result.

THEOREM 2.6. In this setting, the assertions of Theorem 2.3 and Corol-
lary 2.4 are true for θ0 = �−1(r0).
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3. Proof of Theorem 2.2. We will find the appropriate sieves Bn and derive
the inequalities (2.3)–(2.5) by using the fact that conditionally on the grid size M

and the scale �, the process W is Gaussian. For fixed m ∈ N and σ > 0, we define
the stochastic process (Wm,σ (x) :x ∈ [0,1]d) by setting

Wm,σ (x) = ∑
k∈{1,...,m}d

Zk

1

md/2

1

σd
p

(
x − k/m

σ

)
.

In the following subsection, we first study some properties of the Gaussian process
Wm,σ that we will need to establish (2.3)–(2.5).

3.1. Properties of Wm,σ . Recall that in general, the reproducing kernel Hilbert
space (RKHS) H attached to a zero-mean Gaussian process X is defined as the
completion of the linear space of functions t �→ EX(t)H relative to the inner prod-
uct

〈EX(·)H1,EX(·)H2〉H = EH1H2,

where H , H1 and H2 are finite linear combinations of the form
∑

i aiX(si) with
ai ∈ R and si in the index set of X. The following lemma describes the RKHS
of the process Wm,σ . It is a direct consequence of a general result describing the
RKHS of a Gaussian process admitting a series expansion; cf. Theorem 4.2 of [28]
and the discussion following it.

LEMMA 3.1. The reproducing kernel Hilbert space H
m,σ of Wm,σ consists of

all functions of the form

h(x) = ∑
k∈{1,...,m}d

wk

1

σd
p

(
x − k/m

σ

)
, x ∈ [0,1]d,(3.1)

where the weights wk range over the entire set of real numbers. The RKHS-norm
is given by

‖h‖2
Hm,σ = md min

w

∑
k∈{1,...,m}d

w2
k ,(3.2)

where the minimum is over all weights wk for which the representation (3.1) holds
true.

We remark that if the functions x �→ p((x − k/m)/σ) on [0,1]d are linearly
independent, then the representation (3.1) of an element of the RKHS is necessar-
ily unique and hence the minimum in (3.2) can be removed. For our purpose, it
is, however, not important that these functions are independent for every fixed σ

and m.
Next, we consider the so-called centered small ball probabilities of the process

Wm,σ , which are determined by its reproducing kernel Hilbert space. We use well-
known results by Kuelbs and Li [16] and Li and Linde [18] that relate the metric
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entropy of the unit ball in the RKHS to the centered small ball probabilities of the
process. The unit ball H

m,σ
1 in the reproducing kernel Hilbert space H

m,σ is the set
of all elements h ∈ H

m,σ such that ‖h‖Hm,σ ≤ 1.
To find an upper bound for the metric entropy of the unit ball, we embed it in

appropriate space of functions for which an upper bound for the entropy is known,
depending on the value of γ . First, we consider the case γ < ∞. Let h be an ele-
ment of H

m,σ . By Lemma 3.1, it admits a representation (3.1), with the weights wk

such that ‖h‖2
Hm,σ = md ∑

w2
k . If p ∈ Pγ with γ < ∞, we get that h ∈ Cγ ([0,1]d)

and ‖h‖γ ≤ σ−(d+γ )‖p‖γ ‖h‖Hm,σ . Hence, we have H
m,σ
1 ⊂ C

γ
R([0,1]d) in this

case, where R = σ−(d+γ )‖p‖γ . For γ = ∞ and h as before, it follows from the
assumptions on p that the function h is in fact well defined on Sσ = {z ∈ C

d :∀j

|�zj | ≤ σ }, is analytic on this set and takes real values on R
d . By the Cauchy–

Schwarz inequality, it follows that

|h(z)|2 ≤ 1

σ 2d

( ∑
k∈{1,...,m}d

w2
k

)( ∑
k∈{1,...,m}d

∣∣∣∣p
(

z − k/m

σ

)∣∣∣∣
2)

.

The last factor on the right-hand side is bounded from above by a multiple of md

on the set Sσ . Hence, we obtain

|h(z)| ≤ Kσ−d‖h‖Hm,σ(3.3)

for every z ∈ Sσ , where the constant K only depends on the density p. Let Gσ the
set of all analytic functions on Sσ , uniformly bounded by Kσ−d on that set, with
K the same constant as in (3.3). The preceding shows that for the RKHS unit ball
we have H

m,σ
1 ⊂ Gσ if γ = ∞.

We see that in all cases we can embed the RKHS unit ball H
m,σ
1 in a function

space independent of m, for which the metric entropy relative to the supremum
norm on [0,1]d is essentially known. We have the following result.

LEMMA 3.2. If γ < ∞, then

logN
(
ε,C

γ

σ−(d+γ )‖p‖γ
([0,1]d),‖ · ‖∞

) ≤ K0

(
1

εσd+γ

)d/γ

for all σ, ε > 0, with K0 a constant independent of ε,m and σ .
There exist ε0, σ0 > 0 such that

logN(ε,Gσ ,‖ · ‖∞) ≤ K1
1

σd

(
log

K2

εσd

)1+d

for ε ∈ (0, ε0) and σ ∈ (0, σ0), with constants K1,K2 > 0 that do not depend on ε

or σ . For σ > σ0, it holds that

logN(ε,Gσ ,‖ · ‖∞) ≤ K3

(
log

1

ε

)1+d
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for all ε ∈ (0, ε0), with K3 > 0 a constant independent of ε and σ .

PROOF. The first statement is well known; see, for instance, Theorem 2.7.1
of [25]. The second statement is similar to the classical result given by Theorem 23
of [13], which gives the entropy for the class of analytic functions bounded by a
constant on a strip in complex space. However, the proof of the present statement
requires extra care to identify the role of σ , because it should not be considered
as an irrelevant constant in our framework. We omit the details, since the proof of
Lemma 4.5 of [26] is very similar. �

In view of the observations preceding Lemma 3.2, we now have entropy bounds
for the unit ball of the RKHS in all cases. Using the results from [16] and [18],
these translate into results on the centered small ball probability of Wm,σ . The first
statement of the following lemma follows from the preceding lemma in combina-
tion with the results of [18]. The second statement is derived from Lemma 3.2 by
arguing as in the proof of Lemma 4.6 in [26].

LEMMA 3.3. If d/2 < γ < ∞,

− log P(‖Wm,σ‖∞ < ε) ≤ K0

(
1

εσd+γ

)2d/(2γ−d)

for all ε, σ > 0, with K0 a constant independent of ε and σ .
If γ = ∞, there exist ε0, σ0,K4 > 0, not depending on ε and σ , such that

− log P(‖Wm,σ ‖∞ < ε) ≤ K4
1

σd

(
log

1

εσ 1+d

)1+d

for all ε ∈ (0, ε0) and σ ∈ (0, σ0). For σ ≥ σ0 we have

− log P(‖Wm,σ‖∞ < ε) ≤ K5

(
log

1

ε

)1+d

for all ε ∈ (0, ε0), where K5 > 0 is independent of ε and σ .

With condition (2.5) in mind, we now consider the noncentered small ball prob-
abilities of the process Wm,σ . According to Lemma 5.3 of [28], we have for
w0 ∈ C([0,1]d) the inequality

− log P(‖Wm,σ − w0‖∞ < 2ε) ≤ ϕm,σ
w0

(ε),(3.4)

with ϕm,σ
w0

the so-called concentration function, defined as follows:

ϕm,σ
w0

(ε) = inf
h∈Hm,σ : ‖h−θ0‖∞≤ε

‖h‖2
Hm,σ − log P(‖Wm,σ‖∞ < ε).(3.5)
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(Our function w0 is actually defined only on X , but we will extend it to all of
[0,1]d in an appropriate way later.) That is to say, the exponent of the noncentered
small ball probability involves the exponent of the centered small ball probability
that we considered above and an approximation term that quantifies how well w0
can be approximated by elements of the RKHS.

To obtain a suitable approximation, we need an auxiliary result concerning the
approximation of a smooth function f by convolutions. Define mk = ∫

ykp(y) dy

for k ∈ N
d
0 . Next, for n ∈ N

d
0 we recursively define two collections of numbers cn

and dn as follows. If n. = 1, we put cn = 0 and dn = −mn/n!. For n. ≥ 2, we
define

cn = − ∑
n=l+k

l.≥1,k.≥1

(−1)k.

k! mkdl, dn = (−1)n.mn

n! + cn.(3.6)

Note that the numbers cn and dn are well defined and that they only depend on
the moments of p. For a function f ∈ Cα(Rd) and σ > 0, we define the transform
Tα,σ f as follows:

Tα,σ f = f −
β∑

j=1

∑
k.=j

dkσ
j (D

j
k f ).(3.7)

Here, β is the largest integer strictly smaller than α and for a positive integer j and
a multi-index k ∈ N

d
0 with k. = j , D

j
k is the j th order differential operator

D
j
k = ∂j

∂x
k1
1 · · · ∂x

kd

d

.

Let pσ (x) = σ−dp(x/σ).

LEMMA 3.4. For α,σ > 0 and f ∈ Cα(Rd), we have

‖pσ ∗ (Tα,σ f ) − f ‖∞ ≤ K6σ
α,

where K6 > 0 is a constant independent of σ .

The lemma is an extension of an idea of [21], where a similar method is em-
ployed to approximate arbitrary smooth densities by beta mixtures. The proof
follows the same lines but is somewhat more involved in the present higher-
dimensional case; see Appendix.

The following lemma deals with the approximation of the function w0 by ele-
ments of the RKHS of the process Wm,σ .

LEMMA 3.5. For all σ > 0, m ≥ 1 and w0 ∈ Cα(X ) there exists an h ∈ H
m,σ

such that ‖h‖Hm,σ ≤ K7(1 ∨ σ) and

sup
x∈X

|h(x) − w0(x)| ≤ K8(1 ∨ σβ+1)

σ 1+dmα−β
+ K9σ

α,
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for K7,K8,K9 > 0 constants independent of σ and m and β the largest integer
strictly smaller than α.

PROOF. Since X = [a, b]d ⊂ (0,1)d , we can extend w0 to all of R
d in such

a way that that the resulting function belongs to Cα(Rd) and has support strictly
inside (0,1)d . Using the operator Tα,σ introduced above [see (3.7)], we define

h(x) = ∑
k∈{1,...,m}d

(Tα,σw0)(k/m)
1

md

1

σd
p

(
x − k/m

σ

)

for x ∈ [0,1]d . By Lemma 3.1, it holds that h ∈ H
m,σ and

‖h‖2
Hm,σ ≤ 1

md

∑
k∈{1,...,m}d

(
(Tα,σw0)(k/m)

)2 ≤ ‖Tα,σw0‖2∞.

It follows from the definition of Tα,σ that this bounded by a constant times (1 ∨
σβ)2.

It remains to prove the bound for the approximation error. By the triangle in-
equality,

‖h − w0‖∞ ≤ ‖h − pσ ∗ (Tα,σw0)‖∞ + ‖pσ ∗ (Tα,σw0) − w0‖∞.(3.8)

The first term on the right is the difference between the convolution pσ ∗ Tα,σw0
and the corresponding Riemann sum. Using again the triangle inequality, we get

|h(x) − (pσ ∗ Tα,σw0)(x)|
≤ sup

‖y−z‖∞≤1/m

|Tα,σw0(y)pσ (x − y) − Tα,σw0(z)pσ (x − z)|

≤ ‖Tα,σw0‖∞ sup
‖y−z‖∞≤1/m

|pσ (x − y) − pσ (x − z)|

+ ‖pσ‖∞ sup
‖y−z‖∞≤1/m

|Tα,σw0(y) − Tα,σw0(z)|.

Now use the facts that Tα,σw0 is bounded by a constant times 1 ∨ σβ , pσ is
bounded by σ−d times a constant, p is Lipschitz and the definition of Tα,σw0
to see that

‖h − pσ ∗ Tα,σw0‖∞ ≤ C1(1 ∨ σβ)

σ 1+dm
+ C2(1 ∨ σβ)

σ dmα−β
≤ C3(1 ∨ σβ+1)

σ 1+dmα−β
,

which covers the first term on the right-hand side of (3.8). Lemma 3.4 implies that
the second term is bounded by a constant times σα . �

By combining the preceding lemma with Lemma 3.3 and (3.4), we obtain the
following result.
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LEMMA 3.6. Let w0 ∈ Cα(X ).
If γ < ∞, there exist constants ε0, σ0,K1,K2,K3,K4 > 0, independent of σ

and m, such that

− log P

(
sup

x∈X
|Wm,σ (x) − w0(x)| < 2ε

)
≤ K1 + K2

(
1

εσd+γ

)2d/(2γ−d)

,

provided that

K3

σ 1+dmα−β
+ K4σ

α < ε < ε0

and σ ∈ (0, σ0).
If γ = ∞, there exist constants ε0, σ0,K1,K2,K3,K4 > 0, independent of σ

and m, such that

− log P

(
sup

x∈X
|Wm,σ (x) − w0(x)| < 2ε

)
≤ K1 + K2

1

σd

(
log

1

εσ 1+d

)1+d

,

provided that

K3

σ 1+dmα−β
+ K4σ

α < ε < ε0

and σ ∈ (0, σ0).

3.2. Proof of Theorem 2.2.

3.2.1. Condition (2.5). By definition of the process W and conditioning,

P

(
sup

x∈X
|W(x) − w0(x)| ≤ ε

)

=
∞∑

m=1

λm

∫ ∞
0

g(σ)P
(

sup
x∈X

|Wm,σ (x) − w0(x)| < ε
)
dσ,

where λm = P(M = m). If γ < ∞, Lemma 3.6 implies that there exist constants
ε0,C1,C2,C3,C4 > 0, independent of σ and m, such that if ε < ε0 and

1
2C1ε

1/α < σ < C1ε
1/α ≤ 1, m ≥ C2ε

−(1+d+α)/(α(α−β)),

then

− log P

(
sup

x∈X
|Wm,σ (x) − w0(x)| < ε

)
≤ C3 + C4

(
1

εσd+γ

)2d/(2γ−d)

.

Hence, the probability of interest is bounded from below, for ε < ε0, by

e−C3
∑

m≥C2ε
−(1+d+α)/(α(α−β))

λm

∫ C1ε
1/α

C1ε
1/α/2

g(σ) exp
(
−C4

(
1

εσd+γ

)2d/(2γ−d))
dσ

≥ C5 exp
(−C6ε

−(α+d+γ )/α2d/(2γ−d))
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for constants C5,C6 > 0. It follows that condition (2.5) is fulfilled for

εn = M1n
−α/(dγ +2α(1+δγ ))(3.9)

for M1 > 0 an appropriate constant and dγ = 2d(d + γ )/(2γ − d), δγ = d/(2γ −
d).

If γ = ∞, the same reasoning implies that there exist constants C5,C6 > 0 such
that, for ε > 0 small enough,

P

(
sup

x∈X
|W(x) − w0(x)| ≤ ε

)
≥ C5e

−C6ε
−d/α logr∨(1+d)(1/ε).

It follows that, in this case, condition (2.5) is fulfilled for

εn = M1n
−α/(d+2α) logt n(3.10)

for M1 > 0 an appropriate constant, provided that t ≥ (r ∨ (1 + d))/(2 + d/α).

3.2.2. Construction of the sets Bn and condition (2.4). First, suppose that γ <

∞ again. For L,R, ε > 0, we define

B = LC
γ

R−(d+γ )‖p‖γ
([0,1]d) + εB1,

where B1 is the unit ball of the space C([0,1]d). The sieves Bn will be defined
by making appropriate choices for the L,R and ε below. Recall that in this case
H

m,σ
1 ⊂ C

γ

σ−(d+γ )‖p‖γ
([0,1]d). Hence, by the Borell–Sudakov inequality (see, e.g.,

[19]), with � the standard normal distribution function and for σ ≥ R,

P(Wm,σ /∈ B) ≤ P(Wm,σ /∈ LH
m,σ
1 + εB1)

≤ 1 − �
(
�−1(

P(‖Wm,σ‖∞ ≤ ε)
) + L

)
.

By Lemma 3.3, we have, for σ ≥ R and R ≤ 1,

P(‖Wm,σ‖∞ ≤ ε) ≥ e−K6R
−dγ ε−2d/(2γ−d)

for a constant K6 > 0 and ε > 0 small enough. Since �−1(y) ≥ −√
(5/2) log(1/y)

for y ∈ (0,1/2), it follows that

P(Wm,σ /∈ B) ≤ 1 − �
(
L −

√
(5/2)K6R

−dγ ε−2d/(2γ−d)
)

≤ e−1/2(L−
√

(5/2)K6R
−dγ ε−2d/(2γ−d))2

,

for σ ≥ R and L ≥
√

(5/2)K6R
−dγ ε−2d/(2γ−d). By the definition of W and con-

ditioning,

P(W /∈ B) ≤
∞∑

m=1

λm

∫ ∞
R

g(σ)P(Wm,σ /∈ B)dσ + P(� < R).
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By the preceding, the first term on the right is bounded by

e−1/2(L−
√

(5/2)K6R
−dγ ε−2d/(2γ−d))2

.

The assumption on g and a substitution show that the second term is bounded by

D3

∫ ∞
1/R

xq−2e−D4x
dγ (logx)r dx.

By Lemma 4.9 of [26], this is further bounded by

2D3

dD4

(1/R)q−2−dγ +1

(log(1/R))r
e−D4(1/R)dγ (log(1/R))r ≤ e−1/2D4(1/R)dγ (log(1/R))r

for R small enough.
Given C > 1, we now define the sieve Bn by

Bn = LnC
γ

R
−(d+γ )
n ‖p‖γ

([0,1]d) + εnB1,

where εn is given by (3.9). To show that (2.4) holds, we have to show we can
choose Rn and Ln such that

1

R
dγ
n

logr 1

Rn

≥ Cnε2
n

and (
Ln −

√
(5/2)K6R

−dγ
n ε

−2d/(2γ−d)
n

)2 ≥ Cnε2
n.

Observe that if we take
1

R
dγ
n

= Mn(dγ +2αδγ )/(dγ +2α(1+δγ ))

for a large enough constant M , the first condition is satisfied. The second condition
is then fulfilled if we choose

L2
n = Nn(dγ +4αδγ )/(dγ +2α(1+δγ ))

for N large enough.
Next, we consider the case γ = ∞. Recall that Gσ is the set of all analytic

functions defined on the strip Sσ = {z ∈ C
d :∀j |�zj | ≤ σ } that are bounded by

Kσ−d on Sσ . Arguing as before and now using that H
m,σ
1 ⊂ Gσ and Gσ1 ⊆ Gσ2 if

σ1 ≥ σ2, we get, for L,R, ε > 0 and B = LGR + εB1,

P(Wm,σ /∈ B) ≤ e−1/2(L−
√

(5/2)K6R
−d (log(1/(εR1+d )))1+d )2

for σ ≥ R and L ≥
√

(5/2)K6R−d(log(1/(εR1+d)))1+d . By the same condition-
ing argument as before, it follows that if, given C > 1, we define Bn in this case
by

Bn = LnGRn + εnB1,
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where εn is given by (3.10), then condition (2.4) is fulfilled if we choose Rn and
Ln such that

1

Rd
n

logr 1

Rn

≥ Cnε2
n

and (
Ln −

√
(5/2)K6R

−d
n

(
log

(
1/(εnR

1+d
n )

))1+d)2 ≥ Cnε2
n.

Observe that we can take
1

Rd
n

= Mnd/(d+2α) logv n

for a large enough constant M and v ≥ 2t − r [with t as in (3.10)], and Ln a large
enough power of n.

3.2.3. Entropy condition. Suppose γ < ∞. For the entropy of the sieve Bn,
we have in this case, for εn ≥ εn,

N(2εn,Bn,‖ · ‖∞) ≤ N
(
εn,LnC

γ

R
−(d+γ )
n ‖p‖γ

([0,1]d),‖ · ‖∞
)

≤ N
(
εnR

d+γ
n /(Ln‖p‖γ ),C

γ
1 ([0,1]d),‖ · ‖∞

)
.

Hence (see Lemma 3.2),

logN(2εn,Bn,‖ · ‖∞) ≤ K1

(
Ln

εnR
d+γ
n

)d/γ

.

This is bounded by a constant times nε2
n for

εn � L
d/(d+2γ )
n

nγ/(d+2γ )R
d(d+γ )/(d+2γ )
n

.

For Ln and Rn chosen as above, this yields

εn � n
− α(1−(dδγ )/(2γ ))

dγ +2α(1+δγ )+d(dγ +2α(1+δγ ))/(2γ ) .

Note that εn is always larger than εn, as was required.
Let now γ = ∞. Arguing as before, we have in this case, for εn ≥ εn,

N(2εn,Bn,‖ · ‖∞) ≤ N(εn/Ln,GRn,‖ · ‖∞) ≤ K1
1

Rd
n

(
log

Ln

εnRd
n

)1+d

by Lemma 3.2. With the choices of Rn and Ln made in this case above and for
εn bounded from below by a power of n, this is bounded by a constant times
nd/(d+2α) log1+d+v n. This is further bounded by a constant times nε2

n for

εn = n−α/(d+2α) loga n,

provided a ≥ (1 + d + v)/2. The requirement that εn ≥ εn translates into the con-
dition a ≥ t .
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APPENDIX

PROOF OF LEMMA 3.4. The proof is by induction on β , which is the largest
integer strictly smaller than α. If β = 0 then α ∈ (0,1] and Tα,σ f = f and the
statement of the claim is standard. To prove the induction step, suppose now that
β ≥ 1. By definition of Tα,σ f , we have

(pσ ∗ Tα,σ f − f )(x)

=
∫

pσ (y)

(
f (x − y) − f (x) −

β∑
j=1

∑
k.=j

dkσ
j (D

j
k f )(x − y)

)
dy.

By Taylor’s formula and the fact that f ∈ Cα ,

f (x − y) − f (x) =
β∑

j=1

∑
k.=j

(−y)k

k! (D
j
k f )(x) + R(x, y),

where |R(x, y)| ≤ C‖y‖α . It follows that

(pσ ∗ Tα,σ f − f )(x)

=
∫

pσ (y)R(x, y) dy

+
β∑

j=1

∑
k.=j

(
1

k!(−1)j (D
j
k f )(x)σ jmk − dkσ

j (
pσ ∗ (D

j
k f )

)
(x)

)
.

The first term on the right is easily seen to be bounded by a constant times σα . To
see that this holds for the second term as well, we use the induction hypothesis.

By definition of the constants ck and dk [see (3.6)], the second term can be
written as

β∑
j=1

∑
k·=j

(
(−1)j

k! σjmk

(
D

j
kf − pσ ∗ (D

j
k f )

)
(x) − ckσ

j (
pσ ∗ (D

j
k f )

)
(x)

)
.

Now for j ≤ β and k. = j , consider the decomposition

D
j
kf − pσ ∗ (D

j
k f )

= (
D

j
kf − pσ ∗ (Tα−j,σD

j
k f )

)
+ (

pσ ∗ (Tα−j,σD
j
k f ) − pσ ∗ (D

j
k f )

)
.

Since D
j
kf ∈ Cα−j , the induction hypothesis implies that the first term on the right

is uniformly bounded by a constant times σα−j . Combined with the first display
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of the paragraph, this shows that it suffices to show that

β∑
j=1

∑
k.=j

(
(−1)j

k! σ jmk(Tα−j,σD
j
k f − D

j
kf ) − ckσ

j (D
j
k f )

)
= 0

identically. Straightforward algebra shows that

Tα−j,σD
j
k f − D

j
kf = −

β−j∑
i=1

∑
l.=i

dlσ
iD

i+j
k+l f.

Hence,

β∑
j=1

∑
k.=j

(−1)j

k! σ jmk(Tα−j,σD
j
k f − D

j
kf )

= −
β∑

j=1

∑
k.=j

β−j∑
i=1

∑
l.=i

(−1)j

k! mkdlσ
i+jD

i+j
l+k f

= −
β∑

s=2

∑
n.=s

( ∑
n=l+k

l.≥1,k.≥1

(−1)k.

k! mkdl

)
σ sDs

nf.

By definition of the numbers cn and dn this equals

β∑
s=1

∑
n.=s

cnσ
sDs

nf,

and the proof is complete. �
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