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IS BROWNIAN MOTION NECESSARY TO MODEL
HIGH-FREQUENCY DATA?

BY YACINE AÏT-SAHALIA1 AND JEAN JACOD

Princeton University and UPMC (Université Paris-6)

This paper considers the problem of testing for the presence of a con-
tinuous part in a semimartingale sampled at high frequency. We provide two
tests, one where the null hypothesis is that a continuous component is present,
the other where the continuous component is absent, and the model is then
driven by a pure jump process. When applied to high-frequency individual
stock data, both tests point toward the need to include a continuous compo-
nent in the model.

1. Introduction. This paper continues our development of statistical methods
designed to assess the specification of continuous-time models sampled at high fre-
quency. The basic framework, inherited from theoretical models in mathematical
finance but also common in other fields such as physics or biology, is one where
the variable of interest X, in financial examples often the log of an asset price,
is assumed to follow an Itô semimartingale. That semimartingale is observed on
some fixed time interval [0, T ] at discrete regularly spaced times i�n, with a time
lag �n which is small.

A semimartingale can be decomposed into the sum of a drift, a continuous
Brownian-driven part and a discontinuous, or jump, part. The jump part can in
turn be decomposed into a sum of “small jumps” and “big jumps.” Such a process
will always generate a finite number of big jumps, but it may give rise to either
a finite or infinite number of small jumps, corresponding to the finite and infinite
jump activity situations, respectively. In earlier work, we developed tests to deter-
mine on the basis of the observed sampled path on [0, T ] whether a jump part was
present, whether the jumps had finite or infinite activity, and in the latter situation
proposed a definition and an estimator of a “degree of jump activity” parameter.

In this paper, we tackle the last remaining question: Does the semimartingale
need to have a continuous part? In other words, is the Brownian motion present
at all? From a model specification standpoint, there is a natural statistical interest
in distinguishing the two situations where a continuous part is included or not, on
the basis of an observed sample path. When there are no jumps, or finitely many
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jumps, and no Brownian motion, X reduces to a pure drift plus occasional jumps,
and such a model is fairly unrealistic in the context of most financial data series,
although it may be realistic in some other contexts. But for financial applications
one can certainly consider models that consist only of a jump component, plus
perhaps a drift, if that jump component is allowed to be infinitely active.

Many models in mathematical finance do not include jumps. But among those
that do, the framework most often adopted consists of a jump-diffusion: these mod-
els include a drift term, a Brownian-driven continuous part and a finite activity
jump part (see, e.g., [6, 7] and [16]). When infinitely many jumps are included,
however, there are a number of models in the literature which dispense with the
Brownian motion altogether. The log-price process is then a purely discontinuous
Lévy process with infinite activity jumps or, more generally, is driven by such a
process (see, e.g., [9, 10] and [14]).

The mathematical treatment of models relying on pure jump processes is quite
different from the treatment of models where a Brownian motion is present. For
instance, risk management procedures, derivative pricing and portfolio optimiza-
tion are all significantly altered, so there is interest from the mathematical finance
side in finding out which model is more likely to have generated the data.

For all these reasons, it is of importance to construct procedures which allow
us to decide whether the Brownian motion is really here, or if it can be forgone
in favor of a pure jump process. This is the aim of this paper: we will provide
two tests allowing for a symmetric treatment of the two situations where the null
hypothesis is that the Brownian motion is present, and where the null is that the
Brownian motion is absent.

In the context of a specific parametric model, allowing for jump components of
finite or infinite activity on top of a Brownian component, [8] find that the time
series of index returns are likely to be devoid of a continuous component. An
alternative but related approach to testing for the presence of a Brownian motion
component to the one we propose here is due to [17]. They employ the test statistic
for jumps of [5], plot its logarithm for different values of the power argument and
contrast the behavior of the plot above two and below two in order to identify the
presence of a Brownian component. A formal test is constructed under the null
hypothesis where a continuous component is present.

The methodology that both [17] and we employ to design our respective test
statistics is based on tried-and-true principles that originate in our earlier work on
testing whether jumps are present [5], whether they have finite or infinite activity
[3] and on estimating the index of jump activity [4], although, of course, exploited
in a manner specific to the problem at hand. We compute power variations of the
increments, suitably truncated and/or sampled at different frequencies. Exploiting
the different asymptotic behavior of the variations as we vary these parameters
gives us enough flexibility to accomplish our objectives. As is well known, powers
below two will emphasize the continuous component of the underlying sampled
process. Powers above two will conversely accentuate its jump component. The
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power two puts them on an equal footing. Truncating the large increments at a
suitably selected cutoff level can eliminate the big jumps when needed, as was
shown by [15]. Finally, sampling at different frequencies can let us distinguish
between situations where the variations converge to a finite limit, in which case the
ratio of two variation measures constructed at different frequencies will converge
to one, from situations where the variations converge to either zero or diverge to
infinity, in which case the ratio will typically converge to a different constant. Since
these various limiting behaviors are indicative of which component of the model
dominates at a particular power, they effectively allow us to distinguish between
all manners of null and alternative hypotheses.

This said, the commonality of approach should not mask the fact that each situa-
tion is, in reality, mathematically quite different. By nature, certain components of
the model are turned off under particular null hypotheses. For instance, when the
null hypothesis is that no Brownian motion is present, as will be the case for our
first test here, then jumps drive the asymptotics. As a result, the driving component
of the model that matters for the asymptotic behavior of the statistic will vary with
the situation and consequently the methods employed behind the scenes to obtain
the desired asymptotics will vary accordingly.

The paper is organized as follows. Section 2 describes our model and the sta-
tistical problem. Our testing procedure is described in Section 3, and the next two
Sections, 4 and 5, are devoted to a simulation study of the tests and an empirical
implementation of our tests on high-frequency stock returns. Section 6 is devoted
to technical results and to the proof of the main theorems.

2. The model. The underlying process X which we observe at discrete
times is a 1-dimensional Itô semimartingale defined on some filtered space
(�, F , (Ft )t≥0,P), which means that its characteristics (B,C, ν) are absolutely
continuous with respect to Lebesgue measure. B is the drift, C is the quadratic
variation of the continuous martingale part and ν is the compensator of the jump
measure μ of X. In other words, we have

Bt(ω) =
∫ t

0
bs(ω)ds, Ct (ω) =

∫ t

0
σs(ω)2 ds,

(1)
ν(ω,dt, dx) = dt Ft (ω, dx).

Here b and σ are optional process, and F = Ft(ω, dx) is a transition measure from
� × R+ endowed with the predictable σ -field into R \ {0}. More customarily, one
may write X as

Xt = X0 +
∫ t

0
bs ds +

∫ t

0
σs dWs

(2)

+
∫ t

0

∫
x1{|x|≤1}(μ − ν)(ds, dx) +

∫ t

0

∫
x1{|x|>1}μ(ds, dx),
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where W is a standard Brownian motion. It is also possible to write the last two
terms above as integrals with respect to a Poisson measure and its compensator,
but we do not need this here. This is a standard setup and we refer the reader to
[13] for details.

We have referred above to “small jumps” and “big jumps.” In the context of
(2), they are represented, respectively, by the last two integrals. The size cutoff
1 adopted here is arbitrary and could be replaced by any fixed ε > 0, a change
which amounts merely to an adjustment to the drift term Bt . Note that the small
jumps integral needs to be compensated by ν since there are potentially an infinite
number of such small jumps. The large jump integral is always a finite sum; it
may be compensated if desired but this is not necessary. Any compensation or lack
thereof is then again absorbed by an adjustment to the drift.

We now turn to the assumptions. As usual for tests, the assumptions essentially
ensure that one can compute and then estimate a significance level under the null
hypothesis. So here, we need some structure for the jumps of X, namely that the
small jumps essentially behave like the small jumps of a stable process with some
index β , up to a random intensity. As noted above, when no Brownian is present,
we view the realistic situation as one where there are infinitely many small jumps.
When the null is that there is a Brownian motion, we need the additional assump-
tion that the volatility process σt is itself an Itô semimartingale.

We would like to give tests with a prescribed asymptotic level, as n → ∞, and,
of course, this is more difficult when β increases because then the process resem-
bles more and more a continuous process plus a few big jumps: The qualitative
behavior of the paths can become quite similar whether the Brownian motion is
present or not. So, unsurprisingly, we can exhibit a test with prescribed level, for
the null hypothesis where the Brownian motion is present, only when β < 1. The
parameter β is typically unknown (although a method for estimating β in this set-
ting is given in [4]). On the other hand, for the null hypothesis where the Brownian
motion is absent we provide a test which works under no assumption on β .

With this context in mind, here is the first assumption which will be assumed
throughout:

ASSUMPTION 1. (i) The drift process bt is locally bounded and the volatility
process σt is càdlàg.

(ii) There are three constants 0 ≤ β ′′ ≤ β ′ < β < 2 and a locally bounded
process Lt ≥ 1, such that the Lévy measure Ft is of the form Ft = F ′

t + F ′′
t , where

F ′
t (dx) = β(1 + |x|β−β ′

f (t, x))

|x|1+β

(
a

(+)
t 1{0<x≤z

(+)
t } + a

(−)
t 1{−z

(−)
t ≤x<0}

)
dx,(3)

where a+
t , a−

t , z+
t , z−

t are nonnegative predictable processes and f = f (ω, t, x) is
predictable function (meaning P ⊗ B(R)-measurable, where P is the predictable
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σ -field on [0,∞) × �), satisfying

1

Lt

≤ z
(+)
t ≤ 1,

1

Lt

≤ z
(−)
t ≤ 1,

(4)
At := a

(+)
t + a

(−)
t ≤ Lt, |f (t, x)| ≤ Lt,

and where F ′′
t is a measure which is singular with respect to F ′

t and satisfies∫
(|x|β ′′ ∧ 1)F ′′

t (dx) ≤ Lt .(5)

This assumption is identical to Assumptions 1 and 2 of [4] [with some notational
changes: (γ,β ′, a+

t , a−
t ) in that paper are called here (β − β ′, β ′′, βa+

t , βa−
t ), and

the condition β ′′ ≤ β ′ is not a restriction and is put here only for convenience].
For example, take a process solution of the stochastic differential equation

dXt = bt dt + σt dWt + δt− dYt + δ′
t− dY ′

t ,(6)

where δ and δ′ are càdlàg adapted processes, Y is β-stable or tempered β-stable
and Y ′ is any other Lévy process whose Lévy measure integrates |x|β ′′

near
the origin and has an absolutely continuous part whose density is smaller than
K|x|−(1+β ′) on [−1,1] for some K > 0 (e.g., a stable process with index strictly
smaller than β ′). Then X will satisfy Assumption 1.

If this assumption is satisfied with β < 1, then almost surely the jumps have
finite variation

∑
s≤t |�Xs | < ∞ for all t or equivalently,

∫ t
0

∫ |x|μ(ds, dx) < ∞.
This allows us to decompose X into the sum X = X′ + X′′, where

X′
t = X0 +

∫ t

0
b′
s ds +

∫ t

0
σs dWs, X′′

t = ∑
s≤t

�Xs,(7)

and where b′
t = bt − ∫

x1{|x|≤1}Ft(dx) is a locally bounded process.
For clarity, we will derive the properties of both tests under the same generic

Assumption 1 even though the properties of the test for the null of a Brownian
present remain valid under weaker assumptions. When the null hypothesis to be
tested is that the Brownian motion is present, it becomes the driving process for
our test statistic and as is customary for tests or estimation problems involving a
stochastic volatility, we then need an additional regularity assumption on the σ

process:

ASSUMPTION 2. We have Assumption 1 with β < 1. Moreover the volatility
process σt is an Itô semimartingale, that is, it can be written (necessarily in a
unique way) as

σt = σ0 +
∫ t

0
b̃s ds +

∫ t

0
σ̃s dWs + Nt + ∑

s≤t

�σs1{|�σs |>1},(8)
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where N is a local martingale which is orthogonal to the Brownian motion W ,
and further the compensator of the process [N,N]t + ∑

s≤t 1{|�σs |>1} is of the
form

∫ t
0 ns ds. Moreover we suppose that:

(i) the processes b̃t and nt are locally bounded;
(ii) the processes σ̃t and b′

t defined above are càdlàg.

3. The two tests.

3.1. The hypotheses to be tested. In a semimartingale model like (2), saying
that the Brownian motion W is absent on the interval [0, T ] does not mean that
there is no Brownian motion on the probability space (something which cannot be
tested at all, obviously) but it means that the Brownian motion does not impact the
observed process X, in the sense that the corresponding stochastic integral van-
ishes on this interval, or equivalently σs = 0 for Lebesgue-almost all s in [0, T ],
and it would be more appropriate to say that we are testing whether “the continu-
ous martingale part of X vanishes on [0, T ], or not.” This is typically an ω-wise
property: we can divide the set � into two complementary subsets

�W
T =

{∫ T

0
σ 2

s ds > 0
}
, �noW

T =
{∫ T

0
σ 2

s ds = 0
}
.(9)

Then almost surely on the set �noW
T the integral process Xc

t = ∫ t
0 σs dWs vanishes

on [0, T ], whereas it does not vanish on the complement �W
T . In what follows, we

take �W
T to represent the hypothesis that the Brownian motion is present and �noW

T

to represent the hypothesis that the Brownian motion is not present.
In connection with Assumption 1 we consider the following set representing

paths that have infinite jump activity of some index β ∈ (0,2):

�
iβ
T = {AT > 0} where At =

∫ t

0
As ds.(10)

One knows that on the set �
iβ
T the path of X over [0, T ] has almost surely infinitely

many jumps.
We are interested in testing the following two situations:{

H0 :�W
T vs. H1 :�noW

T ,
H0 :�noW

T vs. H1 :�W
T .

(11)

As discussed above, the realistic situation supposes that infinite activity jumps are
present when under �noW

T and so we will in fact provide testing procedures for the
following two situations:{

H0 :�W
T vs. H1 :�noW

T ∩ �
iβ
T ,

H0 :�noW
T ∩ �

iβ
T vs. H1 :�W

T ∩ �
iβ
T .

(12)
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In the second test, requiring �
iβ
T with �W

T under H1 allows us to characterize
precisely the properties of the statistic under this alternative (as opposed to just
�W

T ). But it is not necessary for the actual implementation of the test which relies
on its behavior under the null.

Finally, we recall that testing a null hypothesis “we are in a subset �0” of �,
against the alternative “we are in a subset �1,” with, of course, �0 ∩ �1 = ∅,
amounts to finding a critical (rejection) region Cn ⊂ � at stage n. The asymp-
totic size and asymptotic power for this sequence (Cn) of critical regions are the
following numbers:⎧⎪⎨⎪⎩

a = sup
(
lim sup

n
P(Cn | A) :A ∈ F ,A ⊂ �0,P(A) > 0

)
,

P = inf
(
lim inf

n
P(Cn | A) :A ∈ F ,A ⊂ �1,P(A) > 0

)
.

(13)

3.2. The building blocks. Before stating the results, we introduce some nota-
tion to be used throughout. We observe the increments of X

�n
i X = Xi�n − X(i−1)�n,(14)

to be distinguished from the (unobservable) jumps of the process, �Xs = Xs −
Xs−. In a typical application, X is a log-asset price, so �n

i X is the recorded log-
return over �n units of time.

For any given cutoff level u > 0 we count the number of increments of X with
size bigger than u, that is,

U(u,�n)t =
[t/�n]∑
i=1

1{|�n
i X|>u}.(15)

If p > 0 we also sum the pth absolute power of the increments of X, truncated at
level u, that is,

B(p,u,�n)t =
[t/�n]∑
i=1

|�n
i X|p1{|�n

i X|≤u}.(16)

B is what we call a “truncated power variation.” Note that in B we are retaining
all increments smaller than u, whereas in U we are retaining those larger than u.

We take a sequence un of positive numbers, which will serve as our thresholds
or cutoffs for truncating the increments, and will go to 0 as the sampling frequency
increase. There will be restrictions on the rate of convergence of this sequence,
expressed in the form

un/�
ρ−
n → 0, un/�

ρ+
n → ∞ for some 0 ≤ ρ− < ρ+ < 1

2 .(17)

This condition becomes weaker when ρ+ increases and when ρ− decreases.
In practice, when a Brownian motion is present, we will often translate values

of the cutoff level un in terms of a number of standard deviations of the con-
tinuous part of the semimartingale. That is, we express values of un in terms of
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αn where un = αn(t
−1 ∫ t

0 σ 2
s ds)1/2�

1/2
n . Despite the presence of jumps, the inte-

grated volatility in that expression can be estimated using the small increments of
the process, since

[t/�n]∑
i=1

|�n
i X|21{|�n

i X|≤α�

n }

P−→
∫ t

0
σ 2

s ds(18)

for any α > 0 and 
 ∈ (0,1/2). We can then vary the cutoff level αn to yield
a number of (estimated) standard deviations of the continuous part of the semi-
martingale. This data-driven choice can help determine a range of reasonable val-
ues for the cutoff level and provide on a path-by-path basis an equivalent, but
perhaps more intuitive, scale with which to measure the magnitude of the cutoff
level un.

When there is no Brownian motion under the null, a different scale needs to be
used to assess the size of un. For example, we can translate un into the percentage
of the sample that is greater than the cutoff level, and therefore not included in the
computation of the truncated power variations.

3.3. Testing for the presence of Brownian motion under the null. In a first
case, we set the null hypothesis to be “the Brownian motion is present,” that is
�W

T , against the alternative �noW
T ∩ �

iβ
T .

In order to construct a test, we seek a statistic with markedly different behavior
under the null and alternative. One fairly natural idea is to consider powers less
than 2 since in the presence of Brownian motion they would be dominated by it,
while in its absence they would behave quite differently. Specifically, the large
number of small increments generated by a continuous component would cause a
power variation of order less than 2 to diverge to infinity. Without the Brownian
motion, however, and when p > β , the power variation converges to 0 at exactly
the same rate for the two sampling frequencies �n and k�n, whereas in the former
case the choice of sampling frequency will influence the magnitude of the diver-
gence. Taking a ratio will eliminate all unnecessary aspects of the problem and
focus on the key aspect, that of distinguishing between the presence and absence
of the Brownian motion.

Specifically, we fix a power p ∈ (0,2) and an integer k ≥ 2, and we consider the
test statistics, which depend on p and on the terminal time T and on the sequence
un subject to (17), as follows:

Sn = B(p,un,�n)T

B(p,un, k�n)T
.(19)

As will become clear below, taking ratios of power variations has the advantage
of making the test statistic model-free. That is, its distribution under the null hy-
pothesis can be assessed without the need for the extraneous estimation of the dy-
namics of the process in (2). Obviously, these dynamics can be quite complex with
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potentially jumps of various activity levels, stochastic volatility, jumps in volatil-
ity, etc. So the fact that the standardized test statistic can be computed without the
need to estimate the various parts of (2) is a desirable feature. In fact, implement-
ing the test—that is, computing the statistic in (19) and estimating its asymptotic
variance—will require nothing more than the computation of various truncated
power variations.

The first result is a law of large numbers (LLN) giving the probability limit of
the statistic Sn.

THEOREM 1. Under Assumption 1 and if p ∈ (1,2), we have

Sn
P−→

⎧⎨⎩
k1−p/2, on the set �W

T ,

1, on the set �noW
T ∩ �

iβ
T , if p > β ∨ 1, ρ+ ≤ p − 1

p
.

(20)

This result shows that, since k1−p/2 > 1, for the test at hand an a pri-
ori reasonable critical region is Cn = {Sn < cn}, for a sequence cn increasing
strictly to k1−p/2: in this case the asymptotic power is 1 in restriction to the set
described in the second alternative above, whereas the asymptotic level depends
on how fast cn converges to k1−p/2.

For a more refined version of this test, with a prescribed level a ∈ (0,1), we need
a central limit theorem (CLT) associated with the convergence in (20). For this we
need some notation: letting Z and Z′ be two independent N (0,1) variables, we
set ⎧⎪⎪⎪⎨⎪⎪⎪⎩

mp = E(|Z|p),

mk,p = E
(|Z|p∣∣Z + √

k − 1Z′∣∣p)
,

N(p, k) = 1

m2p

(
k2−p(1 + k)m2p + k2−p(k − 1)m2

p − 2k3−3p/2mk,p

)
.

(21)

In terms of known functions, we have⎧⎪⎪⎪⎨⎪⎪⎪⎩
mp = 2p/2

√
π

�

(
p + 1

2

)
,

mk,p = 2p

π
(k − 1)p/2�

(
1 + r

2

)2

F2,1

(
−p

2
; p + 1

2
; 1

2
; −1

k − 1

)
,

(22)

where F2,1 is Gauss’s hypergeometric function (see, e.g., Section 15.1 of [1]).

Then the standardized version of the CLT goes as follows (we use
L−(s)−→ to de-

note the stable convergence in law (see, e.g., [13] for this notion); to explain the
following statement, we recall that the convergence in law “in restriction to a subset
�0” is meaningless, but the stable convergence in law in restriction to �0 makes
sense):
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THEOREM 2. Suppose that Assumption 2 holds, take p ∈ (1,2) and let the se-
quence un satisfy (17) with ρ− >

p−1
2p−2β

. Then we have the following convergence
in law:

(Sn − k1−p/2)/
√

Vn
L−(s)−→ N (0,1) in restriction to �W

T ,(23)

where

Vn = N(p, k)
B(2p,un,�n)T

(B(p,un,�n)T )2 .(24)

We are now ready to exhibit a critical region for testing H0 :�W
T vs. H1 :�noW

T ∩
�

iβ
T using Sn with a prescribed asymptotic level a ∈ (0,1). Denoting by za the a-

quantile of N(0,1), that is, P(Z > za) = a where Z is N(0,1), we set

Cn = {
Sn < k1−p/2 − za

√
Vn

}
.(25)

THEOREM 3. Suppose that Assumption 2 holds. Let p ∈ (1,2) and let the
sequence un satisfy (17) with

p − 1

2p − 2β
= ρ− < ρ+ = p − 1

p
(hence p > 2β).(26)

Then the asymptotic level of the critical region defined by (25) for testing the null
hypothesis “the Brownian motion is present” (i.e., �W

T against �noW
T ∩�

iβ
T ) equals

a, and the asymptotic power equals 1.

To perform the test we need to choose p and the sequence un. In practice one
does not know β , although it should be smaller than 1 by Assumption 2. Hence
if we are willing to assume that β , although unknown, is not bigger than some
prescribed β0 < 1, one should choose p ∈ (2β0,2), and one may take un = α�


n

for some α > 0 and some 
 ∈ (0,1/2), and the test can be done as soon as

p − 1

2p − 2β0
< 
 <

p − 1

p
.(27)

To properly separate the two hypotheses it is probably wise to choose p closer to
2β0 than to 2.

REMARK 1. The first part of the consistency result (20) holds also for p ∈
(0,1] on �W

T (with basically the same proof). The second part also holds for β <

p ≤ 1 on the set on which Xt = X0 + ∑
s≤t �Xs for all t ≤ T , that is, when there

is no drift, whereas when there is a drift, Sn converges to k1−p for all p ∈ (0,1].
When 0 < p ≤ β the limit of Sn is k1−p/β on �noW

T ∩ �
iβ
T when p > 1, and also

when p ≤ 1 when again there is no drift (and the proof is more involved). Figure 1
illustrates these various limits in the case X is the sum of a Brownian martingale
plus possibly a Cauchy process (with no drift).
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FIG. 1. Probability limits as a function of p of the test statistic Sn with k = 2 in the case of a
Cauchy process (β = 1, H0) and a Brownian plus Cauchy processes (H1).

REMARK 2. The CLT necessitates p ∈ (1,2). However, more sophisticated
techniques would allow us to prove the same result for all p ∈ (0,2), under the
additional assumption that σt does not vanish for t ∈ [0, T ], on the set �W

T (we
still need β < 1, however).

REMARK 3. Despite the fact that using powers less than 2 is the most natural
way to isolate the contribution of the Brownian motion to the overall increments of
the process, it is possible to design an alternative test that relies on powers greater
than 2. Instead of the statistic Sn above, we could use the following statistic: pick
γ > 1 and p′ > p > 2, and set

Sn = B(p′, γ un,�n)T B(p,un,�n)T B(2, γ un,�n)T

B(p′, un,�n)T B(p, γ un,�n)T B(2, un,�n)T
.(28)

Under Assumption 1, Sn converges in probability to γ p′−p on the set �W
T ∩ �

iβ
T ,

and to γ p′−p+2−β on the set �noW
T ∩ �

iβ
T , as soon as ρ+ <

p−2
2p−2β

. We also have

a CLT under Assumption 2 and if ρ+ <
2p−4

11p−10 . Under H0, Sn is model-free, just

like Sn is. So one can, in an obvious way, construct a test based on Sn and which
satisfies the claims of Theorem 3, under suitable conditions on the cutoff levels un.
However, simulations studies suggest that the statistic Sn is not as well behaved as
Sn, and so we do not pursue its study further.
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3.4. Testing for the absence of Brownian motion under the null. In a second
case, we set the null hypothesis to be “the Brownian motion is absent,” that is,
�noW

T ∩ �
iβ
T . Designing a test under this null is trickier because the model be-

comes a pure jump (plus perhaps a drift) process, and we are aiming for a test
that remains model-free even for this model. That is, we are looking for a statistic
whose limiting behavior under the null, despite being driven by what is now a pure
jump process, does not depend on the characteristics of the pure jump process,
such as its degree of activity β , since those characteristics are a priori unknown.

This can be achieved as follows. We choose a real γ > 1 and a sequence un

satisfying (17) and define the test statistic

S′
n = B(2, γ un,�n)T U(un,�n)T

B(2, un,�n)T U(γ un,�n)T
.(29)

To understand the construction of this test statistic, recall that in a power varia-
tion of order 2 the contributions from the Brownian and jump components are of
the same order. But once the power variation is properly truncated, the Brownian
motion will dominate it if it is present. And the truncation can be chosen to be suf-
ficiently loose that it retains essentially all the increments of the Brownian motion
at cutoff level un and a fortiori γ un, thereby making the ratio of the two truncated
quadratic variations converge to 1 under the alternative hypothesis. On the other
hand, if the Brownian motion is not present, then the nature of the tail of jump
distributions is such that the difference in cutoff levels between un and γ un re-
mains material no matter how far we go in the tail, and the limit of that same ratio
will reflect it: it will now be γ 2−β under assumptions made specific in the formal
theorems below. Since absence of a Brownian motion is now the null hypothesis,
the issue is then that this limit depends on the unknown β.

Canceling out that dependence is the role devoted to the ratio of the number
of large increments, the U ’s, in (29). The U ’s are always dominated by the jump
components of the model whether the Brownian motion is present or not. Their
inclusion in the statistic is merely to ensure that the statistic is model-free, by
effectively canceling out the dependence on the jump characteristics that emerges
from the ratio of the truncated quadratic variations. Indeed, the limit of the ratio
of the U ’s is γ β under both the null and alternative hypotheses. As a result, the
probability limit of S′

n will be γ 2 under the null, independent of β .
Our first result states this precisely, establishing the limiting behavior of the

statistic in terms of convergence in probability:

THEOREM 4. Let the sequence un satisfy (17), and suppose that Assumption 1
holds. Then

S′
n

P−→
{

γ 2, on the set �noW
T ∩ �

iβ
T ,

γ β, on the set �W
T ∩ �

iβ
T .

(30)
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For a test with a prescribed level we need a standardized CLT.

THEOREM 5. Suppose that Assumption 1 holds with β ′′ <
β

2+β
and β ′ <

β
2 ,

and (17) holds with ρ+ < 1
2+β

∧ 2
5β

∧ 2−β
3β

. Then we have

(S′
n − γ 2)/

√
V ′

n

L−(s)−→ N (0,1) in restriction to �noW
T ∩ �

iβ
T ,(31)

where V ′
n is given by the following formula:

V ′
n = γ 4

(
B(4, un,�n)T

(B(2, un,�n)T )2 + 1

U(un,�n)
(32)

+
(

1 − 2

γ 2

)(
B(4, γ un,�n)T

(B(2, γ un,�n)T )2 + 1

U(γun,�n)

))
.

Hence a critical region for testing H0 :�noW
T ∩ �

iβ
T vs. H1 :�W

T ∩ �
iβ
T is

C′
n = {

S′
n < γ 2 − za

√
V ′

n

}
.(33)

THEOREM 6. Suppose that Assumption 1 holds with β ′′ <
β

2+β
and β ′ <

β
2 ,

and (17) holds with ρ+ < 1
2+β

∧ 2
5β

∧ 2−β
3β

. Then the asymptotic level of the critical
region C′

n defined by (33) for testing the null hypothesis “the Brownian motion is

absent” (i.e., �noW
T ∩ �

iβ
T against �W

T ∩ �
iβ
T ) equals a, and the asymptotic power

equals 1.

If we take again un = α�

n , the test can be performed if α > 0 and

0 < 
 <
1

2 + β
∧ 2

5β
∧ 2 − β

3β
(34)

(always smaller than 1/2). This requirement is constraining, because β is un-
known, and may typically be close to 2 if we believe in the null hypothesis. There-
fore in practice we must assume that β does not exceed a given β0 ∈ [1,2). This
means that this limiting index β0 is given a priori, and we do the test under the
Assumption 1 with 2β ′ < β ≤ β0 and β ′′ < β

2+β
, with 
 subject to the (feasible)

condition

0 < 
 <
2 − β0

3β0
.(35)

These facts are not really surprising: first, by (30) we know that the statistic S′
n

properly separates the two hypotheses only when β is not too close to 2. And,
second, when β becomes very close to 2, the paths of X have big jumps but also
the compensated sum of small jumps looks more and more like a Brownian path,
even on the set �noW

T .
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REMARK 4. It is possible to design an alternative statistic with similar prop-
erties but make no use of the U ’s. Instead of the statistic S′

n in (29), we could use
the following statistic: pick γ > 1, κ ≥ 1 and p > 2, and set

S′
n = B(2, un,�n)T B(p, κγ un,�n)T

B(2, γ un,�n)T B(p, κun,�n)T
.(36)

Under Assumption 1, S′
n converges in probability to γ p−2 on the set �noW

T ∩ �
iβ
T ,

and to γ p−β on the set �W
T ∩ �

iβ
T , as soon as ρ+ <

p−2
2p

. The ratio of pth power
variations plays a similar role to that of the U ’s, namely to cancel out the depen-
dence of the p-lim of S′

n on β under the null. The fixed scaling factor κ allows
us to use different cutoff levels for the two powers p and 2 without affecting the
probability limit of the statistic. We also have a CLT if ρ+ <

2−β
3β

. Under H0, S′
n is

model-free, just like S′
n is, and so a test follows. But as was the case for the statistic

Sn proposed in (28), simulations studies suggest that S′
n is not as well behaved as

Sn.

REMARK 5. In Theorems 2 and 3 the rate of convergence is hidden because
of the standardization, but it is 1/

√
�n, clearly optimal since there are 1 +[T/�n]

observation altogether. In Theorems 5 and 6 the rate is 1/u
β/2
n , which is again

“optimal” when we only use the increments bigger than un [more precisely, if
we were able to observe exactly all jumps of X with size bigger than un, this rate
would be the optimal one, up to a log(1/un) term]. However, for those theorems we
also have to choose un: the smallest un is, compared to �n, the biggest the actual
rate is, but we are limited in this choice by the upper bound on ρ+. For example if
we take un = α�


n , and due to (35), the best rate is “almost” 1/�
β(2−β0)/6β0
n .

4. Simulation results. We now report simulation results documenting the fi-
nite sample performance of the test statistics Sn and S′

n. We calibrate the values to
be realistic for a liquid stock trading on the NYSE, and we consider an observation
length of T = 21 days (one month) sampled every five seconds.

We conduct simulations to determine the small sample behavior of the two sta-
tistics Sn and S′

n under their respective null and alternative hypotheses. The tables
and graphs that follow report the results of 5000 simulations. The data generating
process is the stochastic volatility model dXt = σt dWt + θ dYt , with σt = v

1/2
t ,

dvt = ξ(η − vt ) dt + φv
1/2
t dBt + dJt , E[dWt dBt ] = ρ dt , η1/2 = 0.25, φ = 0.5,

ξ = 5, ρ = −0.5, J is a compound Poisson jump process with jumps that are uni-
formly distributed on [−30%,30%] and X0 = 1. The jump process Y is a β-stable
process with β = 1, that is, a Cauchy process (which has infinite activity, and will
be our model under �

iβ
T ; this is a borderline case for the statistics Sn under the null,

nevertheless we will see that this statistic behaves well). Given η, the scale parame-
ter θ (or equivalently A) of the stable process in simulations is calibrated to deliver
different various values of the tail probability P = P(|�Yt | ≥ 4η1/2�

1/2
n ). In the
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various simulations’ design, we hold η fixed. Therefore the tail probability para-
meter P controls the relative scale of the jump component of the semimartingale
relative to its continuous counterpart. We set θ such that neither of the two compo-
nents of the model, σt dWt and θYt , is negligible compared to the other when the
hypothesis states that they should both be present. We achieve this by computing
the expected percentage of the total quadratic variation attributable to jumps on a
given path from the model, and set it to values that range from 5% and 95%.

4.1. The first test. The statistic Sn is implemented with k = 2 and values of
p that range from 0 to 2 (recall Remark 2). Figure 2 compares the theoretical
and Monte Carlo behavior of Sn as a function of the power p under the null hy-
pothesis where a Brownian motion is present, in addition to a Cauchy pure jump
process. Figure 3 shows the corresponding results under the alternative hypothesis,
where there is no Brownian motion. The theoretical curves are computed from the
expected values of the truncated power variations using the exact density of the
increments at the sampling interval �n = 5 seconds, rather than their asymptotic
limits for �n → 0. This introduces a slight Jensen’s inequality effect in the figure
but appears to capture well the small sample behavior of the statistic.

Recall that for concreteness α is expressed as a number of standard deviations
of the Brownian part of X: that is, the level of truncation un is expressed in terms
of the number α of standard deviations of the continuous martingale part of the
process, defined in multiples of the long-term volatility parameter η1/2: α is de-
fined by un = αη1/2�

1/2
n . Our view of the joint choice of (
,α) is that they are

not independent parameters in finite sample: they are different parameters for as-
ymptotic purposes but in finite samples the only relevant quantity is the actual
resulting cutoff size un. This is why we are reporting the values of the cutoffs un

in the form of the α that would correspond to 
 = 1/2. This has the advantage

FIG. 2. Theoretical and Monte Carlo behavior of Sn as a function of the power p under the null
hypothesis where a Brownian motion is present, in addition to a pure jump (Cauchy) process.
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FIG. 3. Theoretical and Monte Carlo behavior of Sn as a function of the power p under the alter-
native hypothesis where a Brownian is absent.

of providing an easily interpretable size of the cutoff compared to the size of the
increments that would be expected from the Brownian component of the process:
we can then think in terms of truncating at a level that corresponds to α = 4, 6,

etc., standard deviations of the continuous part of the model. Since the ultimate
purpose of the truncation is either to eliminate or conserve that part, it provides
an immediate and intuitively clear reference point. Of course, given un and this α,

it is possible to back this into the value of the α corresponding to any 
, for that
given sample size, including the value(s) of 
 that satisfy the required inequalities
imposed by the asymptotic results. This approach would lose its effectiveness if we
were primarily interested in testing the validity of the asymptotic approximation
as the sample size varies, but for applications, by definition on a finite sample, it
seems to us that the interpretative advantage outweighs this disadvantage.

The statistic in the plots is computed with a truncation level corresponding to
α = 7. Table 1 looks at the dependence of the results on the choice of α.

TABLE 1
Testing H0 :�W

T vs. H1 :�noW
T ∩ �

iβ
T : Monte Carlo rejection rate for the test for the presence of a

Brownian motion using the statistic Sn

Sample rejection rate (%) for power pDegree of
truncation α

Test theoretical
level 0.25 0.5 0.75 1.0 1.25 1.5 1.75

6 10% 9.1 9.4 9.4 9.2 9.1 9.3 8.9
5% 4.6 4.7 4.8 4.7 4.5 4.3 4.1

7 10% 9.7 9.7 9.8 9.8 9.9 10.2 9.8
5% 5.0 5.0 5.1 5.0 4.9 4.7 4.4

8 10% 9.7 9.9 9.9 10.0 9.9 10.1 9.9
5% 5.0 5.1 5.1 5.1 4.9 4.8 4.5
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FIG. 4. Nonstandardized distribution of Sn under the null and alternative hypotheses for two values
of p.

Next, we report in Figure 4 histograms of the values of the unstandardized Sn

computed under H0 :�W
T and H1 :�noW

T ∩ �
iβ
T , respectively, and with the same

level of truncation α = 7. The vertical lines represent the anticipated limits of the
statistic in the two situations, k1−p/2 under H0 and either 1 when p > β or k1−p/β

when 0 < p ≤ β under H1, based on Theorem 1 and Remark 1. Since here β = 1,
the two graphs with p = 0.5 and p = 1.5 illustrate the two situations where p < β

and p ≥ β.

Figure 5 reports the Monte Carlo distribution of the statistic Sn, standardized
according to Theorem 2, compared to the limiting N (0,1) distribution. Table 1
reports the Monte Carlo rejection rates of the test of H0 :�W

T vs. H1 :�noW
T ∩ �

iβ
T

at the 10% and 5% level, using the test statistic Sn, for various levels of trunca-

FIG. 5. Standardized distribution of Sn under the null hypothesis of a Brownian motion present for
two values of p. The histogram represents the small sample distribution while the solid curve is the
asymptotic N (0,1) density.
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tion α. We find that the test behaves well, with empirical test levels close to their
theoretical counterparts.

4.2. The second test. We now turn to the second problem, that of testing
H0 :�noW

T ∩�
iβ
T vs. H1 :�W

T ∩�
iβ
T . For this test, S′

n is implemented with a second
truncation level twice as large as the first, that is, γ = 2. The simulation evidence
suggests that the results are largely similar for values of γ within a range of 1.5
to 2.5. Parameter values are identical to those employed for the first test. Since
there is no Brownian motion under the null, the truncation level un is set in terms
of the percentage of observations that are excluded by the truncation. For compar-
ison with the truncation levels employed in the first test, we report it here again
in terms of α, a number of standard deviations for the Brownian motion using
the same parameter values as under the first test’s null, or this test’s alternative
hypothesis.

Under the null, the model is driven exclusively by the Cauchy process. Figure 6
shows the limiting value of S′

n under H0, as a function of the truncation level α,

comparing the theoretical limit of γ 2 = 4 given in Theorem 4 (left graph) and
the corresponding average value of S′

n from the Monte Carlo simulations (right
graph). Figure 7 shows the corresponding values under the alternative hypothesis,
where the increments of X are now generated by a Brownian motion plus a Cauchy
process. The theoretical limit on the left graph is computed from the expected
values under the exact distribution of the increments at the sampling frequency
�n rather than the p-lim γ 2−β = 2 obtained in the limit where �n → 0, with
the same remark about Jensen’s inequality applying here. We note that for small
truncation levels (α = 4) the interaction of the Brownian and the stable processes
is material, driving the actual limit above 2. If desired, small sample corrections
for this interaction can be implemented along the same lines as in Section 5 of [4].

FIG. 6. Theoretical and Monte Carlo behavior of S′
n as a function of the truncation level α under

the null hypothesis where a Brownian motion is absent. The model is a pure jump (Cauchy) process.
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FIG. 7. Theoretical and Monte Carlo behavior of S′
n as a function of the truncation level α under

the alternative hypothesis where a Brownian motion is present, in addition to a pure jump (Cauchy)
process.

The test statistic in simulations under the alternative appears to be slightly bi-
ased upwards. Quite naturally, this effect worsens as the pure jump process gets
closer to a Brownian motion (for instance if β = 1.5 instead of 0.5 or 1), and/or
when the scale parameter θ of the jump process increases since that makes iso-
lating the effect of the Brownian motion component of the model relatively more
difficult.

Generally speaking, S′
n is, under its alternative, more finicky than Sn is under

either its null or alternative. The reason for this is that S′
n requires under H1 a

Goldilocks-like conjunction of factors whereby the Brownian motion component
of the model is sufficiently large to drive the behavior of the ratio of truncated
quadratic variations, while the jump component of the model cannot be so small as
to render inaccurate the ratio of the number of increments larger than the truncation
level.

Figure 8 reports the Monte Carlo distributions of S′
n under H0 and H1; the

vertical lines represent the theoretical limits. Under H1, we note again that S′
n is

slightly biased upwards. Fortunately, this bias is limited to H1 so it does not ad-
versely affect the implementation of the test per se, which is based on the behavior
of S′

n under H0. But it can affect the interpretation of the results of the test imple-
mented on real data, since, as we will see below, we will find empirical values of
S′

n below 4. Figure 9 reports the Monte Carlo and asymptotic distribution of the
statistic S′

n standardized under H0 as prescribed by Theorem 5.
As said above, the histograms are computed using T = 21 days (one month)

sampled every five seconds. With this length of the series, the empirical distrib-
ution of the statistic is very well approximated by its asymptotic N (0,1) limit.
Shorter time periods (such as T = 1 day) tend to result in right-skewness of the
Monte Carlo distribution of S′

n. We do not view the need for a longer series as a
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FIG. 8. Nonstandardized distribution of S′
n under the null and alternative hypotheses.

serious obstacle to the empirical implementation of the test since one would not
typically expect the Brownian motion component of the model to be turned on or
off on a daily basis: one would expect the market to operate in such a way that
the Brownian component is either there all the time or not there at all. But if an
answer is nevertheless desired on a day-by-day basis, then the first test can always
be implemented, as it requires substantially shorter time spans.

Finally, the test’s rejection rate under the null hypothesis is reported in Table 2.
Since the test is one-sided (we reject H0 when the standardized S′

n is too low), the

FIG. 9. Standardized distribution of S′
n under the null hypothesis of a Brownian motion absent for

two values of the truncation level. The histogram represents the small sample distribution while the
solid curve is the asymptotic N (0,1) density.
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TABLE 2
Testing H1 :�noW

T ∩ �
iβ
T vs. H0 :�W

T : Monte Carlo rejection rate for
the test for the absence of a Brownian motion using the statistic S′

n

Sample rejection rate (%)
for truncation level α

Test theoretical level 4 5 6 7 8

10% 9.0 9.2 9.1 9.0 9.2
5% 4.0 4.2 4.1 4.2 4.2

right-skewness of the statistic visible in Figure 9 results in a slight under-rejection
by the test.

5. Empirical results. In this section, we apply the two test statistics to real
data, consisting of all transactions recorded during the year 2006 on two of the
most actively traded stocks, Intel (INTC) and Microsoft (MSFT). The data source
is the TAQ database. Using the correction variables in the dataset, we retain only
transactions that are labeled “good trades” by the exchanges: regular trades that
were not corrected, changed, or signified as cancelled or in error; and original
trades which were later corrected, in which case the trade record contains the cor-
rected data for the trade. Beyond that, no further adjustment to the raw data are
made.

We first consider the test where the null hypothesis consists of a continuous
component being present. Figures 10 and 11 show the values of the test statis-
tic Sn, plotted for a range of values of the power p, for the two data series. The
empirical values of Sn are labeled on the plots with numbers representing the sam-
pling interval employed, in seconds, with values ranging from �n = 5 seconds to
�n = 30 minutes. In addition to the empirical estimates, the figures display the
two limits of Sn under the null where a Brownian is present and the alternative
hypothesis where it is absent. The theoretical limits correspond to those given in
Figures 2 and 3, except that the theoretical limit under H1 (no Brownian present) is
plotted for a value of β = 1.6, in line with the estimates of β given in [4] for these
data series. Quite naturally, the closer β is to 2, the closer the jump component
can mimic the behavior of a Brownian motion and the harder it becomes to tell
the two hypotheses apart. The limit under H0 is independent of β. Also on the fig-
ures are the two limits corresponding to the situation where market microstructure
noise dominates. We include the two polar cases where the noise is either of a pure
additive form or of a pure rounding form.

When the observations are blurred with either an additive white noise or with
noise due to rounding, the respective limits are then 2 and

√
2. Indeed, suppose

that instead of observing the exact value of X we have on top of it an additive
white noise, that is we observe Xi�n + Zi (at stage n, where the Zi’s are i.i.d.,
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FIG. 10. Empirical estimates of Sn at various values of p and sampling frequencies from all Intel
transactions during 2006.

FIG. 11. Empirical estimates of Sn at various values of p and sampling frequencies from all Mi-
crosoft transactions during 2006.
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and independent of the process X). If we suppose that Zi has a density which
is continuous and nonvanishing at 0, then the noise is the leading factor in the
behavior of B(p,un,�n)T as soon as p/(2(p + 1)) ≥ ρ+ [recall (17)]. In this
case, the variables (�n/u

p+1
n )B(p,un,�n)T converge in probability to T Cp for

some constant Cp , and thus Sn converges in probability to the sampling frequency
ratio k, which is 2 here. When the noise is pure rounding at some level αn, then
again it is the leading factor and

√
�nα

1−p
n B(p,un,�n)T converges in probability

to some positive limiting variable, as soon as αn/un → 0 and α2
n�n → ∞. Thus

Sn converges in probability to
√

k [when αn > un we have B(p,un,�n)T = 0 and
then Sn is not even well defined; however, here the truncation level un used in
practice is quite bigger than the rounding level of 1 cent].

The values of α are similar to those employed in simulations, and indexed in
terms of standard deviations of the continuous martingale part of the log-price: we
first estimate the volatility of the continuous part of X using the small increments,
those of order �

1/2
n , and then use that estimate to form the cutoff level used in

the construction of the test statistic. To account for potential time series variation
in the volatility process σt , that procedure is implemented separately for each day
and we compute the sum, for that day, of the absolute value of the increments that
are smaller than the cutoff, to the appropriate power p. For the full year, we then
add the truncated power variations computed for each day.

The results in both Figures 10 and 11 tell a similar story. First, the empirical
estimates are always on the side away from the limit under H1, indicating that the
null hypothesis of a Brownian motion present will not be rejected. Second, as the
sampling frequency decreases, the empirical values get closer to the theoretical
limit under H0. For very high sampling frequencies, the results are consistent with
some mixture of the noise driving the asymptotics. They then slowly settle down
toward the limit corresponding to a null hypothesis of a Brownian present as the
sampling frequency decreases, and the noise presumably becomes less of a factor.

Next, we turn to the results of the second test on the same data series in Figures
12 and 13. The test statistic S′

n is implemented with γ = 2, with data sampled
every �n = 5 seconds. The empirical estimates are represented by a star, with the
vertical dashes representing a 95% confidence interval. Also represented on the
plots are the limits corresponding to H0 (no Brownian) and H1 (Brownian present).
The theoretical limits correspond to those given in Figures 6 and 7, except that the
theoretical limit under H1 is plotted for a value of β = 1.5 for the same reason
as above. We find that the empirical estimates tend to be lower than the value
specified by H0, which leads to a rejection of the null hypothesis of no Brownian
motion. The estimates are, however, generally higher than their expected value
under H1, consistent with the upward bias identified in simulations, the bias being
more pronounced when β gets closer to 2.

To summarize, the answer from both tests appears consistent with the presence
of a continuous component in the data: using Sn, we do not reject the null of a
Brownian motion present, while using S′

n we reject the null of its absence.
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FIG. 12. Empirical estimates of S′
n for various truncation levels α from all Intel transactions dur-

ing 2006.

FIG. 13. Empirical estimates of S′
n for various truncation levels α from all Microsoft transactions

during 2006.
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6. Technical results. By a standard localization procedure, we can replace the
local boundedness hypotheses in our assumptions by a boundedness assumption,
and also assume that the process X itself, and thus the jump process �Xt , are
bounded as well. That is, for all results which need Assumption 1 we may assume
further that, for some constant C > 0,

|bt |, |σt |,Lt , |�Xt | ≤ C, hence also Ft([−C,C]c) = 0.(37)

When we need Assumption 2 we may assume the above, together with

|b̃t |, nt , |σ̃t |,
∫

|x|Ft(dx) ≤ C.(38)

We call these reinforced Assumptions 1 or 2, and they are assumed in all the sequels
instead of mere Assumptions 1 or 2, according to the case.

Recall that if β < 1, we have (7) with b′
t bounded as well. Otherwise the decom-

position (7) is no longer valid, but under reinforced Assumption 1 we can always
write

Y ′
t = X0 +

∫ t

0
b′′
s ds +

∫ t

0
σs dWs, Y ′′

t = Xt − Y ′
t ,(39)

where b′′
t = bt + ∫

x1{|x|>1}Ft(dx) defines a bounded process, and Y ′′ is a purely
discontinuous martingale.

Also, K below denotes a constant which may change from line to line and may
depend on C above.

The key to all results is clearly the behavior of the processes B(p,un,�n) and
U(un,�n). For establishing this behavior, it is convenient to introduce a few aux-
iliary processes, for u > 0 an arbitrary cut-off level and Y an arbitrary process⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

B ′(Y,p,�n)t =
[t/�n]∑
i=1

|�n
i Y |p,

D(p,u)t = ∑
s≤t

|�Xs |p1{|�Xs |≤u},

D′(u)t = ∑
s≤t

1{|�Xs |>u}.

(40)

6.1. Central limit theorems for the auxiliary processes. This subsection is de-
voted to recalling or proving some limit theorems for B ′(X,p,�n) and for the
auxiliary processes introduced in (40). First, we recall from Theorem 2.4 of [12]
that under Assumption 1 (and even much more generally),⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 < p < 2 ⇒ �1−p/2
n B ′(X,p,�n)t

P−→ A(p)t = mp

∫ t

0
|σs |p ds,

p ≥ 2,X continuous ⇒ �
1−p/2
n B ′(X,p,�n)t

P−→ A(p)t ,

(un) satisfies (17) ⇒ B(2, un,�n)t
P−→ A(2)t

(41)

[the last property is proved when un = α�

n with α > 0 and 
 ∈ (0,1/2), but the

proof works as well when (17) holds].
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LEMMA 1. Suppose that X is continuous, and let t ≥ 0 and p > 1 and k ≥ 2.
Under Assumption 2 the two-dimensional variables

1√
�n

(
�1−p/2

n B ′(X,p,�n)t − A(p)t ,

(42)
�1−p/2

n B ′(X,p, k�n)t − kp/2−1A(p)t
)

stably converge in law to a limit which is defined on an extension of (�, F ,

(Ft )t≥0,P) and which, conditionally on F , is a centered Gaussian variable with
variance–covariance matrix given by

1

m2p

(
(m2p − m2

p)A(2p)T (mk,p − kp/2m2
p)A(2p)T

(mk,p − kp/2m2
p)A(2p)T kp−1(m2p − m2

p)A(2p)T

)
.(43)

(The same would hold if p ∈ (0,1], under the additional assumption that σt is
bounded away from 0.)

PROOF OF LEMMA 1. We can assume reinforced Assumption 2. The result
will follow from Theorem 7.1 of [11]. Assumption (H) in that paper is slightly
more restrictive than reinforced Assumption 2, but a close look at the proof yields
that this theorem still holds in the present situation.

We apply the quoted Theorem 7.1 to the two-dimensional function on R
k whose

components are |x1|p + · · · + |xk|p and |x1 + · · · + xk|p . This function is C1 with
derivatives having polynomial growth. With the notation of that paper, variable
(42) with the nontruncated variations is equal to Zn + Rn, where

Zn = 1√
�n

(
�nV

′(f, k,�n)t − 1

k

∫ t

0
ρ⊗k

σs
(f ) ds

)
(44)

and Rn is a remainder term with second component equal to 0, and with first com-
ponent

�1/2−p/2
n

[t/�n]∑
i=k[t/k�n]+1

|�n
i X|p.(45)

By (37) we have E(|�n
i X|p) ≤ K�

p/2
n , and hence, since there are at most k sum-

mands in the definition of Rn, we deduce that Rn
P−→ 0. On the other hand, the

aforementioned result yields that Zn converges stably in law to a limiting variable,
which is exactly as described in the statement of the lemma. �

LEMMA 2. Let t ≥ 0, and suppose Assumption 1 and p > β and un → 0.
Then

uβ−p
n D(p,un)t

P−→ β

p − β
At, uβ

nD′(un)t
P−→ At .(46)



BROWNIAN MOTION OR NOT 3119

Moreover, if β ′ < β/2 the four-dimensional variables⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

u
β/2
n

(
uβ−p

n D(p,un)t − β

p − β
At

)
1

u
β/2
n

(
(γ un)

β−pD(p,γ un)t − β

p − β
At

)
1

u
β/2
n

(
uβ

nD′(un)t − At

)
1

u
β/2
n

(
(γ un)

βD′(γ un)t − At

)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(47)

stably converge in law to a limit which is defined on an extension of (�, F ,

(Ft )t≥0,P ) and which, conditionally on F , is a centered Gaussian variable with
variance–covariance matrix AtC̃, where C̃ is the 4 × 4 matrix

C̃t =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

β

2p − β

βγ β−p

2p − β
0 0

βγ β−p

2p − β

βγ β

2p − β

β(1 − γ β−p)

p − β
0

0
β(1 − γ β−p)

p − β
1 1

0 0 1 γ β

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.(48)

PROOF. Assumption 1 here implies Assumption 6 of [2], with the same β

and At , and with β ′ there substituted with any number in (β ′, β) here. Then all
statements concerning D(p,un)t are in Proposition 5 of that paper. However, we
must redo the proof to obtain the joint convergence for the processes D(p,un) and
D′(un).

Let D̃(p,u) and D̃′(u) be the predictable compensators of D(p,u) and D′(u),
and M(u) = uβ−p(D(p,u)− D̃(p,u)) and M ′(u) = uβ(D′(u)− D̃′(u)). Observe
that D̃′(u)t = ∫ t

0 Fs([−u,u]c) ds and |Ft([−v, v]c) − v−βAt | ≤ KLtv
−β ′

by As-
sumption 1. Therefore, exactly as in the paper (and (C.23) and (C.24) in it), we see
that if q > β ,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

β ′ < β ⇒ uβ−q
n D̃(q,un)t → βAt

q − β
, uβ

nD̃′(un)t → At,

β ′ < β

2
⇒ 1

u
β/2
n

∣∣∣∣uβ−q
n D̃(q,un)t − βAt

q − β

∣∣∣∣ → 0,

1

u
β/2
n

|uβ
nD̃′(un)t − At | → 0.

(49)

The processes M(u) and M ′(u) are martingales, and if u ≤ v the brackets are
given by the following formulas:

〈M(u),M(v)〉 = (uv)β−pD̃(2p,u), 〈M ′(u),M ′(v)〉 = (uv)βD̃′(v),

〈M(u),M ′(v)〉 = 0, 〈M ′(u),M(v)〉 = uβvβ−p(
D̃(p, v) − D̃(p,u)

)
.
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This, applied with (u, v) equal to (un,un) or (un, γ un) or (γ un, γ un), and
combined with the first part of (49), yield that the bracket matrix at time t of
the 4-dimensional continuous martingale Mn = u

−β/2
n (M(un),M(γ un),M

′(un),

M ′(γ un)) converges to AtC̃ in probability, where C̃ is given by (48). Then as in
Proposition 5 of [2] one deduces that Mn

t converges stably in law to the limit de-
scribed in the statement of the lemma. It remains to deduce from the second part
of (49) that the difference between Mn

t and the variable defined by (47) goes to 0
in probability. �

6.2. The behavior of B(p,un,�n)T . In this subsection we establish the be-
havior of B(p,un,�n) for the relevant values of p and for the cases not covered
by (41). This is done in several lemmas.

LEMMA 3. Under Assumption 1, and if un satisfies (17), we have

B(4, un,�n)t
P−→ 0.(50)

PROOF. We first observe that B(4, v,�n)T converges in probability to
G(v)T = ∑

s≤T |�Xs |41{|�Xs |≤v} for any fixed v > 0 such that P(∃s ≤ T :
|�Xs | = v) = 0. Hence there is a sequence vm → 0 such that B(4, vm,�n)T con-
verges in probability to G(vm)T . On the one hand B(4, un,�n)T ≤ B(4, vm,�n)T
as soon as un ≤ vm. On the other hand we have G(vm)T → 0 as m → ∞. Then
the result follows. �

LEMMA 4. Assume (17) and reinforced Assumption 1, and let p > 0. If either
p ≤ 2, or p > 2 with ρ− >

p−2
2p−2β

, we have

�1−p/2
n B(p,un,�n)t

P−→ A(p)t .(51)

PROOF. We consider decomposition (39). In view of (41), it is enough to prove
that under the conditions of the lemma we have

�1−p/2
n

(
B(p,un,�n)t − B ′(Y ′,p,�n)t

) P−→ 0.(52)

The left-hand side above is �
1−p/2
n

∑[t/�n]
i=1 ζ n

i , where

ζ n
i = |�n

i Y
′ + �n

i Y
′′|p1{|�n

i X|≤un} − |�n
i Y

′|p.

With κ = 1 when p > 1 and κ = 0 otherwise, we have the following inequalities,
for all m,q > 0:

|�n
i Y

′| ≥ un

2
⇒ |ζ n

i | ≤ K|�n
i Y

′|p+q/uq
n,

|�n
i X| > 2un, |�n

i Y
′| ≤ un

2
(53)
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⇒ |ζ n
i | ≤ |�n

i Y
′|p|�n

i Y
′′|m/um

n ,

|�n
i X| ≤ 2un, |�n

i Y
′| ≤ un

2

⇒ |ζ n
i | ≤ K

(
(|�n

i Y
′′| ∧ un)

p

+ κ|�n
i Y

′|p−1(|�n
i Y

′′| ∧ un)
)
,

where we have used the inequality ||x + y|p − |x|p| ≤ K(|y|p + |x|p−1|y|) when
p > 1 and ||x + y|p − |x|p| ≤ |y|p when p ≤ 1. In view of (37), we have the
estimates{

E(|�n
i Y

′′|2) ≤ K�n, q > 0 ⇒ E(|�n
i Y

′|q) ≤ Kq�
q/2
n ,

r ∈ (β,2] ⇒ E
(
(|�n

i Y
′′| ∧ un)

2) ≤ Kr�nu
2−r
n

(54)

(the first estimate is obvious and the second one follows from Burkholder–Davis–
Gundy inequality; the third one follows from (6.25) of [11] applied to the process
Y ′′ and with αn = un/

√
�n, which goes to ∞ by (17), and with r as above).

Then, using Hölder’s inequality and (|x| ∧ un)
p ≤ u

p−2
n (|x| ∧ un)

2 when p > 2,
we deduce from (53) applied with q = m = 1 and from un ≤ K that

�1−p/2
n E(|ζ n

i |) ≤

⎧⎪⎪⎪⎨⎪⎪⎪⎩
K�n

(
�

1/2
n

un

+ up(1−r/2)
n + κu1−r/2

n

)
, if p ≤ 2,

K�n

(
�

1/2
n

un

+ �1−p/2
n up−r

n + u1−r/2
n

)
, if p > 2.

We have �
1/2
n /un → 0 by (17), hence E(�

1−p/2
n

∑[t/�n]
i=1 |ζ n

i |) → 0, as soon as

p ≤ 2, or p > 2 and ρ− ≥ p−2
2(p−r)

. Since r is arbitrary in (β,2], we deduce the
result. �

LEMMA 5. Let p ∈ (0,2], and assume reinforced Assumption 1 with β < 1
and (17) with further ρ− >

p−1
2p−2β

when p ≥ 1. Then, with X′ given by (7), we
have

�1/2−p/2
n

(
B(p,un,�n)t − B ′(X′,p,�n)t

) P−→ 0.(55)

PROOF. The proof of this lemma is similar to that of the previous one. The
left-hand side of (55) is �

1/2−p/2
n

∑[t/�n]
i=1 ζ n

i , where

ζ n
i = |�n

i X
′ + �n

i X
′′|p1{|�n

i X|≤un} − |�n
i X

′|p.

Then (53) holds with (X′,X′′) instead of (Y ′, Y ′′), whereas (54) is replaced by{
E(|�n

i X
′′|) ≤ K�n, q > 0 ⇒ E(|�n

i X
′|q) ≤ Kq�

q/2
n ,

r ∈ (β,1) ⇒ E(|�n
i X

′′| ∧ un) ≤ Kr�nu
1−r
n

(56)



3122 Y. AÏT-SAHALIA AND J. JACOD

(we now use (6.26) of [11] applied with αn = un/
√

�n and r as above). Hence,
using (53) for the pair (X′,X′′), plus the fact that (|x| ∧ un)

p ≤ u
p−m
n (|x| ∧ un)

m

for 0 < m ≤ p and Hölder’s inequality, we deduce that for all q > 0 and m ∈ (0,1)

and r ∈ (β,1), and with κ as in the previous proof,

�1/2−p/2
n E(|ζ n

i |)

≤ Kr�n

(
�

q/2−1/2
n

u
q
n

+ �
m−1/2
n

um
n

+ �1/2−p/2
n up−r

n + κ�m−1
n u1−mr

n

)
≤ Kr�n(�

v1
n + �v1

n + �v3
n + κ�v4

n ),

where v1 = q(1
2 − ρ+) − 1

2 and v2 = m(1 − ρ+r) − 1
2 and v3 = 1−p

2 + (p − r)ρ−
and v4 = m−1+ρ−(1−mr). Since ρ+ < 1/2 we have v1 > 0 for q large enough.
When r ↓ β and m ↑ 1, we have v2 → v′

2 = (1 − ρ+β) − 1
2 and v′

3 → v′
3 = 1−p

2 +
(p−β)ρ− and v4 → v′

4 = (1−β)ρ−, and (55) will follow from v′
j > 0 for j = 2,3

and also for j = 4 when p > 1. We have v′
2 > 0 because βρ+ < 1

2 . When p < 1 we
have v′

3 > 0. When p = 1 then v′
3 > 0 if ρ− > 0, and when p > 1 we have v′

3 > 0

and v′
4 > 0 as soon as ρ− >

p−1
2p−2β

. So (55) is proved. �

The previous lemma essentially gives the behavior of B(p,un,�n) when the
leading term is due to the continuous martingale part of X. When this part vanishes,
we have another type of behavior, which we describe now.

LEMMA 6. Let p > 1, and assume reinforced Assumption 1.

(i) If p > β and (17) holds with ρ+ <
p−1
p

we have

uβ−p
n

(
B(p,un,�n)t − D(p,un)t

) P−→ 0 on the set �noW
t .(57)

(ii) If p ≥ 2 and (17) holds with ρ+ ≤ 2−β
3β

, and if β ′ < β/2, we have

uβ/2−p
n

(
B(p,un,�n)t − D(p,un)t

) P−→ 0 on the set �noW
t .(58)

PROOF. Since the variables B(p,un,�n)t are the same on the set �noW
t when

they are computed on the basis of X or on the basis of the process Xt − ∫ t
0 σs dWs ,

it is no restriction to assume that σs = 0 identically.
The proof is based on the result of [2], when σt = 0 identically. We have As-

sumption 7 of that paper with H = β and a = 1 −β ′/β and thus φ′(x) = x−β ′
. We

can then apply Lemmas 8 of that paper with the version of η(p)n given at the end
of Lemma 7 (because Xc = 0 here), to obtain that for p > 1 ∨ β and if ρ+ <

p−1
p

and for any r ∈ (0, 2
3ρ+β

− 2
3),

E
(|B(p,un,�n)t − D(p,un)t |) ≤ Krtu

p−β
n η(p)n,(59)
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where

η(p)n =
5∑

j=1

(un)
xj ,

⎧⎪⎪⎨⎪⎪⎩
x1 = 1

ρ+
− β(1 + r), x2 = 2

ρ+
− β(2 + 3r),

x3 = r

(
1 − β

p

)
, x4 = p − 1

pρ+
+ β

p
− 1, x5 = β − β ′.

Clearly, (57) follows from (59), as soon as we can choose r ∈ (0, 2
3ρ+β

− 2
3)

such that xj > 0 for all j = 1, . . . ,5: this is obvious when β < p and ρ+ ≤ p−1
p

.
As for (58), it will also follow from (59) if we can choose r as above, such

that xj > β/2 for all j = 1, . . . ,5. This property holds for x5 because β ′ < β/2
is assumed, and for x4 because ρ+ < 1/2. For j = 1,2,3, and since x1 and x2 do
not depend on p and x3 increases with p, it is enough to consider the case p = 2.
Then if we let r decrease strictly to β

2−β
, we see that x3 > β/2, whereas x1 and

x2 increase to 1
ρ+ − 2β

2−β
and to 2

ρ+ − β(4+β)
2−β

respectively, and these quantities are

strictly bigger than β/2 if ρ+ is strictly smaller than 4−2β
β(6−β)

and 8−4β
β(10+β)

. Now,

recall that one should also have β
2−β

< r < 2
3ρ+β

− 2
3 , which is possible if and only

if ρ+ <
4−2β

β(4+β)
. All these conditions on ρ+ are ensured if ρ+ ≤ 2−β

3β
. �

6.3. The behavior of U(un,�n). The behavior of U(un,�n) has been exhib-
ited in [4], including a central limit theorem. However, here we need a joint CLT, at
least on the set �noW

T ∩�
iβ
T , for the pair (U(un,�n)T ,B(2, un,�n)), and even for

this pair jointly with the similar pair with the truncation levels γ un. For this we will
use Lemma 2, and we thus need to show that the difference U(un,�n)−D′(un) is
negligible, after a suitable normalization. To this effect, we use the contorted way
of using the aforementioned CLT for U(un,�n)T , but knowing this result it seems
the shortest route toward the desired joint CLT.

LEMMA 7. Assume reinforced Assumption 1.

(i) Under (17) we have

uβ
nU(un,�n)t

P−→ At .(60)

(ii) If moreover β ′′ < β
2+β

and β ′ < β
2 and (17) holds with ρ+ < 1

2+β
∧ 2

5β
, then

uβ/2
n

(
U(un,�n)t − D′(un)t

) P−→ 0.(61)

PROOF. In [4] the truncation level was set as un = α�

n . However, it is obvi-

ous that it works with any truncation level un subject to (17), with the conditions
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on 
 replaced by exactly the same conditions on ρ+. With this in view, (i) follows
from Proposition 1 of that paper. The proof of (ii) is much more involved, and
broken into several steps.

Step (1) We write U(un,�n)t − D′(un)t as H(1)nt + H(2)nt − H(3)nt , where

H(3)nt = D′(un)t − D′(un)�n[t/�n] and H(j)nt = ∑[t/�n]
i=1 ζ(j)ni for j = 1,2, with

ζ(1)ni = 1{�n
i D′(un)=0,|�n

i X|>un},

ζ(2)ni = 1{�n
i D′(un)≥1,|�n

i X|>un} − �n
i D

′(un).

In this step we prove

uβ/2
n H(3)nt

P−→ 0.(62)

The left-hand side above is nonnegative, with expectation E(D̃′(un)t −
D̃′(un)�n[t/�n]), which is smaller than K�n/u

β/2+β ′
n (see the proof of Lemma 2).

Since ρ+(β/2 + β ′) < 3ρ+β/2 < 1 we deduce (62).
Step (2) Let us assume for a moment that we have

uβ/2
n H(2)nt

P−→ 0.(63)

In Proposition 2 of [4], and upon replacing α�

n by un, it is proved that under

our assumptions on β ′, β ′′ and ρ+, the sequence Zn = u
−β/2
n (u

β
nU(un,�n)t −At)

converges in law to a limiting variable Wt which is centered. On the other hand,
Lemma 2 yields that Z′

n = u
−β/2
n (u

β
nD′(un)t − At) converges in law to a limiting

variable W
′
t which is also centered (and, indeed, has the same law as Wt ).

Up to taking a subsequence, assume that the pair (Zn,Z
′
n) converges in law to

a pair (Z,Z′) of variables which are centered, whereas Zn − Z′
n = u

β/2
n (H(1)nt +

H(2)nt ). In view of (63) it follows that u
β/2
n H(1)nt converges in law to Z − Z′.

Therefore, since by construction H(1)nt ≥ 0 we must have Z − Z′ ≥ 0. Since Z −
Z′ is centered, we must have Z′ = Z a.s. In other words, for any subsequence of
(Zn,Z

′
n) which converges in law, the limit is a.s. 0, and by a subsequence principle

it follows that the original sequence Zn −Z′
n goes to 0 in law, hence in probability;

this obviously implies (61).
At this stage, we are left to prove (63) which will be implied by the following:

E(uβ/2
n |ζ(2)ni |) ≤ �nvn(64)

for a sequence vn → 0.
We recall the property (B.12) of [2]: denoting by Rn

1 , . . . ,Rn
m, . . . the succes-

sive jump times of D′(un) occurring after (i − 1)�n (with any fixed i), we have
P(Rn

j ≤ i�n) ≤ Kj�
j
nu

−jβ
n . This implies

P
(
�n

i D
′(un) ≥ 2

) ≤ K�2
nu

−2β
n , E

(
�n

i D
′(un)1{�n

i D′(un)≥2}
) ≤ K�2

nu
−2β
n .
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Since ρ+ < 2/(3β) we have �n/u
3β/2
n → 0. Therefore, for proving (64) it remains

to show that

uβ/2
n P

(
�n

i D
′(un) = 1, |�n

i X| ≤ un

) ≤ �nvn.(65)

Set

X′′(un)t = ∑
s≤t

�Xs1{|�Xs |>un}, X′(un) = X − X′′(un).

We have estimate (B.15) of [2] again, with H = β and φ′(x) = x−β ′
. Thus, since

on the set {�n
i D

′(un) = 1} the process X′′(un) is piecewise constant and with a
single jump on the interval {(i − 1)�n, i�n]}, and the size of this jump is bigger
than un, we deduce

P
(
�n

i D
′(un) = 1, |�n

i X
′′(un)| ≤ un(1 + wn)

) ≤ K�n(u
−β
n wn + u−β ′

n )(66)

for any choice of the sequence wn decreasing to 0.
Finally we use estimate (61) of [4] to obtain for all q ≥ 2

P
(
�n

i D
′(un) = 1, |�n

i X
′(un)| > unwn

) ≤ K
�2

n

w2
nu

2β
n

+ Kq

�
q/2
n

w
q
nu

q
n

.(67)

Of course the left-hand side of (65) is smaller than u
β/2
n times the sum of the left-

hand sides of (66) and (67). Therefore, it remains to prove that we can choose the
sequence wn and q ≥ 2 in such a way that yn(j) → 0 for j = 1,2,3,4, where

yn(1) = uβ/2−β ′
n , yn(2) = wn

u
β/2
n

,

yn(3) = �n

u
3β/2
n w2

n

, yn(4) = �
q/2−1
n

u
q−β/2
n w

q
n

.

We have yn(1) → 0 by hypothesis. Upon taking wn = ur
n for some r , this amounts

to showing that one can find r > 0 and q ≥ 2 such that r >
β
2 and 1

ρ+ − 2r >
3β
2

and q − 2 > (q(2r + 2) − β)ρ+. The last condition is satisfied for q large enough
as soon as 2(r + 1)ρ+ < 1. Then it is easy to see that the choice of r is possible if
and only if ρ+ < 1

2+β
∧ 2

5β
. �

6.4. Central limit theorems for B(p,un,�n) and U(un,�n). The previous re-
sults allow us to derive joint CLTs for the processes B(p,un,�n) and U(un,�n),
as required for Theorems 2 and 5. For the first of these two theorems, we use the
following proposition which follows from Lemmas 1 and 5:

PROPOSITION 1. Let p ∈ (1,2] and t ≥ 0 and k ≥ 2. Under Assumption 2 and
(17) with ρ− >

p−1
2(p−β)

the two-dimensional variables

1√
�n

(
�1−p/2

n B(p,un,�n)t − A(p)t ,�
1−p/2
n B(p,un, k�n)t − kp/2−1A(p)t

)
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stably converge in law to a limit which is defined on an extension of (�, F ,

(Ft )t≥0,P) and which, conditionally on F , is a centered Gaussian variable with
variance–covariance matrix given by (43).

For the second theorem, we use the following consequence of Lemmas 2, 6
and 7:

PROPOSITION 2. Let t ≥ 0 and γ > 1, and suppose Assumption 1.

(i) If un → 0 we have

uβ
nU(un,�n)t

P−→ At .(68)

(ii) If p > β and (17) holds with ρ+ ≤ p−1
p

, we have

uβ−p
n B(p,un,�n)t

P−→ β

p − β
At in restriction to the set �noW

t .(69)

(iii) If further β ′′ < β
2+β

and β ′ < β
2 , and if (17) holds with ρ+ < 1

2+β
∧ 2

5β
∧

2−β
3β

, the four-dimensional variables⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

u
β/2
n

(
uβ−p

n B(p,un,�n)t − β

p − β
At

)
1

u
β/2
n

(
(γ un)

β−pB(p,γ un,�n)t − β

p − β
At

)
1

u
β/2
n

(
uβ

nU(un,�n)t − At

)
1

u
β/2
n

(
(γ un)

βU(γ un,�n)t − At

)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
stably converge in law, in restriction to the set �noW

t , to a limit which is defined on
an extension of (�, F , (Ft )t≥0,P ) and which, conditionally on F , is a centered
Gaussian variable with variance–covariance matrix AtC̃, with C̃ given by (48).

6.5. Proof of the theorems. It remains to prove the main theorems, for which
we can assume the reinforced assumptions if necessary, without restriction.

First, the consistency results (20) and (30) are obvious consequences of (51),
(69) and (68), plus the facts that AT > 0 on �

iβ
T and A(p)T > 0 on �W

T .
Second, in order to prove Theorem 2 we use Proposition 1 which, upon us-

ing the “delta method,” shows that under the stated assumptions the variables
1√
�n

(Sn −kp/2−1) converge stably in law, in restriction to �W
T , to a variable which

conditionally on F is centered Gaussian with variance

V = N(p, k)
A(2p)T

(A(p)T )2 .
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With Vn given by (24), we have 1
�n

Vn
P−→ V by (51), and the result readily fol-

lows.
In the same way, Proposition 2 yields that 1

u
β/2
n

(S′
n −γ 2) converges stably in law,

in restriction to �noW
T ∩ �

iβ
T , to a variable which conditionally on F is centered

Gaussian with variance

V ′ = γ 4

AT

(
β(2 − β)2

4 − β
+ 1

)
(1 + γ β − 2γ β−2).

If V ′
n is given by (32), then 1

u
β
n

V ′
n

P−→ V ′ in restriction to �noW
T ∩ �

iβ
T by (69) and

(68). This finishes the proof of Theorem 5.
Finally, for both Theorems 3 and 6, the claims concerning the asymptotic level

of the tests are trivial consequences of two central limit Theorems 2 and 5. It re-
mains to prove that the asymptotic power is 1 in both cases. By virtue of (20) and
(30), this will follow from the next two properties, under the appropriate assump-
tions ⎧⎨⎩Vn

P−→ 0, on the set �noW
T ∩ �

iβ
T ,

V ′
n

P−→ 0, on the set �W
T ∩ �

iβ
T .

(70)

The first of these properties follows from (69), and the second one follows from
(41), (50) and (68).
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