
The Annals of Statistics
2010, Vol. 38, No. 5, 2998–3027
DOI: 10.1214/10-AOS814
© Institute of Mathematical Statistics, 2010

QUASI-CONCAVE DENSITY ESTIMATION

BY ROGER KOENKER1 AND IVAN MIZERA2

University of Illinois and University of Alberta

Maximum likelihood estimation of a log-concave probability density is
formulated as a convex optimization problem and shown to have an equiva-
lent dual formulation as a constrained maximum Shannon entropy problem.
Closely related maximum Renyi entropy estimators that impose weaker con-
cavity restrictions on the fitted density are also considered, notably a min-
imum Hellinger discrepancy estimator that constrains the reciprocal of the
square-root of the density to be concave. A limiting form of these estimators
constrains solutions to the class of quasi-concave densities.

1. Introduction. Our objective is to introduce a general class of shape con-
straints applicable to the estimation of probability densities, multivariate as well as
univariate. Elements of the class are represented by restricting certain monotone
functions of the density to lie in convex cones. Maximum likelihood estimation
of log-concave densities constitutes an important special case; however, the wider
class allows us to include a variety of other shapes. A one parameter subclass
modeled on the means of order ρ studied by Hardy, Littlewood and Pólya (1934)
incorporates all the quasi-concave densities, that is, all densities with convex up-
per contour sets. Estimation methods for these densities, as described below, bring
new opportunities for statistical data analysis.

Log-concave densities play a crucial role in a wide variety of probabilistic mod-
els: in reliability theory, search models, social choice and a broad range of other
contexts it has proven convenient to assume densities whose logarithm is concave.
Recognition of the importance of log-concavity was already apparent in the work
of Schoenberg and Karlin on total positivity beginning in the late 1940s. Karlin
(1968) forged a link between log-concavity and classical statistical properties such
as the monotone likelihood ratio property, the theory of sufficient statistics and
uniformly most powerful tests. Maximum likelihood estimation of densities con-
strained to be log-concave has recently enjoyed a considerable vogue with im-
portant contributions of Walther (2001, 2002, 2009), Pal, Woodroofe and Meyer
(2007), Rufibach (2007), Dümbgen and Rufibach (2009), Balabdaoui, Rufibach
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and Wellner (2009), Chang and Walther (2007) and Cule, Samworth and Stewart
(2010), among others.

Log-concave densities are constrained to exhibit exponential tail behavior. This
restriction motivates a search for weaker forms of the concavity constraint capable
of admitting common densities with algebraic tails like the t and F families. The
ρ-concave densities introduced in Section 2 constitute a rich source of candidates.
While it would be possible, in principle, to consider maximum likelihood estima-
tion of such densities, duality considerations lead us to consider a more general
class of maximum entropy criteria. Maximizing Shannon entropy in the dual is
equivalent to maximum likelihood for the leading log-concave case, but other en-
tropies are also of interest. Section 3 describes several examples arising in the dual
from the class of Rényi entropies, each corresponding to a distinct specification
of the concavity constraint, and each corresponding to a distinct fidelity criterion
in the primal. The crucial advantage of adapting the fidelity criterion to the form
of the concavity constraint is that it assures a convex optimization problem with a
tractable computational strategy.

2. Quasi-concave probability densities and their estimation. A probability
density function, f , is called log-concave if −logf is a (proper) convex function
on the support of f . We adhere to the usual conventions of Rockafellar (1970),
which allow convex functions to take infinite values—although we will allow only
+∞, because all our convex functions will be proper. The domain of a convex
(concave) function, domg, is then the set of x such that g(x) is finite. We adopt
the convention −log 0 = +∞.

Unimodality of concave functions implies that log-concave densities are uni-
modal. An interesting connection in the multivariate case was pointed out by
Silverman (1981): the number of modes of a kernel density estimate is monotone
in the bandwidth when the kernel is log-concave. However, as illustrated by the
Student t family, not every unimodal density is log-concave. Laplace densities,
with their exponential tail behavior, are; but heavier, algebraic tails are ruled out.
This prohibition motivates a relaxation of the log-concavity requirement.

2.1. A hierarchy of ρ-concave functions. A natural hierarchy of concave func-
tions can be built on the foundation of the weighted means of order ρ studied
by Hardy, Littlewood and Pólya (1934): for any p in the unit simplex, S = {p ∈
R

n|p ≥ 0,
∑

pi = 1}, let

Mρ(a;p) = Mρ(a1, . . . , an;p) =
(

n∑
i=1

pia
ρ
i

)1/ρ

,

for ρ �= 0; the limiting case for ρ = 0 is

M0(a;p) = Mρ(a1, . . . , an;p) =
n∏

i=1

a
pi

i .
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The familiar arithmetic, geometric and harmonic means correspond to ρ equal to
1, 0 and −1, respectively. Following Avriel (1972), a nonnegative, real function f ,
defined on a convex set C ⊂ R

d is called ρ-concave if for any x0, x1 ∈ C and
p ∈ S ,

f (p0x0 + p1x1) ≥ Mρ(f (x0), f (x1);p).

In this terminology, log-concave functions are 0-concave and concave functions
are 1-concave. As Mρ(a,p) is monotone, increasing in ρ for a ≥ 0 and any p ∈ S ,
it follows that if f is ρ-concave, then f is also ρ ′-concave for any ρ′ < ρ. Thus,
concave functions are log-concave, but not vice-versa. In the limit −∞, concave
functions satisfy the condition

f (p0x0 + p1x1) ≥ min{f (x0), f (x1)},
so they are (and consequently for all ρ-concave functions) quasi-concave.

The hierarchy of ρ-concave density functions was considered in the economics
literature by Caplin and Nalebuff (1991) in spatial models of voting and imper-
fect competition; their results reveal some intriguing connections to Tukey’s half-
space depth in multivariate statistics; see Mizera (2002). Curiously, it appears that
the first thorough investigation of the mathematical concept of quasi-concavity
was carried out by de Finetti (1949). Further details and motivation for ρ-concave
densities can be found in Prékopa (1973), Borell (1975) and Dharmadhikari and
Joag-Dev (1988).

2.2. Maximum likelihood estimation of log-concave densities. Suppose that
X = {X1, . . . ,Xn} is a collection of data points in R

d such that the convex hull of
X, H(X), has a nonempty interior in R

d ; such a configuration occurs with prob-
ability 1 if n ≥ d and the Xi behave like a random sample from f0, a probability
density with respect to the Lebesgue measure on R

d . Viewing the Xi’s as a ran-
dom sample from an unknown, log-concave density f0, we can find the maximum
likelihood estimate of f0 by solving

n∏
i=1

f (Xi) = max
f

! such that f is a log-concave density.(2.1)

It is convenient to recast (2.1) in terms of g = −logf , the estimate becoming
f = e−g ,

n∑
i=1

g(Xi) = min
g

! such that g is convex and
∫

e−g(x) dx = 1.(2.2)

The objective function of (2.2) is equal to +∞, given the convention adopted
above, unless all Xi are in the domain of g. As in Silverman (1982), it proves
convenient to move the integral constraint into the objective function,

1

n

n∑
i=1

g(Xi) +
∫

e−g(x) dx = min
g

! such that g is convex,(2.3)



QUASI-CONCAVE DENSITY ESTIMATION 3001

a device that ensures that the solution integrates to one without enforcing this con-
dition explicitly. Apart from the multiplier 1/n, the crucial difference between
(2.2) and (2.3) is that the latter is a convex problem, while the former not.

It is well known that naïve, unrestricted maximum likelihood estimation is
doomed to fail when applied in the general density estimation context: once “log-
concave” is dropped from the formulation of (2.1), any sequence of putative max-
imizers is attracted to the the linear combination of point masses situated at the
data points. One escape from this “Dirac catastrophe” involves regularization by
introducing a roughness, or complexity, penalty; various proposals in this vein can
be found in Good (1971), Silverman (1982), Gu (2002) and Koenker and Mizera
(2008).

Another way to obtain a well-posed problem is by imposing shape constraints,
a line of development dating back to the celebrated Grenander (1956) nonpara-
metric maximum likelihood estimator for monotone densities. While monotonic-
ity regularizes the maximum likelihood estimator, unimodality per se—somewhat
surprisingly—does not. The desired effect is achieved only by enforcing some-
what more stringent shape constraints—for instance log-concavity, sometimes also
called “strong unimodality.” An advantage of shape constraints over regularization
based on norm penalties is that it is not encumbered by the need to select additional
tuning parameters; on the other hand, it is limited in scope—applicable only when
the shape constraint is plausible for the unknown density.

2.3. Quasi-concave density estimation. Expanding the scope of our investi-
gation, we now replace e−g in the integral of the objective function by a generic
function ψ(g) and define

�(g) = 1

n

n∑
i=1

g(Xi) +
∫

ψ(g(x)) dx.(2.4)

The following conditions on the form of ψ will be imposed:

(A1) ψ is a nonincreasing, proper convex function on R.
(A2) The domain of ψ is an open interval containing (0,+∞).
(A3) The limit, as τ → +∞, of ψ(y + τx)/τ is +∞ for every real y and any

x < 0.
(A4) ψ is differentiable on the interior of its domain.
(A5) ψ is bounded from below by 0, with ψ(x) → 0 when x → +∞.

The most crucial condition is (A1) ensuring the convexity of �. Condition (A2)
assures that ψ(x) is finite for all x > 0, while (A3) is required in the proof of the
existence of the estimates. The relationship between primal and dual formulations
of the estimation problem is facilitated by (A4), and (A5) rules out possible com-
plications regarding the existence of the integral

∫
ψ(g)dx in (2.4), allowing for

the convention ψ(+∞) = 0. In the spirit of the Lebesgue integration theory, the
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integral then exists, although ψ(g) does not have to be summable: it is either finite
[which is automatically true for any g convex and ψ(g) = e−g] or +∞. In the lat-
ter case, the objective function �(g) is considered to be equal to +∞; �(g) is also
+∞ if g(Xi) = +∞ for some Xi , which occurs unless all Xi lie in the domain
of g. On the other hand, any g equal to some positive constant on H(X) and +∞
elsewhere yields �(g) < ∞.

A rigorous treatment without assumption (A5), that is, for functions ψ not
bounded below, would introduce technicalities involving handling of the integrals
in the spirit of singular integrals of calculus of variations, a strategy resembling
the contrivance of Huber (1967) of subtracting a fixed quantity from the objective
function to ensure finiteness of the integral. Although we do not believe that such
formal complications are unsurmountable, we do not pursue such a development.

Careful deliberation reveals that replacing g by its closure (lower semicontinu-
ous hull) does not change the integral term in (2.4), and potentially only decreases
the first term; this means that without any restriction of its scope, we may refor-
mulate the estimation problem as

1

n

n∑
i=1

g(Xi) +
∫

ψ(g(x)) dx = min
g

! subject to g ∈ K,(2.5)

where K stands for the class of closed (lower semicontinuous) convex functions
on R

d .
Unlike in (2.3), ψ(g) is not necessarily the estimated density f ; the relationship

of g to f will be revealed in Section 3, together with the motivation leading to
concrete instances of some possible functions ψ .

2.4. Characterization of estimates. We now establish that the estimates, the
solutions of (2.5), admit a finite-dimensional characterization, which is a key to
many of their theoretical properties. For every collection (X,Y ) of points Xi ∈ R

d

and Yi ∈ R, we define a function

g(X,Y )(x) = inf

{
n∑

i=1

λiYi

∣∣∣ x =
n∑

i=1

λiXi,

n∑
i=1

λi = 1, λi ≥ 0

}
.(2.6)

Any function of this type is finitely generated in the sense of Rockafellar (1970),
whose Corollary 19.1.2 asserts that it is polyhedral, being the maximum of finitely
many affine functions, and therefore convex. The convention inf ∅ = +∞ used in
(2.6) means that the domain of g(X,Y ) is equal to H(X). If h is a convex function
such that h(Xi) ≤ Yi , for all i, then h(x) ≤ g(X,Y )(x) for all x; the function g(X,Y )

is thus the maximum of convex functions with this property—the lower convex
hull of points (Xi, Yi).

For fixed X, we will denote the collection of all functions g(X,Y ) of the form
(2.6) by G(X). The collection (X,Y ) determines g(X,Y ) uniquely, by virtue of its
definition (2.6). Given X, we call a vector Y with components Yi ∈ R discretely
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convex relative to X, if there exists a convex function h defined on H(X) such
that h(Xi) = Yi . Any function g from G(X) determines a unique discretely convex
vector Yi = g(Xi). The converse is also true: there is a one–one correspondence
between G(X) and D(X) ⊆ R

n, the set of all vectors discretely convex relative
to X.

THEOREM 2.1. Suppose that assumption (A1) holds true. For every convex
function h on R

d , there is a function g ∈ G(X) such that �(g) ≤ �(h); the strict
inequality holds whenever h /∈ G(X) and H(X) has nonempty interior.

The theorem shows that it is sufficient to seek potential solutions of (2.5) in
G(X); this means, due to the one–one correspondence of the latter to D(X), that the
optimization task (2.5) is essentially finite dimensional. The theorem also justifies
the transition to a more convenient optimization domain in the primal formulation
appearing in the next section.

3. Duality, entropy and divergences. The conjugate dual formulation of the
primal estimation problem (2.5) conveys a maximum entropy interpretation and
leads us to several concrete proposals for ψ . To conform to existing mathemati-
cal apparatus, we begin by further clarifying the optimization and constraint func-
tional classes of our primal formulation. For definitions and general background on
convex analysis, our primary references are Rockafellar (1970, 1974) and Zeidler
(1985); we may also mention Hiriart-Urruty and Lemaréchal (1993) and Borwein
and Lewis (2006).

3.1. The primal formulation. Hereafter, K(X) will denote the cone of closed
(lower semicontinuous) convex functions on H(X), the convex hull of X. This
cone is a subset of C(X), the collection of functions continuous on H(X); it is
important that C(X) is a linear topological space, with respect to the topology of
uniform convergence. Note that G(X) ⊂ K(X) ⊂ C(X). In view of Theorem 2.1,
any solution of (2.5) is also the solution of

1

n

n∑
i=1

g(Xi) +
∫

ψ(g(x)) dx = min
g∈C(X)

! subject to g ∈ K(X),(3.1)

and conversely; thus, we will refer to (3.1) as our primal formulation.

3.2. The dual formulation. The conjugate of ψ is

ψ∗(y) = sup
x∈domψ

(
yx − ψ(x)

)
.

Since ψ is nonincreasing, there are no affine functions with positive slope that
minorize the graph of ψ , hence ψ∗(y) = +∞ for all y > 0. If ψ is differentiable
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on the (nonempty) interior of its domain, then ψ∗ can be obtained using differential
calculus—as the Legendre transformation of ψ ; denoting the derivative ψ ′ by χ ,
we have

ψ∗(y) = yχ−1(y) − ψ(χ−1(y)),(3.2)

where χ−1(y) is any solution, z, of the equation χ(z) = y. The (topological) dual
of C(X) is C∗(X), the space of (signed) Radon measures on H(X); its distin-
guished element is Pn, the empirical measure supported by the data points Xi . The
polar cone to K(X) is

K(X)− =
{
G ∈ C∗(X)

∣∣∣ ∫
g dG ≤ 0 for all g ∈ K(X)

}
.

THEOREM 3.1. Suppose that assumptions (A1) and (A2) hold. The strong
(Fenchel) dual of the primal formulation (3.1) is

−
∫

ψ∗(−f (y)) dy = max
f

! subject to f = d(Pn − G)

dy
,

(3.3)
G ∈ K(X)−,

in the sense that the value, �(g), of the primal objective for any g satisfying
the constraints of (3.1), dominates the value, for any f satisfying the constraints
of (3.3), of the objective function in (3.3); the minimal value of (3.1) and maxi-
mal value of (3.3) coincide. Moreover, there exists f attaining the maximal value
of (3.3). Any dual feasible function f , that is, any f satisfying the constraints of
(3.3) and yielding finite objective function of (3.3), is a probability density with
respect to the Lebesgue measure: f ≥ 0 and

∫
f dx = 1. If condition (A4) is

also satisfied, then the dual and primal optimal solutions satisfy the relationship
f = −ψ ′(g).

It should be emphasized that the expression of absolute continuity in (3.3) is a
requirement on F = Pn −G; the dual objective function is defined as the conjugate
to the primal objective function �, and is equal to −∞ for any Radon measure
that is not absolutely continuous with respect to the Lebesgue measure. This is
how regularization operates here: only those F qualify for which Pn gets canceled
with the discrete component of G. Once F satisfies this requirement, its density
integrates to 1, as shown in the proof of Theorem 3.1. The nonnegativity for f

yielding finite dual objective function is the consequence of ψ∗(−y) being infinite
for y < 0. In practical implementations, it may be prudent to enforce f ≥ 0 in the
dual explicitly as a feasibility constraint.
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3.3. The interpretation of the dual. An immediate consequence of Theo-
rem 3.1 is that we can reformulate the maximum likelihood problem posed in (2.3)
as an equivalent maximum (Shannon) entropy problem.

COROLLARY 3.1. Maximum likelihood estimation of a log-concave density
as posed in (2.3) has an equivalent dual formulation

−
∫

f (y) logf (y) dy = max
f

! subject to f = d(Pn − G)

dy
,

(3.4)
G ∈ K(X)−,

whose solution satisfies the relationship f = e−g , where g is the solution of (2.3).
In particular, the solution of (2.3) satisfies

∫
e−g(x) dx = 1, therefore problems

(2.2) and (2.3) are equivalent.

The emergence of the Shannon entropy is hardly surprising—in view of the
well-established connections of maximum likelihood estimation to the Kullback–
Leibler divergence and maximum entropy. Note that the dual criterion can be also
interpreted as choosing the f closest in the Kullback–Leibler divergence to the
uniform distribution on H(X), from all f satisfying the dual constraints.

3.4. Rényi entropies. While the outcome of Corollary 3.1, the equivalence of
(2.2) and (2.3), could be also shown by elementary means, it is important to empha-
size that the real value of the dual connection lies in the vista of new possibilities
it opens. To explore the link to potential alternatives, we consider the family of
entropies originally introduced for α > 0 by Rényi (1961, 1965),

(1 − α)−1 log
(∫

f α(x) dx

)
, α �= 1,(3.5)

as an extension of the limiting case for α = 1, the Shannon entropy. For α �= 1,
maximizing (3.5) over f is equivalent to the maximization of

sgn(1 − α)

α

∫
f α(x) dx = −sgn(α − 1)

∫
f α(x)

α
dx.(3.6)

The dependence of convexity/concavity properties of yα necessitates a separate
treatment of the cases with α > 1, when the conjugate pair is

ψ(x) =
{

(−x)β/β, for x ≤ 0,
0, for x > 0,

ψ∗(y) =
{

(−y)α/α, for y ≤ 0,
+∞, for y > 0,

and the cases with α < 1, where

ψ(x) =
{+∞, for x ≤ 0,

−xβ/β, for x > 0,
ψ∗(y) =

{−(−y)α/α, for y ≤ 0,
+∞, for y > 0,

where β and α are conjugates in the usual sense that 1/β + 1/α = 1. See Figure 1.



3006 R. KOENKER AND I. MIZERA

FIG. 1. Primal ψ (left) and dual ψ∗ (right) for selected α ≥ 0 from the Rényi family of entropies.

The general form of the primal formulations (3.1) corresponding to (3.5) can be
written, for α �= 1, in a unified way as

1

n

n∑
i=1

g(Xi) + 1

|β|
∫

|g(x)|β dx = min
g∈C(X)

!(3.7)

together with the relation between the dual and primal solutions, f = |g|β−1. Sev-
eral particular instances merit special attention.

3.5. Power divergences. For α > 1, we may write (−g) instead of |g|, and
then introduce h = −g. The resulting primal formulation is

−1

n

n∑
i=1

h(Xi) + 1

β

∫
hβ(x) dx = min

h∈C(X)
! subject to h ∈ K(X).(3.8)

By Theorem 2.1, this formulation is equivalent to

−1

n

n∑
i=1

h(Xi) + 1

β

∫
hβ(x) dx = min

h
! subject to h ∈ K.(3.9)

After substituting f 1/(β−1) for h, multiplying by β , and rewriting in terms of α we
obtain a new objective function

−
(

α

α − 1

)
1

n

n∑
i=1

f α−1(Xi) +
∫

f α(x) dx,(3.10)

which recalls the “minimum density power divergence estimators,” proposed, for
α ≥ 1, by Basu et al. (1998) in the context of estimation in parametric families.

3.6. Pearson χ2. Although α = 2 is a special case of the power divergence
family mentioned above, it deserves a special mention. The choice of α = 2 in the
Rényi family leads to the dual formulation

−
∫

f 2(y) dy = max
f

! subject to f = d(Pn − G)

dy
, G ∈ K(X)−.(3.11)
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The primal formulation can be written, after the application of Theorem 2.1, in a
particularly simple form

1

n

n∑
i=1

g(Xi) + 1

2

∫
g2(x) dx = min

g
! subject to g ∈ K,(3.12)

which can be interpreted as a variant of the minimum Pearson χ2 criterion. A sim-
ilar theme can be found in the dual, which can be interpreted as returning among
all densities satisfying its constraints the one with minimal Pearson χ2 distance to
the uniform density on C(X).

The relation between primal and dual optimal solutions is f = −g; the con-
vexity constraint on g therefore implies that f must be concave. Replacing g in
(3.12) by −f and appropriately modifying the cone constraint gives a variant of the
“least-squares estimator,” studied by Groeneboom, Jongbloed and Wellner (2001)
and going back at least to Birgé and Massart (1993); the estimate was defined to
estimate a convex (and decreasing) density on R

+, a domain that is apparently still
under the scope of Theorem 2.1.

3.7. Hellinger. While the form of the objective function for α = 2 has some
computational advantages, its secondary consequence—constraining the density
itself to be concave rather than its logarithm—is not at all appealing. Indeed, all
Rényi choices with α > 1 impose a more restrictive form of concavity than log-
concavity. From our perspective, it seems more reasonable to focus attention on
weaker forms of concavity, corresponding to α ≤ 1. Apart from the celebrated log-
concave case α = 1, a promising alternative would seem to be Rényi entropy with
α = 1/2. This choice in the Rényi system leads to the dual∫ √

f (y) dy = max
f

! subject to f = d(Pn − G)

dy
, G ∈ K(X)−,(3.13)

and primal, again after the application of Theorem 2.1,

1

n

n∑
i=1

g(Xi) +
∫ 1

g(x)
dx = min

g
! subject to g ∈ K.(3.14)

The estimated density satisfies f = 1/g2, which means that the primal constraint,
g ∈ K, enforces the convexity of g = 1/

√
f . In the terminology of Section 2, the

estimated density is now required to be only −1/2-concave, a significant relaxation
of the log-concavity constraint; in addition to all log-concave densities, all the
Student tν densities with ν ≥ 1 satisfy this requirement. The dual problem (3.13)
can be interpreted as a Hellinger fidelity criterion, selecting from the cone of dual
feasible densities the one closest in Hellinger distance to the uniform distribution
on H(X).
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3.8. The frontier and beyond? Although the original Rényi system was con-
fined to α > 0, a limiting form for α = 0 can be obtained similarly to the α = 1
case. It yields the conjugate pair

ψ(x) =
{+∞, for x ≤ 0,

−1/2 − logx, for x > 0,

ψ∗(y) =
{−1/2 − log(−y), for y < 0,

+∞, for y ≥ 0.

As is apparent from Figure 1, this ψ violates our condition (A5), but may nev-
ertheless deserve a brief consideration. Note first that the possible complications
with existence of integrals may occur only in the formulation (2.5) with unbounded
domain—not in (3.1), where all integrals are of bounded functions over a compact
domain. The major technical complications with ψ violating (A5) concern theo-
rems in Section 4, and are briefly discussed there. Here we mention only that the
resulting dual, adapted directly from (3.3), is∫

logf (y) dy = max
f

! subject to f = d(Pn − G)

dy
, G ∈ K(X)−,

and the primal becomes

1

n

n∑
i=1

g(Xi) −
∫

logg(x) dx = min
g∈C(X)

! subject to g ∈ K(X).

In this case g = 1/f , and the estimate is constrained to be −1-concave, a yet still
weaker requirement that admits all of the Student tν densities for ν > 0.

If we interpret the dual problem (3.4), for α = 1, as choosing a constrained
f to minimize the Kullback–Leibler divergence of f from the uniform distrib-
ution on H(X), we can similarly interpret the α = 0 dual as minimizing the re-
versed Kullback–Leibler divergence. In parametric estimation, the latter objective
is sometimes associated with empirical likelihood, while the former is associated
with exponentially tilted empirical likelihood. See, for example, Hall and Pres-
nell (1999) for related discussion in the context of kernel density estimation, and
Schennach (2007).

One might try to continue in this fashion marching inexorably toward weaker
and weaker concavity requirements. There appears to be no obstacle in considering
α < 0; the general form (3.7) of the primal is still applicable. The shape constraints
corresponding to negative α encompass a wider and wider class of quasi-concave
densities, eventually arriving at the −∞-concave constraint, at which point we
would have sanctioned all of the quasi-concave densities. But formal complica-
tions, as well as computational difficulties dictate the more prudent strategy of
restricting attention to α > 0 cases.

4. Existence and Fisher consistency of estimates. Returning to our general
setting, existence, uniqueness and Fisher consistency are established under mild
conditions on the function ψ .
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4.1. Existence of estimates. Theorem 2.1 not only justifies the choice of the
optimization domain in (3.1), but also shows, due to the one–one correspondence
between G(X) and D(X), that the optimization task (3.1) is essentially finite di-
mensional, parametrized by the values Yi = g(Xi). This facilitates the proof of the
following existence result.

THEOREM 4.1. Suppose that assumptions (A1), (A2), (A3) and (A5) hold,
and that H(X) has a nonempty interior. Then the formulation (2.5) has a solution
g ∈ C(X); if ψ is strictly convex, then this solution is unique.

4.2. Fisher consistency. In our general setting, a comprehensive asymptotic
theory for the proposed estimators remains a formidable objective. Considerable
recent progress has been made on theory for the univariate log-concave (α = 1)
maximum likelihood estimator: Pal, Woodroofe and Meyer (2007) proved consis-
tency in the Hellinger metric, Dümbgen and Rufibach (2009) prove consistency in
the supremum norm on compact intervals, and Balabdaoui, Rufibach and Wellner
(2009) derive asymptotic distributions. For maximum likelihood estimators in R

d ,
Cule and Samworth (2010) establish consistency for estimators of a log-concave
density, and Seregin and Wellner (2009) for estimators of convex-transformed den-
sities. These results are surely suggestive of the plausibility of analogous results
for other α and dimensions greater than one. However, the highly technical nature
of the proofs, and their strong reliance on special features of the univariate setting
indicate that such a development may not be immediate.

While anything else in this direction may be viewed as speculative, Fisher con-
sistency, a crucial prerequisite for a more detailed asymptotic theory, can be ver-
ified in a quite straightforward manner and essentially complete generality. For
differentiable ψ , Theorem 3.1 gives the relationship between the solution g of the
optimization task (3.1) and the density estimate: f = −ψ ′(g). Using the notation
χ for ψ ′, and χ−1 for its inverse, as in Section 3, we may write g = χ−1(−f ),
and subsequently rewrite the formulation (2.5) in terms of the estimated density f

(omitting, for brevity, the integration variables)∫
χ−1(−f )dPn +

∫
ψ(χ−1(−f )) dx = min

f
!

(4.1)
subject to χ−1(−f ) ∈ K.

This yields a new objective function—which we nevertheless denote, slightly abus-
ing the notation, also �. The population version of this � is obtained by replacing
dPn by f0 dx:

�0(f ) =
∫

χ−1(−f )f0 + ψ(χ−1(−f )) dx.(4.2)

The Fisher consistency for an estimator defined by solving (4.1) requires that
�0(f0) ≤ �0(f ), for every f ; however, there may be a formal problem now with



3010 R. KOENKER AND I. MIZERA

the existence of the integral in (4.2), as χ−1(f ) may take both positive or negative
values. A possible way of handling this obstacle is the strategy of Huber (1967),
briefly mentioned in Section 2: instead of �, we consider a modified objective
function

�̃(f ) =
∫ (

χ−1(−f ) + ψ∗(−f0)

f0

)
dPn +

∫
ψ(χ−1(−f )) dx,(4.3)

which, when minimized over f satisfying the constraint of (4.1), yields an opti-
mization problem equivalent with (4.1), since the difference of � and �̃ is constant
in f . However, the population version of �̃

�̃0(f ) =
∫

χ−1(−f )f0 + ψ∗(−f0) + ψ(χ−1(−f )) dx(4.4)

is now better suited for the ensuing version of the Fisher consistency theorem.

THEOREM 4.2. Suppose that ψ satisfies assumptions (A1), (A2), (A4) and
(A5). The integrand in (4.4) is then nonnegative for any probability density f such
that χ−1(−f ) ∈ K, and identically equal to 0 for f = f0; therefore, 0 = �̃0(f0) ≤
�̃0(f ), where �̃0(f ) is well defined for every f , possibly equal to +∞.

In fact, Theorem 4.2 can be proved in the same manner for the unmodified �,
if domψ = (ω,+∞) with ω > −∞. Then the inverse of χ = ψ ′, and hence the
range of χ−1 is bounded from below by ω. In such a case, χ(f )f0 ≥ ωf0, so the
first term in (4.2) is minorized by an integrable function ωf0; the second term is
bounded from below by 0 by assumption (A5), so the whole integral then exists in
the Lebesgue sense, being either finite or equal to +∞.

If, however, assumption (A5) is not satisfied, then the existence of the integral
should be assumed explicitly; we return to this point briefly at the end of the proof
of Theorem 4.2. Note that, by comparing (3.2) and (4.2), existence of the integral
is equivalent to assuming the integrability (summability) of

f0χ
−1(f0) + ψ(χ−1(−f0)) = −ψ∗(−f0),(4.5)

that is, the existence and finiteness of the entropy term in the dual (3.3).

5. Examples of practical use. We employed two independent algorithms for
solving the convex programming problems posed above: mskscopt from the
MOSEK software package of Andersen (2006), and the PDCO MATLAB proce-
dure of Saunders (2003). Both algorithms are coded in MATLAB and employ
similar primal-dual, log-barrier methods. Further details regarding numerical im-
plementation appear in Appendix B. The crux of both algorithms is a sequence of
Newton-type steps that involve solving large, very sparse least squares problems,
a task that is very efficiently carried out by modern variants of Cholesky decompo-
sition. Several other approaches have been explored for computing quasi-concave
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density estimators that are log-concave. An active set algorithm for univariate
log-concave density estimation was described in Dümbgen, Hüsler and Rufibach
(2007) and implemented in the R package logcondens of Rufibach and Düm-
bgen (2009). Cule, Samworth and Stewart (2010) have recently implemented a
promising steepest descent algorithm for multivariate log-concave estimation that
may be adaptable to other quasi-concave density estimation problems.

5.1. Univariate example: Velocities of bright stars. To illustrate the applica-
tion of the foregoing methods, we briefly consider some realistic examples. Our
first example features data similar to those considered by Pal, Woodroofe and
Meyer (2007), the type of data where shape constraints sometimes arise in a nat-
ural manner. The two samples consist of 9092 measurements of radial and 3933
of rotational velocity for the stars from Bright Star Catalog, Hoffleit and Warren
(1991). The left and right panels of Figure 2 show the results for the radial and
rotational velocity samples, respectively.

FIG. 2. The estimates of the densities of radial (left) and rotational (right) velocities of the stars
from the Bright Star Catalog. Broken lines are kernel density estimates in the upper two panels, and
the solid lines are total variation penalized estimates. In the lower two panels the broken lines are
the log-concave estimates and the solid lines represent the Hellinger (−1/2-concave) estimates.
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The broken line in the upper panels shows kernel density estimates, each time
with default MATLAB bandwith selection; the solid lines correspond to one of
the norm penalized estimates proposed in Koenker and Mizera (2008): maximum
likelihood penalized by the total variation of the second derivative of the loga-
rithm of the estimated density. This is the L1 version of the Silverman’s (1982)
estimator penalizing the squared L2 norm of the third derivative. The smoothing
parameter for the latter estimate was set quite arbitrarily at 1; it seems that this ar-
bitrary choice works quite satisfactorily here, providing—somewhat surprisingly,
for both samples—about the same level of smoothing as the kernel estimator. For
the radial velocity sample, the two estimates are essentially the same. For the rota-
tional velocity sample, however, the right upper panel shows that the kernel density
estimate differs substantially from the penalized one. Both estimators have the un-
fortunate effect of assigning considerable mass to negative values despite the fact
that there are no negative observations. This effect is somewhat more pronounced
for the kernel estimate.

Since the preliminary analyses of the upper panels indicates that the hypothe-
sis of unimodality is plausible for both of the datasets, a natural next step is the
application of a shape-constrained estimator—a move that, among other things,
may relieve us of insecurities related to the arbitrary choice of smoothing para-
meters. The broken line in the lower panels of Figure 2 shows the log-concave
maximum likelihood (α = 1), and the solid line the Hellinger (−1/2-concave) es-
timate (α = 1/2). While, as expected, there is almost no difference between the
two (and in fact, among all four) estimates for the radial velocity dataset, the right
lower panel reveals that the log-concave estimate yields for the rotational velocity
sample a density that is monotonically decreasing—which contradicts the evidence
suggested by all other methods. The Hellinger estimate, on the other hand, exhibits
a subtle, but visible bump at the location of the plausible mode, thus turning out
to be visually more informative about the center of the data than the tails. This is
somewhat paradoxical given its original heavy-tail motivation, confirming that the
real universe of data analysis can be much more subtle than that of the surrounding
theoretical constructs.

5.2. Bivariate example: Criminal fingers. To illustrate our approach in a sim-
ple bivariate setting, we reconsidered the well-known MacDonell (1902) data on
the heights and left middle finger lengths of 3000 British criminals. This data was
employed by Gosset in preliminary simulation work described in Student (1908).

Figure 3 illustrates the Hellinger (−1/2-concave) fit of this data. Contours are
labeled in units of log-density. A notable feature of the data is the unusual obser-
vation in the middle of the upper edge. This point is highly anomalous, at least for
any density with exponential tail behavior. The maximum likelihood estimate of
the log-concave model in Figure 4 has very similar central contours, but the outer
contours fall off much more rapidly implying that the log-concave estimate assigns
much smaller probability to the region near the unusual point.
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FIG. 3. Hellinger (−1/2-concave) estimate of the density of Student’s criminals. Contours are
labeled in units of log-density.

5.3. Some simulation evidence. Motivated by a suggestion of one of the ref-
erees, we undertook some numerical experiments to explore performance of our

FIG. 4. Log-concave estimate of the density of Student’s criminals. Contours are labeled in units
of log-density.
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FIG. 5. Comparison of estimators of several log-concave densities.

shape constrained estimators and evaluate whether consistency appeared to be a
plausible conjecture. For the log-concave estimator Pal, Woodroofe and Meyer
(2007) report “Hellinger error” for a fully crossed design involving five target den-
sities and five sample sizes with 500 replications per cell.

In Figure 5, we report results of our attempt to reproduce the PWM experiment
expanded somewhat to consider two competing estimators: the adaptive kernel es-
timator of Silverman (1986) using a Gaussian kernel, and the logspline estimator
of Kooperberg and Stone (1991) as implemented in the logspline R package
of Kooperberg. Five target densities are considered: (standard) normal, Laplace,
Gamma(3), Beta(3,2) and Weibull(3,1) as in PWM. Five sample sizes are stud-
ied: 50, 100, 200, 500, 1000. And two measures of performance are considered:
squared Hellinger distance as in PWM in the left panel and L1 distance in the right
panel. Plotted points in these figures represent cell means. Both figures support the
contention that the rates of convergence are comparable for all three estimators.

Figure 6 reports results from a similar experiment for the the −1/2-concave es-
timator described in Section 3.6. We consider five new target densities: lognormal,
t3, t6, F3,6 and Pareto(5), all of which fall into the −1/2-concave class. The same
competing estimators and sample sizes are used. In a small fraction of cases for
the second group of densities, less than 0.2 percent, there were problems either
with the convergence of the logspline or shape-constrained estimator, or with the
numerical integration required to evaluate the performance measures, so Figure 6
plots cell medians rather than cell means. Again, the figures support the conjecture
that the rates of convergence for the shape-constrained estimator are competitive
with those of the adaptive kernel and logspline estimators.
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FIG. 6. Comparison of estimators of several −1/2-concave densities.

A concise way to summarize results from these experiments is to estimate the
simple linear model

log(yij ) = αi + β log(nj ) + uij ,

where yij denotes a cell average of our two error criteria for one of our three esti-
mators, for target density i and sample size nj . In this rather naïve framework, β̂

can be interpreted as an empirical rate of convergence for the estimator. In Tables 1
and 2, we report these estimates suppressing the estimated target density specific
αi’s. In this comparison too, the shape constrained estimators perform quite well.

6. Extensions and conclusions. We have described a rather general approach
to qualitatively constrained density estimation. Log-concave densities are an im-
portant target class, but other, weaker, concavity requirements that permit algebraic
tail behavior are also of considerable practical interest. Ultimately, the approach
accommodates all quasi-concave densities as a limit of the Rényi entropy family.

TABLE 1
Estimated convergence rates for log-concave target densities

Criterion Log-concave Kernel Logspline

L1 error −0.417 −0.366 −0.393
(0.018) (0.003) (0.012)

Hellinger −0.875 −0.498 −0.698
(0.032) (0.031) (0.021)
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TABLE 2
Estimated convergence rates for −1/2-concave target densities

Criterion −1/2-concave Kernel Logspline

L1 error −0.405 −0.324 −0.386
(0.004) (0.008) (0.01)

Hellinger −0.751 −0.355 −0.672
(0.034) (0.023) (0.019)

There are many unexplored directions for future research. As we have seen,
a consequence of the variational formulation of our concavity constraints is that
the estimated densities vanish off the convex hull of the data. Various treatments
for this malady may be suggested. Müller and Rufibach (2009) have recently sug-
gested applying one of several estimators of the Pareto tail index to the smoothed
ordinates from the log-concave preliminary density estimator. Our inclination
would be to prefer solutions that impose further regularization on the initial prob-
lem. Thus, for example, we can add a new penalty term to the primal problem,
penalizing the total variation of the derivative (gradient) of logf , and choosing a
suitable value of the associated Lagrange multiplier to smooth the tail behavior at
the boundary.

We have adhered, thus far, to the principle that the entropy choice in the fidelity
criterion of the dual problem should dictate the form of the convexity constraint:
likelihood thus implies log-concavity, Hellinger fidelity implies 1/

√
f concavity,

etc. One may wish to break this linkage and consider maximum likelihood esti-
mation of general ρ-concave densities. This may have some advantages from an
inference viewpoint, at the cost of complicating the numerical implementation.

Embedding shape constrained density estimation of the type considered here
into semiparametric methods would seem to be an attractive option in many set-
tings. And, it would obviously be useful to consider inference for the validity of
shape constraints in the larger context of penalized density estimation. We hope to
pursue some of these issues in future work.

APPENDIX A: PROOFS

PROOF OF THEOREM 2.1. Given h convex, put Yi = h(Xi) and take g =
g(X,Y ), the function defined by (2.6). The convexity of h implies that h(x) ≤ g(x)

for every x; since ψ is nonincreasing, we have

c =
∫

ψ(h(x)) dx −
∫

ψ(g(x)) dx ≥ 0.(A.1)

The definition of g(X,Y ) implies that h(Xi) = g(X,Y )(Xi) = Yi ; therefore, the rest
of � remains unchanged, and (A.1) implies that �(g) ≤ �(h).
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Suppose that h /∈ G(X). Then h �= g and the inequality h ≤ g implies that
domg ⊆ domh. If domh �= domg, then there is a point x0 /∈ domg from the in-
terior of domh, because domg is closed. The continuity of h at x0 implies that
h(x) ≤ K < +∞ = g(x) for all x from an open neighborhood of x0; this proves
that c > 0. If domh = domg = H(X), then the polyhedral character of H(X) im-
plies through Theorem 10.2 of Rockafellar (1970) that h is upper semicontinuous
relative to H(X) at any x ∈ H(X); that is, if h(x0) < g(x0) for some x0 ∈ domh,
then the inequality holds for all x in an open, relatively to H(X), neighborhood of
x0. Such a relative neighborhood has positive Lebesgue measure, due to the fact
that the interior of H(X) is nonempty. Hence, we have c > 0 also in this case and
the strict inequality �(g) < �(h) follows. �

PROOF OF THEOREM 3.1. We use the conventional notation 〈�, x〉 to denote
�(x), the result of the application of a linear functional to x. The definition of the
conjugate of a convex function H in this notation is

H ∗(y) = sup
x∈domF

(〈y, x〉 − F(x)
);

the resulting function is convex itself, being a sup of affine functions. For any
f ∈ C(X) and any Radon measure G, a linear functional from C(X)∗, we have

〈G,f 〉 =
∫

f dG.

We start the proof by rewriting (3.1) as

1

n

n∑
i=1

g(Xi) +
∫

ψ(g(x)) dx + ιK(X)(g) = �(g) + ϒ(g) = inf
g

!,

where � is the original objective function of (3.1) and ϒ = ιK(X) is the indicator
function of K(X). The expression for the Fenchel dual of this type of problem fol-
lows from Rockafellar (1966); see also Rockafellar (1974), Section 5, Example 11:

−�∗(G) − ϒ∗(−G) = max
G

!
(note that one of the conjugates, in both cites sources, is in the “concave” sense,
which explains the negative sign of the argument in the second term, but not in
the first). The conjugate of the indicator of a convex cone K(X) is the indicator of
−K(X)− [Rockafellar (1974), Section 3, equation (3.14)]. The term −ϒ∗(−G) in
the objective can be therefore interpreted as a constraint −G ∈ −K(X)−, that is,
G ∈ K(X)−. The definition of the conjugate of � gives

�∗(G) = sup
g

(
〈G,g〉 − 1

n

n∑
i=1

g(Xi) −
∫

ψ(g(x)) dx

)

(A.2)

= sup
g

(
〈G − Pn,g〉 −

∫
ψ(g(x)) dx

)
= �∗(G − Pn);
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the sup is taken over all g from

dom� =
{
g ∈ C(X)

∣∣∣ ∫
ψ(g(x)) dx < +∞

}
= dom�,

where � is the functional given by

�(g) =
∫

ψ(g(x)) dx,(A.3)

and �∗ is its conjugate. The form of the latter is given by Rockafellar (1971),
Corollary 4A: if G is absolutely continuous with respect to the Lebesgue measure,
then

�∗(G) =
∫

ψ∗
(

dG

dx

)
dx,(A.4)

otherwise �∗(G) = +∞. These facts, and expressions (A.2) and (A.4), yield (3.3).
Rockafellar [(1966), Theorem 1; see also Rockafellar (1974), Section 8, Ex-

ample 11′] gives also a constraint qualification for this type of problem: to prove
strong duality, we need to find some g where both � and ϒ are finite and one
of them is continuous. Such a g is provided by a function constant on H(X), say
g(x) = 1 for all x ∈ H(X). It is convex, thus ϒ(g) = 0 is finite. So is �(g); the
topology on C(X) is that of uniform convergence, and ψ is continuous at 1, hence
there is a neighborhood of g containing only functions for which � is finite and �

is continuous at g.
Once the constraint qualification is verified, we know that the primal and dual

optimal values coincide (zero duality gap), and that the dual is attained—there is
an optimal solution to the dual; see Theorem 52.B(3) of Zeidler (1985). Due to the
fact that ψ is decreasing, ψ∗(−f ) = +∞ whenever f < 0; thus, if f yields a finite
dual objective function, then f is nonnegative. If G ∈ K(X)−, then 〈G,f 〉 ≤ 0 for
every f ∈ K(X); consequently,

0 ≥ 〈G,1〉 = −〈G,−1〉 ≥ 0.

Therefore, 〈G,1〉 = 0 and for every dual feasible f ,∫
f (x) dx = 〈Pn − G,1〉 = 〈Pn,1〉 − 〈G,1〉 =

∫
1dPn = 1.

That is, every dual feasible f is a probability density with respect to the Lebesgue
measure.

If a primal solution, g, exists—the fact that is established by Theorem 4.1, but
here we are exploring only the consequences of such a premise—it is related to
the dual solution, f , via extremality (Karush–Kuhn–Tucker) conditions. The form
of this relationship asserted by the theorem follows from the second condition of
(8.24) in Rockafellar [(1974), Section 8, Example 11′], together with the form of
the subgradient of � given by Rockafellar [(1971), Corollary 4B], combined with
the fact established above that the estimated density f corresponds to F = Pn −G.

�
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PROOF OF THEOREM 4.1. By Theorem 2.1, any potential solution of (2.5) lies
within the class G(X) of polyhedral functions; due to the one–one correspondence
between G(X) and D(X), the set of vectors discretely convex relative to X, the
existence proof can be carried for (3.1) reparametrized by Yi , the putative values of
g(Xi). In what follows, X remains fixed, and α, β will denote generic coefficients
of convex combinations: any real numbers satisfying α,β ≥ 0, α + β = 1.

As the correspondence between G(X) and D(X) is not a linear mapping (except
for d = 1), the first thing to be shown is that (3.1) remains a convex problem when
reparametrized in terms of a vector Y ∈ R

n, with components Y1, . . . , Yn. The
resulting problem minimizes, over Y ∈ R

n, the objective function

�D(Y ) = 1

n

n∑
i=1

Yi +
∫

ψ
(
g(X,Y )(x)

)
dx if Y ∈ D(X)

= +∞ otherwise.

Note first that D(X) is a convex subset of R
n: if Y,Z ∈ D(X), then there exist

convex functions g, h satisfying Yi = g(Xi) and Zi = h(Xi); subsequently, αYi +
βZi = αg(Xi)+βh(Xi), and as αg +βh is also a convex function, we obtain that
αY + βZ ∈ D(X) for any convex combination of Y and Z. Thus, it is sufficient to
show that �D is convex on D, which amounts to demonstrating the convexity of
the function Y �→ ∫

ψ(g(X,Y )(x)) dx. Let Y,Z ∈ D(X); the definition (2.6) gives
for their convex combination

g(X,αY+βZ)(x) = inf

{
n∑

i=1

λi(αYi + βZi)
∣∣∣ x =

n∑
i=1

λiXi,

n∑
i=1

λi = 1, λi ≥ 0

}

≥ α inf

{
n∑

i=1

λiYi

∣∣∣ x =
n∑

i=1

λiXi,

n∑
i=1

λi = 1, λi ≥ 0

}

+ β inf

{
n∑

i=1

λiZi

∣∣∣ x =
n∑

i=1

λiXi,

n∑
i=1

λi = 1, λi ≥ 0

}

= αg(X,Y )(x) + βg(X,Z)(x).

As ψ is nonincreasing and convex, we obtain∫
ψ

(
g(X,αY+βZ)(x)

)
dx

≤
∫

ψ
(
αg(X,Y )(x) + βg(X,Z)(x)

)
dx

(A.5)
≤

∫
αψ

(
g(X,Y )(x)

) + βψ
(
g(X,Z)(x)

)
dx

= α

∫
ψ

(
g(X,Y )(x)

)
dx + β

∫
ψ

(
g(X,Z)(x)

)
dx
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as was required. Note that the integral is also finite whenever Y has all components
in the domain of ψ , due to the polyhedral character of g(X,Y )(x) and the fact that
ψ is nonincreasing and H(X) is bounded. Otherwise, it may be equal only to +∞;
hence �D is a proper convex function.

LEMMA A.1. Suppose that Y,Z are vectors in R
d such that Y = (y, . . . , y)

has constant components, and Z is arbitrary. For any τ > 0,

g(X,Y+τZ)(x) = g(X,Y )(x) + τg(X,Z)(x) = y + τg(X,Z)(x).(A.6)

PROOF. Note first that by the definition, g(X,Y )(x) = y identically on H(X)

for constant Y ; likewise, for every x ∈ H(X),

g(X,Y+τZ)(x) = inf

{
n∑

i=1

λi(Yi + τZi)
∣∣∣ x =

n∑
i=1

λiXi,

n∑
i=1

λi = 1, λi ≥ 0

}

= inf

{
y + τ

n∑
i=1

λiZi

∣∣∣ x =
n∑

i=1

λiXi,

n∑
i=1

λi = 1, λi ≥ 0

}

= y + τ inf

{
n∑

i=1

λiZi

∣∣∣ x =
n∑

i=1

λiXi,

n∑
i=1

λi = 1, λi ≥ 0

}

= g(X,Y )(x) + τg(X,Z)(x),

proving the lemma. �

Choose a real number y lying in the domain of ψ , and set Y = (y, . . . , y). Ac-
cording to Lemma A.1, g(X,Y )(x) = y for every x ∈ H(X); the function constant
on H(X) is convex, hence Y ∈ D(X). Then

�D(Y ) = 1

n

n∑
i=1

Yi +
∫

ψ
(
g(X,Y )(x)

)
dx = y + ψ(y)Vol(H(X)) < +∞;

therefore, Y lies in the domain of �D . For arbitrary Z ∈ R
n, not identically 0, and

τ > 0, we have

�D(Y + τZ) = 1

n

n∑
i=1

(Yi + τZi) +
∫

ψ
(
g(X,Y+τZ)(x)

)
dx

= y + τ

n

n∑
i=1

Zi +
∫

ψ
(
y + τg(X,Z)(x)

)
dx

= y + τ

(
1

n

n∑
i=1

Zi +
∫

ψ(y + τg(X,Z)(x))

τ
dx

)
.
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We know that �D is a convex function on a finite-dimensional linear space R
n;

to establish the existence of its minimizer, it is sufficient to show that �D(Y +
τZ) → +∞ for τ → +∞, which means that we need to verify that the limit of
the expression in the parentheses is positive (possibly +∞); see also Hiriart-Urruty
and Lemaréchal (1993), Remark 3.2.8. Let E−, E0, E+ be sets in H(X) where
g(x) = g(X,Z)(x) is, respectively, negative, zero or positive; we are to examine the
limit behavior of

1

n

n∑
i=1

Zi +
∫
E−

ψ(y + τg(x))

τ
dx

(A.7)

+
∫
E0

ψ(y)

τ
dx +

∫
E+

ψ(y + τg(x))

τ
dx,

when τ → +∞. For the integral over E0, the limit is obviously zero. If ψ satisfies
assumptions (A1) and (A5), then ψ is nonincreasing and converging to 0 when
τ → +∞; for every x ∈ E+ then ψ(y + τg(x))/τ monotonically decreases with
increasing τ , hence the limit of the integral over E+ is zero as well. Finally, if ψ

satisfies also (A3), then for every x ∈ E− the limit of ψ(y + τg(x))/τ is +∞;
at the same time, the expression is bounded from below by 0, due to (A4). The
application of the Fatou lemma then gives that the limit of the integral over E− is
+∞, whenever E+ has positive Lebesgue measure.

The proof of the theorem is then finished by the examination of possible alter-
natives. If the first term in (A.7), the mean of the Zi’s, is positive, then the theorem
is proved, as all other terms in (A.7) converge either to 0 or +∞. If the first term of
(A.7) is negative or equal to zero, then there must be some Zi < 0 (the case with
all Zi = 0 is excluded). That means that g(x) = g(X,Z)(x) is negative for some
x; this implies that E− has positive Lebesgue measure, and then the limit of the
second term in (A.7), the integral over E−, and thus of the whole expression (A.7)
is +∞. This proves the theorem.

Under the strict convexity of ψ , the strict convexity of �D follows (for appro-
priate α, β) from the second inequality in (A.5), which becomes sharp—this is
due to the fact that the sharp inequality holds pointwise for all x, and thus for the
integrals as well. The strict convexity of �D then implies the uniqueness of the
solution.

Finally, functions ψ satisfying (A1)–(A3), but not necessarily (A5) require
some special considerations. For the integral over E−, we have to observe that for
every τ > 0 we have ψ(y + τg(X,Z)(x)) ≥ ψ ; if ψ(y) < 0, then ψ(y)/τ ≥ ψ(y)

for every τ ≥ 1, if ψ(y) ≥ 0 then ψ(y)/τ ≥ 0 for every τ > 0. Hence we have also
in this case an integrable constant minorant [due to the fact that H(X) has finite
Lebesgue measure]; this justifies the limit transition via the Fatou lemma. Finally,
for the integral over E+, we need to assume that the limit of the integrand is 0 for
every x, and find an integrable minorant; this may be related to the existence of the
integral of the second term in (2.5). �
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PROOF OF THEOREM 4.2. The proof relies on the application of what is
called Fenchel’s inequality by Rockafellar [(1970), page 105] or the (generalized)
Young inequality by Hardy, Littlewood and Pólya [(1934), Section 4.8], or Zeidler
[(1985), Section 51.1]. The inequality says says that for arbitrary x, y and convex
function ψ

xy ≤ ψ(x) + ψ∗(y).

Applied pointwise to x = −f0 and y = χ−1(−f ), the inequality yields

(−f0)χ
−1(−f ) ≤ ψ∗(−f0) + ψ(χ−1(−f )),

which is equivalent to the nonnegativity of the integrand in (4.4). For f = f0, the
equality (4.5) implies that

f0χ
−1(−f0) + ψ∗(−f0) + ψ(χ−1(−f0)) = −ψ∗(−f0) + ψ∗(−f0) = 0,

which proves the theorem.
For functions not satisfying (A5), integrability of f0χ

−1(−f0) is no longer
equivalent to that of −ψ∗(−f0). However, if we assume the integrability of the
latter, then the proof can be carried through in the same way. �

APPENDIX B: COMPUTATIONAL DETAILS

Our computational objective is to provide a unified algorithmic strategy for solv-
ing the entire class of problems described above. Interior point methods designed
for general convex programming and capable of exploiting the inherently sparse
structure of the resulting linear algebra offer a powerful, general approach. We
have employed two such implementations throughout our development process:
the PDCO algorithm of Saunders (2003), and the MOSEK implementation of
Andersen (2006).

Our generic primal problem (2.5) involves minimizing an objective function
consisting of a linear component, representing likelihood or some generalized no-
tion of fidelity, plus a nonlinear component, representing the integrability con-
straint. Minimization is then subject to a cone constraint imposing convexity. We
will first describe our procedure for enforcing convexity, and then turn to the inte-
grability constraint.

B.1. The convexity constraint. In dimension one convexity of piecewise lin-
ear functions can be imposed easily by enforcing linear inequality constraints on a
set of function values, γi = g(ξi) at selected points ξ1, ξ2, . . . , ξm. For ordered ξi ’s,
the convex cone constraint can be written as Dγ ≥ 0 for a tridiagonal matrix D

that does second differencing, adapted to the possible unequal spacing of the ξi ’s.
In dimension two, enforcing convexity becomes more of a challenge. Ideally,

we would utilize knowledge of the polyhedral character of the optimal g, estab-
lished by Theorem 2.1, and implying that the optimal g is piecewise linear over
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some triangulation of the observations Xi ∈ R
2. Once we knew the triangulation,

it is again straightforward to impose convexity: each interior edge of the trian-
gulation generates one linear inequality on the coefficients γ . Unfortunately, the
complexity of traveling over a binary tree of possible triangulations of the observed
points makes finding the optimal one difficult. The algorithm implemented in the
logConcDEAD package of Cule, Gramacy and Samworth (2009), for computing
log-concave estimates, exploits special features of the log-concave MLE problem
and thus does not appear to be easily generalizable to our other settings. Finite-
element methods involving fixed (Delaunay) triangulation of an expanded set of
vertices were also ultimately deemed unsatisfactory.

A superior choice, one that circumvents the difficulties of the finite-element,
fixed triangulation approach, relies on finite differences. Convexity is imposed di-
rectly at points on a regular rectangular grid using finite-differences to compute
the discrete Hessian:

H11(ξ1, ξ2) = g(ξ1 + δ, ξ2) − 2g(ξ1, ξ2) + g(ξ1 − δ, ξ2),

H22(ξ1, ξ2) = g(ξ1, ξ2 + δ) − 2g(ξ1, ξ2) + g(ξ1, ξ2 − δ),

H12(ξ1, ξ2) = [g(ξ1 + δ, ξ2 + δ) − g(ξ1 + δ, ξ2 − δ)

− g(ξ1 − δ, ξ2 + δ) + g(ξ1 − δ, ξ2 − δ)]/4,

H21(ξ1, ξ2) = H12(ξ1, ξ2).

Convexity is then enforced by imposing positive semidefiniteness. These con-
straints—convexity at each of the grid points (ξ1i , ξ2i )—produce a semi-definite
programming problem. In the bivariate setting the semi-definiteness of each H

can be reformulated as a rotated quadratic cone constraint; we need only constrain
the signs of the diagonal elements of H and its determinant. This simplifies the
implementation of the Hellinger estimator in MOSEK. For the relatively fine grid
used for Figure 3 solution requires about 25 seconds, considerably quicker than
the log-concave estimate of Figure 4 computed with the implementation of Cule,
Gramacy and Samworth (2009).

B.2. The integrability constraint. For certain special ψ , one can evaluate
the integral term

∫
ψ(g(x)) dx in the objective function of (2.5) explicitly—as was

done for ψ(g) = e−g by Cule, Samworth and Stewart (2010). While such a strat-
egy may also be possible for certain other specific ψ , we adopt a more pragmatic
approach based on a straightforward Riemannian approximation∫

H(X)
ψ(g(x)) dx ≈

m∑
i=1

ψ(g(ξi))si .(B.1)

Here, si are weights derived from the configuration of ξi . Of course, with only a
modest number of ξi ’s such an approximation may be poor; in dimension one we
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therefore augment the initial collection of the observed data X1, . . . ,Xn by filling
the gaps between their order statistics by further grid points, to ensure that the re-
sulting grid (not necessarily uniformly spaced) and consisting of the observed data
points as well as the new grid points, provides a sufficiently accurate approxima-
tion (B.1). The si ’s are then simply the averages of the adjacent spacings between
the ordered ξi ’s. Given the size of problems modern optimization software can suc-
cessfully handle, it is no problem to add an abundance of new points in dimension
one.

In dimension two, the approximation (B.1) is based on the uniformly spaced
grid of the points used in the finite-difference approach described in the previ-
ous subsection. As the original data points Xi may no longer lie among the grid
points ξi , we have to modify the fidelity component of the objective function: in-
stead of obtaining g(Xi) directly, we obtain it via linear interpolation from the
values of g at the vertices of the rectangles enclosing Xi . As long as the grid is
sufficiently fine, the difference is minimal. We use this approach often also in di-
mension one, as it provides better numerical stability especially for fine grids and
large data sets.

B.3. Discrete duality. Adopting the procedures described above, we can
write the finite-dimensional version of the primal problem as

{w�Lγ + s��(γ )|Dγ ≥ 0} = min!,(P)

where �(γ ) denotes now the m-vector with typical element ψ(g(ξi)) = ψ(γi),
L is an “evaluation operator” which either selects the data elements from γ , or
performs the appropriate linear interpolation from the neighboring ones, so that
Lγ denotes the n-vector with typical element, g(Xi), and w is an n-vector of
observation weights, typically wi ≡ 1/n.

Associated with the primal problem (P) is the dual problem

{−s��∗(−φ)|Sφ = −w�L + D�η,φ ≥ 0,D�η ≥ 0} = max!.(D)

Here, η is an m-vector of dual variables and φ is an m-vector of function val-
ues representing the density evaluated at the ξi ’s, and S = diag(s). The vector
�∗ is the convex conjugate of � defined coordinate-wise with typical element
ψ∗(y) = supx{yx − ψ(x)}. Problems (P) and (D) are strongly dual in the sense of
the following result, which may viewed as the discrete counterpart of Theorem 3.1.

PROPOSITION B.1. If ψ is convex and differentiable on the interior I of its
domain, then the corresponding solutions of (P) and (D) satisfy

f (ξi) = ψ ′(g(ξi)) for i = 1, . . . ,m,(E)

whenever the elements of g are from I and the elements of f are from the image
of I under ψ ′.
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For �(x) with typical element ψ(x) = e−x we have �∗ with elements ψ∗(y) =
−y logy + y, so the dual problem corresponding to maximum likelihood can be
interpreted as maximizing the Shannon entropy of the estimated density subject to
the constraints appearing in (D). Since g was interpreted in (P) as logf , this result
justifies our interpretation of solutions of (D) as densities provided that they satisfy
our integrability condition. This is easily verified and thus justifies the implicit
Lagrange multiplier of one on the integrability constraint in (P), giving a discrete
counterpart of Theorem 3.1.

PROPOSITION B.2. Let ι denote an m-vector of ones, and suppose in (P) that
w�Lι = 1 and Dι = 0. Then solutions φ of (D) satisfy s�φ = 1 and φ ≥ 0.

The crucial element of the proof is that the differencing operator D annihilates
the constant vector and therefore the result extends immediately to other norm-
type penalties as well as to the other entropy objectives that we have discussed.
Indeed, since the second difference operator representing our convexity constraint
annihilates any affine function it follows by the same argument that the mean of
the estimated density also coincides with the sample mean of the observed Xi’s.
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