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BACKFITTING AND SMOOTH BACKFITTING FOR ADDITIVE
QUANTILE MODELS

BY YOUNG KYUNG LEE1, ENNO MAMMEN2 AND BYEONG U. PARK3

Kangwon National University, University of Mannheim and
Seoul National University

In this paper, we study the ordinary backfitting and smooth backfitting
as methods of fitting additive quantile models. We show that these backfit-
ting quantile estimators are asymptotically equivalent to the corresponding
backfitting estimators of the additive components in a specially-designed ad-
ditive mean regression model. This implies that the theoretical properties of
the backfitting quantile estimators are not unlike those of backfitting mean
regression estimators. We also assess the finite sample properties of the two
backfitting quantile estimators.

1. Introduction. Nonparametric additive models are powerful techniques for
high-dimensional data. They enable us to avoid the curse of dimensionality and
estimate the unknown functions in high-dimensional settings at the same accu-
racy as in univariate cases. In the mean regression setting, there have been many
proposals for fitting additive models. These include the ordinary backfitting pro-
cedure of Buja, Hastie and Tibshirani (1989), whose theoretical properties were
studied later by Opsomer and Ruppert (1997) and Opsomer (2000), the marginal
integration technique of Linton and Nielsen (1995), and the smooth backfitting of
Mammen, Linton and Nielsen (1999), Mammen and Park (2006) and Yu, Park and
Mammen (2008). It is widely accepted that the marginal integration method still
suffers from the curse of dimensionality since it does not produce rate-optimal es-
timates unless smoothness of the regression function increases with the number of
additive components. On the contrary, the ordinary backfitting and smooth backfit-
ting are known to achieve the univariate optimal rate of convergence under certain
regularity conditions.

In this paper, we are concerned with nonparametric estimation of additive con-
ditional quantile functions. Conditional quantile estimation is also a very useful
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tool for exploring the structure of the conditional distribution of a response given a
predictor. A collection of conditional quantiles, when graphed, give a picture of the
entire conditional distribution. It can be used directly to construct conditional pre-
diction intervals. Also, it may be a basis for verifying the presence of conditional
heteroscedasticity; see Furno (2004), for example. Various other applications of
conditional quantile estimation may be found in Yu, Lu and Stander (2003). In the
nonadditive setting, there have been many proposals for this problem, which in-
clude the work by Jones and Hall (1990), Chaudhuri (1991), Yu and Jones (1998)
and Lee, Lee and Park (2006). There have been also some proposals for additive
quantile regression. Fan and Gijbels (1996) provided a direct extension of the ordi-
nary backfitting method to quantile regression, but without discussing its statistical
properties. Lu and Yu (2004) gave a heuristic discussion of the asymptotic limit of
a backfitting local linear quantile estimator. Horowitz and Lee (2005) studied an
extension of the two-stage procedure of Horowitz and Mammen (2004) to quantile
regression. Their estimator is a one-step kernel smoothing iteration of an orthogo-
nal series estimator.

The main theme of this paper is to discuss the statistical properties of the or-
dinary and smooth backfitting methods in additive quantile regression. The meth-
ods are difficult to analyze since there exists no explicit definition for the ordi-
nary backfitting estimator and, for both estimators, the objective functions defin-
ing the estimators are not differentiable. We borrow empirical process techniques
to tackle the problem. In particular, we devise a theoretical mean regression model
by using a Bahadur representation for the sample quantiles. We show that the least
squares ordinary and smooth backfitting estimators in this theoretical mean regres-
sion model are asymptotically equivalent to the corresponding quantile estimators
in the original model. This makes the theoretical properties of the two backfitting
quantile estimators well understood from the existing theory for the corresponding
least squares backfitting mean regression estimators. The theory was confirmed by
a simulation study. Also, it was observed in the simulation study that the smooth
backfitting estimator outperformed the ordinary backfitting estimator in additive
quantile regression.

The paper is organized as follows. In the next section, the ordinary and smooth
backfitting methods for additive quantile regression are introduced and their the-
oretical properties are provided. In Section 3, some computational aspects of the
smooth backfitting method are discussed. The simulation results for the finite sam-
ple properties of the two backfitting methods are presented in Section 4. Technical
details are given in Section 5.

2. Main results. It is assumed for one-dimensional response variables Y 1,
. . . , Y n that

Y i = m0 + m1(X
i
1) + · · · + md(Xi

d) + εi, 1 ≤ i ≤ n.(2.1)
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Here, εi are error variables, m1, . . . ,md are unknown functions from R to R satis-
fying

∫
mj(xj )wj (xj ) dxj = 0 for some weight functions wj , m0 is an unknown

constant, and Xi = (Xi
1, . . . ,X

i
d) are random design points in R

d . Throughout the
paper, we assume that (Xi, εi) are i.i.d. and that Xi

j takes its values in a bounded

interval Ij . Furthermore, it is assumed that the conditional α-quantile of εi given
Xi equals zero. This model excludes interesting auto-regression models, but it
simplifies our asymptotic analysis. We expect that our results can be extended to
dependent observations under mixing conditions.

The ordinary backfitting estimator is based on an iterative algorithm. The esti-
mate of mj is updated by the following equation:

m̂BF
j (xj ) = arg min

θ∈�

n∑
i=1

τα

(
Y i − θ − m̂BF

0 −
d∑

�=1,�=j

m̂BF
� (Xi

�)

)

(2.2)
× Kj,hj

(xj ,X
i
j ).

Here, τα is the so called “check function” defined by τα(u) = u{α − I (u < 0)},
and Kj,g are kernel functions with bandwidth g; see the assumptions below. To
simplify the mathematical argumentation, the minimization in (2.2) runs over a
compact set �. It is assumed that all values of the function mj lie in the interior
of �. As in the case of mean regression, the ordinary backfitting estimator is not
defined as a solution of a global minimization problem.

The smooth backfitting estimator is also based on an iterative algorithm. The
estimate of mj is updated by the following integral equation:

m̂SBF
j (xj ) = arg min

θ∈�

n∑
i=1

∫
τα

(
Y i − θ − m̂SBF

0 −
d∑

�=1,�=j

m̂SBF
� (x�)

)

(2.3)
× ∏

�=1,�=j

K�,h�
(x�,X

i
�) dx� · Kj,hj

(xj ,X
i
j ),

where the integration is over the support of (Xi
1, . . . ,X

i
j−1,X

i
j+1, . . . ,X

i
d). This

is an iterative scheme for obtaining m̂SBF
j , j = 0,1, . . . , d , which minimize

n∑
i=1

∫
τα

(
Y i − m̂SBF

0 −
d∑

j=1

m̂SBF
j (xj )

)

(2.4)
× K1,h1(x1,X

i
1) · · ·Kd,hd

(xd,Xi
d) dx1 · · ·dxd,

where the integration is over the support of Xi . The minimizations or iterations are
done under the constraints∫

Ij

m̂l
j (xj )wj (xj ) dxj = 0, j = 1, . . . , d and l = BF,SBF(2.5)
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for some weight functions wj . One may take unknown weight functions such as
the marginal densities of Xj and use consistent estimators of them as the weight
functions wj in the integrals (2.5). But this would lead to more complicated bias
calculation.

We compare our model (2.1) with the following theoretical model. For i =
1, . . . , n, let Z1, . . . ,Zn be one-dimensional variables such that

Zi = m0 + m1(X
i
1) + · · · + md(Xi

d) + ηi.(2.6)

Here, the constant m0, the functions m1, . . . ,md and the covariates Xi
1, . . . ,X

i
d are

those in (2.1). The error variables ηi are defined by

ηi = −I (εi ≤ 0) − α

fε|X(0|Xi)
,

where fε|X is the conditional density of ε given X. This definition is motivated
from the Bahadur representation of sample quantiles [Bahadur (1966)]. For an
independent sample of ε1, . . . , εn with densities fi and α-quantiles being equal
to 0, the Bahadur expansion states that the αth sample quantile θ̂α of ε1, . . . , εn is
asymptotically equivalent to the weighted average∑n

i=1 fi(0)ηi∑n
i=1 fi(0)

,

where ηi = −{I (εi ≤ 0) − α}fi(0)−1. Thus, the estimator θ̂α is asymptotically
equivalent to the minimizer of

θ →
n∑

i=1

fi(0)(ηi − θ)2.

This consideration suggests that the ordinary and smooth backfitting estimators
defined at (2.2) and (2.3), respectively, may be approximated well by the corre-
sponding weighted local least squares estimators in the model (2.6). Note that the
model (2.6) is an additive model with errors ηi having conditional mean zero given
the covariates Xi . Thus, the weighted ordinary backfitting estimators m̂

∗,BF
j in this

model are defined by the following iterations:

m̂
∗,BF
j (xj ) = arg min

θ∈�

n∑
i=1

{
Zi − θ − m̂

∗,BF
0 −

d∑
�=1,�=j

m̂
∗,BF
� (Xi

�)

}2

× fε|X(0|Xi)Kj,hj
(xj ,X

i
j )

(2.7)

=
n∑

i=1

{
Zi − m̂

∗,BF
0 −

d∑
�=1,�=j

m̂
∗,BF
� (Xi

�)

}
fε|X(0|Xi)Kj,hj

(xj ,X
i
j )

×
{

n∑
i=1

fε|X(0|Xi)Kj,hj
(xj ,X

i
j )

}−1

.
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Also, the weighted smooth backfitting estimators m̂
∗,SBF
j in the model (2.6) are

defined by

m̂
∗,SBF
j (xj ) = m̃

∗,SBF
j (xj ) − m̂

∗,SBF
0

(2.8)

−
d∑

�=1,�=j

∫
m̂

∗,SBF
� (x�)

f̂ w
Xj ,X�

(xj , x�)

f̂ w
Xj

(xj )
dx�,

where

m̃
∗,SBF
j (xj ) = n−1

n∑
i=1

Zifε|X(0|Xi)Kj,hj
(xj ,X

i
j )f̂

w
Xj

(xj )
−1,

f̂ w
Xj

(xj ) = n−1
n∑

i=1

fε|X(0|Xi)Kj,hj
(xj ,X

i
j ),

f̂ w
Xj ,X�

(xj , x�) = n−1
n∑

i=1

fε|X(0|Xi)Kj,hj
(xj ,X

i
j )K�,h�

(x�,X
i
�)

are weighted modifications of the marginal Nadaraya–Watson estimator and the
kernel estimators of the one- and two-dimensional marginal densities of X, re-
spectively. The latter two are in fact kernel estimators of

f w
Xj

(xj ) =
∫

fε|X(0|x)fX(x) dx−j = fε,Xj
(0, xj ),

f w
Xj ,X�

(xj , x�) =
∫

fε|X(0|x)fX(x) dx−(j,�) = fε,Xj ,X�
(0, xj , x�),

respectively, where x−j = (x1, . . . , xj−1, xj+1, . . . , xd)� and x−(j,�) is a vector
that has elements xl with 1 ≤ l ≤ d and l �= j, �.

Our first result (Proposition 2.1) shows that each application of the updating
equations (2.7) and (2.8) in the theoretical model (2.6), respectively, lead to asymp-
totically equivalent results with those at (2.2) and (2.3) in the original model (2.1).
In the next step, we will apply Proposition 2.1 for iterative applications of the
backfitting updates. We will show that the asymptotic equivalence remains to hold
for iterative applications of the backfitting procedures as long as the number of
iterations is small enough. By extending the results for backfitting and smooth
backfitting estimators in mean regression, we will use this fact to get our main re-
sult (Theorem 2.2). The latter states an asymptotic normality result for the ordinary
and smooth backfitting quantile estimators in additive models. Its proof is based
on an argument that carries an asymptotic normality result in mean regression over
to quantile regression.

We now introduce assumptions that guarantee asymptotic equivalence between
the mean and the quantile backfitting estimators after one cycle of update. Fur-
ther assumptions that are needed for iterative updates will be given after Proposi-
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tion 2.1. For simplicity, we state Proposition 2.1 and its conditions only for the up-
dates of the first additive component. In abuse of notation, we denote the estimators
of the components mj,2 ≤ j ≤ d , at the preceding iteration step, by m̂l

2, . . . , m̂
l
d ,

where l stands for BF, SBF, ∗,BF or ∗,SBF. The updates of the first component
that are obtained by plugging these estimators into (2.2), (2.3), (2.7) and (2.8), re-
spectively, are denoted by m̂BF

1 , m̂SBF
1 , m̂

∗,BF
1 and m̂

∗,SBF
1 . Thus, for simplicity of

notation, we use the same kind of symbol for the updates (j = 1) and for the inputs
of the backfitting algorithms (2 ≤ j ≤ d).

We make the following assumptions:

(A1) The d-dimensional vector Xi has compact support I = I1 × · · · × Id for
bounded intervals Ij = [aj , bj ] and its density fX is continuous and strictly
positive on I .

(A2) There exist constants CK,CS > 0 such that for all xj ∈ Ij , 1 ≤ j ≤ d , the
kernels Kj,g(xj , ·) are positive, bounded by CKg−1, have bounded support
⊂ [x −CSg, x +CSg], and are Lipschitz continuous with Lipschitz constant
bounded by CKg−2. The weight functions wj are bounded functions with
wj(xj ) ≥ 0 for xj ∈ Ij and

∫
wj(xj ) dxj > 0.

(A3) The conditional density fε|X(0|x) of ε given X = x is bounded away from
zero and infinity for x ∈ I . Furthermore, it satisfies the following uniform
Lipschitz condition:

|fε|X(e|x) − fε|X(0|x)| ≤ C1|e|
for x ∈ I and for e in a neighborhood of 0 with a constant C1 > 0 that does
not depend on x.

(A4) The bandwidths h1, . . . , hd are of order n−1/5.

Assumptions (A1)–(A4) are standard smoothing assumptions. In particular,
(A2) is fulfilled for convolution kernels with an appropriate boundary correction.

For the properties of the updated estimators, the estimators at the preceding iter-
ation step need to fulfill certain regularity conditions. We will proceed with the fol-
lowing assumptions that are stated for some constants 0 < ρ ≤ 1, 
1,
2,
3 > 0
and 0 ≤ ξ ≤ (1 + ρ)
1.

(A5) For j = 2, . . . , d , it holds for l = BF and l = SBF that

sup
aj+CShj≤xj≤bj−CShj

|m̂l
j (xj ) − mj(xj )| = OP

(
n−(4+4ρ)/(10+15ρ)−
1

)
,

sup
aj≤xj≤bj

|m̂l
j (xj ) − mj(xj )| = OP

(
n−[(4+4ρ)/(10+15ρ)−
1]/2).

(A6) There exist random functions g2, . . . , gd with derivatives that fulfill the Lip-
schitz condition

|g′
j (xj ) − g′

j (x
∗
j )| ≤ C|xj − x∗

j |ρnξ
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for j = 2, . . . , d and xj , x
∗
j ∈ Ij . Furthermore, these functions satisfy

sup
aj≤xj≤bj

|m̂l
j (xj ) − gj (xj )| = OP (n−2/5−
2)

for l = BF and l = SBF.
(A7) For j = 2, . . . , d , it holds for l = BF and l = SBF that

sup
aj+CShj≤xj≤bj−CShj

|m̂l
j (xj ) − m̂

∗,l
j (xj )| = OP (n−2/5−
3),

sup
aj≤xj≤bj

|m̂l
j (xj ) − m̂

∗,l
j (xj )| = OP (n−1/5−
3).

We briefly comment on the assumptions (A5)–(A7). A more detailed discus-
sion is given after Theorem 2.2. Assumption (A5) requires suboptimal rates for
the preceding estimators that are plugged in for the update of the first component.
Assumption (A6) states that the class of possible realizations of the preceding esti-
mators is not too rich. We assume that the preceding estimators are in a neighbor-
hood of the class of functions with Lipschitz continuous derivatives. Other classes
could be used but for a Lipschitz class it is relatively easy to check if a function
belongs to it. Note that we do not assume that the quantile estimator itself has a
smooth derivative. In general, such an assumption does not hold because quantile
kernel estimators are not smooth. Assumption (A7) is very natural. It states that the
estimators that are plugged into the updating equation of the quantile model and of
the mean regression model differ only by second order terms. Without this assump-
tion, it cannot be expected that the updated estimators differ also only by second
order terms. We will see below that this assumption is automatically fulfilled if
we apply Proposition 2.1 for an analysis of iterative applications of the backfitting
algorithms. In the assumptions (A5) and (A7), if one replaces the interior region
[aj +CShj , bj −CShj ] by the whole range [aj , bj ] and if one uses boundary cor-
rected kernels, then one can also replace in Proposition 2.1 the suprema over the
interior region by those over the whole range, and the estimators achieve the rate
n−2/5 at the boundary, too.

PROPOSITION 2.1. Under the assumptions (A1)–(A7), it holds for the up-
dated estimators with l = BF and with l = SBF that for some δ > 0

sup
a1+CSh1≤x1≤b1−CSh1

|m̂l
1(x1) − m̂

∗,l
1 (x1)| = OP (n−2/5−δ),

sup
a1≤x1≤b1

|m̂l
1(x1) − m̂

∗,l
1 (x1)| = OP (n−1/5−δ).

The additional factor n−δ allows an iterative application of the proposition.
This has an important implication. We recall that the backfitting algorithms for
mean regression have a geometric rate of convergence. In particular, in the case
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of smooth backfitting, only square integrability for the initial estimator is required
for the algorithm to achieve the geometric rate of convergence, see Theorem 1
of Mammen, Linton and Nielsen (1999). Suppose one chooses square integrable
functions, say m̂

BF,[0]
2 , . . . , m̂

BF,[0]
d as the starting value in the algorithm for the

backfitting quantile estimator and that one runs a cycle of backfitting iterations
(2.2) for j = 1, . . . , d . Then we get updates m̂

BF,[l]
2 , . . . , m̂

BF,[l]
d with l = 1 and

after further cycles with l > 1. (Note that by construction of the backfitting es-
timator we do not need a pilot version of m

BF,[0]
1 .) Then, one can think of run-

ning the backfitting mean regression algorithm (2.7) with the same initial estima-
tors m̂

BF,[0]
2 , . . . , m̂

BF,[0]
d in parallel with the backfitting quantile regression algo-

rithm (2.2). This results in updates m̂
∗,BF,[l]
2 , . . . , m̂

∗,BF,[l]
d for l ≥ 1. In the proof of

our next theorem, we will see that after l cycles of the two parallel iterations, the
difference m̂

BF,[l]
j − m̂

∗,BF,[l]
j is of order OP (n−2/5−δ) in the interior, and of or-

der OP (n−1/5−δ) at the boundaries. This holds as long as l ≤ Citer logn with Citer

small enough. On the other hand, we will show that m̂
∗,BF,[Citer logn]
j is asymptoti-

cally equivalent to the limit of the backfitting algorithm m̂
∗,BF,[∞]
j , if Citer is large

enough. If the pilot estimators m̂
BF,[0]
2 , . . . , m̂

BF,[0]
d are accurate enough, then the

constant Citer can be chosen such that both requirements are fulfilled. This will
allow us to get the asymptotic limit distribution of m̂

∗,BF,[Citer logn]
j , and thus that

of m̂
BF,[Citer logn]
j .

Similar findings also hold for the smooth backfitting estimator. We denote the
starting values by m̂

SBF,[0]
2 , . . . , m̂

SBF,[0]
d and the updates by m̂

SBF,[l]
2 , . . . , m̂

SBF,[l]
d

or m̂
∗,SBF,[l]
2 , . . . , m̂

∗,SBF,[l]
d , respectively.

The following theorem summarizes our discussion. For the theorem, we need
the following additional assumptions:

(A8) There exist constants cK,CD > 0, C′
S ≥ 0 such that for aj + C′

Shj ≤
xj , uj ≤ bj − C′

Shj it holds that Kj,hj
(xj , uj ) = h−1

j K[h−1
j (xj − uj )] for a

function K with
∫

K(v)dv = 1 and
∫

vK(v)dv = 0. For all xj , uj ∈ Ij ,
1 ≤ j ≤ d , the kernels Kj,g(xj , uj ) have a second derivative w.r.t. xj

that is bounded by CDg−3 and they fulfill
∫

Kj,g(xj , vj ) dvj ≥ cK and∫
Kj,g(vj , uj ) dvj = 1.

(A9) The function f w
Xk |Xj

(xk|xj ) ≡ f w
Xj ,Xk

(xj , xk)/f
w
Xj

(xj ) has a second deriva-
tive w.r.t. xj that is bounded over xj ∈ Ij , xk ∈ Ik , 1 ≤ j, k ≤ d , k �= j .

The last condition in (A8) implies that the one-dimensional kernel density es-
timators integrate to one and that they are equal to the corresponding marginal-
ization of higher-dimensional product-kernel density estimators. This assumption
simplifies bias calculation of the backfitting estimators.
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THEOREM 2.2. Assume that (A1)–(A4), (A8) and (A9) hold, and that (A5)
and (A6) are satisfied by m̂BF

j = m̂
BF,[0]
j and m̂SBF

j = m̂
SBF,[0]
j (j = 2, . . . , d)

with ξ,
2,
3,
2
5 − 1+ρ

2+3ρ
4
5 − 
1 > 0 small enough. Then, we get for m̂

l,iter
j =

m̂
l,[Citer logn]
j with an appropriate choice of Citer = Citer,l (l = BF and l = SBF)

that for aj < xj < bj√
nhj [m̂l,iter

j (xj ) − mj(xj ) − h2
jβj (xj )]

→ N

(
0,

α(1 − α)

fε,Xj
(0, xj )2 fXj

(xj )

∫
K2(u) du

)

in distribution, where βj (xj ) = β∗
j (xj ) − ∫

β∗
j (uj )wj (uj ) duj , β∗

j (xj ) = h−2
j ×

m′
j (xj )

∫
(uj − xj )Kj,hj

(xj , uj ) duj + μ2,K
1
2m′′

j (xj ) + μ2,Kβ∗∗
j (xj ), μ2,K =∫

v2K(v)dv and (β∗∗
1 , . . . , β∗∗

d ) is a tuple of functions that minimizes

∫ [
d∑

j=1

(
m′

j (xj )
∂fε,X(0, x)/∂xj

fε,X(0, x)
− β∗∗

j (xj )

)]2

fε,X(0, x) dx.

Note that the first term in the definition of β∗
j is of order n1/5 at the boundary but

vanishes in the interior of Ij . Because of the norming with the weight function wj ,
the bias function βj is shifted from β∗

j by
∫

β∗
j (uj )wj (uj ) duj . One can estimate

the bias and the variance terms because they only require two-dimensional objects
if one calculates them with the backfitting algorithms.

We now come back to discussion of the assumptions (A5)–(A7). Assumption
(A5) allows that the starting estimators have a suboptimal rate. In particular, it re-
quires that the starting estimators are consistent. For example, one could use here
orthogonal series estimators, smoothing splines or sieve estimators. In the simu-
lations, we got good results by using constant functions as starting values, that is,
functions that are not consistent. For backfitting mean regression, it is known that
every starting value works. Because of the nonlinearity of quantile regression, we
do not expect that such a result can be proved for quantile regression. In our result,
we did not specify the required rate for the pilot estimator. But, if one does this,
we conjecture that one can get the statement of Theorem 2.2 with pilot estimators
that have much slower rates. For such a theorem, one has to prove a modification
of Proposition 2.1 with the following statement: for the estimators at the preced-
ing stage of the backfitting algorithms, less accurate error bounds would suffice to
get that the difference between the backfitting estimators m̂1 and m̂∗

1 at the current
stage of the algorithm is of higher order than the accuracy of the preceding estima-
tors. This would allow one to weaken the assumptions on the rate of the starting
estimators.

Assumption (A7) is not required for Theorem 2.2. This is because running the
iterative algorithms (2.7) and (2.8) is only imaginary and in the proof we choose
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to use the same starting values as in the real iterative algorithms (2.2) and (2.3),
respectively. Thus, (A7) is automatically satisfied at the beginning of the itera-
tions. Proposition 2.1 tells us that the updated estimators also fulfill (A7). This
holds with the same rate but with multiplicative factors. For this reason, after L

backfitting cycles the difference between the mean regression and the quantile re-
gression estimators is not of order (C × L)n−2/5−δ , but of order CLn−2/5−δ , for
some δ > 0, C > 1. For a number of iterations, Citer logn such that Citer logC < δ

this is of order o(n−2/5).
Compared with the results for mean regression backfitting estimators, our re-

sults for quantile estimation are weaker in two aspects. First, we need initial esti-
mators that are consistent, whereas in mean regression one can start with arbitrary
initial values. This restriction comes from the nonlinearity of the quantile func-
tional. Second, we put restrictions on the number of iteration steps. It must be of
logarithmic order with a factor that is not too small and not too large. When letting
run the two parallel backfitting procedures for mean and quantile regression, we
were not able to control in the proof the difference between the two outcomes if
the number of iterations is too large. We conjecture that both restrictions are nec-
essary only for technical reasons in our approach for the proof. In our simulation,
we started with nonconsistent pilot estimators and we let the algorithms run until
the outcomes were stabilized. According to our experience in the simulation, there
seemed practically no advantage in limiting the number of iterations and there was
also no problem when starting the algorithm with initial estimators that were far
away from the corresponding underlying regression functions.

A natural extension of our results is to study local polynomial quantile esti-
mators. This can be done along the lines of this paper by putting smoothness re-
strictions also on the higher order terms of the local polynomial fit. This can be
done relatively easily for local polynomial smooth backfitting. For local polyno-
mial ordinary backfitting, it would require also essentially new theoretical results
for mean regression. We do not follow this line in this paper.

3. Numerical implementation. In practical implementations of the smooth
backfitting method, one may approximate the integral at (2.3) by Monte Carlo
integration. This can be done in several ways. In one version, one generates
(U

j
2 , . . . ,U

j
d ) for 1 ≤ j ≤ M from a (d − 1)-variate uniform distribution on

I2 × · · · × Id . Then an approximation of m̂SBF
1 (x1) may be obtained by

m̂SBF
1 (x1) ≈ arg min

θ∈�

n∑
i=1

M∑
j=1

τα

(
Yi − θ − m̂SBF

0 − m̂SBF
2 (U

j
2 ) − · · · − m̂SBF

d (U
j
d )

)

× K1,h1(x1,X
i
1)K2,h2(U

j
2 ,Xi

2) · · ·Kd,hd
(U

j
d ,Xi

d).

In practical implementation, the values U
j
k can be chosen from a finite grid of

equidistant points. Then the algorithm has to update the function values of the
additive components on this grid.
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In another version, one generates independent U�,i,j for � = 2, . . . , d , i =
1, . . . , n, j = 1, . . . , J , where U�,i,j has density K�,hl

(·,Xi
�). Again, in practical

implementation, the values of these random variables can be chosen from a finite
grid of equidistant points. Then the smooth backfitting estimator at x1 is calculated
by

m̂SBF
1 (x1) ≈ arg min

θ∈�

n∑
i=1

J∑
j=1

τα

(
Yi − θ − m̂SBF

0 − m̂SBF
2 (U2,i,j )

− · · · − m̂SBF
d (Ud,i,j )

)
K1,h1(x1,X

i
1).

This means that the smooth backfitting estimator can be calculated by an algorithm
that is designed for the ordinary backfitting with sample (Yi,X

i
1,U2,i,j , . . . ,Ud,i,j )

for i = 1, . . . , n and j = 1, . . . , J . In this case, the speed of the algorithm for the
smooth backfitting behaves as that for the ordinary backfitting with sample size Jn.

In the last algorithm, the values U�,i,j could be replaced by deterministic
choices such that for fixed i and � the probability density K�,h�

(·,Xi
�) put equal

mass between neighbored points of U�,i,j , that is,∫ U�,i,j

−∞
K�,h�

(x�,X
i
�) dx� = j/(J + 1), j = 1, . . . , J.

Suppose that K�,h�
(·, z) is symmetric about z. Then the algorithm calculates the or-

dinary backfitting estimates when J = 1, since in that case U�,i,1 = Xi
�. It also ap-

proximates the smooth backfitting estimates as J → ∞. Thus, there exists a broad
band of compromises between the ordinary backfitting and the smooth backfitting
for intermediate choices of J .

4. Simulation study. In this section, we illustrate the asymptotic equivalence
asserted in Proposition 2.1. We compared the numerical properties of the ordinary
backfitting (BF) and the smooth backfitting (SBF) estimators defined at (2.2) and
(2.3) with their theoretical mean regression versions defined at (2.7) and (2.8),
respectively.

In the simulation, we considered the following model:

Y i = f1(X
i
1) + f2(X

i
2) + f3(X

i
3) + {σ1(X

i
1) + σ2(X

i
2) + σ3(X

i
3)}Ui,

where Ui are i.i.d. N(0,1), f1(x1) = x3
1 , f2(x2) = sin(πx2), f3(x3) = 2 ×

exp(−16x2
3), σ1(x1) = cos(x1), σ2(x2) = exp(x2) and σ3(x3) = exp(x3). With this

model, the centered version of the j th additive component of the α-quantile func-
tion equals

mj(xj ;α) = cj + fj (xj ) + σj (xj )�
−1(α),

where �−1(α) is the α-quantile of the standard normal distribution and cj is the
constant that makes Emj(X

1
j ;α) = 0. We considered two different cases for the
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distribution of Xi . One was the case where the components of Xi were indepen-
dent. In this case, Xi were generated from N3(0, J ) truncated outside [−1,1]3,
where J denotes the identity matrix of dimension d = 3. This means the density
of Xi was fX(x) = ϕ(x)I (x ∈ [−1,1]3)/

∫
[−1,1]3 ϕ(z) dz, where ϕ denotes the

density function of N3(0, J ). The second was the case where the components of
Xi were correlated. In this case, Xi ∼ N3(0,V ) truncated outside [−1,1]3, where
V ≡ (vij ) has vii = 1 and vij = 0.9 for i �= j . Because of the truncation, the actual
correlation equals 0.644. The sample sizes were n = 200 and n = 500. These rela-
tively large sample sizes were considered to let the asymptotic results in Section 2
be well in effect.

Implementation of the ordinary and smooth backfitting methods requires opti-
mization involving the nonsmooth function τα . For this, we used R function rq()
in the library quantreg. For the smooth backfitting, we discretized the integrals
on a fine grid in [−1,1]3. We used

Kj,g(x,u) =
[∫

K

(
x − u

g

)
dx

]−1

K

(
x − u

g

)
,(4.1)

where K is Epanechinikov kernel given by K(u) = (3/4)(1 − u2)I[−1,1](u). For
the bandwidths, we took h1 = h2 = h3 = h for simplicity. Normalization was done
in each iteration so that

∫
m̂j (xj )f̂Xj

(xj ) dxj = 0. Note that we used estimates
of fXj

in the normalization, instead of fixed weight functions which we consid-
ered in our theoretical development for simplicity. Using a different weight func-
tion changes the estimator only by an additive constant. To get the density esti-
mates f̂Xj

, we used the same kernel K and the bandwidth h that we employed for
quantile estimation. We chose the initial estimates in the iterative algorithms (2.2),
(2.3), (2.7) and (2.8) to be zero. It was found that the algorithms converged with
this initial choice in all cases.

Table 1 show Monte Carlo estimates, based on 200 pseudo-samples, of the mean
integrated squared errors,

MISE = E

∫
{m̄1(x1)+m̄2(x2)+m̄3(x3)−m1(x1)−m2(x2)−m3(x3)}2fX(x) dx,

where fX is the density function of Xi , and m̄j represents m̂BF
j , m̂SBF

j , m̂
∗,BF
j or

m̂
∗,SBF
j . For each estimator, its MISE was estimated by ISE = ∑200

r=1 ISEr/200,
where ISEr is the value of the integrated squared error∫

{m̄1(x1) + m̄2(x2) + m̄3(x3) − m1(x1) − m2(x2) − m3(x3)}2fX(x) dx

for the r th sample. We computed the estimates of the additive regression func-
tion with bandwidths on a grid in [0.1,1.5]. The values for m̂BF and m̂∗,BF re-
ported in the table are for the bandwidths that gave optimal performance of m̂BF,
and likewise those for m̂SBF and m̂∗,SBF are for the bandwidths that gave optimal
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TABLE 1
Mean integrated squared errors of the estimators

Sample Distribution
size of X Method α = 0.2 α = 0.5 α = 0.8

n = 200 Uncorrel. BF 0.09345 0.07457 0.08770
BF∗ 0.09585 0.07512 0.08208
SBF 0.08818 0.07039 0.08209
SBF∗ 0.09436 0.07455 0.07937

Correl. BF 0.09043 0.07165 0.08382
BF∗ 0.09864 0.07539 0.08276
SBF 0.08555 0.06712 0.07937
SBF∗ 0.09136 0.07140 0.08412

n = 500 Uncorrel. BF 0.05240 0.04020 0.04881
BF∗ 0.04959 0.04121 0.04729
SBF 0.04905 0.03827 0.04557
SBF∗ 0.05045 0.04178 0.04896

Correl. BF 0.05463 0.04182 0.05094
BF∗ 0.05137 0.04305 0.05312
SBF 0.05186 0.03983 0.04743
SBF∗ 0.05496 0.04221 0.05296

Note: BF∗ denotes the theoretical mean regression ordinary backfitting estimator, and SBF∗ denotes
the theoretical mean regression smooth backfitting estimator.

performance of m̂SBF. In most cases, the estimated MISE was minimized around
h = 0.5 when n = 200, and around h = 0.4 when n = 500. This is roughly con-
sistent with the theory that the size of the optimal bandwidth equals n−1/5 for
univariate smoothing, according to which the ratio of the optimal bandwidths for
n = 200 and n = 500 equals (500/200)1/5 ≈ 1.20.

To compare m̂BF and m̂SBF with their theoretical mean regression counterparts
m̂∗,BF and m̂∗,SBF, we find that the two corresponding MISE values are very close,
and that in most cases the differences get smaller as n increases. This supports
our theory presented in Section 2. In the table, we also find that the size of the
estimated MISE for n = 500 is nearly half of the corresponding value for n = 200.
This supports the fact that the ordinary and smooth backfitting estimators enjoy
the univariate rate of convergence n−4/5 in MISE, since (500/200)4/5 ≈ 2.08.

According to Table 1, the MISE values of the estimators at α = 0.5 are always
smaller than those at α = 0.2 and α = 0.8. Note that, in Theorem 2.2, f w

Xj
(xj )

is nothing else than the joint density of (ε,Xj ) at the point (0, xj ). Under our
simulation model, the conditional density can be expressed as

f w
Xj

(xj ) =
∫ 1

σ1(x1) + σ2(x2) + σ3(x3)
φ

(
�−1(α)

σ1(x1) + σ2(x2) + σ3(x3)

)

× fX(x) dx−j
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for j = 1,2 and 3, where φ denotes the density of the standard normal distribution.
According to Theorem 2.2, this implies that the theoretical value of the integrated
variance increases as α gets away from 0.5. This explains why we have larger
MISE values for α away from 0.5. Similar numerical evidences were also observed
by Yu and Jones (1998) and Lee, Lee and Park (2006).

Figure 1 illustrates the asymptotic normality of m̂BF
j and m̂SBF

j . It depicts the

normal Q–Q plots of the 200 values of m̂BF
2 (x) and m̂SBF

2 (x) at x = 0 when α = 0.5
and n = 200. The figure is for the case where the components of Xi are correlated.
Although it exhibits slight departures from normality at tails, the figure suggests
that the distributions of the estimators get close to normal even for moderate sam-
ple sizes. We obtained other Q–Q plots that corresponded to other components j ,
other points x or other quantile levels α, and also repeated them in other simulation
models. They looked not much different from the case we report here.

Figure 2 illustrates how the four curve estimates m̂BF
j , m̂

∗,BF
j , m̂SBF

j and m̂
∗,SBF
j

computed from a single typical sample look like. In the top two panels, the long-
dashed and dotted curves, respectively, represent m̂BF

j and m̂
∗,BF
j computed from a

sample for which the value of the integrated squared error∫
{m̂BF

j (xj ) − mj(xj )}2 dxj

was the median of those values obtained from the 200 pseudo-samples. Similarly,
the bottom two panels depict m̂SBF

j and m̂
∗,SBF
j computed from a sample that gave

the median performance in terms of the integrated squared error∫
{m̂SBF

j (xj ) − mj(xj )}2 dxj .

In the figure the solid curves represent the true functions. In comparison of the
pairs, mBF

j versus m̂
∗,BF
j and m̂SBF

j versus m̂
∗,SBF
j , we find that the two correspond-

ing curves move together relatively closer than with the true function, although
there are some places where they are more distant in the case of the backfitting
estimator for α = 0.2 (top left panel). The figure is for the estimates of the second
component function when n = 500 and the components of Xi were correlated.
Those for other cases gave similar lesson, so that are not included here.

One may be also interested in comparing the two backfitting quantile estima-
tors m̂BF and m̂SBF in terms of MISE. For this, we computed the standard errors
of the differences between the estimated values of MISE of the respective estima-
tors. In Table 2, we provide the average differences DIFF and their standard errors
calculated by the formula

S.E. =
√√√√200∑

r=1

(DIFFr − DIFF)2/(199 × 200),
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FIG. 1. Normal Q–Q plots for m̂BF
2 (x) and m̂SBF

2 (x) based on 200 values computed from

pseudo-samples in the case where x = 0, α = 0.5, n = 200 and the components of Xi were cor-
related. The theoretical quantiles are on the horizontal axis and the sample quantiles are on the
vertical axis.
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FIG. 2. Estimates of a component function computed from a sample that gave the median perfor-
mance in terms of the integrated squared error of m̂BF

j or m̂SBF
j , when n = 500 and the covariates

were correlated. Long-dashed and dotted curves in the top two panels are m̂BF
j and m̂

∗,BF
j , respec-

tively, and those in the bottom two panels are m̂SBF
j and m̂

∗,SBF
j . Left two panels are for the case

α = 0.2 and the right are for α = 0.5. Solid curves represent the true component functions.

where DIFF denotes the average of DIFFr over 200 pseudo-samples, and

DIFFr = (ISE of m̂BF for the rth sample) − (ISE of m̂SBF for the rth sample).

Comparing the two backfitting quantile estimators, we find that the smooth
backfitting estimators have smaller values of the estimated MISE in all cases than
the ordinary backfitting estimators. In particular, all the differences are statistically
significant, exceeding two standard errors. Although not reported in the paper, we
also compared the two backfitting quantile estimators with their oracle versions.
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TABLE 2
Differences in mean integrated squared errors of BF and SBF estimators

Sample Distribution
size of X α = 0.2 α = 0.5 α = 0.8

n = 200 Uncorrel. 0.00527 0.00418 0.00561
(0.00099) (0.00063) (0.00087)

Correl. 0.00488 0.00453 0.00445
(0.00098) (0.00068) (0.00096)

n = 500 Uncorrel. 0.00335 0.00193 0.00324
(0.00045) (0.00028) (0.00038)

Correl. 0.00277 0.00199 0.00351
(0.00042) (0.00034) (0.00042)

Note: the numbers are averages of (ISE of m̂BF) − (ISE of m̂SBF) over 200 pseudo-samples, and
their standard errors are given in the parentheses.

An oracle estimator of an additive component is the one obtained by using true
functions for the other components. We found that in all cases the two backfitting
quantile estimators had similar performance as their oracle versions.

5. Proofs.

5.1. Proof of Proposition 2.1. We only give the proof for the ordinary back-
fitting etimator. The proof will be given for a1 + CSn−1/5 ≤ x1 ≤ b1 − CSn−1/5.
The proofs for the smooth backfitting estimator and for boundary points follow by
similar arguments. For simplicity of notation, we also assume that d = 2.

The basic asymptotic argument for a treatment of parametric and nonparametric
quantile estimators is a Bahadur expansion. It states that the quantile estimator is
asymptotically equivalent to a linear statistic, that is, to a sum of independent vari-
ables. This expansion would directly carry over to our case if the pilot functions
(input) of the backfitting algorithms would be nonrandom. Because this is not the
case, we have to generalize the Bahadur approach. We have to show that the Ba-
hadur expansion holds uniformly over a class of pilot functions. Furthermore, we
have to verify that the pilot estimators lie in this function class with probability
tending to one. The latter is guaranteed by the assumptions (A5) and (A6). The
uniform expansion is the main step of our proof.

Define

Vi(θ,μ2, x1)

= K1,h1(x1,X
i
1)
[
τα

(
Y i − θ − μ2(X

i
2)
) − τα

(
εi + m1(X

i
1) − m1(x1)

)
− (

θ − m1(x1) + μ2(X
i
2) − m2(X

i
2)
)

× (
I
(
εi + m1(X

i
1) − m1(x1) < 0

) − α
)]

.
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Let J1 ≡ J1(x1) and J2 ≡ J2(x1) be index sets defined by

J1 = {i : |Xi
1 − x1| ≤ Ch1, a2 + CSn−1/5 ≤ Xi

2 ≤ b2 − CSn−1/5},
J2 = {i : |Xi

1 − x1| ≤ Ch1, a2 ≤ Xi
2 < a2 + CSn−1/5 or b2 − CSn−1/5 < Xi

2 ≤ b2}.
Put

D(θ,μ2, x1)

=
n∑

i=1

[Vi(θ,μ2, x1) − EX Vi(θ,μ2, x1)]

= ∑
i∈J1

[Vi(θ,μ2, x1) − EX Vi(θ,μ2, x1)]

+ ∑
i∈J2

[Vi(θ,μ2, x1) − EX Vi(θ,μ2, x1)]

≡ D1(θ,μ2, x1) + D2(θ,μ2, x1),

where EX is the conditional expectation given X = {X1, . . . ,Xn}. Let M1 and
M2 denote the numbers of elements of J1 and J2, respectively. These are random
variables. Since h1 is of order n−1/5 and the density fX is strictly positive on its
support, M1 is of order n × n−1/5 = n4/5 and M2 is of order n × n−1/5 × n−1/5 =
n3/5. Thus, there exist constants C1 > 0 and C2 > 0 such that C1n

4/5 ≤ M1 ≤
2C1n

4/5 and C2n
3/5 ≤ M2 ≤ 2C2n

3/5 with probability tending to one.
For a fixed constant D > 0, we now introduce the class Mn of all tuples of a

parameter θ ∈ � and a function g that fulfills

sup
a2+CSn−1/5≤x2≤b2−CSn−1/5

|g(x2) − m2(x2)| ≤ Dn−(1+ρ)/(2+3ρ)4/5−
1

and whose derivative fulfills a Lipschitz condition of order ρ with Lipschitz con-
stant C as in (A6).

For j ≥ 0, let Mn(2−j ) denote a grid of points in Mn such that for every
(θ, g) ∈ Mn there exists (θ∗, g∗) ∈ Mn(2−j ) with |θ∗ − θ | ≤ 2−j and ‖g∗ −
g‖∞ ≤ 2−j . Let Nj denote the number of points in the grid Mn(2−j ). Note that
Nj = O{exp(2j/(1+ρ)nξ/(1+ρ))}.

We apply the Bernstein inequality. For a sum of r independent random variables
Vi that are absolutely bounded by a constant κ and have finite variance bounded
by σ 2, this inequality states that

P

(∣∣∣∣∣r−1/2
r∑

i=1

(Vi − EVi)

∣∣∣∣∣ ≥ a

)
≤ 2 exp

(
− a2

2aκr−1/2 + 2σ 2

)

≤ 2 exp
(
− a

4κr−1/2

)
+ 2 exp

(
− a2

4σ 2

)
.
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We apply this inequality with a chaining argument for D1(θ,μ, x1) and D2(θ ,
μ,x1). In doing this, we take r = M1 (or r = M2, resp.) and P = P X where P X

is the conditional distribution given X = {X1, . . . ,Xn}. Let Jn be chosen so that
2−Jn ≤ n−2/5−δ ≤ 2−Jn+1 with δ > 0 small enough, see below. Define γ = 4(1 +
ρ)/[5(2 + 3ρ)] and In = {j : j ≤ Jn,Dn−γ−
1 ≥ 2−j }. Furthermore, for (θ,μ) ∈
Mn(2−Jn) choose (θj ,μj ) ∈ Mn(2−j ) with |θj − θ | ≤ 2−j and ‖μj − μ‖∞ ≤
2−j . For j = Jn, we choose (θj ,μj ) = (θ,μ). We do not indicate the dependence
of (θj ,μj ) on (θ,μ) in the notation. For j ≤ jn = min In, the grid Mn(2−j ) can
be chosen so that it contains only one value of μ. We assume that this value is
equal to μ0 = m2. Furthermore, we choose θ0 = m1(x1) and we assume w.l.o.g.
that the diameter of � is less than one. For j = 0, the grid Mn(2−j ) contains only
one value which we choose to be (θ0,μ0). Then

P
(

sup
(θ,μ)∈Mn(2−Jn )

|D1(θ,μ, x1)| > n−4/5−2δ
∣∣X

)

≤ P

(
sup

(θ,μ)∈Mn(2−Jn)

∣∣∣∣D1(θ
0,μ0, x1)

+ ∑
1≤j<jn

D1(θ
j ,μ0, x1) − D1(θ

j−1,μ0, x1)

+ ∑
jn≤j≤Jn

D1(θ
j ,μj , x1) − D1(θ

j−1,μj−1, x1)

∣∣∣∣
> n−4/5−2δ

∣∣X
)
.

Let sj be positive numbers (depending on n) such that
∑

1≤j≤Jn
sj ≤ 1/2. Then

the right-hand side of the above inequality is bounded by

P
(|D1(θ

0,μ0, x1)| > 2−1n−4/5−2δ|X
)

+ ∑
1≤j<jn

22j sup
∗

P
(|D1(θ

j ,μ0, x1)

− D1(θ
j−1,μ0, x1)| > sjn

−4/5−2δ|X
)

(5.1)

+ ∑
jn≤j≤Jn

NjNj−1 sup
∗∗

P
(|D1(θ

j ,μj , x1)

− D1(θ
j−1,μj−1, x1)| > sjn

−4/5−2δ|X
)
,

where sup∗ and sup∗∗ runs over all (θj ,μj ) ∈ Mn(2−j ) and (θj−1,μj−1) ∈
Mn(2−j+1) with |θj − θj−1| ≤ 2−j+1 and ‖μj − μj−1‖∞ ≤ 2−j+1.
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Using the Bernstein inequality with κ = O(2−jh−1
1 ), σ 2 = 2−2jO(n−γ−
1 ×

h−2
1 ) and a = M

−1/2
1 nsjn

−4/5−2δc, the last sum in (5.1) can be bounded by∑
jn≤j≤Jn

[
exp

(
d12j/(1+ρ)nξ/(1+ρ) − d2sjnn−4/5−2δ2jh1

)
(5.2)

+ exp
(
d12j/(1+ρ)nξ/(1+ρ) − d2s

2
j M−1

1 n2n−8/5−4δ22jnγ+
1h2
1
)]

for some constants d1, d2 > 0. Choosing sj = (d3 logn)−1 with d3 large enough,
the sum at (5.2) can be bounded further by

exp(−d4n
d5) + exp(−d6M

−1
1 n4/5+d7),

where d4, . . . , d7 > 0 are some constants. Here, we used that δ > 0 is small enough.
Using similar arguments for the first two terms in (5.1), one can bound the sum of
all three terms in (5.1) by

exp(−d8n
d9),

where d8, d9 > 0 are some constants. This exponential bound entails that for δ > 0
small enough

sup
(θ,μ2)∈Mn(2−Jn )

x1∈I1

|n−1D1(θ,μ2, x1)|

= sup
(θ,μ2)∈Mn(2−Jn )

x1∈I1

∣∣∣∣n−1
∑
i∈J1

{Vi(θ,μ2, x1) − EX Vi(θ,μ2, x1)}
∣∣∣∣(5.3)

= OP (n−4/5−δ).

Similarly, it can be shown that

sup
(θ,μ2)∈Mn(2−Jn )

x1∈I1

|n−1D2(θ,μ2, x1)|

= sup
(θ,μ2)∈Mn(2−Jn )

x1∈I1

∣∣∣∣n−1
∑
i∈J2

{Vi(θ,μ2, x1) − EX Vi(θ,μ2, x1)}
∣∣∣∣(5.4)

= OP (n−4/5−δ).

We now use a Taylor expansion of EX Vi(θ,μ2, x1) with respect to θ . Note that
with Ai = εi + m1(X

i
1) − m1(x1) and Bi = Y i − θ − μ2(X

i
2) = εi + m1(X

i
1) −

θ + m2(X
i
2) − μ2(X

i
2)

Vi(θ,μ2, x1) = K1,h1(x1,X
i
1)

⎧⎪⎪⎨
⎪⎪⎩

0, if Ai,Bi < 0,
0, if Ai,Bi ≥ 0,
Bi, if Ai < 0 ≤ Bi ,
−Bi, if Ai ≥ 0 > Bi .
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For δ1, δ2 > 0 small enough, we get that uniformly for |θ − m1(x1)| ≤ δ1

EX Vi(θ,μ2, x1)

= 1
2K1,h1(x1,X

i
1)fε|X(0|Xi)

{[m2(X
i
2) − μ2(X

i
2) − θ + m1(x1)]2

+ OP (n−4/5−δ2) + OP

(|θ − m1(x1)|3)},
see (A3). We now apply (5.3), (5.4) and the fact that the change of an empirical
quantile cannot be larger than the largest change of an observation. We use these
results to analyze the update m̂BF

1 (x1) when we plug into the iteration formula
(2.2) of the backfitting estimator a choice of μ2 = m̂BF

2 that lies in Mn. By a direct
argument, it can be shown that with probability tending to one the resulting value
lies in an δ1-neighborhood of m1(x1). Thus, using the above expansions, we get
that, up to terms of order OP (n−2/5−δ3) with δ3 > 0 small enough, the resulting
value for the update m̂BF

1 (x1) is equal to the minimum of

θ

n

n∑
i=1

K1,h1(x1,X
i
1)
[
I
(
εi + m1(X

i
1) − m1(x1) ≤ 0

) − α
]

+ 1

2n

n∑
i=1

K1,h1(x1,X
i
1)fε|X(0|Xi)[m2(X

i
2) − μ2(X

i
2) − θ + m1(x1)]2.

The minimum of this expression is equal to

m1(x1) − f̂ w
Xj

(xj )
−1 1

n

n∑
i=1

K1,h1(x1,X
i
1)
[
I
(
εi + m1(X

i
1) − m1(x1) ≤ 0

) − α
]

+ f̂ w
Xj

(xj )
−1 1

n

n∑
i=1

K1,h1(x1,X
i
1)fε|X(0|Xi)[m2(X

i
2) − μ2(X

i
2)],

where f̂ w
Xj

(xj ) has been defined after (2.8). We now use that

f̂ w
Xj

(xj )
−1 1

n

n∑
i=1

K1,h1(x1,X
i
1)
[
I
(
εi + m1(X

i
1) − m1(x1) ≤ 0

) − I (εi ≤ 0)
]

= m1(x1) − f̂ w
Xj

(xj )
−1 1

n

n∑
i=1

K1,h1(x1,X
i
1)fε|X(0|Xi)m1(X

i
1)

+ OP (n−2/5−δ)

for δ > 0 small enough. This shows that the minimum is equal to

f̂ w
Xj

(xj )
−1 1

n

n∑
i=1

K1,h1(x1,X
i
1)fε|X(0|Xi)[m1(X

i
1) + m2(X

i
2) + ηi]

− f̂ w
Xj

(xj )
−1 1

n

n∑
i=1

K1,h1(x1,X
i
1)fε|X(0|Xi)μ2(X

i
2) + OP (n−2/5−δ).
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This expansion holds uniformly for x1 ∈ I1 and μ2 ∈ Mn.
To complete the proof, we use the fact that, if one replaces in (2.2) or (2.7)

the input function μ2 = m̂BF
2 or μ2 = m̂

∗,BF
2 , respectively, by another function

that differs in sup-norm by an amount of order OP (n−2/5−
2), then the resulting
estimator changes also at most by an amount of order OP (n−2/5−
2). In particular,
if δ < 
2, this implies that

sup
a1+CSn−1/5≤x1≤b1−CSn−1/5

|m̂BF
1 (x1) − m̂

∗,BF
1 (x1)| = OP (n−2/5−δ).

The other statements of Proposition 2.1 can be proved by using similar arguments.

5.2. Proof of Theorem 2.2. We will prove the theorem for the ordinary back-
fitting estimator. A proof for the smooth backfitting estimator follows along the
same lines. We only give an outline of the proof. For simplicity, we assume that
the condition (A6) holds with ρ = 1. Our basic argument runs as follows. We
choose m̂

∗,BF,[0]
j = m̂

BF,[0]
j . By assumption, these starting values fulfill (A5) and

(A6) (with the choice m̂BF
j = m̂

∗,BF,[0]
j = m̂

BF,[0]
j ). Thus, we can apply Proposi-

tion 2.1 and we get that the updates m̂
∗,BF,[1]
j and m̂

BF,[1]
j fulfill (A7) (with the

choices m̂
∗,BF
j = m̂

∗,BF,[1]
j and m̂BF

j = m̂
BF,[1]
j ). We will show below that the up-

dates m̂
∗,BF,[l]
j of the mean regression backfitting estimator fulfill conditions (A5)

and (A6) for all l ≥ 1. With this fact, we can use an iterative argument. Suppose
that we know that (A5)–(A7) hold for m̂

∗,BF,[l−1]
j and m̂

BF,[l−1]
j . Then with our

proof below we get that m̂
∗,BF,[l]
j fulfills (A5) and (A6). By application of Propo-

sition 2.1, we get that (A7) holds for m̂
∗,BF,[l]
j and m̂

BF,[l]
j . Thus, m̂

BF,[l]
j lies in a

neighborhood of m̂
∗,BF,[l]
j and (A5) and (A6) also hold for m̂

BF,[l]
j because they are

satisfied by m̂
∗,BF,[l]
j .

The bound for the distance between m̂
∗,BF,[l]
j and m̂

BF,[l]
j adds up. Each appli-

cation of Proposition 2.1 adds an additional term. The additional term increases
with l. With a careful analysis of the arguments in the proof of Proposition 2.1,
one gets that the bounds in (A5) and (A6) have to be multiplied by a factor Cl∗
with a constant C∗ > 1. If l ≤ Citer logn with Citer > 0 small enough, we get

m̂
BF,[l]
j − m̂

∗,BF,[l]
j = oP (n−2/5).(5.5)

In the second part of the proof, we will show the asymptotic normality of
m̂

∗,BF,[C logn]
j for C large enough. The minimal sufficient value of C for this re-

sult depends on the rate of convergence of m̂
∗,BF,[0]
j to mj . If this rate is n−2/5,

then it can be made as small as one likes. For slower rates, one needs larger values
of C. If the rate is fast enough, one can choose C < Citer. In this case, we can
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apply (5.5) and we get the same asymptotic normality result for m̂
∗,BF,[Citer logn]
j .

This will conclude the proof of Theorem 2.2.
We now prove that the updates m̂

∗,BF,[l]
j fulfill the conditions (A5) and (A6) for

all l ≥ 1. For this purpose, we rewrite (2.7) as

m̂
∗,BF,[l]
j (xj ) − mj(xj )

= m̃
∗,A
j (xj ) + m̃

∗,B
j (xj ) + m̃

∗,C,[l]
j (xj ) − m̂

∗,BF
0(5.6)

−
d∑

k=1,�=j

∫ [
m̂

∗,BF,[lk,j ]
k (xk) − mk(xk)

]
f

n,w
Xk |Xj

(xk|xj ) dxk,

where lk,j = l + 1 for k < j , lk,j = l for k > j , and

m̃
∗,A
j (xj ) = n−1 ∑n

i=1 fε|X(0|Xi)Kj,hj
(xj ,X

i
j )η

i

f̂ w
Xj

(xj )
,

m̃
∗,B
j (xj ) = n−1 ∑n

i=1 fε|X(0|Xi)Kj,hj
(xj ,X

i
j )[mj(X

i
j ) − mj(xj )]

f̂ w
Xj

(xj )
,

m̃
∗,C,[l]
j (xj ) = −

d∑
k=1,�=j

(
n−1

n∑
i=1

fε|X(0|Xi)Kj,hj
(xj ,X

i
j )

× [
m̂

∗,BF,[lk,j ]
k (Xi

k) − mk(X
i
k)
])

(f̂ w
Xj

(xj ))
−1

+
d∑

k=1,�=j

∫ [
m̂

∗,BF,[lk,j ]
k (xk) − mk(xk)

]
f

n,w
Xk |Xj

(xk|xj ) dxk,

f
n,w
Xk |Xj

(uk|xj ) =
∫

fε|X(0|u)Kj,hj
(xj , uj )fX(u)du−k∫

fε|X(0|v)Kj,hj
(xj , vj )fX(v) dv

.

The iteration (5.6) can be analyzed as the smooth backfitting algorithm in

Mammen, Linton and Nielsen (1999). With m̂
∗,BF,[l]
+ (x) = m̂

∗,BF,[l]
1 (x1) + · · · +

m̂
∗,BF,[l]
d (xd) and m+(x) = m1(x1) + · · · + md(xd), we can write a full cycle of

iterations (5.6) as

m̂
∗,BF,[l+1]
+ − m+ = m̃

∗,A
⊕ + m̃

∗,B
⊕ + m̃

∗,C,[l]
⊕ − m̂

∗,BF
0

(5.7)
+ Tn,+

(
m̂

∗,BF,[l]
+ − m+ − μl

) + μl,

where m̃
∗,A
⊕ , m̃

∗,B
⊕ and m̃

∗,C,[l]
⊕ are some functions, Tn,+ is an operator that acts

on additive mean zero functions in L2(fε|X(0|·)fX(·)), and μl = ∫
(m̂

∗,BF,[l]
+ −

m+)(x)fX(x)fε|X(0|x)dx. We used ⊕ (not +) as subindex in m̃
∗,A
⊕ because it is
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not the sum of m̃
∗,A
j . The operator Tn,+ converges to an operator T+ that is based

on an iterative application of the linear transformations for the additive components
gj of an additive function g+:

gj → −
d∑

k=1,�=j

∫
gk(xk)f

w
Xk |Xj

(xk|xj ) dxk.

More precisely, the kernel function of Tn,+ converges to the kernel function of T+,
with respect to the sup-norm.

Arguing as in the proof of Lemma 1 in Mammen, Linton and Nielsen (1999),
one can show that T+ is a positive self-adjoint operator with operator norm strictly
less than one, ‖T+‖ < 1, and with ‖Tjm‖∞ ≤ D‖m‖2 for a constant D > 0. Here,
Tjm is the j th additive component of T+m. This gives with constants 0 < D′ < 1
and D′′ > 0 for n large enough

‖Tn,+‖ < D′.(5.8)

Furthermore, we have

‖Tn,jm‖∞ ≤ D′′‖m‖2,(5.9)

where Tn,jm is the j th additive component of Tn,+m. Iterative application of (5.7)
gives

m̂
∗,BF,[l]
+ − m+ = m̂

∗,A,[l]
+ + m̂

∗,B,[l]
+ + m̂

∗,C,[l]
+ − m̂

∗,BF
0 + T̄ l

n,+
(
m̂

∗,BF,[0]
+ − m+

)
,

where T̄n,+ is an extension of Tn,+ to a nonzero mean function by putting T̄n,+g =
Tn,+(g − μg) + μg with μg = ∫

g(x)fX(x)fε|X(0|x)dx, and

m̂
∗,A,[l]
+ =

l−1∑
r=0

T̄ r
n,+m̃

∗,A
⊕ ,

m̂
∗,B,[l]
+ =

l−1∑
r=0

T̄ r
n,+m̃

∗,B
⊕ ,

m̂
∗,C,[l]
+ =

l−1∑
r=0

T̄ l−r−1
n,+ m̃

∗,C,[r]
⊕ .

Using standard bounds on m̃
∗,A
j and m̃

∗,B
j , it can be verified that

sup
xj∈Ij ,l≥1

∣∣m̂∗,A,[l]
j (xj )

∣∣ = OP (n−2/5),(5.10)

sup
xj∈Ij ,l≥1

∣∣m̂∗,B,[l]
j (xj )

∣∣ = OP (n−1/5),(5.11)

sup
aj+CShj≤xj≤bj−CShj ,l≥1

∣∣m̂∗,B,[l]
j (xj )

∣∣ = OP (n−2/5),(5.12)
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where for an additive function g+ we denote by gj its j th additive component.
We now argue that for a constant CT > 0

sup
xj∈Ij ,l≥1

∣∣T̄n,j T̄
l−1
n,+

(
m̂

∗,BF,[0]
j − mj

)
(xj )

∣∣ ≤ CT κn,(5.13)

where

κn = sup
1≤j≤d

[
sup

aj+CShj≤xj≤bj−CShj

∣∣m̂∗,BF,[0]
j − mj

∣∣(xj )

+ n−1/5 sup
aj≤xj≤bj

∣∣m̂∗,BF,[0]
j − mj

∣∣(xj )
]
.

For a proof of this claim, one applies (5.8) and (5.9). Also, we argue that

sup
xj∈I,l≥1

∣∣m̂C,[l]
j (xj )

∣∣ = oP (n−2/5).(5.14)

For a proof of (5.14), we note that

sup
xj∈Ij ,l≥1

∣∣m̃C,[l]
j (xj )

∣∣ = oP (n−2/5).

This follows by empirical process theory. One uses the fact that m̂
∗,BF,[l−1]
k − mk

lies in a class of functions that have second derivatives absolutely bounded by
Cξn

ξ with ξ > 0 being arbitrarily small and constant Cξ depending on ξ . This
can be shown by using that the same bound applies for m̃A

j and m̃B
j , and that the

kernels of the operators T+ and Tj have an absolutely bounded second derivative
[see (A9)], and then applying an iterative argument.

The bounds at (5.10)–(5.14) imply that m̂
∗,BF,[l]
j fulfills (A5) uniformly for

l ≥ 1. Using the smoothness considerations in the previous paragraph, we get that
m̂

∗,BF,[l]
j fulfills (A6) uniformly for l ≥ 1. Thus, we get by an iterative application

of Proposition 2.1 that (5.5) holds.
It remains to show the asymptotic normality result for m̂

BF,iter
j = m̂

BF,[Citer logn]
j

with Citer large enough. Using the above arguments, we have for Citer large enough
that

m̂
∗,BF,iter
j (xj ) − mj(xj ) = m̂

A,[Citer logn]
j (xj ) + m̂

B,[Citer logn]
j (xj ) + oP (n−2/5).

We argue that

sup
l≥1

∣∣m̂A,[l]
j (xj ) − m̃A

j (xj )
∣∣ = oP (n−2/5),(5.15)

h−2
j m̂

B,[l]
j (xj ) → βj (xj ) as l → ∞.(5.16)

These two claims imply that

m̂
∗,BF
j (xj ) − mj(xj ) = m̃A

j (xj ) + h2
jβj (xj ) + oP (n−2/5).
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This expansion shows the desired asymptotic limit result by using a standard
smoothing limit result for m̃A

j (xj ).
We prove (5.15) and (5.16). Claim (5.15) follows from standard smoothing the-

ory as in Mammen, Linton and Nielsen (1999). For a proof of (5.16), we define

β
[l]
j (xj ) = β∗

j (xj ) − ∑d
k=1,�=j

∫
β

[lk,j ]
k (xk)f

w
Xk |Xj

(xk|xj ) dxk with β
[0]
j (xj ) ≡ 0.

Similarly, as in (5.7), we can write a full cycle of these iterations as

β
[l+1]
+ = β∗⊕ + T̄+β

[l]
+ ,(5.17)

where β∗⊕ is some additive function, β
[l]
+ (x) is equal to β

[l]
1 (x1) + · · · + β

[l]
d (xd)

and T̄+ is an extension of T+ defined by T̄+g = T+(g −μg)+μg with μg defined
as above. Note that we get β

[l]
+ = ∑l−1

r=0 T̄ r+β∗⊕. This expansion shows that

sup
xj∈Ij ,l≥1

∣∣m̂∗,B,[l]
j (xj ) − h2

jβ
[l]
j

∣∣ = oP (n−1/5),

(5.18)
sup

aj+CShj≤xj≤bj−CShj ,l≥1

∣∣m̂∗,B,[l]
j (xj ) − h2

jβ
[l]
j

∣∣ = oP (n−2/5).

Furthermore, we get that the term β
[l]
+ − ∑d

j=1[h−2
j m′

j (xj )
∫
(uj − xj )Kj,hj

(xj ,

uj ) duj − μ2,K
1
2m′′

j (xj )] converges to μ2,Kβ∗∗+ as l → ∞, where (β∗∗
1 , . . . , β∗∗

d )

is the minimizer of
∫ [

d∑
j=1

(
m′

j (xj )
∂/∂xjfε,X(0, x)

fε,X(0, x)
− β∗∗

j (xj )

)]2

fε,X(0, x) dx.

This follows because the updating (5.17) is given by the first-order conditions of
this minimization problem. Together with (5.18), this implies (5.16).
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