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TRAJECTORY AVERAGING FOR STOCHASTIC APPROXIMATION
MCMC ALGORITHMS1

BY FAMING LIANG

Texas A&M University

The subject of stochastic approximation was founded by Robbins and
Monro [Ann. Math. Statist. 22 (1951) 400–407]. After five decades of contin-
ual development, it has developed into an important area in systems control
and optimization, and it has also served as a prototype for the development of
adaptive algorithms for on-line estimation and control of stochastic systems.
Recently, it has been used in statistics with Markov chain Monte Carlo for
solving maximum likelihood estimation problems and for general simulation
and optimizations. In this paper, we first show that the trajectory averaging
estimator is asymptotically efficient for the stochastic approximation MCMC
(SAMCMC) algorithm under mild conditions, and then apply this result to
the stochastic approximation Monte Carlo algorithm [Liang, Liu and Carroll
J. Amer. Statist. Assoc. 102 (2007) 305–320]. The application of the trajectory
averaging estimator to other stochastic approximation MCMC algorithms, for
example, a stochastic approximation MLE algorithm for missing data prob-
lems, is also considered in the paper.

1. Introduction. Robbins and Monro (1951) introduced the stochastic ap-
proximation algorithm to solve the integration equation

h(θ) =
∫

X
H(θ, x)fθ (x) dx = 0,(1)

where θ ∈ � ⊂ R
dθ is a parameter vector and fθ (x), x ∈ X ⊂ R

dx , is a density
function depending on θ . The dθ and dx denote the dimensions of θ and x, respec-
tively. The stochastic approximation algorithm is an iterative recursive algorithm,
whose each iteration consists of two steps:

Stochastic approximation algorithm.

• Generate Xk+1 ∼ fθk
(x), where k indexes the iteration.

• Set θk+1 = θk + akH(θk,Xk+1), where ak > 0 is called the gain factor.
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The stochastic approximation algorithm is often studied by rewriting it as fol-
lows:

θk+1 = θk + ak[h(θk) + εk+1],(2)

where h(θk) = ∫
X H(θk, x)fθk

(x) dx corresponds to the mean effect of H(θk,

Xk+1), and εk+1 = H(θk , Xk+1) − h(θk) is called the observation noise. In the
literature of stochastic approximation, h(θ) is also called the mean field function.
It is well known that the optimal convergence rate of (2) can be achieved with
ak = −F−1/k, where F = ∂h(θ∗)/∂θ , and θ∗ denotes the zero point of h(θ). In
this case, (2) is reduced to Newton’s algorithm. Unfortunately, it is often impossi-
ble to use this algorithm, as the matrix F is generally unknown.

Although an optimal convergence rate of θk cannot be obtained in general, in
a sequence of fundamental papers Ruppert (1988), Polyak (1990) and Polyak and
Juditsky (1992) showed that the trajectory averaging estimator is asymptotically
efficient; that is, θ̄n = ∑n

k=1 θk/n can converge in distribution to a normal random
variable with mean θ∗ and covariance matrix �, where � is the smallest possible
covariance matrix in an appropriate sense. The trajectory averaging estimator re-
quires {ak} to be relatively large, decreasing slower than O(1/k). As discussed by
Polyak and Juditsky (1992), trajectory averaging is based on a paradoxical princi-
ple: a slow algorithm having less than optimal convergence rate must be averaged.

Recently, the trajectory averaging technique has been further explored in a va-
riety of papers [see, e.g., Chen (1993), Kushner and Yang (1993, 1995), Dippon
and Renz (1997), Wang, Chong and Kulkarni (1997), Tang, L’Ecuyer and Chen
(1999), Pelletier (2000) and Kushner and Yin (2003)] with different assumptions
for the observation noise. However, up to our knowledge, it has not yet been ex-
plored for stochastic approximation MCMC (SAMCMC) algorithms [Benveniste,
Métivier and Priouret (1990), Chen (2002), Kushner and Yin (2003), Andrieu,
Moulines and Priouret (2005), Andrieu and Moulines (2006)]. The stochastic ap-
proximation MCMC algorithms refer to a class of stochastic approximation al-
gorithms for which the sample is generated at each iteration via a Markov tran-
sition kernel; that is, {xk+1} is generated via a family of Markov transition ker-
nel {Pθk

(xk, ·)} controlled by {θk}. Recently, the stochastic approximation MCMC
algorithms have been used in statistics for solving maximum likelihood estima-
tion problems [Younes (1989, 1999), Moyeed and Baddeley (1991), Gu and Kong
(1998), Gu and Zhu (2001)], and for general simulation and optimizations [Liang,
Liu and Carroll (2007), Atchadé and Liu (2010)]. It is worth to point out that in
comparison with conventional MCMC algorithms, for example, the Metropolis–
Hastings algorithm [Metropolis et al. (1953), Hastings (1970)], parallel temper-
ing [Geyer (1991)], and simulated tempering [Marinari and Parisi (1992), Geyer
and Thompson (1995)], the stochastic approximation Monte Carlo (SAMC) algo-
rithm [Liang, Liu and Carroll (2007)] has significant advantages in simulations
of complex systems for which the energy landscape is rugged. As explained later
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(in Section 3), SAMC is essentially immune to the local trap problem due to its
self-adaptive nature inherited from the stochastic approximation algorithm. SAMC
has been successfully applied to many statistical problems, such as p-value eval-
uation for resampling-based tests [Yu and Liang (2009)], Bayesian model selec-
tion [Liang (2009), Atchadé and Liu (2010)] and spatial model estimation [Liang
(2007a)], among others.

In this paper, we explore the theory of trajectory averaging for stochastic ap-
proximation MCMC algorithms, motivated by their wide applications. Although
Chen (1993, 2002) considered the case where the observation noise can be state
dependent, that is, the observation noise εk+1 depends on θ0, . . . , θk , their results
are not directly applicable to the stochastic approximation MCMC algorithms due
to some reasons as explained in Section 5. The theory established by Kushner and
Yin (2003) can potentially be extended to the stochastic approximation MCMC
algorithm, but, as mentioned in Kushner and Yin [(2003), page 375] the extension
is not straightforward and more work needs to be done to deal with the compli-
cated structure of the Markov transition kernel. In this paper, we propose a novel
decomposition of the observation noise for the stochastic approximation MCMC
algorithms. Based on the proposed decomposition, we show the trajectory averag-
ing estimator is asymptotically efficient for the stochastic approximation MCMC
algorithms, and then apply this result to the SAMC algorithm. These results are
presented in Lemma A.5, Theorems 2.3 and 3.2, respectively. The application of
the trajectory averaging technique to other stochastic approximation MCMC algo-
rithms, for example, a stochastic approximation MLE algorithm for missing data
problems, is also considered in the paper.

The remainder of this paper is organized as follows. In Section 2, we present
our main theoretical result that the trajectory averaging estimator is asymptotically
efficient for the stochastic approximation MCMC algorithms. In Section 3, we
apply the trajectory averaging technique to the SAMC algorithm. In Section 4,
we apply the trajectory averaging technique to a stochastic approximation MLE
algorithm for missing data problems. In Section 5, we conclude the paper with a
brief discussion.

2. Trajectory averaging for a general stochastic approximation MCMC al-
gorithm.

2.1. A varying truncation stochastic approximation MCMC algorithm. To
show the convergence of the stochastic approximation algorithm, restrictive condi-
tions on the observation noise and mean field function are required. For example,
one often assumes the noise to be mutually independent or to be a martingale dif-
ference sequence, and imposes a sever restriction on the growth rate of the mean
field function. These conditions are usually not satisfied in practice. See Chen
[(2002), Chapter 1] for more discussions on this issue. To remove the growth rate
restriction on the mean field function and to weaken the conditions imposed on
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noise, Chen and Zhu (1986) proposed a varying truncation version for the stochas-
tic approximation algorithm. The convergence of the modified algorithm can be
shown for a wide class of the mean filed function under a truly weak condition on
noise; see, for example, Chen, Guo and Gao (1988) and Andrieu, Moulines and
Priouret (2005). The latter gives a proof for the convergence of the modified algo-
rithm with Markov state-dependent noise under some conditions that are easy to
verify.

Following Andrieu, Moulines and Priouret (2005), we consider the following
varying truncation stochastic approximation MCMC algorithm. Let {Ks, s ≥ 0} be
a sequence of compact subsets of � such that⋃

s≥0

Ks = � and Ks ⊂ int(Ks+1), s ≥ 0,(3)

where int(A) denotes the interior of set A. Let {ak} and {bk} be two monotone,
nonincreasing, positive sequences. Let X0 be a subset of X , and let T : X × � →
X0 × K0 be a measurable function which maps a point (x, θ) in X ×� to a random
point in X0 × K0; that is, both x and θ will be reinitialized in X0 × K0. As shown in
Lemma A.5, for the stochastic approximation MCMC algorithm, when the number
of iterations becomes large, the observation noise εk can be decomposed as

εk = ek + νk + ςk,(4)

where {ek} forms a martingale difference sequence, and the expectation of the
other two terms will go to zero in certain forms. In Theorems 2.2 and 2.3, we show
that {ek} leads to the asymptotic normality of the trajectory averaging estimator θ̄k ,
and {νk} and {ςk} can vanish or be ignored when the asymptotic distribution of θ̄k

is considered.
Let σk denote the number of truncations performed until iteration k and σ0 = 0.

The varying truncation stochastic approximation MCMC algorithm starts with a
random choice of (θ0, x0) in the space K0 × X0, and then iterates between the
following steps:

Varying truncation stochastic approximation MCMC algorithm.

• Draw sample xk+1 with a Markov transition kernel, Pθk
, which admits fθk

(x) as
the invariant distribution.

• Set θk+1/2 = θk + akH(θk, xk+1).
• If ‖θk+1/2 − θk‖ ≤ bk and θk+1/2 ∈ Kσk

, where ‖z‖ denote the Euclidean norm
of the vector z, then set (θk+1, xk+1) = (θk+1/2, xk+1) and σk+1 = σk ; otherwise,
set (θk+1, xk+1) = T (θk, xk) and σk+1 = σk + 1.

As depicted by the algorithm, the varying truncation mechanism works in an
adaptive manner as follows: when the current estimate of the parameter wanders
outside the active truncation set or when the difference between two successive
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estimates is greater than a time-dependent threshold, then the algorithm is reini-
tialized with a smaller initial value of the gain factor and a larger truncation set.
This mechanism enables the algorithm to select an appropriate gain factor se-
quence and an appropriate starting point, and thus to confine the recursion to a
compact set; that is, the number of reinitializations is almost surely finite for every
(θ0, x0) ∈ K0 × X0. This result is formally stated in Theorem 2.1, which plays a
crucial role for establishing asymptotic efficiency of the trajectory averaging esti-
mator.

Regarding the varying truncation scheme, one can naturally propose many vari-
ations. For example, one may not change the truncation set when only the condition
‖θk+1/2 − θk‖ ≤ bk is violated, and, instead of jumping forward in a unique gain
factor sequence, one may start with a different gain factor sequence (smaller than
the previous one) when the reinitialization occurs. In either case, the proof for the
theorems presented in Section 2.2 follows similarly.

2.2. Theoretical results on the trajectory averaging estimator. The asymptotic
efficiency of θ̄k can be analyzed under the following conditions.

Lyapunov condition on h(θ). Let 〈x, y〉 denote the Euclidean inner product.

(A1) � is an open set, the function h :� → R
d is continuous, and there exists a

continuously differentiable function v :� → [0,∞) such that:

(i) There exists M0 > 0 such that

L = {θ ∈ �, 〈∇v(θ), h(θ)〉 = 0} ⊂ {θ ∈ �,v(θ) < M0}.(5)

(ii) There exists M1 ∈ (M0,∞) such that VM1 is a compact set, where
VM = {θ ∈ �,v(θ) ≤ M}.

(iii) For any θ ∈ � \ L, 〈∇v(θ), h(θ)〉 < 0.
(iv) The closure of v(L) has an empty interior.

This condition assumes the existence of a global Lyapunov function v for the
mean field h. If h is a gradient field, that is, h = −∇J for some lower bounded
real-valued and differentiable function J (θ), then v can be set to J , provided that J

is continuously differentiable. This is typical for stochastic optimization problems,
for example, machine learning [Tadić (1997)], where a continuously differentiable
objective function J (θ) is minimized.

Stability condition on h(θ).

(A2) The mean field function h(θ) is measurable and locally bounded. There exist
a stable matrix F (i.e., all eigenvalues of F are with negative real parts),
γ > 0, ρ ∈ (0,1], and a constant c such that, for any θ∗ ∈ L,

‖h(θ) − F(θ − θ∗)‖ ≤ c‖θ − θ∗‖1+ρ ∀θ ∈ {θ :‖θ − θ∗‖ ≤ γ },
where L is defined in (5).
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This condition constrains the behavior of the mean field function around the
solution points. It makes the trajectory averaging estimator sensible both theoret-
ically and practically. If h(θ) is differentiable, the matrix F can be chosen to be
the partial derivative of h(θ), that is, ∂h(θ)/∂θ . Otherwise, certain approximation
may be needed.

Drift condition on the transition kernel Pθ . Before giving details of this condi-
tion, we first define some terms and notation. Assume that a transition kernel Pθ is
irreducible, aperiodic, and has a stationary distribution on a sample space denoted
by X . A set C ⊂ X is said to be small if there exist a probability measure ν on X ,
a positive integer l and δ > 0 such that

P l
θ (x,A) ≥ δν(A) ∀x ∈ C,∀A ∈ B X ,

where B X is the Borel set defined on X . A function V : X → [1,∞) is said to be
a drift function outside C if there exist positive constants λ < 1 and b such that

PθV (x) ≤ λV (x) + bI (x ∈ C) ∀x ∈ X ,

where PθV (x) = ∫
X Pθ(x, y)V (y) dy. For a function g : X → R

d , define the norm

‖g‖V = sup
x∈X

‖g(x)‖
V (x)

and define the set LV = {g : X → R
d, supx∈X ‖g‖V < ∞}. Given the terms and

notation introduced above, the drift condition can be specified as follows.

(A3) For any given θ ∈ �, the transition kernel Pθ is irreducible and aperiodic. In
addition, there exists a function V : X → [1,∞) and a constant α ≥ 2 such
that for any compact subset K ⊂ �:

(i) There exist a set C ⊂ X , an integer l, constants 0 < λ < 1, b, ς , δ > 0
and a probability measure ν such that

sup
θ∈K

P l
θV

α(x) ≤ λV α(x) + bI (x ∈ C) ∀x ∈ X ,(6)

sup
θ∈K

PθV
α(x) ≤ ςV α(x) ∀x ∈ X ,(7)

inf
θ∈K

P l
θ (x,A) ≥ δν(A) ∀x ∈ C,∀A ∈ B X .(8)

(ii) There exists a constant c > 0 such that, for all x ∈ X ,

sup
θ∈K

‖H(θ, x)‖V ≤ c,(9)

sup
(θ,θ ′)∈K

‖H(θ, x) − H(θ ′, x)‖V ≤ c‖θ − θ ′‖.(10)
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(iii) There exists a constant c > 0 such that, for all (θ, θ ′) ∈ K × K,

‖Pθg − Pθ ′g‖V ≤ c‖g‖V ‖θ − θ ′‖ ∀g ∈ LV ,(11)

‖Pθg − Pθ ′g‖V α ≤ c‖g‖V α‖θ − θ ′‖ ∀g ∈ LV α .(12)

Assumption (A3)(i) is classical in the literature of Markov chain. It implies the
existence of a stationary distribution fθ (x) for all θ ∈ � and V α-uniform ergodic-
ity [Andrieu, Moulines and Priouret (2005)]. Assumption (A3)(ii) gives conditions
on the bound of H(θ, x). This is a critical condition for the observation noise. As
seen later in Lemmas A.1 and A.5, it directly leads to the boundedness of some
terms decomposed from the observation noise. For some algorithms, for example,
SAMC, for which H(θ, x) is a bounded function, the drift function can be simply
set as V (x) = 1.

Conditions on the step-sizes.

(A4) The sequences {ak} and {bk} are nonincreasing, positive and satisfy the con-
ditions:

∞∑
k=1

ak = ∞, lim
k→∞(kak) = ∞,

(13)
ak+1 − ak

ak

= o(ak+1), bk = O
(
a

(1+τ )/2
k

)
,

for some τ ∈ (0,1],
∞∑

k=1

a
(1+τ)/2
k√

k
< ∞,(14)

and for some constants α ≥ 2 as defined in condition (A3),
∞∑
i=1

{aibi + (b−1
i ai)

α} < ∞.(15)

It follows from (14) that

k∑
i=[k/2]

a
(1+τ)/2
i √

i
= o(1),

where [z] denotes the integer part of z. Since ak is nonincreasing, we have

a
(1+τ)/2
k

k∑
i=[k/2]

1√
i

= o(1),

and thus a
(1+τ)/2
k

√
k = o(1), or ak = O(k−η) for η ∈ (1

2 ,1). For instance, ak =
C1/kη for some constants C1 > 0 and η ∈ (1

2 ,1), then we can set bk = C2/kξ for
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some constants C2 > 0 and ξ ∈ (1
2 , η − 1

α
), which satisfies (13) and (15). Under

this setting, the existence of τ is obvious.
Theorem 2.1 concerns the convergence of the general stochastic approximation

MCMC algorithm. The proof follows directly from Theorems 5.4, 5.5 and Propo-
sition 6.1 of Andrieu, Moulines and Priouret (2005).

THEOREM 2.1. Assume conditions (A1), (A3) and (A4) hold. Let kσ denote
the iteration number at which the σ th truncation occurs in the stochastic approx-
imation MCMC simulation. Let X0 ⊂ X be such that supx∈X0

V (x) < ∞ and that
K0 ⊂ VM0 , where VM0 is defined in (A1). Then there exists almost surely a number,
denoted by σs , such that kσs < ∞ and kσs+1 = ∞; that is, {θk} has no truncation
for k ≥ kσs , or mathematically,

θk+1 = θk + akH(θk, xk+1) ∀k ≥ kσs .

In addition, we have

θk → θ∗ a.s.

for some point θ∗ ∈ L.

Theorem 2.2 concerns the asymptotic normality of θ̄k .

THEOREM 2.2. Assume conditions (A1), (A2), (A3) and (A4) hold. Let X0 ⊂
X be such that supx∈X0

V (x) < ∞ and that K0 ⊂ VM0 , where VM0 is defined in
(A1). Then

√
k(θ̄k − θ∗) −→ N(0,�)

for some point θ∗ ∈ �, where � = F−1Q(F−1)T , F = ∂h(θ∗)/∂θ is negative
definite, Q = limk→∞ E(eke

T
k ), and ek is as defined in (4).

Below we consider the asymptotic efficiency of θ̄k . As already mentioned, the
asymptotic efficiency of the trajectory averaging estimator has been studied by
quite a few authors. Tang, L’Ecuyer and Chen (1999) gives the following defin-
ition for the asymptotic efficient estimator that can be resulted from a stochastic
approximation algorithm.

DEFINITION 2.1. Consider the stochastic approximation algorithm (2). Let
{Zn}n≥0, given as a function of {θn}n≥0, be a sequence of estimators of θ∗. The
algorithm {Zn}n≥0 is said to be asymptotically efficient if

√
n(Zn − θ∗) −→ N(0,F−1Q̃(F−1)T ),(16)

where F = ∂h(y∗)/∂y, and Q̃ is the asymptotic covariance matrix of (1/
√

n) ×∑n
k=1 εk .
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As mentioned in Tang, L’Ecuyer and Chen (1999), Q̃ is the smallest possible
limit covariance matrix that an estimator based on the stochastic approximation
algorithm (2) can achieve. If θk → θ∗ and {εk} forms or asymptotically forms a
martingale difference sequence, then we have Q̃ = limk→∞ E(εkε

T
k ). In the next

theorem, we show that the asymptotic covariance matrix Q established in Theo-
rem 2.2 is the same as Q̃, and thus the trajectory averaging estimator θ̄k is asymp-
totically efficient.

THEOREM 2.3. Assume conditions (A1), (A2), (A3) and (A4) hold. Let X0 ⊂
X be such that supx∈X0

V (x) < ∞ and that K0 ⊂ VM0 , where VM0 is defined in
(A1). Then θ̄k is asymptotically efficient.

As implied by Theorem 2.3, the convergence rate of θ̄k , which is measured by
the asymptotic covariance matrix �, is independent of the choice of the gain factor
sequence as long as the condition (A4) is satisfied. The asymptotic efficiency of
θ̄k can also be interpreted in terms of Fisher information theory. Refer to Pelletier
[(2000), Section 3] and the references therein for more discussions on this issue.

Trajectory averaging enables smoothing of the behavior of the algorithm but at
the same time, it slows down the numerical convergence because it takes longer for
the algorithm to forget the first iterates. An alternative idea would be to consider
moving window averaging algorithms, see, for example, Kushner and Yang (1993)
and Kushner and Yin (2003), Chapter 11. Extension of their results to the general
stochastic approximation MCMC algorithm will be of great interest.

3. Trajectory averaging for the stochastic approximation Monte Carlo al-
gorithm.

3.1. The SAMC algorithm. Suppose that we are interested in sampling from
the following distribution

f (x) = cψ(x), x ∈ X ,(17)

where c is an unknown constant, X ⊂ R
dx is the sample space. The basic idea of

SAMC stems from the Wang–Landau algorithm [Wang and Landau (2001), Liang
(2005)] and can be briefly explained as follows. Let E1, . . . ,Em denote a partition
of X , and let ωi = ∫

Ei
ψ(x) dx for i = 1, . . . ,m. SAMC seeks to draw sample

from the trial distribution

fω(x) ∝
m∑

i=1

πiψ(x)

ωi

I{x∈Ei},(18)

where πi ’s are prespecified constants such that πi > 0 for all i and
∑m

i=1 πi = 1,
and I{x∈Ei} = 1 if x ∈ Ei and 0 otherwise. For example, if the sample space is
partitioned according to the energy function into the following subregions: E1 =
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{x :− log(ψ(x)) < u1}, E2 = {x :u1 ≤ − log(ψ(x)) < u2}, . . . ,Em = {x :
− log(ψ(x)) > um−1}, where −∞ < u1 < · · · < um−1 < ∞ are the user-specified
numbers, then sampling from fω(x) would result in a random walk (by viewing
each subregion as a “point”) in the space of energy with each subregion being
sampled with probability πi . Here, without loss of generality, we assume that
each subregion is unempty; that is, assuming

∫
Ei

ψ(x) dx > 0 for all i = 1, . . . ,m.
Therefore, sampling from (18) essentially avoids the local-trap problem suffered
by the conventional MCMC algorithms. This is attractive, but ωi ’s are unknown.
SAMC provides a dynamic way to estimate ωi’s under the framework of the sto-
chastic approximation MCMC algorithm.

In what follows we describe how ω can be estimated by SAMC. Since fω(x) is
invariant with respect to a scale change of ω, it suffices to estimate ω1, . . . ,ωm−1

by fixing ωm to a known constant provided ωm > 0. Let θ
(i)
k denote the working

estimate of log(ωi/πi) obtained at iteration k, and let θk = (θ
(1)
k , . . . , θ

(m−1)
k ). Why

this reparameterization is used will be explained at the end of this subsection. Let
{ak} denote the gain factor sequence, and let {Ks, s ≥ 0} denote a sequence of
compact subsets of � as defined in (3). For this algorithm, {Ks, s ≥ 0} can be
chosen as follows. Define

v(θ) = − log

(
1 − 1

2

m−1∑
j=1

(
Sj

S
− πj

)2
)
,(19)

where Si = ∫
Ei

ψ(x) dx/ exp(θ(i)) for i = 1, . . . ,m − 1, and S = ∑m−1
i=1 Si +∫

Ei
ψ(x) dx. Clearly, v(θ) is continuous in θ , and VM = {θ :v(θ) ≤ M} for any

M ∈ (0,∞) forms a compact subset of �. Therefore, {VMs , s ≥ 0}, 0 < M0 <

M1 < · · ·, is an appropriate choice of {Ks, s ≥ 0}. For the SAMC algorithm, as
seen below, ‖H(θk,Xk+1)‖ = ‖(I{xk+1∈E1} − π1, . . . , I{xk+1∈Em−1} − πm−1)

T ‖ is
bounded by the constant

√
2, so we can set the drift function V (x) = 1. Hence, the

initial sample x0 can be drawn arbitrarily from X0 = X , while leaving the condi-
tion supx∈X0

V (x) < ∞ holds. In summary, SAMC starts with an initial estimate
of θ0 ∈ K0, and a random sample drawn arbitrarily from the space X , and then
iterates between the following steps.

SAMC algorithm.

(a) (Sampling.) Simulate a sample xk+1 by a single MH update with the target
distribution

fθk
(x) ∝

m−1∑
i=1

ψ(x)

eθ
(i)
k

I{x∈Ei} + ψ(x)I{x∈Em},(20)

provided that Em is nonempty. In practice, Em can be replaced by any other
unempty subregion.
(a.1) Generate y according to a proposal distribution q(xk, y).
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(a.2) Calculate the ratio

r = eθ
(J (xk))

k −θ
(J (y))
k

ψ(y)q(y, xk)

ψ(xk)q(xk, y)
,

where J (z) denotes the index of the subregion that the sample z belongs
to.

(a.3) Accept the proposal with probability min(1, r). If it is accepted, set
xk+1 = y; otherwise, set xk+1 = xk .

(b) (Weight updating.) Set

θ
(i)
k+1/2 = θ

(i)
k + ak+1

(
I{xk+1∈Ei} − πi

)
, i = 1, . . . ,m − 1.(21)

(c) (Varying truncation.) If θk+1/2 ∈ Kσk
, then set (θk+1, xk+1) = (θk+1/2, xk+1)

and σk+1 = σk ; otherwise, set (θk+1, xk+1) = T (θk, xk) and σk+1 = σk + 1,
where σk and T (·, ·) are as defined in Section 2.

SAMC sampling is driven by its self-adjusting mechanism, which, conse-
quently, implies the superiority of SAMC in sample space exploration. The self-
adjusting mechanism can be explained as follows: if a subregion is visited at
iteration k, θk will be updated accordingly such that the probability that this subre-
gion (other subregions) will be revisited at the next iterations will decrease (in-
crease). Mathematically, if xk+1 ∈ Ei , then θ

(i)
k+1/2 ← θ

(i)
k + ak+1(1 − πi) and

θ
(j)
k+1/2 ← θ

(j)
k − ak+1πj for j �= i. Note that the linear adjustment on θ trans-

forms to a multiplying adjustment on ω. This also explains why SAMC works on
the logarithm of ω. Working on the logarithm enables ω to be adjusted quickly
according to the distribution of the samples. Otherwise, learning of ω would be
very slow due to the linear nature of stochastic approximation. Including πi in the
transformation log(ωi/πi) facilitates our computation, for example, the ratio r in
step (a.2).

The self-adjusting mechanism has led to successful applications of SAMC
for many hard computational problems, including phylogenetic tree reconstruc-
tion [Cheon and Liang (2007, 2009)], neural network training [Liang (2007b)],
Bayesian network learning [Liang and Zhang (2009)], among others.

3.2. Trajectory averaging for SAMC. To show that the trajectory averaging
estimator is asymptotically efficient for SAMC, we assume the following condi-
tions.

(C1) The MH transition kernel used in the sampling step satisfies the drift condi-
tion (A3).

To ensure the drift condition to be satisfied, Liang, Liu and Carroll (2007) re-
strict the sample space X to be a compact set, assume f (x) to be bounded away
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from 0 and ∞, and choose the proposal distribution q(x, y) to satisfy the local
positive condition: for every x ∈ X , there exist positive ε1 and ε2 such that

‖x − y‖ ≤ ε1 �⇒ q(x, y) ≥ ε2.(22)

If the compactness condition on X is removed, we may need to impose some
constraints on the tails of the target distribution f (x) and the proposal distribution
q(x, y) as done by Andrieu, Moulines and Priouret (2005).

(C2) The sequence {ak} satisfies the following conditions:

∞∑
k=1

ak = ∞, lim
k→∞(kak) = ∞,

ak+1 − ak

ak

= o(ak+1),

∞∑
k=1

a
(1+τ)/2
k√

k
< ∞

for some τ ∈ (0,1].
For the SAMC algorithm, as previously discussed, ‖H(θk,Xk+1)‖ is bounded by
the constant

√
2, so we can set V (x) = 1 and set α to any a large number in

condition (A3). Furthermore, given a choice of ak = O(k−η) for some η ∈ (1/2,1),
there always exists a sequence {bk}, for example, bk = 2a

(1+τ)/2
k for some τ ∈

(0,1], such that the inequality ‖θk+1/2 − θk‖ = ‖akH(θk,Xk+1)‖ ≤ bk holds for
all iterations. Hence, a specification of the sequence {bk} can be omitted for the
SAMC algorithm.

Theorem 3.1 concerns the convergence of SAMC. In the first part, it states that
kσs is almost surely finite; that is, {θk} can be included in a compact set almost
surely. In the second part, it states the convergence of θk to a solution θ∗. We
note that for SAMC, the same convergence result has been established by Liang,
Liu and Carroll (2007) under (C1) and a relaxed condition of (C2), where {ak} is
allowed to decrease at a rate of O(1/k). Since the focus of this paper is on the
asymptotic efficiency of θ̄k , the convergence of {θk} is only stated under a slower
decreasing rate of {ak}. We also note that for SAMC, we have assumed, without
loss of generality, that all subregions are unempty. For the empty subregions, no
adaptation of {θk} occurs for the corresponding components in the run. Therefore,
the convergence of {θk} should only be measured for the components correspond-
ing to the nonempty subregions.

THEOREM 3.1. Assume conditions (C1) and (C2) hold. Then there exists (a.s.)
a number, denoted by σs , such that kσs < ∞, kσs+1 = ∞, and {θk} given by the
SAMC algorithm has no truncation for k ≥ kσs , that is,

θk+1 = θk + akH(θk, xk+1) ∀k ≥ kσs(23)
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and

θk → θ∗ a.s.,(24)

where H(θk, xk+1) = (I{xk+1∈E1} − π1, . . . , I{xk+1∈Em−1} − πm−1)
T , and θ∗ =

(log(ω1/π1) − log(ωm/πm), . . . , log(ωm−1/πm−1) − log(ωm/πm))T .

Theorem 3.2 concerns the asymptotic normality and efficiency of θ̄k .

THEOREM 3.2. Assume conditions (C1) and (C2). Then θ̄k is asymptotically
efficient; that is, √

k(θ̄k − θ∗) −→ N(0,�) as k → ∞,

where � = F−1Q(F−1)T , F = ∂h(θ∗)/∂θ is negative definite and Q =
limk→∞ E(eke

T
k ).

The above theorems address some theoretical issues of SAMC. For practical
issues, please refer to Liang, Liu and Carroll (2007), where issues, such as how
to partition the sample space, how to choose the desired sampling distribution,
and how to diagnose the convergence, have been discussed at length. An issue
particularly related to the trajectory averaging estimator is the length of the burn-
in period. To remove the effect of the early iterates, the following estimator:

θ̄
(b)
k = 1

k − k0

k∑
i=k0+1

θi,

instead of θ̄k , is often used in practice, where k0 is the so-called length of the burn-
in period. It is obvious that the choice of k0 should be based on the diagnosis for
the convergence of the simulation. Just like monitoring convergence of MCMC
simulations, monitoring convergence of SAMC simulations should be based on
multiple runs [Liang, Liu and Carroll (2007)]. In practice, if only a single run
was made, we suggest to look at the plot of π̂ to choose k0 from where π̂k has
been approximately stable. Here, we denote by π̂k the sampling frequencies of
the respective subregions realized by iteration k. It follows from Theorem 3.1 that
π̂k → π when the number of iterations, k, becomes large.

Trajectory averaging can directly benefit one’s inference in many applications
of SAMC. A typical example is Bayesian model selection, where the ratio ωi/ωj

just corresponds to the Bayesian factor of two models if one partitions the sample
space according to the model index and imposes an uniform prior on the model
space as done in Liang (2009). Another example is inference for the spatial mod-
els with intractable normalizing constants, for which Liang, Liu and Carroll (2007)
has demonstrated how SAMC can be used to estimate the normalizing constants
for these models and how the estimate can then be used for inference of the model
parameters. An improved estimate of the normalizing constant function would def-
initely benefit one’s inference for the model.



2836 F. LIANG

4. Trajectory averaging for a stochastic approximation MLE algorithm.
Consider the standard missing data problem:

• y is the observed incomplete data.
• f (x, θ) is the complete data likelihood, that is, the likelihood of the complete

data (x, y) obtained by augmenting the observed data y with the missing data x.
The dependence of f (x, θ) on y is here implicit.

• p(x, θ) is the predictive distribution of the missing data x given the observed
data y, that is, the predictive likelihood.

Our goal is to find the maximum likelihood estimator of θ . This problem has been
considered by a few authors under the framework of stochastic approximation;
see, for example, Younes (1989), Gu and Kong (1998) and Delyon, Lavielle and
Moulines (1999). A basic algorithm proposed by Younes (1989) for the problem
can be written as

θk+1 = θk + ak∂θ logf (Xk+1, θk),(25)

where the missing data Xk+1 can be imputed using a MCMC algorithm, such as
the Metropolis–Hastings algorithm. Under standard regularity conditions, we have

h(θ) = Eθ [∂θ logf (X, θ)] = ∂θ l(θ),

where l(θ) is the log-likelihood function of the incomplete data.
To show that the trajectory averaging estimator is asymptotically efficient for a

varying truncation version of the algorithm (25), we assume (A3), (A4) and some
regularity conditions for the distribution f (x, θ). The conditions (A1) and (A2)
can be easily verified with the following settings:

• The Lyapunov function v(θ) can be chosen as v(θ) = −l(θ) + C, where C is
chosen such that v(θ) > 0. Thus,

〈∇v(θ), h(θ)〉 = −‖∂θ l(θ)‖2.

The set of stationary points of (25), {θ : 〈∇v(θ), h(θ)〉 = 0}, coincides with the
set of the solutions {θ : ∂θ l(θ) = 0}. Then the condition (A1) can be verified by
verifying that l(θ) is continuously differentiable (this is problem dependent).

• The matrix F trivially is the Hessian matrix of l(θ). Then (A2) can be verified
using the Taylor expansion.

In summary, we have the following theorem.

THEOREM 4.1. Assume conditions (A3) and (A4) hold. Then the estimator
θ̄k generated by a varying truncation version of algorithm (25) is asymptotically
efficient.
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In practice, to ensure the drift condition to be satisfied, we may follow Andrieu,
Moulines and Priouret (2005) to impose some constraints on the tails of the distri-
bution f (x, θ) and the proposal distribution q(x, y). Alternatively, we can follow
Liang, Liu and Carroll (2007) to choose a proposal satisfying the local positive
condition (22) and to restrict the sample space X to be compact. For example, we
may set X to a huge space, say, X = [−10100,10100]dx . As a practical matter, this
is equivalent to setting X = R

dx .

5. Conclusion. In this paper, we have shown that the trajectory averaging es-
timator is asymptotically efficient for a general stochastic approximation MCMC
algorithm under mild conditions, and then applied this result to the stochastic ap-
proximation Monte Carlo algorithm and a stochastic approximation MLE algo-
rithm.

The main difference between this work and the work published in the literature,
for example, Polyak and Juditsky (1992) and Chen (1993), are at the conditions
on the observation noise. In the literature, it is usually assumed directly that the
observation noise has the decomposition εk = ek + νk , where {ek} forms a mar-
tingale difference sequence and νk is a higher order term of o(a

1/2
k ). As shown in

Lemma A.5, the stochastic approximation MCMC algorithm does not satisfy this
decomposition.

APPENDIX A: PROOFS OF THEOREMS 2.2 AND 2.3

Lemma A.1 is a partial restatement of Proposition 6.1 of Andrieu, Moulines and
Priouret (2005).

LEMMA A.1. Assume condition (A3) holds. Then the following results hold:

(B1) For any θ ∈ �, the Markov kernel Pθ has a single stationary distri-
bution fθ . In addition, H :� × X → � is measurable for all θ ∈ �,∫

X ‖H(θ, x)‖fθ(x) dx < ∞.
(B2) For any θ ∈ �, the Poisson equation u(θ, x) − Pθu(θ, x) = H(θ, x) − h(θ)

has a solution u(θ, x), where Pθu(θ, x) = ∫
X u(θ, x′)Pθ (x, x′) dx′. There ex-

ist a function V : X → [1,∞) such that {x ∈ X ,V (x) < ∞} �= ∅, and a con-
stant β ∈ (0,1] such that for any compact subset K ⊂ �, the following holds:

(i) sup
θ∈K

‖H(θ, x)‖V < ∞,

(ii) sup
θ∈K

(‖u(θ, x)‖V + ‖Pθu(θ, x)‖V

)
< ∞,

(26)
(iii) sup

(θ,θ ′)∈K×K
‖θ − θ ′‖−β(‖u(θ, x) − u(θ ′, x)‖V

+ ‖Pθu(θ, x) − Pθ ′u(θ ′, x)‖V

)
< ∞.
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Lemma A.2 is a restatement of Proposition 5.1 of Andrieu, Moulines and
Priouret (2005).

LEMMA A.2. Assume conditions (A1), (A3) and (A4) hold. Let X0 ⊂ X be
such that supx∈X0

V (x) < ∞ and that K0 ⊂ VM0 , where V0 is defined in (A1).
Then supk E[V α(Xk)I (k ≥ kσs )] < ∞, where α ≥ 2 is defined in condition (A3)
and kσs is defined in Theorem 2.1.

Lemma A.3 is a restatement of Corollary 2.1.10 of Duflo (1997), pages 46
and 47.

LEMMA A.3. Let {Sni, Gni,1 ≤ i ≤ kn, n ≥ 1} be a zero-mean, square-
integrable martingale array with differences υni , where Gni denotes the σ -field.
Suppose that the following assumptions apply:

(i) The σ -fields are nested: Gni ⊆ Gn+1,i for 1 ≤ i ≤ kn, n ≥ 1.
(ii)

∑kn

i=1 E(υniυ
T
ni |Gn,i−1) → � in probability, where � is a positive definite

matrix.
(iii) For any ε > 0,

∑kn

i=1 E[‖υni‖2I(‖υni‖≥ε)|Gn,i−1] → 0 in probability.

Then Snkn = ∑kn

i=1 υni → N(0,�) in distribution.

DEFINITION A.1. For � ∈ (0,∞), a sequence {Xn,n ≥ 1} of random vari-
ables is said to be residually Cesàro �-integrable [RCI(�), in short] if

sup
n≥1

1

n

n∑
i=1

E|Xi | < ∞

and

lim
n→∞

1

n

n∑
i=1

E(|Xi | − i�)I (|Xi | > i�) = 0.

Lemma A.4 is a restatement of Theorem 2.1 of Chandra and Goswami (2006).

LEMMA A.4. Let {Xn,n ≥ 1} be a sequence of nonnegative random vari-
ables satisfying E(XiXj ) ≤ E(Xi)E(Xj ) for all i �= j and let Sn = ∑n

i=1 Xi . If
{Xn,n ≥ 1} is RCI(�) for some � ∈ (0,1), then

1

n
[Sn − E(Sn)] → 0 in probability.

LEMMA A.5. Assume conditions (A1), (A3) and (A4) hold. Let X0 ⊂ X be
such that supx∈X0

V (x) < ∞ and that K0 ⊂ VM0 , where V0 is defined in (A1).
If kσs < ∞, which is defined in Theorem 2.1, then there exist R

d -valued ran-
dom processes {ek}k≥kσs

, {νk}k≥kσs
and {ςk}k≥kσs

defined on a probability space
(�, F ,P) such that:
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(i) εk = ek + νk + ςk for k ≥ kσs .
(ii) {ek}k≥kσs

is a martingale difference sequence, and 1√
n

∑n
k=kσs

ek −→
N(0,Q) in distribution, where Q = limk→∞ E(eke

T
k ).

(iii) 1√
k

∑k
i=kσs

E‖νi‖ → 0, as k → ∞.

(iv) E‖∑k
i=kσs

aiςi‖ → 0, as k → ∞.

PROOF. (i) Let εkσs
= νkσs

= ςkσs
= 0, and

ek+1 = u(θk, xk+1) − Pθk
u(θk, xk),

νk+1 = [Pθk+1u(θk+1, xk+1) − Pθk
u(θk, xk+1)]

+ ak+2 − ak+1

ak+1
Pθk+1u(θk+1, xk+1),(27)

ς̃k+1 = ak+1Pθk
u(θk, xk),

ςk+1 = 1

ak+1
(ς̃k+1 − ς̃k+2).

It is easy to verify that (i) holds by noticing the Poisson equation given in (B2).
(ii) By (27), we have

E(ek+1|Fk) = E(u(θk, xk+1)|Fk) − Pθk
u(θk, xk) = 0,

where {Fk}k≥kσs
is a family of σ -algebras satisfying σ {θkσs

, xkσs
} ⊆ F0 and σ {θkσs

,

θkσs +1, . . . , θk;xkσs
, xkσs+1, . . . , xk} ⊆ Fk ⊆ Fk+1 for all k ≥ kσs . Hence, {ek}k≥kσs

forms a martingale difference sequence.
When kσs < ∞, there exists a compact set K such that θk ∈ K for all k ≥ 0. Fol-

lowing from Lemmas A.1 and A.2, {ek}k≥kσs
is ek is uniformly square integrable

with respect to k, and the martingale sn = ∑n
k=1 ek is square integrable for all n.

By (27), we have

E(ek+1e
T
k+1|Fk) = E[u(θk, xk+1)u(θk, xk+1)

T |Fk]
− Pθk

u(θk, xk)Pθk
u(θk, xk)

T(28)

�= l(θk, xk).

Following from Lemmas A.1 and A.2, ‖l(θk, xk)‖ is uniformly integrable with
respect to k. Hence, {l(θk, xk), k ≥ kσs } is RCI(�) for any � > 0 (Definition A.1).
Since {E(ek+1e

T
k+1|Fk) − E(ek+1e

T
k+1)} forms a martingale difference sequence,

the correlation coefficient Corr(l(θi, xi), l(θj , xj )) = 0 for all i �= j . By Lem-
ma A.4, we have, as n → ∞,

1

n

n∑
k=kσs

l(θk, xk) → 1

n

n∑
k=kσs

El(θk, xk) in probability.(29)
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Now we show that El(θk, xk) also converges. It follows from (A1) and (B2)
that l(θ, x) is continuous in θ . By the convergence of θk , we can conclude that
l(θk, x) converges to l(θ∗, x) for any x ∈ X . Following from Lemmas A.1, A.2 and
Lebesgue’s dominated convergence theorem, El(θk, xk) converges to El(θ∗, x).
Combining with (29), we obtain

1

n

n∑
k=kσs

l(θk, xk) → El(θ∗, x) = lim
k→∞E(eke

T
k ) in probability.(30)

Since ‖ek‖ can be uniformly bounded by an integrable function cV (x), the Linde-
berg condition is satisfied, that is,

n∑
i=kσs

E

[‖ei‖2

n
I(‖ei‖/√n≥ε)

∣∣∣Fi−1

]
→ 0 as n → ∞.

Following from Lemma A.3, we have
∑n

i=kσs
ei/

√
n → N(0,Q) by identifying

ei/
√

n to υni , n to kn, and Fi to Gni .
(iii) By condition (A4), we have

ak+2 − ak+1

ak+1
= o(ak+2).

By (27) and (26), there exists a constant c1 such that the following inequality holds:

‖νk+1‖V ≤ c1‖θk+1 − θk‖ + o(ak+2) = c1‖akH(θk, xk+1)‖ + o(ak+2),

which implies, by (26), that there exists a constant c2 such that

‖νk+1‖V 2 ≤ c2ak.(31)

Since V (x) is square integrable, νk is uniformly integrable with respect to k and
there exists a constant c3 such that

∞∑
k=kσs

E‖νk‖√
k

≤ c3

∞∑
k=kσs

ak√
k

< ∞,

where the last inequality follows from condition (A4). Therefore, (iii) holds by
Kronecker’s lemma.

(iv) A straightforward calculation shows that

k∑
i=kσs

aiςi = −ς̃k+1 = −ak+1Pθk
u(θk, xk).

By Lemmas A.1 and A.2, E‖Pθk
u(θk, xk)‖ is uniformly bounded with respect to k.

Therefore, (iv) holds. �
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By Theorem 2.1, we have

θk+1 − θ∗ = (θk − θ∗) + akh(θk) + akεk+1 ∀k ≥ kσs .(32)

To facilitate the theoretical analysis for the random process {θk}, we define a re-
duced random process: {θ̃k}k≥0, where

θ̃k =
{

θk + ς̃k, k > kσs ,
θk, 0 ≤ k ≤ kσs ,

(33)

which is equivalent to set ς̃k = 0 for all k = 0, . . . , kσs . For convenience, we also
define

ε̃k = ek + νk, k > kσs .(34)

It is easy to verify that

θ̃k+1 − θ∗ = (I + akF )(θ̃k − θ∗)
(35)

+ ak

(
h(θk) − F(θ̃k − θ∗)

) + akε̃k+1 ∀k ≥ kσs ,

which implies

θ̃k+1 − θ∗ = �k,kσs
(θ̃kσs

− θ∗) +
k∑

j=kσs

�k,j+1aj ε̃j+1

(36)

+
k∑

j=kσs

�k,j+1aj

(
h(θj ) − F(θ̃j − θ∗)

) ∀k ≥ kσs ,

where �k,j = ∏k
i=j (I + aiF ) if k ≥ j , and �j,j+1 = I , and I denotes the identity

matrix.
For γ specified in (A2) and a deterministic integer k0, define the stopping time

μ = min{j : j ≥ k0,‖θj − θ∗‖ ≥ γ } if ‖θk0 − θ∗‖ < γ and 0 if ‖θk0 − θ∗‖ ≥ γ .
Define

A = {i :kσs < k0 ≤ i < μ},(37)

and let IA(k) denote the indicator function; IA(k) = 1 if k ∈ A and 0 otherwise.
Therefore, for all k ≥ k0,

(θ̃k+1 − θ∗)IA(k + 1)

= �k,k0(θ̃k0 − θ∗)IA(k + 1) +
[

k∑
j=k0

�k,j+1aj ε̃j+1IA(j)

]
IA(k + 1)(38)

+
[

k∑
j=k0

�k,j+1aj

(
h(θj ) − F(θ̃j − θ∗)

)
IA(j)

]
IA(k + 1).

Including the terms IA(j) in (38) facilitates our use of some results published in
Chen (2002) in the later proofs, but it does not change equality of (38). Note that
if IA(k + 1) = 1, then IA(j) = 1 for all j = k0, . . . , k.
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LEMMA A.6. (i) The following estimate takes place:

aj

ak

≤ exp

(
o(1)

k∑
i=j

ai

)
∀k ≥ j,∀j ≥ 1,(39)

where o(1) denotes a magnitude that tends to zero as j → ∞.
(ii) Let c be a positive constant, then there exists another constant c1 such that

k∑
i=1

ar
i exp

(
−c

k∑
j=i+1

aj

)
≤ c1 ∀k ≥ 1,∀r ≥ 1.(40)

(iii) There exist constants c0 > 0 and c > 0 such that

‖�k,j‖ ≤ c0 exp

{
−c

k∑
i=j

ai

}
∀k ≥ j,∀j ≥ 0.(41)

(iv) Let Gk,j = ∑k
i=j (aj−1 − ai)�i−1,j + F−1�k,j . Then Gk,j is uniformly

bounded with respect to both k and j for 1 ≤ j ≤ k, and

1

k

k∑
j=1

‖Gk,j‖ −→ 0 as k → ∞.(42)

PROOF. Parts (i) and (iv) are a restatement of Lemma 3.4.1 of Chen (2002).
The proof of part (ii) can be found in the proof of Lemma 3.3.2 of Chen (2002).
The proof of part (iii) can be found in the proof of Lemma 3.1.1 of Chen (2002).

�

LEMMA A.7. If conditions (A1)–(A4) hold, then

1

ak+1
E‖(θk+1 − θ∗)IA(k + 1)‖2

is uniformly bounded with respect to k, where the set A is as defined in (37).

PROOF. By (33) and (27), we have

1

ak+1
‖θk+1 − θ∗‖2 = 1

ak+1
‖θ̃k+1 − θ∗ − ς̃k+1‖2

≤ 2

ak+1
‖θ̃k+1 − θ∗‖2 + 2ak+1‖Pθk

u(θk, xk)‖2.

Following from (B2) and Lemma A.2, it is easy to see that E‖Pθk
u(θk, xk)‖2 is

uniformly bounded with respect to k. Hence, to prove the lemma, it suffices to
prove that 1

ak+1
E‖(θ̃k+1 − θ∗)IA(k + 1)‖2 is uniformly bounded with respect to k.
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By (33), (A2) and (B2), there exist constants c1 and c2 such that

‖h(θj ) − F(θ̃j − θ∗)‖IA(j)

= ‖h(θj ) − F(θj − θ∗) − F ς̃j‖IA(j)
(43)

≤ ‖h(θj ) − F(θj − θ∗)‖IA(j) + c2aj‖Pθj−1u(θj−1, xj−1)‖
≤ c1‖θj − θ∗‖1+ρ + c2aj‖Pθj−1u(θj−1, xj−1)‖.

In addition, we have

E‖θ̃k0 − θ∗‖2IA(k0) = E‖θk0 − θ∗ + ς̃k0‖2IA(k0)
(44)

≤ 2‖θk0 − θ∗‖2IA(k0) + 2E‖ς̃k0‖2.

It is easy to see from (26) and (27) that ς̃k0 is square integrable. Hence, following
from (37), there exists a constant γ̃ such that

E‖θ̃k0 − θ∗‖2IA(k0) ≤ γ̃ .(45)

By (38), (41), (43) and (45), and following Chen [(2002), page 141] we have

1

ak+1
E‖(θ̃k+1 − θ∗)IA(k + 1)‖2

≤ 5c0γ̃

ak+1
exp

(
−2c

k∑
i=k0

ai

)

+ 5c2
0

ak+1

k∑
i=k0

k∑
j=k0

[
exp

(
−c

k∑
s=j+1

as

)
aj exp

(
−c

k∑
s=i+1

as

)
ai‖Eei+1e

T
j+1‖

]

+ 5c2
0

ak+1

k∑
i=k0

k∑
j=k0

[
exp

(
−c

k∑
s=j+1

as

)
aj exp

(
−c

k∑
s=i+1

as

)
aiE‖νi+1ν

T
j+1‖

]

+ 5c2
0c

2
2

ak+1

k∑
i=k0

k∑
j=k0

[
exp

(
−c

k∑
s=j+1

as

)
a2
j exp

(
−c

k∑
s=i+1

as

)

× a2
i E‖Pθi−1u(θi−1, xi−1)(Pθj−1u(θj−1, xj−1))

T ‖
]

+ 5c2
0c

2
1

ak+1
E

[
k∑

j=k0

exp

(
−c

k∑
s=j+1

as

)
aj‖θj − θ∗‖1+ρIA(j)

]2

�= I1 + I2 + I3 + I4 + I5.
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By (39), there exists a constant c3 such that such that

‖I1‖ ≤ 5c0c3γ̃

ak0

exp

(
o(1)

k+1∑
i=k0

ai

)
exp

(
−2c

k∑
i=k0

ai

)
,

where o(1) → 0 as k0 → ∞. This implies that o(1) − 2c < 0 if k0 is large enough.
Hence, I1 is bounded if k0 is large enough.

By (39) and (40), for large enough k0, there exists a constant c4 such that

k∑
j=k0

a2
j

ak+1
exp

(
−c

k∑
s=j+1

as

)
≤

k∑
j=k0

aj exp

(
−c

2

k∑
s=j+1

as

)
≤ c4.(46)

Since {ei} forms a martingale difference sequence (Lemma A.5),

Eeie
T
j = E(E(ei |Fi−1)e

T
j ) = 0 ∀i > j,

which implies that

I2 = 5c2
0

ak+1

k∑
i=k0

[
a2
i exp

(
−2c

k∑
s=j+1

as

)
E‖ei‖2

]

≤ 5c2
0 sup

i

E‖ei‖2
k∑

i=k0

[
a2
i exp

(
−2c

k∑
s=j+1

as

)]
.

Since {‖ei‖, i ≥ 1} is uniformly bounded by a function cV (x) which is square
integrable, supi E‖ei‖2 is bounded by a constant. Furthermore, by (40), I2 is uni-
formly bounded with respect to k.

By (27), (26) and condition (A4), there exist a constant c0 and a constant τ ∈
(0,1) such that the following inequality holds:

‖νk+1‖V ≤ c0‖θk+1 − θk‖ + o(ak+2) ≤ c0bk + o(ak+2) = O
(
a

(1+τ )/2
k

)
.(47)

This, by (B1) and the Cauchy–Schwarz inequality, further implies that there exists
a constant c′

0 such that

E‖νi+1ν
T
j+1‖ ≤ c′

0a
(1+τ )/2
i a

(1+τ)/2
j .(48)

Therefore, there exists a constant c5 such that

I3 = 5c2
0

k∑
i=k0

k∑
j=k0

[
exp

(
−c

k∑
s=j+1

as

)
aj√
ak+1

× exp

(
−c

k∑
s=i+1

as

)
ai√
ak+1

O
(
a

(1+τ )/2
i

)
O

(
a

(1+τ )/2
j

)]
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≤ 5c2
0c5

k∑
i=k0

k∑
j=k0

[
exp

(
−c

2

k∑
s=j+1

as

)
aj

1/2

× exp

(
−c

2

k∑
s=i+1

as

)
ai

1/2a
(1+τ )/2
i a

(1+τ)/2
j

]

= 5c2
0c5

{
k∑

j=k0

[
aj

1+τ/2 exp

(
−c

2

k∑
s=j+1

as

)]}2

.

By (40), I3 is uniformly bounded with respect to k.
Following from Lemmas A.1 and A.2, E‖Pθi−1u(θi−1, xi−1)(Pθj−1u(θj−1,

xj−1))
T ‖ is uniformly bounded with respect to k. Therefore, there exists a con-

stant c6 such that

I4 = 5c2
0c

2
2c6

k∑
i=k0

k∑
j=k0

[
exp

(
−c

k∑
s=j+1

as

)
a2
j√

ak+1
exp

(
−c

k∑
s=i+1

as

)
a2
i√

ak+1

]

≤ 5c2
0c

2
2c6

{
k∑

j=k0

[
aj

3/2 exp

(
−c

2

k∑
s=j+1

as

)]}2

.

By (40), I4 is uniformly bounded with respect to k.
The proof for the uniform boundedness of I5 can be found in the proof of

Lemma 3.4.3 of Chen (2002), pages 143 and 144. �

LEMMA A.8. If conditions (A1)–(A4) hold, then as k → ∞,

1√
k

k∑
i=kσs

‖h(θi) − F(θ̃i − θ∗)‖ −→ 0 in probability.

PROOF. By (33) and (27), there exists a constant c such that

1√
k

k∑
i=kσs

‖h(θi) − F(θ̃i − θ∗)‖

≤ 1√
k

k∑
i=kσs

‖h(θi) − F(θi − θ∗)‖ + c√
k

k∑
i=kσs

ai‖Pθi−1u(θi−1, xi−1)‖

�= I1 + I2.

To prove the lemma, it suffices to prove that I1 and I2 both converge to zero in
probability as k → ∞.
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Following from Lemmas A.1 and A.2, E‖Pθk
u(θk, x)‖ is uniformly bounded

for all k ≥ kσs . This implies, by condition (A4), there exists a constant c such that

∞∑
i=1

aiE‖Pθi−1u(θi−1, xi−1)‖√
i

< c

∞∑
i=1

ai√
i

< ∞.

By Kronecker’s lemma, E(I2) → 0, and thus I2 → 0 in probability.
The convergence I1 → 0 can be established as in Chen [(2002), Lemma 3.4.4]

using the condition (A2) and Lemma A.7. �

Proof of Theorem 2.2. By Theorem 2.1, θk converges to the zero point θ∗
almost surely and

θk+1 = θk + akH(θk, xk+1) ∀k ≥ kσs .

Consequently, we have, by (33),

√
k(θ̄k − θ∗) = o(1) + 1√

k

k∑
i=kσs

(θi − θ∗)

(49)

= o(1) + 1√
k

k∑
i=kσs

(θ̃i − θ∗) − 1√
k

k∑
i=kσs

ς̃i ,

where o(1) → 0 as k → ∞.
Condition (A4) implies 1√

k

∑k
i=kσs

ai → 0 by Kronecker’s lemma. Following
Lemmas A.1 and A.2, there exists a constant c such that

1√
k

k∑
i=kσs

E‖ς̃i‖ ≤ c√
k

k∑
i=kσs

ai+1 → 0.(50)

Therefore, 1√
k

∑k
i=kσs

ς̃i → 0 in probability as k → ∞.
By (36), (49) and (50), we have

√
k(θ̄k − θ∗) = op(1) + 1√

k

k∑
i=kσs

�i−1,kσs
(θ̃kσs

− θ∗)

+ 1√
k

k∑
i=kσs

i−1∑
j=kσs

�i−1,j+1aj ε̃j+1

(51)

+ 1√
k

k∑
i=kσs

i−1∑
j=kσs

�i−1,j+1aj

(
h(θj ) − F(θ̃j − θ∗)

)
�= op(1) + I1 + I2 + I3,
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where op(·) means

Yk = op(Zk) if and only if Yk/Zk → 0 in probability, as k → ∞.

By noticing that �k,j = �k−1,j + akF�k−1,j , we have

�k,j = I +
k∑

i=j

aiF�i−1,j and F−1�k,j = F−1 +
k∑

i=j

ai�i−1,j ,

and thus

aj−1

k∑
i=j

�i−1,j =
k∑

i=j

(aj−1 − ai)�i−1,j +
k∑

i=j

ai�i−1,j .

By the definition of Gk,j given in Lemma A.6(iv), we have

aj−1

k∑
i=j

�i−1,j = −F−1 + Gk,j ,(52)

which implies

I1 = 1√
kakσs −1

(−F−1 + Gk,kσs
)(θ̃kσs

− θ∗).

By Lemma A.6, Gk,j is bounded. Therefore, I1 → 0 as k → ∞. The above argu-
ments also imply that there exists a constant c0 > 0 such that∥∥∥∥∥aj

k∑
i=j+1

�i−1,j+1

∥∥∥∥∥ < c0 ∀k,∀j < k.(53)

By (53), we have

‖I3‖ = 1√
k

∥∥∥∥∥
k∑

j=kσs

k∑
i=j+1

�i−1,j+1aj

(
h(θj ) − F(θ̃j − θ∗)

)∥∥∥∥∥
≤ c0√

k

k∑
j=kσs

‖h(θj ) − F(θ̃j − θ∗)‖.

It then follows from Lemma A.8 that I3 converges to zero in probability as k → ∞.
Now we consider I2. By (34) and (52),

I2 = −F−1
√

k

k∑
j=kσs

ej+1 + 1√
k

k∑
j=kσs

Gk,j+1ej+1

+ 1√
k

k∑
j=kσs

(−F−1 + Gk,j+1)νj+1

�= J1 + J2 + J3.
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Since {ej } is a martingale difference sequence,

E(eT
i GT

k,iGk,j ej ) = E[E(ei |Fi−1)
T GT

k,iGk,j ej ] = 0 ∀i > j,

which implies that

E‖J2‖2 = 1

k

k∑
j=kσs

E(eT
j+1G

T
k,j+1Gk,j+1ej+1) ≤ 1

k

k∑
j=kσs

‖Gk,j+1‖2E‖ej+1‖2.

By the uniform boundedness of {E‖ei‖2, i ≥ kσs }, (42) and the uniform bounded-
ness of Gk,j , there exists a constant c1 such that

E‖J2‖2 ≤ c1

k

k∑
j=kσs

‖Gk,j+1‖ → 0 as k → ∞.(54)

Therefore, J2 → 0 in probability as k → ∞.
Since Gk,j is uniformly bounded with respect to both k and j , there exists a

constant c2 such that

E‖J3‖ ≤ c2√
k

k∑
j=kσs

E‖νj+1‖.

Following from Lemma A.5(iii), J3 converges to zero in probability as k → ∞.
By Lemma A.5, J1 → N(0, S) in distribution. Combining with the convergence

results of I1, I3, J2 and J3, we conclude the proof of the theorem.

Proof of Theorem 2.3. Since the order of ςk is difficult to treat, we consider
the following stochastic approximation MCMC algorithm:

θ̃k+1 = θ̃k + ak

(
h(θk) + ε̃k+1

)
,(55)

where {θ̃k} and {ε̃k} are as defined in (33) and (34), respectively. Following from
Lemma A.5(ii), {ε̃k} forms a sequence of asymptotically unbiased estimator of 0.

Let ¯̃
θn = ∑n

k=1 θ̃k/n. To establish that ¯̃
θ is an asymptotically efficient estimator

of θ∗, we will first show (in step 1)
√

n(
¯̃
θ − θ∗) → N(0,�),(56)

where � = F−1Q(F−1)T , F = ∂h(θ∗)/∂θ and Q = limk→∞ E(eke
T
k ); and then

show (in step 2) that the asymptotic covariance matrix of
∑n

k=1 ε̃k/
√

n is equal
to Q.

Step 1. By (34), we have

¯̃
θ = θ̄ + 1

n

n∑
k=1

ς̃k.(57)
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By Lemmas A.1 and A.2, E‖Pθk−1u(θk−1, xk−1)‖ is uniformly bounded for k ≥
kσs and thus there exists a constant c such that

E

∥∥∥∥∥ 1√
n

n∑
k=kσs

ς̃k

∥∥∥∥∥ = E

∥∥∥∥∥ 1√
n

n∑
k=kσs

akPθk−1u(θk−1, xk−1)

∥∥∥∥∥ ≤ c√
n

n∑
k=kσs

ak.

By Kronecker’s lemma and (A4), we have 1√
n

∑n
k=kσs

ak → 0 in probability.

Hence, 1√
n

∑n
k=kσs

ς̃k = op(1) and

1

n

n∑
k=kσs

ς̃k = op(n−1/2).(58)

That is
¯̃
θn = θ̄n + op(n−1/2).(59)

Following from Theorem 2.2 and Slutsky’s theorem, (56) holds.
Step 2. Now we show the asymptotic covariance matrix of

∑n
k=1 ε̃k/

√
n is equal

to Q. Consider

E

(
1√
n

n∑
k=1

ε̃k

)(
1√
n

n∑
k=1

ε̃k

)T

− 1

n

(
n∑

k=1

E(ε̃k)

)(
n∑

k=1

E(ε̃k)

)T

= 1

n

n∑
k=1

E(ε̃kε̃
T
k ) + 1

n

∑∑
i �=j

E(ε̃i ε̃
T
j ) − 1

n

[
n∑

k=1

E(ε̃k)

][
n∑

k=1

E(ε̃k)

]T

= (I1) + (I2) + (I3).

By (34), we have

(I1) = 1

n

n∑
k=1

E(eke
T
k ) + 2

n

n∑
k=1

E(ekν
T
k ) + 1

n

n∑
k=1

E(νkν
T
k )

= (J1) + (J2) + (J3).

By (47), ‖νkν
T
k ‖V 2 = O(a1+τ

k ) for k ≥ kσs , where τ ∈ (0,1) is defined in (A4).
Since V 2(x) is square integrable, there exists a constant c such that

1

n

n∑
k=1

E‖νkν
T
k ‖ ≤ o(1) + c√

n

1√
n

n∑
k=kσs

a1+τ
k ,

which, by Kronecker’s lemma and (A4), implies J3 → 0 as n → ∞.
Following from Lemmas A.1 and A.2, {‖ek‖}k≥kσs

is uniformly bounded with
respect to k. Therefore, there exists a constant c such that

J2 = 2

n

n∑
k=1

E‖ekν
T
k ‖ ≤ o(1) + c

n

n∑
k=kσs

E‖νk‖.
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Following from Lemma A.5(iii), J2 → 0 as n → ∞.
By (28), E(ek+1e

T
k+1) = El(θk, xk). Since l(θ, x) is continuous in θ , it follows

from Theorem 2.1 that l(θk, x) converges to l(θ∗, x) for any x ∈ X . Furthermore,
following from Lemma A.2 and Lebesgue’s dominated convergence theorem, we
conclude that El(θk, xk) converges to El(θ∗, x), and thus

J1 → El(θ∗, x) = lim
k→∞E(eke

T
k ) = Q.

Summarizing the convergence results of J1, J2 and J3, we conclude that (I1) → Q

as n → ∞.
By (34), for i �= j , i ≥ kσs and j ≥ kσs , we have

E(ε̃i ε̃
T
j ) = E{(ei + νi)(ej + νj )

T } = E(eie
T
j + νiν

T
j + eiν

T
j + νie

T
j )

(60)
= E(νiν

T
j ),

where the last equality follows from the result that {ek}k≥kσs
is a martingale differ-

ence sequence [Lemma A.5(ii)]. By (48), there exists a constant c such that

E‖νiν
T
j ‖ ≤ ca

(1+τ )/2
i a

(1+τ )/2
j ,

which implies that∥∥∥∥1

n

∑∑
i �=j

E(νiν
T
j )

∥∥∥∥ ≤ o(1) + c

[
1√
n

n∑
i=kσs

a
(1+τ)/2
i

][
1√
n

n∑
j=kσs

a
(1+τ )/2
j

]
.(61)

By Kronecker’s lemma and (A4),
∑n

i=kσs
a

(1+τ)/2
i /

√
n → 0 and thus

1

n

∑∑
i �=j

E(νiν
T
j ) → 0 as n → ∞.(62)

In summary of (60) and (62), we have

(I2) = 1

n

∑∑
i �=j

E(ε̃i ε̃
T
j ) → 0 as n → ∞.(63)

By (47), there exists a constant c such that

1√
n

∥∥∥∥∥
n∑

k=1

Eνk

∥∥∥∥∥ ≤ o(1) + 1√
n

n∑
k=kσs

E‖νk‖ = o(1) + c√
n

n∑
k=kσs

a
(1+τ )/2
k .

By Kronecker’s lemma and (A4), we have

1√
n

∥∥∥∥∥
n∑

k=1

Eνk

∥∥∥∥∥ → 0 as n → ∞.(64)
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By Lemma A.1(i) and (ii), where it is shown that {ek}k≥kσs
is a martingale differ-

ence sequence, we have

(I3) = 1

n

[
n∑

k=1

E(ek + νk)

][
n∑

k=1

E(ek + νk)

]T

=
[

1√
n

n∑
k=1

E(νk)

][
1√
n

n∑
k=1

E(νk)

]T

.

Following from (64), we have (I3) → 0 as n → ∞.
Summarizing the convergence results of (I1), (I2) and (I3), the asymptotic co-

variance matrix of
∑n

k=1 ε̃k/
√

n is equal to Q. Combining with (56), we conclude

that ¯̃
θk is an asymptotically efficient estimator of θ∗.

Since ¯̃
θk and θ̄k have the same asymptotic distribution N(0,�), θ̄k is also as-

ymptotically efficient as an estimator of θ∗. This concludes the proof of Theo-
rem 2.3.

APPENDIX B: PROOFS OF THEOREMS 3.1 AND 3.2

The theorems can be proved using Theorems 2.1 and 2.2 by showing that SAMC
satisfies the conditions (A1) and (A2), as (A3) is assumed, and (A4) and and the
condition supx∈X0

V (x) < ∞ have been verified in the text.
Verification of (A1). To simplify notation, in the proof we drop the subscript

k, denoting xk by x and denote θk = (θ
(1)
k , . . . , θ

(m−1)
k ) by θ = (θ(1), . . . , θ (m−1)).

Since the invariant distribution of the MH kernel is fθ (x), we have for any fixed θ ,

E
(
I{x∈Ei} − πi

) =
∫

X

(
I{x∈Ei} − πi

)
fθ (x) dx

=
∫
Ei

ψ(x) dx/eθ(i)∑m
j=1[

∫
Ej

ψ(x)dx/eθ(j)] − πi(65)

= Si

S
− πi

for i = 1, . . . ,m−1, where Si = ∫
Ei

ψ(x) dx/eθ(i)
and S = ∑m−1

i=1 Si +∫
Em

ψ(x)dx.
Therefore,

h(θ) =
∫

X
H(θ, x)fθ (x) dx =

(
S1

S
− π1, . . . ,

Sm−1

S
− πm−1

)T

.

It follows from (65) that h(θ) is a continuous function of θ . Let �(θ) =
1 − 1

2
∑m−1

j=1 (
Sj

S
− πj )

2, and define v(θ) = − log(�(θ)) as in (19). As shown
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below, v(θ) is continuously differentiable. Since 0 ≤ 1
2

∑m−1
j=1 (

Sj

S
− πj )

2 <

1
2 [∑m−1

j=1 (
Sj

S
)2 + π2

j )] ≤ 1 for all θ ∈ �, v(θ) takes values in the interval [0,∞).
Solving the system of equations formed by (65), we have the single solution

θ(i) = c + log
(∫

Ei

ψ(x) dx
)

− log(πi), i = 1, . . . ,m − 1,

where c = − log(
∫
Em

ψ(x) dx) + log(πm). It is obvious that v(θ∗) = 0, and v(L)

has an empty interior, where θ∗ is specified in Theorem 3.1. Therefore, (A1)(iv) is
satisfied.

Given the continuity of v(θ), for any numbers M1 > M0 > 0, θ∗ ∈ int(VM0),
and VM1 is a compact set, where int(A) denotes the interior of the set A. Therefore,
(A1)(i) and (A1)(ii) are verified.

To verify the condition (A1)(iii), we have the following calculations:

∂S

∂θ(i)
= ∂Si

∂θ(i)
= −Si,

∂Si

∂θ(j)
= ∂Sj

∂θ(i)
= 0,

(66)
∂(Si/S)

∂θ(i)
= −Si

S

(
1 − Si

S

)
,

∂(Si/S)

∂θ(j)
= ∂(Sj/S)

∂θ(j)
= SiSj

S2

for i, j = 1, . . . ,m − 1 and i �= j . Let b = ∑m−1
j=1 Sj/S, then we have

∂v(θ)

∂θ(j)
= 1

2�(θ)

m−1∑
j=1

∂(Sj/S − πj )
2

∂θ(j)

= 1

�(θ)

[∑
j �=i

(
Sj

S
− πj

)
SiSj

S2 −
(

Si

S
− πi

)
Si

S

(
1 − Si

S

)]

= 1

�(θ)

[
m−1∑
j=1

(
Sj

S
− πj

)
SiSj

S2 −
(

Si

S
− πi

)
Si

S

]

= 1

�(θ)

[
bμξ

Si

S
−

(
Si

S
− πi

)
Si

S

]
for i = 1, . . . ,m − 1, where it is defined μξ = ∑m−1

j=1 (
Sj

S
− πj )

Sj

bS
. Thus,

〈∇v(θ), h(θ)〉

= 1

�(θ)

[
b2μξ

m−1∑
i=1

(
Si

S
− πi

)
Si

bS
− b

m−1∑
i=1

(
Si

S
− πi

)2 Si

bS

]
(67)

= − 1

�(θ)

[
b

m−1∑
i=1

(
Si

S
− πi

)2 Si

bS
− b2μ2

ξ

]

= − 1

�(θ)

(
bσ 2

ξ + b(1 − b)μ2
ξ

) ≤ 0,
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where σ 2
ξ denotes the variance of the discrete distribution defined in the following

table:

State (ξ) S1
S

− π1 · · · Sm−1
S

− πm−1

Prob. S1
bS

· · · Sm−1
bS

If θ = θ∗, 〈∇v(θ), h(θ)〉 = 0; otherwise, 〈∇v(θ), h(θ)〉 < 0. Therefore, (A1)(iii)
is satisfied.

Verification of (A2). To verify this condition, we first show that h(θ) has
bounded second derivatives. Continuing the calculation in (66), we have

∂2(Si/S)

∂(θ(i))2 = Si

S

(
1 − Si

S

)(
1 − 2Si

S

)
,

∂2(Si/S)

∂θ(j) ∂θ(i)
= −SiSj

S2

(
1 − 2Si

S

)
,

which implies that the second derivative of h(θ) is uniformly bounded by noting
the inequality 0 < Si

S
< 1.

Let F = ∂h(θ)/∂θ . By (66), we have

F =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−S1

S

(
1 − S1

S

)
S1S2

S2 · · · S1Sm−1

S2

S2S1

S2 −S2

S

(
1 − S2

S

)
· · · S2Sm−1

S2

...
. . .

...
...

Sm−1S1

S2 · · · · · · −Sm−1

S

(
1 − Sm−1

S

)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Thus, for any nonzero vector z = (z1, . . . , zm−1)
T ,

zT F z = −
[

m−1∑
i=1

z2
i

Si

S
−

(
m−1∑
i=1

zi

Si

S

)2]

= −b

[
m−1∑
i=1

z2
i

Si

bS
−

(
m−1∑
i=1

zi

Si

bS

)2]
− b(1 − b)

(
m−1∑
i=1

zi

Si

bS

)2

(68)

= −b Var(Z) − b(1 − b)(E(Z))2 < 0,

where E(Z) and Var(Z) denote, respectively, the mean and variance of the discrete
distribution defined by the following table:

State (Z) z1 · · · zm−1

Prob. S1
bS

· · · Sm−1
bS

This implies that the matrix F is negative definite and thus stable. Applying
Taylor’s expansion to h(θ) at the point θ∗, we have

‖h(θ) − F(θ − θ∗)‖ ≤ c‖θ − θ∗‖1+ρ,

for some constants ρ ∈ (0,1] and c > 0, by noting that h(θ∗) = 0 and that the
second derivatives of h(θ) are uniformly bounded with respect to θ . Therefore,
(A2) is satisfied.
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