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ORDER THRESHOLDING1

BY MIN HEE KIM AND MICHAEL G. AKRITAS

Pennsylvania State University

A new thresholding method, based on L-statistics and called order
thresholding, is proposed as a technique for improving the power when test-
ing against high-dimensional alternatives. The new method allows great flex-
ibility in the choice of the threshold parameter. This results in improved
power over the soft and hard thresholding methods. Moreover, order thresh-
olding is not restricted to the normal distribution. An extension of the basic
order threshold statistic to high-dimensional ANOVA is presented. The per-
formance of the basic order threshold statistic and its extension is evaluated
with extensive simulations.

1. Introduction. It is well known that, when testing against a high-dimen-
sional alternative, omnibus tests designed to detect any departure from the null
hypothesis have low power. Neyman’s (1937) truncation idea, though motivated
by a different type of problem, served as the spring board for the development
of modern related approaches. Soft and hard thresholding were introduced in the
context of nonparametric function estimation using wavelets by Donoho and John-
stone (1994). Johnstone and Silverman (2004) elaborate on a number of additional
applications of thresholding including image processing, model selection, and data
mining. Beran (2004) considered applications to the one-way ANOVA design.
Spokoiny (1996), Fan (1996) and Fan and Lin (1998) consider applications of
thresholding methods to testing problems. Fan (1996) found that hard threshold-
ing outperforms both soft thresholding and adaptive Neyman’s truncation.

This paper proposes a new thresholding method based on L-statistics, which is
termed order thresholding. Order thresholding allows great flexibility in the choice
of the threshold parameter, can be used for distributions other than the normal, and
extends naturally to factorial design settings.

In the simple context where the Xi are independent N(θi,1), i = 1, . . . , n, and
we wish to test H0 : θ1 = · · · = θn = 0 vs. Ha : θi �= 0, for some i, the hard thresh-
olding and order thresholding test statistics are, respectively,

TH (δn) =
n∑

i=1

YiI {Yi > δn} and TL(kn) =
n∑

i=1

cinYi,n,(1.1)
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where Yi = X2
i , Y1,n < · · · < Yn,n are the ordered Yi ’s, cin = I (i > n−kn), and δn,

kn are the corresponding threshold parameters. Thus, TL(kn) is an L-statistic based
on the largest kn squared observations. Conceptually, the connection between hard
thresholding and order thresholding is similar to that between type I and type II
censoring. The main difference being that the threshold parameters in type I and
type II censoring (the cut-off point and the proportion of observations included,
resp.) remain fixed, while in the present case they change with the sample size. As
we will see, this distinction implies very different asymptotic behavior.

The idea behind both statistics in (1.1) is similar to that of Neyman’s truncation.
Namely, when the “signal” is known to be concentrated in a few locations, the
accumulation of stochastic errors has a negative impact on the performance of the
procedure based on the chi-square statistic

TL(n) =
n∑

i=1

Yi.(1.2)

Since the signal locations are not known, the statistics in (1.1) attempt to minimize
the accumulation of noise by focusing on the observations with the largest ab-
solute values. The asymptotic theory for hard thresholding [Fan (1996)] requires
several restrictive conditions that prevent its general applicability. For example,
the centering and scaling of TH (δn) in (1.1) are specific to the normality assump-
tion and to the choice of δn. Moreover, δn is required to tend to infinity at a rate
that is specific to the normality assumption. For example, δn tending to infinity is
clearly not appropriate if the Xi have bounded support. (Below, we discuss an ap-
plication to multiple testing where the Xi are uniformly distributed.) Intuitively, if
the signal is present in more locations, it is advantageous to lower the value of the
hard threshold parameter. The advantage of allowing different values of the thresh-
old parameter is amply illustrated in Johnstone and Silverman (2004). However,
the asymptotic theory of TH (δn) requires the threshold parameter to tend to infin-
ity at specific rates. In particular, it must be of the form δn = 2 log(nan), where
an = c(logn)−d , for c > 0 and d > 0.5. Thus, if we let kH (δn) denote the random
number of observations considered in TH (δn), the asymptotic theory of TH (δn)

requires E[kH (δn)] to converge to infinity at the rate of

(logn)d√
logn + d log(c1/d(logn)−1)

or, roughly, (logn)d−0.5. In contrast, the asymptotic theory of TL(kn) allows the
threshold parameter kn to tend to infinity at any rate.

While the asymptotic theory of TH (δn) allows some flexibility in the choice
of δn, the convergence of the distribution of TH (δn) to its limiting distribution
is very slow unless c = 1 and d = 2 [Fan (1996)]. The following tables show
that small departures in the recommended value of d , while keeping c = 1, have
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TABLE 1
Type I errors of TH (δn) for different values of the hard threshold parameter

δn − 2.0 δn − 1.6 δn − 1.2 δn − 0.8 δn − 0.4 δn

n = 50 0.0003 0.0099 0.0231 0.0341 0.0431 0.0493
n = 100 0.0101 0.0229 0.0324 0.0390 0.0461 0.0504
n = 200 0.0231 0.0316 0.0382 0.0439 0.0484 0.0507
n = 500 0.0327 0.0388 0.0422 0.0465 0.0502 0.0535

significant effect on the level of the test. The results are based on 30,000 simulation
runs.

To fully appreciate the results reported in Table 1, we mention that for n =
500 the recommended δ500 value is 5.1216, while the value δ500 − 2 corresponds
to c = 1 and d = 2.5474. We see that even with this small departure from the
recommended value, the achieved alpha level is 0.0327 even with n = 500. To
contrast these results with those of Table 3 for TL(kn), note that in Table 3 with
n = 500, kn ranges from 2 to 500, while in Table 1 with n = 500, the E[kH (δn+h)]
ranges from 38.63 for h = −2.0 to 11.81 for h = 0. Thus, the deterioration of the
achieved alpha levels occurs as E[kH (δn)] increases over a relatively small range
(in each case, the variance of kH (δn) is slightly smaller than its expected value).
In Table 2 with n = 500, the E[kH (δn + h)] ranges from 9.39 for h = 0.4 to 3.80
for h = 2.0, and for this range of values the type I error rate does not change
much. In both tables with n = 500, the variance of the binomial random variable
kH (δn + h) is slightly smaller than its expected value because P(Yi ≤ δn + h) >

0.92 for −2.0 ≤ h ≤ 2.0. Finally, following a remark by the AE, we note that the
slightly liberal α levels of the TL(kn) statistic can be corrected by the use of a
multiple of a χ2 distribution to approximate its finite sample distribution. Thus,
using the approximation TL(kn)

·∼ bχ2
ν , where b and ν are chosen to match the

mean and variance of TL(kn), results in the type I error rates shown in Table 4.
The greater flexibility in the choice of the threshold parameter that the order

threshold statistic offers does not come at the expense of the rate with which it con-
verges to its asymptotic distribution. To emphasize this aspect, Figure 1 presents

TABLE 2
Type I errors of TH (δn) for different values of the hard threshold parameter

δn + 0.4 δn + 0.8 δn + 1.2 δn + 1.6 δn + 2.0

n = 50 0.0543 0.0588 0.0614 0.0654 0.0663
n = 100 0.0552 0.0559 0.0597 0.0616 0.0631
n = 200 0.0539 0.0562 0.0590 0.0601 0.0627
n = 500 0.0540 0.0563 0.0583 0.0604 0.0623
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TABLE 3
Type I errors of TL(kn) for different values of the order threshold parameter

[log1/2 n] [logn] [log3/2 n] [n1/2] [n2/3] [n3/4] [n7/8] n

n = 50 0.0696 0.0685 0.0646 0.0646 0.0635 0.0630 0.0623 0.0626
n = 100 0.0669 0.0640 0.0606 0.0600 0.0591 0.0577 0.0585 0.0589
n = 200 0.0667 0.0620 0.0603 0.0589 0.0582 0.0583 0.0555 0.0560
n = 500 0.0665 0.0631 0.0577 0.0559 0.0536 0.0536 0.0535 0.0547

the estimated densities of the hard thresholding (solid lines in the upper panel)
and order thresholding test statistics (solid lines in the lower panel), based on
20,000 simulated values of each statistic using n = 200. The threshold parame-
ters of the hard thresholding and order thresholding test statistics have been cho-
sen so that the average number of observations included in the two statistics are
the same in each column. We see that the estimated densities of the order thresh-
old statistic are closer to the standard normal density (dash-dot line) than those
of the hard threshold statistic. In particular, the estimated densities in the upper
panel show the rapid deterioration of the quality of the normal approximation
to the distribution of TH (δ200) as δ200 shifts away from recommended value of
δ200 = 2 log(200 log−2 200) = 3.9271.

The remaining sections of this paper are organized as follows. In Section 2,
we represent a special form of the order statistics using data from an exponen-
tial distribution and briefly review the methodology of Chernoff, Gastwirth and
Johns (1967). Section 3 develops the order threshold procedure for testing normal
means in settings where the number of parameters increases with the sample size,
presents simulation results comparing the hard thresholding, a power-enhanced
version of the Simes (1986), and order thresholding test statistics, and gives a
recommendation for choosing the data-driven value of the threshold parameter.
Section 4 extends the order thresholding test procedure to the high-dimensional
ANOVA setting [called HANOVA in Fan and Lin (1998)], presents simulation re-
sults comparing the power of the classical F and order threshold statistics, and
gives a recommendation for a data-driven choice of the order threshold parame-

TABLE 4
Type I error rates using the approximation TL(kn)

·∼ bχ2
ν

[log1/2 n] [logn] [log3/2 n] [n1/2] [n2/3] [n3/4] [n7/8] n

n = 50 0.0565 0.0545 0.0531 0.0531 0.0532 0.0534 0.0540 0.0546
n = 100 0.0566 0.0540 0.0520 0.0522 0.0519 0.0507 0.0518 0.0520
n = 200 0.0555 0.0547 0.0536 0.0531 0.0526 0.0523 0.0530 0.0516
n = 500 0.0589 0.0556 0.0552 0.0530 0.0520 0.0521 0.0508 0.0505
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FIG. 1. Top panel: estimated densities of TH (δ200) for δ200 = 1.842, 3.927 and 5.672. Bottom
panel: estimated densities of TL(k200) for k200 = 35, 10 and 3.

ter. A discussion summarizing the developments is given in Section 5. Finally, the
condensed proofs are given in the Appendix. For detailed proofs, see the archived
supplemental material in Kim and Akritas (2010). This is part of the Ph.D. disser-
tation of the first author.

2. From order statistics to order thresholding: An overview. In the late
1960s when the asymptotic theory of linear combinations of order statistics (L-
statistics) was developed [cf. Bickel (1967), Chernoff, Gastwirth and Johns (1967),
Shorack (1969), Stigler (1969)] the main emphasis was in the estimation of the
location parameter. Therefore, the conditions in these papers do not yield automat-
ically the asymptotic distribution of L-statistics that assign positive weight to only
the largest order statistics. Such L-statistics were considered by Nagaraja (1982)
in his study of the selection differential for applications to outlier detection. Using
results from Hall (1978) and Stigler (1973), he obtained the asymptotic distribution
in the extreme and quantile cases, respectively. Here, we will use the conditions
from the paper of Chernoff, Gastwirth and Johns (1967), CGJ1967 from now on.
Their approach is based on a special representation of the order statistics from the
exponential distribution, which we now review.

Let V1, . . . , Vn be i.i.d. from the standard exponential distribution, let V1,n <

· · · < Vn,n be the corresponding order statistics, and consider the order threshold
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statistic

TE,L(kn) =
n∑

i=1

cinVi,n =
n∑

i=n−kn+1

Vi,n.(2.1)

The method of CGJ1967 for establishing the asymptotic distribution of TE,L(kn)

rests on the following well-known property [cf. David and Nagaraja (2003),
pages 17 and 18].

LEMMA 2.1. The vector of order statistics (V1,n, . . . , Vn,n) may be repre-
sented in distribution by

(V1,n, . . . , Vn,n)
d= (Y1, . . . , Yn),

where

Yi = V1

n
+ V2

n − 1
+ · · · + Vi

n − i + 1
=

i∑
j=1

Vj

n − j + 1
.

Thus, with TE,L(kn) given by (2.1), it can be represented in distribution as

TE,L(kn)
d=

n∑
j=1

αE,jn(kn)Vj ,(2.2)

where αE,jn(kn) = kn/(n−j +1) for j ≤ n−kn and αE,jn(kn) = 1 for j > n−kn.

Relation (2.2) expresses TE,L(kn) as a linear combination of the independent
random variables V1, . . . , Vn which enables the use of standard asymptotic results
for establishing conditions for its asymptotic distribution. This is given, without
proof, in the following.

THEOREM 2.1. Let kn, n ≥ 1, be any sequence of integers which satisfies
kn → ∞, as n → ∞, and kn ≤ n, and let TE,L(kn) be given in (2.1). Then we
have

T ∗
E,L(kn) = TE,L(kn) −∑n

i=1 αE,in(kn)√∑n
i=1 αE,in(kn)2

d→ N(0,1) as n → ∞.(2.3)

In the case where the observations Yi , i = 1, . . . , n, come from a distribution
function F , the CGJ1967 approach for obtaining the asymptotic distribution of the
order threshold statistic

TF,L(kn) =
n∑

i=1

cinYi,n =
n∑

i=n−kn+1

Yi,n,(2.4)

where Y1,n < · · · < Yn,n are the ordered Yi ’s, is based on the expression Yi,n =
H̃F (Vi,n), where H̃F = F−1 ◦ G, and G is the standard exponential distribution
function, and the use of Taylor expansion to obtain:
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LEMMA 2.2 [Chernoff, Gastwirth and Johns (1967)]. Let TF,L(kn) be given
by (2.4). Then,

n−1TF,L(kn)
d= μF,n(kn) + QF,n(kn) + RF,n(kn),

where

μF,n(kn) = 1

n

n∑
i=1

cinH̃F (ν̃in),

QF,n(kn) = 1

n

n∑
i=1

αF,in(kn)(Vi − 1)

and

RF,n(kn) = 1

n

n∑
i=1

cin

{(
H̃F (Vi,n) − H̃F (ν̃in)

)− (Vi,n − ν̃in)H̃
′
F (ν̃in)

}
with αF,in(kn) = 1

n−i+1
∑n

j=i cjnH̃
′
F (ν̃jn) and ν̃in =∑i

j=1
1

n−j+1 .

They then provide conditions under which QF,n(kn) is asymptotically normally
distributed and the remainder term, RF,n(kn), tends to zero in probability.

3. Single sequence of N(0,1) random variables. In this section, we will
apply the approach of CGJ1967 to develop order threshold test procedures for
testing the simple hypothesis

H0 : θi = 0 ∀i versus Ha : H0 is false(3.1)

based on a sequence of observations Xi, i = 1, . . . , n, where Xi ∼ N(θi,1). The
asymptotic null distribution of the order threshold statistic given by (1.1) is derived
in the next subsection, while simulation results comparing the power of the hard
threshold statistic, a power-enhanced version of the Simes (1986) statistic, and that
of order threshold statistics are presented in Section 3.2. The simulation results
suggest that choosing the order threshold parameter equal to the number of the
false null hypotheses maximizes the power. Section 3.3 presents a recommendation
for a data-driven choice of the order threshold parameter using the idea of Storey
(2002, 2003).

3.1. The asymptotic null distribution. Let Xi, i = 1, . . . , n, be standard nor-
mal random variables, and let

TL(kn) =
n∑

i=1

cinYi,n =
n∑

i=n−kn+1

Yi,n,(3.2)
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where Yi = X2
i , Y1,n < · · · < Yn,n are the ordered Yi’s, cin = I (i > n − kn), and

kn is the order threshold parameter. The approach of CGJ1967 is based on the
representation

TL(kn)
d=

n∑
i=n−kn+1

H̃ (Vi,n),

where Vi,n, i = 1, . . . , n, are the ordered observations from an i.i.d. sequence of
Exp(1) random variables, and

H̃ (v) = F−1 ◦ G(v)

with F(y) = 1√
2π

∫ y
0 t−1/2e−t/2 dt, y > 0, and G(v) = 1 − e−v , v ≥ 0. Let

μn(kn) = 1

n

n∑
i=1

cinH̃ (ν̃in), σ 2
n (kn) = 1

n

n∑
i=1

α2
in(kn),(3.3)

where

αin(kn) = 1

n − i + 1

n∑
j=i

cjnH̃
′(ν̃jn),

(3.4)

ν̃in =
i∑

j=1

1

n − j + 1
.

The term of αin(kn) can be re-expressed as αin(kn) = 1
n−i+1

∑n
j=n−kn+1 H̃ ′(ν̃jn)

for i ≤ n − kn and αin(kn) = 1
n−i+1

∑n
j=i H̃

′(ν̃jn) for i > n − kn with H̃ ′(ν̃jn) =
e
−ν̃jn

f (F−1(1−e
−ν̃jn ))

and the function f is the derivative of F . With this notation we

have the following.

THEOREM 3.1. Let Yi , i = 1, . . . , n, be a sequence of i.i.d. random variables
having the central chi-squared distribution with 1 degree of freedom. Let kn, n ≥ 1,
be any sequence of integers which satisfies kn → ∞, as n → ∞, and kn ≤ n. Let
μn(kn) and σ 2

n (kn) be as in (3.3) with cin = I (i > n− kn), and let TL(kn) be given
in (3.2). Then we have

T ∗
L(kn) = TL(kn) − nμn(kn)√

nσn(kn)

d→ N(0,1) as n → ∞.(3.5)

Note that the asymptotic mean of TL(kn) is nμn(kn) and the asymptotic variance
of TL(kn) is nσ 2

n (kn) as kn tends to infinity with n.
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3.2. Simulations. In this subsection, we compare the empirical power of the
order threshold statistic using several values of the threshold parameter with those
of the hard threshold and a power-enhanced version of Simes (1986) statistics. The
original Simes multiple testing procedure rejects the global hypothesis, HG

0 , that

all H
(i)
0 : θi = 0, i = 1, . . . , n, are true if

TS = min
1≤i≤n

{
nP(i)/i

}
< α,

where P(1) < · · · < P(n) are the ordered p-values of the individual hypotheses, and
α is the desired level of significance. A power-enhanced version of the original
Simes test procedure uses α/(1 − k

opt
n /n) instead of α, where k

opt
n is the number

of false null hypotheses.
The simulations reported here use samples of size n = 500 generated from the

normal distribution with variance 1. The threshold parameter k500 of the order
threshold statistics takes values of 15, 40, 70, 100, 200, 500, as well as a data-
driven value, denoted by k̂

opt
500, whose description is given in Section 3.3. The

empirical power using the approximation TL(k̂
opt
500)

·∼ bχ2
ν is reported together

with that using the normal approximation to TL(k̂
opt
500). The hard threshold sta-

tistic we consider uses the recommended value of the threshold parameter which
is δ500 = 2 log(500 log−2 500) = 5.1216. All results are based on 3000 simula-
tion runs. Since the the global hypothesis HG

0 is the same for all three simulation
settings, the type I error rates reported in the last row of Table 5 pertain also to
Tables 6 and 7. Note that all achieved significance levels are below 0.06. The
alternatives considered have 30 of the 500 mean values different from zero. In
particular, we consider the following sequence of alternatives indexed by r :

Hr : θj = ηj+r−1 for j = 1, . . . ,500, r = 1, . . . ,30,

where ηj , j = 1,2, . . . , is a given sequence. The following are examples with
different values of η.

EXAMPLE 3.1. We generate the values of ηj , j = 1, . . . ,30, from N(1.5,1).
The rest values of ηj are 0. The values different from 0 are as follows:

(1.0674,−0.1656,1.6253,1.7877,0.3535,2.6909,2.6892,

1.4624,1.8273,1.6746,1.3133,2.2258,0.9117,3.6832,

1.3636,1.6139,2.5668,1.5593,1.4044,0.6677,1.7944,0.1638,

2.2143,3.1236,0.8082,2.7540,−0.0937,0.0590,2.0711,2.3579).

Note that #(j : 0 < |ηj | ≤ 1, j = 1,2, . . .) = 8, #(j : 1 < |ηj | ≤ 2, j = 1,2, . . .) =
12, #(j : 2 < |ηj | ≤ 3, j = 1,2, . . .) = 8, and #(j : |ηj | > 3, j = 1,2, . . .) = 2.
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TABLE 5
Power calculations in Example 3.1

k
opt
500 TS TH (5.122) TL(̂k

opt
500) bχ2

ν TL(15) TL(40) TL(70) TL(100) TL(200) TL(500)

H1 30 0.843 0.944 0.977 0.975 0.976 0.973 0.968 0.960 0.938 0.913
H3 28 0.845 0.942 0.978 0.975 0.976 0.975 0.969 0.961 0.937 0.910
H5 26 0.840 0.926 0.972 0.970 0.971 0.966 0.956 0.943 0.911 0.879
H7 24 0.796 0.893 0.950 0.948 0.949 0.942 0.929 0.915 0.880 0.851
H8 23 0.777 0.845 0.933 0.928 0.932 0.915 0.891 0.875 0.818 0.775
H10 21 0.764 0.817 0.908 0.900 0.907 0.891 0.868 0.841 0.785 0.744
H11 20 0.766 0.792 0.905 0.899 0.906 0.883 0.853 0.832 0.764 0.712
H12 19 0.764 0.783 0.903 0.897 0.903 0.873 0.841 0.812 0.751 0.709
H13 18 0.750 0.752 0.881 0.875 0.880 0.845 0.804 0.776 0.709 0.662
H14 17 0.739 0.734 0.864 0.858 0.869 0.836 0.789 0.760 0.694 0.649
H15 16 0.559 0.574 0.724 0.707 0.723 0.671 0.633 0.608 0.541 0.495
H16 15 0.526 0.564 0.707 0.693 0.707 0.660 0.611 0.574 0.517 0.484
H17 14 0.532 0.529 0.675 0.661 0.677 0.625 0.574 0.542 0.467 0.432
H18 13 0.464 0.435 0.584 0.568 0.590 0.534 0.496 0.458 0.404 0.373
H19 12 0.483 0.402 0.570 0.556 0.574 0.500 0.459 0.427 0.374 0.347
H20 11 0.470 0.380 0.547 0.533 0.551 0.475 0.425 0.395 0.343 0.308
H21 10 0.467 0.390 0.555 0.540 0.559 0.490 0.433 0.402 0.341 0.319
H22 9 0.460 0.364 0.534 0.515 0.535 0.454 0.402 0.368 0.313 0.281
H23 8 0.460 0.362 0.517 0.503 0.522 0.447 0.389 0.351 0.301 0.279
H24 7 0.417 0.290 0.450 0.434 0.455 0.375 0.318 0.288 0.248 0.230
HG

0 0 0.052 0.050 0.059 0.057 0.057 0.054 0.052 0.051 0.052 0.055

EXAMPLE 3.2. We generate the values of ηj , j = 1, . . . ,30, from the standard
exponential distribution. The remaining values of ηj are 0. The values different
from 0 are as follows:

(0.0512,1.4647,0.4995,0.7216,0.1151,0.2716,0.7842,

3.7876,0.1967,0.8103,0.4854,0.2332,0.5814,0.3035,

1.7357,0.9021,0.0667,0.0867,0.8909,0.1124,2.8491,1.0416,

0.2068,2.6191,1.9740,1.5957,1.6158,0.5045,1.3012,1.6153).

Note that #(j : 0 < ηj ≤ 1, j = 1,2, . . .) = 19, #(j : 1 < ηj ≤ 2, j = 1,2, . . .) = 8,
#(j : 2 < ηj ≤ 3, j = 1,2, . . .) = 2, and #(j :ηj > 3, j = 1,2, . . .) = 1.

EXAMPLE 3.3. In this example, the values of ηj , j = 1, . . . ,30, are 2.0 and
the rest are zero.

As expected, the power in each column decreases by increasing r because the
number of θ with values different from zero (denoted by k

opt
500) decreases. When the
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TABLE 6
Power calculations in Example 3.2

k
opt
500 TS TH (5.122) TL(̂k

opt
500) bχ2

ν TL(15) TL(40) TL(70) TL(100) TL(200) TL(500)

H1 30 0.650 0.574 0.759 0.745 0.760 0.699 0.651 0.608 0.548 0.513
H2 29 0.680 0.584 0.755 0.741 0.761 0.700 0.649 0.612 0.544 0.504
H3 28 0.652 0.565 0.745 0.729 0.747 0.684 0.640 0.602 0.540 0.498
H6 25 0.666 0.549 0.728 0.717 0.732 0.667 0.625 0.591 0.521 0.479
H7 24 0.677 0.562 0.743 0.729 0.745 0.686 0.632 0.591 0.522 0.482
H8 23 0.666 0.536 0.716 0.703 0.724 0.657 0.612 0.569 0.508 0.478
H10 21 0.340 0.350 0.449 0.434 0.445 0.418 0.394 0.367 0.333 0.317
H12 19 0.351 0.342 0.444 0.426 0.443 0.410 0.383 0.362 0.341 0.305
H13 18 0.342 0.330 0.456 0.442 0.450 0.416 0.388 0.367 0.335 0.316
H14 17 0.350 0.331 0.448 0.432 0.451 0.412 0.377 0.363 0.325 0.300
H15 16 0.337 0.334 0.432 0.416 0.431 0.402 0.375 0.356 0.327 0.307
H16 15 0.330 0.294 0.406 0.393 0.403 0.371 0.338 0.319 0.293 0.274
H17 14 0.357 0.282 0.399 0.387 0.403 0.352 0.323 0.305 0.267 0.252
H18 13 0.325 0.290 0.393 0.378 0.390 0.358 0.329 0.312 0.276 0.261
H19 12 0.337 0.296 0.413 0.396 0.412 0.368 0.337 0.314 0.277 0.255
H20 11 0.343 0.291 0.399 0.383 0.399 0.349 0.314 0.296 0.270 0.250
H21 10 0.346 0.290 0.405 0.391 0.404 0.356 0.321 0.306 0.268 0.248
H22 9 0.224 0.198 0.264 0.251 0.262 0.237 0.220 0.208 0.195 0.189
H23 8 0.196 0.190 0.257 0.242 0.253 0.228 0.216 0.197 0.191 0.182
H24 7 0.207 0.182 0.256 0.245 0.253 0.225 0.212 0.200 0.186 0.179

θi with the large value such as 3.6832, 3.1236 (in Example 3.1) and 3.7876 (in Ex-
ample 3.2) is excluded at the alternative, the large decrement in the power occurs.
For each alternative, the statistic TL(15) or TL(40) achieves better power than the
order threshold statistics with the other specified values of the threshold parameter.
This is a consequence of the fact that the number of mean values that are different
from zero never exceeds 30. Thus, less noise is incorporated in TL(k

opt
500) than the

other order threshold statistics. Note that with the chosen value of δ500 = 5.1216,
the hard threshold statistic uses, on average, 12 observations. Thus, it is rather sur-
prising that the empirical power of the hard threshold statistic is always smaller
than that of TL(15). In all three tables, the empirical power using the approxi-
mation TL(k̂

opt
500)

·∼ 
 is similar to that of TL(k
opt
500), and always greater than the

empirical powers of the hard threshold and Simes statistics. The empirical power
using the approximation TL(k̂

opt
500)

·∼ bχ2
ν is a little bit smaller than that using the

normal approximation, however, it is still greater than the empirical powers of the
hard threshold and Simes statistics. In Table 7, for large number of the false null
hypotheses the Simes statistic TS performs much worse than the hard threshold
statistic, the order threshold statistic, and even the chi-square statistic TL(500). In
all three tables, the power of TH (5.1216) is similar (though somewhat smaller) to
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TABLE 7
Power calculations in Example 3.3

k
opt
500 TS TH (5.122) TL(̂k

opt
500) bχ2

ν TL(15) TL(40) TL(70) TL(100) TL(200) TL(500)

H1 30 0.674 0.959 0.973 0.970 0.969 0.976 0.982 0.981 0.970 0.962
H3 28 0.643 0.954 0.966 0.960 0.955 0.974 0.974 0.973 0.960 0.947
H4 27 0.617 0.935 0.957 0.954 0.945 0.965 0.963 0.961 0.950 0.934
H6 25 0.598 0.900 0.936 0.931 0.926 0.947 0.943 0.941 0.922 0.903
H8 23 0.566 0.872 0.912 0.905 0.902 0.920 0.917 0.911 0.891 0.865
H10 21 0.529 0.831 0.877 0.869 0.862 0.889 0.886 0.875 0.849 0.817
H12 19 0.509 0.777 0.837 0.828 0.821 0.843 0.833 0.821 0.786 0.753
H13 18 0.481 0.740 0.816 0.803 0.802 0.813 0.803 0.785 0.738 0.703
H14 17 0.472 0.715 0.785 0.773 0.772 0.784 0.773 0.763 0.710 0.671
H15 16 0.448 0.674 0.748 0.732 0.736 0.749 0.735 0.715 0.669 0.633
H16 15 0.418 0.630 0.715 0.700 0.702 0.706 0.686 0.668 0.624 0.585
H17 14 0.393 0.569 0.658 0.645 0.645 0.646 0.629 0.610 0.562 0.523
H18 13 0.368 0.522 0.629 0.616 0.623 0.620 0.597 0.573 0.523 0.489
H19 12 0.341 0.498 0.593 0.577 0.582 0.582 0.552 0.525 0.486 0.451
H20 11 0.328 0.441 0.539 0.527 0.539 0.519 0.491 0.472 0.436 0.407
H21 10 0.306 0.390 0.487 0.470 0.480 0.464 0.436 0.421 0.382 0.353
H22 9 0.285 0.354 0.439 0.423 0.438 0.422 0.393 0.379 0.344 0.317
H23 8 0.260 0.298 0.393 0.374 0.386 0.367 0.342 0.318 0.292 0.276
H24 7 0.245 0.265 0.349 0.333 0.346 0.315 0.296 0.283 0.255 0.236
H25 6 0.221 0.224 0.300 0.286 0.295 0.272 0.257 0.245 0.228 0.213

that of TL(100). Finally, all order threshold statistics achieved higher power than
the chi-square statistic TL(500).

3.3. Choosing kn. The simulation results and the discussion in the closing
paragraph of Section 3.2 suggest that the power of TL(kn) is largest when kn equals
the number of mean values different from zero (denoted by k

opt
n ). As a data-driven

choice of kn, we propose to use the estimate of k
opt
n suggested by Storey (2002,

2003) and Efron et al. (2001), which is

k̂opt
n (λ) = max

{
nGn(λ) − nλ − 1

1 − λ
, log3/2 n

}
,

where Gn is the empirical cdf of Pn = (P1, . . . ,Pn), the Pi’s are the p-values of the
individual hypotheses, and λ is the median of the Pi ’s. The recommended lower
bound log3/2 n of k̂

opt
n (λ) was found to be preferable in the simulations we per-

formed. Interestingly, log3/2 n equals the expected number of observations in hard
thresholding with the recommended threshold parameter of δn = 2 log(n log−2 n).

4. One-way HANOVA. Let the Xij , i = 1, . . . , a, j = 1, . . . , n, be indepen-
dent N(θi, σ

2), where the θi and σ 2 are all unknown. Let αi = θi − θ denote the
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“effect” of the ith group, and consider testing H0 :α1 = · · · = αa = 0 vs. Ha :H0 is
false. Akritas and Papadatos (2004) show that the asymptotic power of the optimal
invariant ANOVA F test equals its level of significance even when ‖α‖ → ∞, as
a → ∞, with ‖α‖2 = o(

√
a). Because the power of the chi-square statistic (1.2)

has a similar property [Fan (1996)], an extension of the order thresholding to the
one-way HANOVA setting is expected to result in similar gains in power over the
ANOVA F test.

In Section 4.1, we extend the applicability of order thresholding to the one-
way HANOVA context, while Section 4.2 illustrates the improved power of order
thresholding via simulation. Finally, using the idea of Storey (2002, 2003) and the
simulation results, we present a recommendation for a data-driven choice of the
order threshold parameter in Section 4.3.

4.1. Order thresholding in one-way HANOVA. The classical F statistic is
given by

Fa = MST

MSE
,(4.1)

where

MST = 1

a − 1

a∑
i=1

n(Xi· − X··)2, MSE = 1

N − a

a∑
i=1

n∑
j=1

(Xij − Xi·)2

with Xi· = n−1∑n
j=1 Xij , X·· = N−1∑a

i=1
∑n

j=1 Xij , and N = an. Note that

(a − 1)Fa =
a∑

i=1

(√
n(Xi· − X··)√

MSE

)2

(4.2)

differs from the chi-square statistic (1.2) only in that the random variables which
are being summed are not independent, and their distribution is not χ2

1 . Set

Z̃i =
√

n(Xi· − X··)√
MSE

, Ẑi =
√

n(Xi· − X··)
σ

.

Thus,

Z̃i = sẐi where s = σ√
MSE

.

Threshold versions of (4.2) are of the form

T̂L(ka) =
a∑

i=1

ciaZ̃
2
i,a = s2

a∑
i=1

ciaẐ
2
i,a,(4.3)



ORDER THRESHOLDING 2327

where Ẑ2
1,a < · · · < Ẑ2

a,a are the ordered Ẑ2
i ’s, Z̃i,a = sẐi,a , cia = I (i > a − ka),

and ka is the order threshold parameter. For suitable centering and scaling con-
stants, μ̂a(ka) and σ̂a(ka), the asymptotic theory of T̂L(ka) will use the decompo-
sition

T̂L(ka) − aμ̂a(ka)√
aσ̂a(ka)

= s2 1√
aσ̂a(ka)

(
a∑

i=1

ciaẐ
2
i,a − aμ̂a(ka)

)
(4.4)

+
√

a

σ̂a(ka)
μ̂a(ka)(s

2 − 1).

The two components in (4.4) are independent, so it suffices to show the asymptotic
normality of each one separately. To deal with the first component, let θ0 denote
the common value of the θi under H0 and write

Ẑi = Zi + t√
a

where Zi =
√

n(Xi· − θ0)

σ
and t = −

√
N(X·· − θ0)

σ
.(4.5)

Our approach for obtaining the asymptotic distribution of
∑a

i=1 ciaẐ
2
i,a is to first

derive its asymptotic distribution treating the t in (4.5) as fixed, and then to show
that the convergence is uniform over all values of t bounded by any positive con-
stant M . By Slutsky’s theorem, the asymptotic distribution of the first component
of (4.4) is the same as that of

∑a
i=1 ciaẐ

2
i,a . The asymptotic distribution of the

second component of (4.4) is easily derived since

√
a(s2 − 1)

d→ N

(
0,

2

n − 1

)
as a → ∞,

and, as it will be shown in lemmas described in Section 4.1.3, μ̂a(ka)/σ̂a(ka) →
μr/σr , provided that ka/a → r for some 0 ≤ r ≤ 1 and ka → ∞, as a → ∞.

4.1.1. Asymptotic distribution when t is fixed. When t is fixed, we set

Zt,i = Zi + t√
a
, i = 1, . . . , a, T t

L(ka) =
a∑

i=1

ciaZ
2
t,(i),(4.6)

where Z2
t,(1) < · · · < Z2

t,(a) are the order statistics of Z2
t,1, . . . ,Z

2
t,a . [Note that for

t as defined in (4.5), Zt,i becomes Ẑi .] It follows that the Z2
t,i are independent

χ2
1 (t2/a) so that their density and cumulative distribution functions are given by

ga,t (y) = e−1/2(y+t2/a)y−1/2

21/2

∞∑
k=0

(t2/ay)k

22kk!�(k + 1/2)
, y > 0

and

Ga,t (y) =
∫ y

0
ga,t (u) du =

∞∑
k=0

e−t2/(2a) 1

2k · k!
(

t2

a

)k

G2k+1(y), y > 0,
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respectively, where

Gk(y) = 1

2k/2�(k/2)

∫ y

0
uk/2−1e−u/2 du, y > 0

is the cumulative distribution function of χ2
k (0). Let

μt
a(ka) = 1

a

a∑
i=1

ciaG
−1
a,t (1 − e−ν̃ia ) and (σ t

a(ka))
2 = 1

a

a∑
i=1

(αt
ia(ka))

2,(4.7)

where αt
ia(ka) = 1

a−i+1
∑a

j=i cja
e
−ν̃ja

ga,t (G
−1
a,t (1−e

−ν̃ja ))
and ν̃ia =∑i

j=1
1

a−j+1 . With

this notation we have the following lemma.

LEMMA 4.1 [Chernoff, Gastwirth and Johns (1967)]. Let T t
L(ka) and μt

a(ka)

be as defined in (4.6) and (4.7), respectively. Let V1, . . . , Va be i.i.d. from Exp(1)

random variables and let V1,a < · · · < Va,a be the corresponding order statistics.
Then a−1T t

L(ka) can be decomposed as

a−1T t
L(ka)

d= μt
a(ka) + Qt

a(ka) + Rt
a(ka),

where

Qt
a(ka) = 1

a

a∑
i=1

αt
ia(ka)(Vi − 1)(4.8)

and

Rt
a(ka) = 1

a

a∑
i=1

cia

{(
G−1

a,t (1−e−Vi,a )−G−1
a,t (1−e−ν̃ia )

)− (Vi,a − ν̃ia)e
−ν̃ia

ga,t (G
−1
a,t (1 − e−ν̃ia ))

}

with αt
ia(ka) = 1

a−i+1
∑a

j=i cja
e
−ν̃ja

ga,t (G
−1
a,t (1−e

−ν̃ja ))
and ν̃ia =∑i

j=1
1

a−j+1 .

THEOREM 4.1. For any fixed value of t , let Z2
t,i , i = 1, . . . , a, be a sequence

of i.i.d. random variables having the noncentral chi-squared distribution with 1
degree of freedom and noncentrality parameter t2/a. Let ka, a ≥ 1, be any se-
quence of integers which satisfies ka → ∞, as a → ∞, and ka ≤ a. Let μt

a(ka)

and (σ t
a(ka))

2 be as in (4.7) with cia = I (i > a − ka), and let T t
L(ka) be given in

(4.6). Then we have

T t
L

∗
(ka) = T t

L(ka) − aμt
a(ka)√

aσ t
a(ka)

d→ N(0,1) as a → ∞.(4.9)
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4.1.2. Uniformity of the convergence in distribution. This subsection shows
that the distribution function of (4.9) converges to the standard normal distribution
uniformly on |t | < M .

LEMMA 4.2. Consider the setting of Theorem 4.1. Let Ha,t be the distribution
function of

√
aQt

a(ka)/σ
t
a(ka), where Qt

a(ka) is given in (4.8), and let 
 be the
standard normal distribution function. Then, for any M > 0,

sup
−M<t<M
−∞<x<∞

|Ha,t (x) − 
(x)| → 0 as a → ∞.

LEMMA 4.3. Consider the setting of Theorem 4.1, and let Rt
a(ka) be as given

in Lemma 4.1. Then, for any M > 0,

sup
−M<t<M

∣∣∣∣
√

aRt
a(ka)

σ t
a(ka)

∣∣∣∣ p→ 0 as a → ∞.

LEMMA 4.4. Consider the setting of Theorem 4.1. Let Fa,t be the distribution
function of T t

L
∗
(ka) given in (4.9) and let 
 be the standard normal distribution

function. Then, for any M > 0,

sup
−M<t<M
−∞<x<∞

|Fa,t (x) − 
(x)| → 0 as a → ∞.

THEOREM 4.2. Let ka, a ≥ 1, be any sequence of integers which satisfies
ka → ∞, as a → ∞, and ka ≤ a. For t as defined in (4.5), let Ẑi , μ̂a(ka) and
(σ̂a(ka))

2 be as in (4.6), (4.7), respectively. Then we have

T̂ ∗
L(ka) =

∑a
i=1 ciaẐ

2
i,a − aμ̂a(ka)√

aσ̂a(ka)

d→ N(0,1) as a → ∞,(4.10)

where Ẑ2
1,a < · · · < Ẑ2

a,a are the ordered Ẑ2
i ’s and cia = I (i > a − ka).

4.1.3. Asymptotic normality of the order threshold statistics. In this subsec-
tion, it is first shown that μt

a(ka) and σ t
a(ka) converge to μ0

a(ka) and σ 0
a (ka), re-

spectively, uniformly on |t | < M . This fact is then used in Theorem 4.3 for obtain-
ing the asymptotic normality of the order threshold statistic given in (4.3).

LEMMA 4.5. Let ka, a ≥ 1, be any sequence of integers which satisfies ka →
∞, as a → ∞, and ka ≤ a. Let (σ t

a(ka))
2 and (σ 0

a (ka))
2 be as in (4.7) with any t

and fixed value of t = 0, respectively. Then, for any M > 0,

sup
−M<t<M

∣∣∣∣σ t
a(ka)

σ 0
a (ka)

− 1
∣∣∣∣→ 0 as a → ∞.
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LEMMA 4.6. Let ka, a ≥ 1, be any sequence of integers which satisfies ka →
∞, as a → ∞, and ka ≤ a. Let μt

a(ka), μ0
a(ka) and (σ 0

a (ka))
2 be as in (4.7) with

any t , fixed value of t = 0, respectively. Then, for any M > 0,

sup
−M<t<M

∣∣∣∣
√

a(μt
a(ka) − μ0

a(ka))

σ 0
a (ka)

∣∣∣∣→ 0 as a → ∞.

LEMMA 4.7. Let μ0
a(ka) and (σ 0

a (ka))
2 be as in (4.7) with the fixed value of

t = 0. Then, provided that ka/a → r for some 0 ≤ r ≤ 1 and ka → ∞, as a → ∞,
we have

μ0
a(ka) → μr and (σ 0

a (ka))
2 → σ 2

r as a → ∞,

where

μr =
∫ 1

0
I (t > 1 − r)G−1

a,0(t) dt

and

σ 2
r =
∫ 1

0

∫ 1

0
I (t > 1 − r)I (s > 1 − r)

(
min(t, s) − ts

)
dG−1

a,0(t) dG−1
a,0(s).

REMARK. If r = 1, then

μ0
a(ka)

σ 0
a (ka)

→ 1√
2

as a → ∞.

From Theorem 4.2 and lemmas described earlier in this subsection, we can ob-
tain the following theorem.

THEOREM 4.3. Let μ0
a(ka), (σ 0

a (ka))
2, μr , and σ 2

r be as in Lemma 4.7, and
let T̂L(ka) be given in (4.3). Then, provided that ka/a → r for some 0 ≤ r ≤ 1 and
ka → ∞, as a → ∞, we have

T̃L(ka) = T̂L(ka) − aμ0
a(ka)√

aσ 0
a (ka)

d→ N

(
0,1 + 2μ2

r

σ 2
r (n − 1)

)
as a → ∞.(4.11)

4.2. Simulations. In this subsection, we compare the performance of the clas-
sical F statistic, given in (4.1), and the order threshold statistics T̃L(ka), given in
(4.11).

We remark that Fan and Lin (1998) applied the thresholding methodology to the
problem of comparing I curves with data arising from the model Xij (t) = fi(t) +
εij (t), t = 1, . . . , T , j = 1, . . . , ni, i = 1, . . . , I . Their asymptotic theory pertains
to the case where the number of curves which are compared, I , remains fixed,
while T and the sample sizes ni tend to infinity. This problem is fundamentally
different from that considered here, and their procedure is not a competitor to ours.
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FIG. 2. Estimated densities of T̃L(k500) for a = 500, n = 3, and k500 = 22, 105 and 229.

Figure 2 presents the estimated densities of T̃L(k500) (solid line) and the den-
sity of the limiting normal distribution (dash-dot line). The estimated densities are
based on 20,000 simulated values, using a = 500 and n = 3, when the threshold
parameter k500 takes the values of [a1/2] = 22, [a3/4] = 105, and [a7/8] = 229. It
can be seen that the approximation is quite good especially for k500 = 105 and 229.
Similar figures (not shown here) with different values of n suggest that the rate of
convergence of the order threshold statistic to its limiting distribution is mainly
driven by a, not n.

The results reported in Table 8 are based on 20,000 simulation runs. As ex-
pected, the distributions of T̃L(ka) converge to the normal distribution function
and the achieved alpha levels are close to the true value of 0.05. Thus, the asymp-
totic theory of the order threshold statistics provides a good approximation. More
exactly, when the number of groups are larger than 200, all order threshold statis-

TABLE 8
Type I errors of order threshold statistics, T̃L(ka), for different values of the threshold parameter

[log1/2 a] [loga] [log3/2 a] [a1/2] [a2/3] [a3/4] [a7/8] a

a = 50 and n = 3 0.0522 0.0551 0.0601 0.0601 0.0623 0.0635 0.0637 0.0669
a = 50 and n = 5 0.0551 0.0583 0.0591 0.0591 0.0588 0.0600 0.0612 0.0619
a = 100 and n = 3 0.0506 0.0521 0.0561 0.0563 0.0594 0.0607 0.0617 0.0634
a = 100 and n = 5 0.0539 0.0541 0.0541 0.0549 0.0571 0.0578 0.0596 0.0604
a = 200 and n = 3 0.0436 0.0440 0.0490 0.0497 0.0552 0.0571 0.0601 0.0597
a = 200 and n = 5 0.0548 0.0520 0.0505 0.0504 0.0515 0.0529 0.0542 0.0549
a = 500 and n = 3 0.0436 0.0437 0.0452 0.0466 0.0515 0.0558 0.0593 0.0589
a = 500 and n = 5 0.0533 0.0492 0.0474 0.0481 0.0510 0.0518 0.0532 0.0534
a = 1000 and n = 3 0.0427 0.0403 0.0405 0.0411 0.0475 0.0513 0.0548 0.0557
a = 1000 and n = 5 0.0517 0.0486 0.0459 0.0453 0.0466 0.0484 0.0507 0.0521
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tics are robust for the 0.05 significance level. In particular, the achieved alpha level
of T̃L(k1000) is 0.0507 when a = 1000, n = 5, and k1000 = [a7/8] = 421.

From now, we compare the empirical power of T̃L(k1000) using several values
of the threshold parameter with that of the classical F statistic. The simulations
use samples of size a = 1000 and n = 5 generated from the normal distribution
with variance 1. The threshold parameter k1000 is 20, 50, 100, 250, 500, and 1000.
All results are based on 20,000 simulation runs. The alternatives here have 20 of
the 1000 θi values different from zero. In particular, we consider the following
sequence of alternatives indexed by r :

Hr : θj = ηj+r−1 for j = 1, . . . ,1000, r = 1, . . . ,20,

where ηj , j = 1,2, . . . , is a given sequence. The following are examples with
different values of η.

EXAMPLE 4.1. We generate the values of ηj , j = 1, . . . ,20, from
Uniform(−2,2). The remaining values of ηj are 0. The values different from 0
are as follows:

(1.8005,−1.0754,0.4274,−0.0561,1.5652,1.0484,

−0.1741,−1.9260,1.2856,−0.2212,0.4617,1.1677,1.6873,

0.9528,−1.2949,−0.3772,1.7419,1.6676,−0.3589,1.5746).

Note that #(j : 0 < |ηj | ≤ 1, j = 1,2, . . .) = 8 and #(j : |ηj | > 1, j = 1,2, . . .) =
12.

EXAMPLE 4.2. We generate the values of ηj , j = 1, . . . ,20, from Exp(0.7).
The remaining values of ηj are 0. The values different from 0 are as follows:

(1.0949,0.5511,1.7587,0.1128,0.4033,0.7991,0.6868,

0.0993,0.6919,1.8255,1.1272,2.1041,0.3975,

1.4730,0.4549,1.5015,0.1830,0.6865,0.1360,2.1458).

Note that #(j : 0 < ηj ≤ 1, j = 1,2, . . .) = 12, #(j : 1 < ηj ≤ 2, j = 1,2, . . .) = 6
and #(j :ηj > 2, j = 1,2, . . .) = 2.

As expected, the power in each column decreases as r increases and T̃L(20) has
the highest power. Since the number of θi’s that are different from zero does not
exceed 20, T̃L(20) minimizes the accumulation of noise, compared to the other or-
der threshold statistics. For each alternative, the largest power differences between
F1000 and T̃L(20) are about 0.5 (alternative H13 in Table 9) and 0.54 (alternative
H12 in Table 10). In both tables, the power of T̃L(1000) is similar to that of F1000
because T̃L(1000) is a standardized version of F1000. Finally, all order threshold
statistics achieved higher power than the classical F statistic F1000.
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TABLE 9
Power calculations in Example 4.1

k
opt
1000 F1000 ˜TL(20) ˜TL(50) ˜TL(100) ˜TL(250) ˜TL(500) ˜TL(1000)

H1 20 0.8612 0.9992 0.9975 0.9877 0.9482 0.8923 0.8682
H2 19 0.7887 0.9963 0.9889 0.9685 0.9000 0.8270 0.7978
H3 18 0.7561 0.9957 0.9878 0.9623 0.8762 0.7971 0.7658
H4 17 0.7505 0.9952 0.9848 0.9588 0.8743 0.7924 0.7601
H5 16 0.7541 0.9949 0.9841 0.9591 0.8801 0.7944 0.7633
H6 15 0.6785 0.9901 0.9712 0.9275 0.8175 0.7238 0.6891
H7 14 0.6434 0.9859 0.9634 0.9116 0.7856 0.6887 0.6563
H8 13 0.6432 0.9855 0.9623 0.9100 0.7876 0.6905 0.6547
H9 12 0.5091 0.9422 0.8861 0.8008 0.6505 0.5518 0.5193
H10 11 0.4434 0.9191 0.8399 0.7351 0.5794 0.4868 0.4553
H11 10 0.4444 0.9191 0.8399 0.7355 0.5742 0.4855 0.4561
H12 9 0.4448 0.9230 0.8414 0.7333 0.5760 0.4847 0.4562
H13 8 0.3896 0.8894 0.7869 0.6756 0.5132 0.4264 0.4007
H14 7 0.2887 0.7710 0.6364 0.5169 0.3835 0.3185 0.2989
H15 6 0.2615 0.7437 0.6051 0.4866 0.3537 0.2903 0.2724
H16 5 0.2095 0.6603 0.5037 0.3878 0.2803 0.2321 0.2187
H17 4 0.2089 0.6560 0.5002 0.3869 0.2742 0.2319 0.2169
H18 3 0.1356 0.4002 0.2874 0.2250 0.1686 0.1482 0.1421
H19 2 0.0816 0.1736 0.1287 0.1106 0.0943 0.0884 0.0867
H20 1 0.0812 0.1743 0.1277 0.1095 0.0934 0.0880 0.0862

4.3. Choosing ka . The simulation results and the discussion in the closing
paragraph of Section 4.2 suggest that choosing ka equal to the number of groups
with nonzero effects, k

opt
a , maximizes the power. Our recommendation for the

choice of the threshold parameter is based again on the idea of Storey (2002, 2003)
for enhancing the power of Simes statistic for testing the constructed set of hypoth-
esis testing problems H

(i)
0 : θi = X··, i = 1, . . . , a, where X·· is the overall sample

mean. The p-value for each hypothesis is approximated by

Pi = 2
(
1 − 
(|Zi |)), i = 1, . . . , a,

with

Zi = Xi· − X··√
S2

p/n
, i = 1, . . . , a,

where Xi· is the sample mean from the ith group and S2
p is the pooled sample

variance. The power-enhanced version of the Simes statistic

TS = min
1≤i≤a

{
aP(i)/i

}
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TABLE 10
Power calculations in Example 4.2

k
opt
1000 F1000 ˜TL(20) ˜TL(50) ˜TL(100) ˜TL(250) ˜TL(500) ˜TL(1000)

H1 20 0.7680 0.9978 0.9886 0.9657 0.8877 0.8089 0.7769
H2 19 0.7275 0.9968 0.9861 0.9550 0.8603 0.7732 0.7366
H3 18 0.7241 0.9960 0.9842 0.9533 0.8563 0.7669 0.7330
H4 17 0.6278 0.9893 0.9640 0.9048 0.7740 0.6731 0.6394
H5 16 0.6253 0.9886 0.9624 0.9052 0.7702 0.6730 0.6373
H6 15 0.6188 0.9892 0.9624 0.9031 0.7681 0.6667 0.6306
H7 14 0.6011 0.9872 0.9577 0.8891 0.7464 0.6462 0.6119
H8 13 0.5871 0.9872 0.9519 0.8829 0.7369 0.6337 0.5982
H9 12 0.5831 0.9870 0.9530 0.8819 0.7406 0.6342 0.5962
H10 11 0.5614 0.9849 0.9467 0.8730 0.7151 0.6097 0.5750
H11 10 0.4476 0.9526 0.8704 0.7600 0.5872 0.4900 0.4598
H12 9 0.4009 0.9411 0.8435 0.7224 0.5399 0.4405 0.4121
H13 8 0.2521 0.7461 0.5879 0.4612 0.3297 0.2770 0.2612
H14 7 0.2495 0.7446 0.5843 0.4573 0.3319 0.2742 0.2597
H15 6 0.1831 0.6204 0.4465 0.3361 0.2419 0.2026 0.1913
H16 5 0.1820 0.6119 0.4411 0.3383 0.2407 0.2014 0.1898
H17 4 0.1283 0.4346 0.2941 0.2197 0.1613 0.1412 0.1356
H18 3 0.1296 0.4389 0.2959 0.2195 0.1654 0.1434 0.1363
H19 2 0.1195 0.4202 0.2793 0.2084 0.1515 0.1308 0.1258
H20 1 0.1176 0.4207 0.2763 0.2041 0.1532 0.1296 0.1238

rejects the global null hypothesis if TS < α/(1 − k̂
opt
a /a), with

k̂opt
a (λ) = max

{
aGa(λ) − aλ − 1

1 − λ
, log3/2 a

}
,(4.12)

where Ga is the empirical cdf of Pa = (P1, . . . ,Pa), P(1) < · · · < P(a) are the
ordered Pi’s, and λ is the median of the Pi’s.

The simulation results shown in Table 11 suggest that the power of T̃L(k̂
opt
1000) is

similar to that of T̃L(k
opt
1000). These results are based on 2000 simulation runs; the

type I error rate of T̃L(k̂
opt
1000) was 0.048.

5. Discussion. The asymptotic theory of test statistics based on hard and soft
thresholding pertain the normal distribution and require the threshold parameter to
tend to infinity at a strictly prescribed rate. This second feature results in potentially
compromised power of the hard threshold statistic.

Order thresholding, a new thresholding method based on order statistics, is pro-
posed. The asymptotic theory, developed under the normal distribution in this
paper, allows great flexibility in the choice of the threshold parameter. A data-
driven choice of the order threshold parameter is given. An extension to a one-way
HANOVA setting is presented. Simulation studies with normal data suggest that
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TABLE 11
Power calculations in Example 4.1

H1 H2 H3 H4 H5 H6 H7 H8 H9 H10

k
opt
1000 20 19 18 17 16 15 14 13 12 11

T̃L(k̂
opt
1000) 1.000 0.996 0.993 0.994 0.995 0.987 0.980 0.981 0.938 0.904

H11 H12 H13 H14 H15 H16 H17 H18 H19 H20

k
opt
1000 10 9 8 7 6 5 4 3 2 1

T̃L(k̂
opt
1000) 0.911 0.900 0.883 0.774 0.722 0.674 0.661 0.398 0.182 0.175

order thresholding can have great power advantage over hard thresholding. Addi-
tional simulations with data generated under a one-way HANOVA design suggest
even larger power gains over the traditional ANOVA F -test.

Applications of the order thresholding approach to testing for the uniform dis-
tribution, and to multiple testing problems will be pursued in a follow-up paper.

APPENDIX A: PROOF OF THEOREM 3.1

The proofs of the present lemmas can be found in the archived supplemental
material in Kim and Akritas (2010).

A.1. Some auxiliary results.

LEMMA A.1. Let Ui,n, i = 1, . . . , n, be order statistics from the uniform dis-
tribution in (0,1), and set Vi,n = − log(1 − Ui,n). For any 0 < ε < 1 and some

1 − log(n −
√

n
2 log(58

ε
) + 1)/ logn ≤ δ(n) < 1 − log(n

2 log(58
ε

))/(2 logn), set⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ujn(ε) =

⎧⎪⎪⎨⎪⎪⎩
max

{
0,

j

n
−
√

1

2n
log
(

58

ε

)}
, 1 ≤ j < n1−δ(n),

1 − e−ν̃jne
√

2/ε, n1−δ(n) ≤ j ≤ n,

ujn(ε) =

⎧⎪⎪⎨⎪⎪⎩
j − 1

n
+
√

1

2n
log
(

58

ε

)
, 1 ≤ j < n1−δ(n),

1 − e−ν̃jne−√
2/ε, n1−δ(n) ≤ j ≤ n,

where ν̃jn =∑j
i=1 1/(n − i + 1). Then, the sequences of constants

vjn(ε) = − log
(
1 − ujn(ε)

)
, vjn(ε) = − log

(
1 − ujn(ε)

)
satisfy

P {vjn(ε) < Vj,n < vjn(ε),1 ≤ j ≤ n} ≥ 1 − ε, n ≥ 1.(A.1)
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LEMMA A.2. Let ujn(ε) and ujn(ε) be given in Lemma A.1. Then, the se-
quences of constants ujn(ε) and ujn(ε), j = 1, . . . , n, satisfy the relation

ujn(ε) <
j

n + 1
< ujn(ε).

REMARK. Assume that 1 − n−δ(n) → 0, as n → ∞. Then, the sequences
of constants ujn(ε) and ujn(ε), given in Lemma A.1, satisfy the relation
sup1≤j≤n(u

jn(ε) − ujn(ε)) = o(1) (cf. Glivenko–Cantelli theorem).

REMARK. If we take all ujn(ε) and ujn(ε) from the Kolmogorov’s inequal-
ity, then ujn(ε) = 1 − e−ν̃jn+√

2/ε and ujn(ε) = 1 − e−ν̃jn−√
2/ε , j = 1, . . . , n.

Under these settings, sup1≤j≤n(u
jn(ε) − ujn(ε)) �= o(1). Also, the positive func-

tion R(j), defined in Lemma A.4, is not increasing on 1 ≤ j ≤ n.

LEMMA A.3. Let ν̃jn be given in Lemma A.1, and let νjn = − log(1− j/(n+
1)), j = 1, . . . , n. Assume that 1 − n−δ(n) → 0 and n1/2(1 − n−δ(n)) → ∞, as
n → ∞. Then, the sequences of constants vjn(ε) and vjn(ε), given in Lemma A.1,
satisfy the relations

vjn(ε) < νjn < ν̃jn < vjn(ε) and vjn(ε) − vjn(ε) ≤ K(ε),

where K(ε) is independent of n.

LEMMA A.4. Let vyn(ε) and vyn(ε), 1 ≤ y ≤ n, be given in Lemma A.1, and
let H̃ = F−1 ◦ G, where F is the central chi-squared distribution function with 1
degree of freedom and G is the standard exponential distribution function. Then,

1. H̃ ′ is increasing, positive, concave, and H̃ ′(v) → 2, as v → ∞.
2. H̃ ′′ is a decreasing positive function, and H̃ ′′(v) → 0, as v → ∞.
3. H̃ (v)H̃ ′′(v) → 0, as v → ∞.

4. H̃ ′′′(v)

H̃ ′′(v)
(1 − e−v) → 0, as v → 0, and H̃ ′′′(v)

H̃ ′′(v)
→ 0, as v → ∞.

5. Assume that 1 − n−δ(n) → 0 and n1/2(1 − n−δ(n)) → ∞, as n → ∞. The posi-
tive function

R(y) = (vyn(ε) − vyn(ε)
)
H̃ ′′(vyn(ε))

√
y

n − y + 1

is increasing on 1 ≤ y < n1−δ(n). Moreover, for sufficiently large n, R(y) is
also increasing on n1−δ(n) ≤ y ≤ n.
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A.2. Proof of Theorem 3.1. We need to check Assumptions A, B and C of
CGJ1967. We use the original forms of Assumptions A and C (restate below for
convenience), but a slightly stronger version of Assumption B. [Note that the si-
multaneous bounds of the exponential order statistics, vjn(ε) and vjn(ε) used in
Assumption B, are different from those in CGJ1967.]

Assumption A: H̃ (v) is continuously differentiable for 0 < v < ∞.
Assumption B: For each ε > 0,

An =
n∑

j=n−kn+1

[{
sup

vjn(ε)<v<vjn(ε)

|H̃ ′(v) − H̃ ′(ν̃jn)|
}√ j

n − j + 1

]

= o(nσn(kn)),

where vjn(ε), vjn(ε), and ν̃jn are given in Lemma A.1.
Assumption C: max1≤j≤n|αjn(kn)| = o(n1/2σn(kn)).
Assumption A is clearly satisfied. To verify Assumption C, use Lemma A.4(1)

to write

max1≤j≤n|αjn(kn)|√
nσn(kn)

= H̃ ′(ν̃nn)√∑n
j=1 α2

jn(kn)

(A.2)

≤ 2√∑n
j=n−kn+1{H̃ ′(ν̃jn)}2

.

Suppose first that kn/n → 0 as n → ∞. Then

n∑
j=n−kn+1

{H̃ ′(ν̃jn)}2 ≥ kn{H̃ ′(ν̃n−kn+1,n)}2 → ∞ as n → ∞,

so that (A.2) tends to zero and Assumption C is satisfied in this case. Next, suppose
that kn/n → r as n → ∞, for some 0 < r ≤ 1. Using the approximation (2.9) of
CGJ1967, that is, ν̃jn � νjn = − log(1 − j/(n + 1)), it follows that

1

n

n∑
j=n−kn+1

{H̃ ′(ν̃jn)}2

� 1

n

n∑
j=1

I

(
j

n + 1
>

n − kn

n + 1

){(
1 − j

n + 1

)
(F−1)′

(
j

n + 1

)}2

→
∫ 1

0
I (t > 1 − r)

{
(1 − t)

f (F−1(t))

}2

dt > 0 as n → ∞,

so that Assumption C is also satisfied. To show Assumption B, we use Lem-
mas A.4(1) and A.3 to write supvjn(ε)<v<vjn(ε)|H̃ ′(v) − H̃ ′(ν̃jn)| ≤ H̃ ′(vjn(ε)) −
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H̃ ′(vjn(ε)) = (vjn(ε) − vjn(ε))H̃
′′(ṽjn(ε)), ṽjn(ε) ∈ (vjn(ε), v

jn(ε)). Thus,

An

nσn(kn)
≤ 1√

n

n∑
j=n−kn+1

[{(
vjn(ε) − vjn(ε)

)
H̃ ′′(vjn(ε))

}√ j

n − j + 1

]
(A.3)

×
(√√√√ n∑

j=n−kn+1

{H̃ ′(ν̃jn)}2

)−1

,

where the inequality is justified by the fact that H̃ ′′ is a decreasing positive function
[Lemma A.4(2)]. We need to prove that (A.3) tends to zero as n → ∞. Suppose
first that kn/n → 0, as n → ∞. Divide numerator and denominator of (A.3) by
k

1/2
n and consider first the numerator. Then,

1√
nkn

n∑
j=n−kn+1

[{(
vjn(ε) − vjn(ε)

)
H̃ ′′(vjn(ε))

}√ j

n − j + 1

]

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
8

ε

1√
nkn

n∑
j=n−kn+1

[
H̃ ′′(vjn(ε))

√
j

n − j + 1

]
,

if kn <

√
n

2
log
(

58

ε

)
,

1√
nkn

n1−δ(n)−1∑
j=n−kn+1

[{(
vjn(ε) − vjn(ε)

)
H̃ ′′(vjn(ε))

}√ j

n − j + 1

]

+ 1√
nkn

n−k
1/4
n∑

j=n1−δ(n)

[{(
vjn(ε) − vjn(ε)

)
H̃ ′′(vjn(ε))

}√ j

n − j + 1

]

+ 1√
nkn

n∑
j=n−k

1/4
n +1

[{(
vjn(ε) − vjn(ε)

)
H̃ ′′(vjn(ε))

}√ j

n − j + 1

]
,

otherwise,

with 1 − log(n −
√

n
2 log(58

ε
) + 1)/ logn ≤ δ(n) < 1 − log(n − cεn

3/16k
5/8
n +

1)/ logn [This range is applied only when kn ≥
√

n
2 log(58

ε
)]. Assume that 1 −

n−δ(n) → 0, n1/2(1 −n−δ(n)) → ∞, and n1/2(1 −n−δ(n))3/2 → d for some d > 0,

as n → ∞. If kn <
√

n
2 log(58

ε
), then 1√

nkn

∑n
j=n−kn+1[H̃ ′′(vjn(ε))

√
j

n−j+1 ] <

(1
2 log(58

ε
))1/4n1/4H̃ ′′(vnn(ε)) → 0, as n → ∞. This inequality is justified by

Lemma A.4(5), and the fact that n1/4H̃ ′′(vnn(ε)) tends to zero. Suppose that kn ≥√
n
2 log(58

ε
) and kn/n → 0, as n → ∞. Set an = n1−δ(n) − 1 and bn = n − k

1/4
n .
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Using Lemmas A.4(5) and A.3, we have

1√
nkn

n∑
j=n−kn+1

[{(
vjn(ε) − vjn(ε)

)
H̃ ′′(vjn(ε))

}√ j

n − j + 1

]

≤
√

kn

n(1 − n−δ(n))

(
van,n(ε) − van,n(ε)

)
H̃ ′′(van,n(ε))(A.4)

+ cε

√
8

ε
n3/16H̃ ′′(vbn,n(ε)) +

√
8

ε
k−1/4
n H̃ ′′(vnn(ε)).(A.5)

Since (n − an + 1)/n1/2 → ∞ as n → ∞, using a one-term Taylor expansion

we have van,n(ε) − van,n(ε) ≈
√

2n log(58/ε)−1
n−an+1−√

n/2 log(58/ε)
= O( 1

n1/2(1−n−δ(n))
). Thus, we

have

(A.4) = O

(
1

n1/2(1 − n−δ(n))3/2 · k
1/2
n

n1/2 H̃ ′′(van,n(ε))

)
→ 0 as n → ∞,

where it is justified by Lemma A.4(2) and the fact that van,n(ε) tends to infinity.
From Lemma A.4(2), the second term of (A.5) tends to 0 as n → ∞. Moreover,
the first term of (A.5) tends to 0 as n → ∞ (even bn = n − n1/4). Since also
( 1
kn

∑n
j=n−kn+1{H̃ ′(ν̃jn)}2)−1/2 ≤ (H̃ ′(ν̃n−kn+1,n))

−1 < ∞, (A.3) tends to zero
and Assumption B is satisfied when kn/n → 0 as n → ∞. Next, we suppose that
for some 0 < r ≤ 1, kn/n → r as n → ∞. Divide numerator and denominator of
(A.3) by n1/2 and consider the numerator and denominator separately. Since

1

n

n∑
j=n−kn+1

[{(
vjn(ε) − vjn(ε)

)
H̃ ′′(vjn(ε))

}√ j

n − j + 1

]

≤ O

(
H̃ ′′(vn1−δ(n)−1,n(ε))

n1/2(1 − n−δ(n))3/2

)
+
√

8

ε
n3/16H̃ ′′(vn−n1/4,n(ε))

+
√

8

ε
n−1/4H̃ ′′(vnn(ε))

→ 0 as n → ∞,

which can be obtained by breaking up the summation first for j = n − kn + 1
to n1−δ(n) − 1, n1−δ(n) to n − n1/4, and lastly n − n1/4 + 1 to n with 1 −
log(n −

√
n
2 log(58

ε
) + 1)/ logn ≤ δ(n) < 1 − log(n − n13/16 + 1)/ logn, and

( 1
n

∑n
j=n−kn+1{H̃ ′(ν̃jn)}2)−1/2 < ∞, the term (A.3) converges to 0 as n → ∞ in

this case. Thus, Assumption B holds for both cases. Since Assumptions A, B and
C of CGJ1967 are satisfied, the proof is done.
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APPENDIX B: PROOF OF THEOREM 4.1

The proofs of the present lemmas can be found in the archived supplemental
material in Kim and Akritas (2010).

B.1. Some auxiliary results.

LEMMA B.1. For any 0 < ε < 1 and some δ(a) which satisfies 1 − log(a −√
a
2 log(58

ε
) + 1)/ loga ≤ δ(a) < 1 − log(a

2 log(58
ε

))/(2 loga), 1 − a−δ(a) → 0,

a1/2(1 − a−δ(a)) → ∞, and a1/2(1 − a−δ(a))3/2 → d for some d > 0, as a → ∞,
let ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uja(ε) =

⎧⎪⎪⎨⎪⎪⎩
max

{
0,

j

a
−
√

1

2a
log
(

58

ε

)}
, 1 ≤ j < a1−δ(a),

1 − e−ν̃ja e
√

2/ε, a1−δ(a) ≤ j ≤ a,

uja(ε) =

⎧⎪⎪⎨⎪⎪⎩
j − 1

a
+
√

1

2a
log
(

58

ε

)
, 1 ≤ j < a1−δ(a),

1 − e−ν̃ja e−√
2/ε, a1−δ(a) ≤ j ≤ a,

where ν̃ja =∑j
i=1 1/(a − i + 1), and set

vja(ε) = − log
(
1 − uja(ε)

)
, vja(ε) = − log

(
1 − uja(ε)

)
.

For any M ≥ 0, let H̃a,M(v) = G−1
a,M(1 − e−v), where Ga,M is the noncentral

chi-squared distribution function with 1 degree of freedom and noncentrality pa-
rameter M2/a. Then,

1. H̃ ′
a,M is bounded and H̃ ′

a,M(v) → 2, as v → ∞ and a → ∞.

2. H̃ ′′
a,M(v) = Ba,M(v) − (H̃ ′

a,M(v))2Ja,M(v), where

Ba,M(v) = −H̃ ′
a,M(v) + (H̃ ′

a,M(v))2
(

1

2
+ 1

2H̃a,M(v)

)
,

Ja,M(v) =
∑∞

k=1{(M2/a)k(H̃a,M(v))k−1/(22k(k − 1)!�(k + 1/2))}∑∞
k=0{(M2/a)k(H̃a,M(v))k/(22kk!�(k + 1/2))} .

Note that Ba,M is a decreasing positive function, Ba,M(v) → 0 as v → ∞ and
a → ∞, and Ja,M is bounded by M2/(2a).

3. The positive function

RM(y) = (vya(ε) − vya(ε)
)
Ba,M(vya(ε))

√
y

a − y + 1

is increasing on 1 ≤ y < a1−δ(a). Moreover, for sufficiently large a, RM(y) is
also increasing on a1−δ(a) ≤ y ≤ a.
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LEMMA B.2. Consider the setting of Lemma B.1. Let ga,0 and ga,M be the
density functions of χ2

1 (0) and χ2
1 (M2/a), respectively. Set ya,0 = H̃a,0(vaa(ε)) =

G−1
a,0(1 − e−vaa(ε)) and ya,M = H̃a,M(vaa(ε)) = G−1

a,M(1 − e−vaa(ε)). Then,

1. ya,M is bounded by (2 log(a + 1) − 2 log(
√

π/2) + 2 log(eM/(2
√

a) +
e−M/(2

√
a)))2.

2. ga,0(ya,M)/ga,M(ya,M) → 1 and a1/4(ga,0(ya,M)/ga,M(ya,M) − 1) → 0, as
a → ∞.

3. ga,0(ya,0)−ga,0(ya,M)

ga,0(ya,M)
≈ −(

y−1
a,M+1

2 )M2

2a
Ca,M , where Ca,M is defined in the proof. In

particular, Ca,M = O(ya,M).
4. a1/4(ya,0/ya,M −1) → 0 and a1/4(ga,0(ya,0)/ga,0(ya,M)−1) → 0, as a → ∞.
5. a1/4(e−vaa(ε)/ga,0(ya,M) − 2 + 2/ya,0) → 0, as a → ∞.
6. a1/4(e−vaa(ε)/ga,M(ya,M) − 2 + 2/ya,M) → 0, as a → ∞.

REMARK. For any M ≥ 0, we write H̃ ′
a,M(vaa(ε)) = e−vaa(ε)

ga,M(ya,M)
and

Ba,M(vaa(ε)) = e−vaa(ε)

2ga,M(ya,M)
( e−vaa(ε)

ga,M(ya,M)
− 2 + e−vaa(ε)

ga,M(ya,M)
· 1

ya,M
). From Lem-

mas B.1(1), B.1(2) and B.2(6), we obtain that a1/4Ba,M(vaa(ε)) → 0, as a → ∞.

LEMMA B.3. Consider the setting of Lemma B.2. Let ba = a − k
1/4
a with

ka ≥
√

a
2 log(58

ε
). Set xa,0 = H̃a,0(vba,a(ε)) = G−1

a,0(1 − e−vba,a(ε)) and xa,M =
H̃a,M(vba,a(ε)) = G−1

a,M(1 − e−vba,a(ε)). Then,

1. xa,M ≤ (2 log(a + 1) − 2 log(k
1/4
a + 1) − 2 log(

√
π/2) + 2 log(eM/(2

√
a) +

e−M/(2
√

a)))2.
2. ga,0(xa,M)/ga,M(xa,M) → 1 and a3/16(ga,0(xa,M)/ga,M(xa,M) − 1) → 0, as

a → ∞.

3. ga,0(xa,0)−ga,0(xa,M)

ga,0(xa,M)
≈ −(

x−1
a,M+1

2 )M2

2a
C′

a,M , where

C′
a,M = φ′(√xa,M − t∗/

√
a) + φ′(√xa,M + t∗/

√
a)

ga,0(xa,t̃ )
with t∗, t̃ ∈ (0,M).

In particular, C′
a,M = O(xa,M).

4. a3/16(xa,0/xa,M − 1) → 0 and a3/16(ga,0(xa,0)/ga,0(xa,M) − 1) → 0, as a →
∞.

5. a3/16(e−vba,a(ε)/ga,0(xa,M) − 2 + 2/xa,0) → 0, as a → ∞.
6. a3/16(e−vba,a(ε)/ga,M(xa,M) − 2 + 2/xa,M) → 0, as a → ∞.

REMARK. From Lemmas B.1(1), B.1(2), and B.3(6), we obtain that a3/16 ×
Ba,M(v

a−k
1/4
a ,a

(ε)) → 0, as a → ∞.
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B.2. Proof of Theorem 4.1. For simplicity, let H̃a,t (v) = G−1
a,t (1−e−v). Then

αt
ia(ka) = 1

a − i + 1

a∑
j=i

cja

e−ν̃ja

ga,t (G
−1
a,t (1 − e−ν̃ja ))

= 1

a − i + 1

a∑
j=i

cjaH̃
′
a,t (ν̃ja)

and

(σ t
a(ka))

2 = 1

a

a∑
i=1

(αt
ia(ka))

2.

Let us check Assumptions A, B and C of CGJ1967, which we restated in the proof
of Theorem 3.1. For given any |t | < M , Assumption A is clearly satisfied. Next,
it is easily verified that for any fixed values of a and v, H̃ ′

a,t (v) increases as |t |
increases. Thus, αt

ia(ka) and σ t
a(ka) increase as |t | increases. Let us check As-

sumption C: for given any |t | < M ,

max1≤j≤a|αt
ja(ka)|√

aσ t
a(ka)

≤ max1≤j≤a|αM
ja(ka)|√

aσ 0
a (ka)

≤ maxa−ka+1≤j≤a H̃ ′
a,M(ν̃ja)√∑a

j=a−ka+1{H̃ ′
a,0(ν̃ja)}2

→ 0 as a → ∞,

provided that ka → ∞, as a → ∞. It is justified by the facts that

max
a−ka+1≤j≤a

H̃ ′
a,M(ν̃ja)

is bounded [Lemma B.1(1)] and
∑a

j=a−ka+1{H̃ ′
a,0(ν̃ja)}2 → ∞ as ka tends to in-

finity with a. (It was shown in the proof of Theorem 3.1 because it becomes the
central chi-square case when t = 0.) In order to verify Assumption B, it suffices to
show that∑a

j=a−ka+1[{supvja(ε)<v<vja(ε)|H̃ ′
a,M(v) − H̃ ′

a,M(ν̃ja)|}√j/(a − j + 1)]√
a
∑a

j=a−ka+1{H̃ ′
a,0(ν̃ja)}2

= o(1),

where vja(ε), vja(ε), and ν̃ja are given in Lemma B.1. Using Lemma B.1(2), we
write

sup
vja(ε)<v<vja(ε)

|H̃ ′
a,M(v) − H̃ ′

a,M(ν̃ja)|

≤ (vja(ε) − vja(ε)
) · |H̃ ′′

a,M(v∗
ja)|

≤ (vja(ε) − vja(ε)
)
Ba,M(vja(ε))

+ (vja(ε) − vja(ε)
)
(H̃ ′

a,M(v∗
ja))

2M2/(2a)
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with some v∗
ja ∈ (vja(ε), v

ja(ε)). From the above inequality, we have∑a
j=a−ka+1[{supvja(ε)<v<vja(ε)|H̃ ′

a,M(v) − H̃ ′
a,M(ν̃ja)|}√j/(a − j + 1)]√

a
∑a

j=a−ka+1{H̃ ′
a,0(ν̃ja)}2

≤ 1/
√

a
∑a

j=a−ka+1[{(vja(ε) − vja(ε))Ba,M(vja(ε))}√j/(a − j + 1)]√∑a
j=a−ka+1{H̃ ′

a,0(ν̃ja)}2
(B.1)

+ 1√
a

a∑
j=a−ka+1

[{(
vja(ε) − vja(ε)

)
(H̃ ′

a,M(v∗
ja))

2 M2

2a

}√
j

a − j + 1

]
(B.2)

×
(√√√√ a∑

j=a−ka+1

{H̃ ′
a,0(ν̃ja)}2

)−1

.

To show that (B.2) tends to zero, we use Lemmas B.1(1) and A.3 to write

(B.2) ≤ Cε · ka

a
·
(

a∑
j=a−ka+1

{H̃ ′
a,0(ν̃ja)}2

)−1/2

for some 0 < Cε < ∞.

Suppose first that ka/a → 0 as a → ∞. Then(
1

ka

a∑
j=a−ka+1

{H̃ ′
a,0(ν̃ja)}2

)−1/2

≤ 1

H̃ ′
a,0(ν̃a−ka+1,a)

< ∞,(B.3)

so that (B.2) tends to 0 as a → ∞. For some 0 < r ≤ 1, if ka/a → r as a → ∞,
then (

1

a

a∑
j=a−ka+1

{H̃ ′
a,0(ν̃ja)}2

)−1/2

< ∞.(B.4)

Thus, (B.2) tends to 0 as a → ∞ in both cases. Since (B.2) converges to zero, the
remaining part is to prove that (B.1) tends to 0, provided that ka → ∞ as a → ∞.

Suppose first that ka <
√

a
2 log(58

ε
). Divide numerator and denominator of (B.1) by

k
1/2
a and consider first the numerator. From Lemma B.1(3), we have

1√
aka

a∑
j=a−ka+1

[{(
vja(ε) − vja(ε)

)
Ba,M(vja(ε))

}√ j

a − j + 1

]

≤
√

8

ε

(
1

2
log
(

58

ε

))1/4

a1/4Ba,M(vaa(ε)).

Using Lemmas B.1(1), B.1(2), B.2(6) and (B.3), the term (B.1) tends to zero and

Assumption B is satisfied in this case. Next, we suppose that ka ≥
√

a
2 log(58

ε
) and
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ka/a → 0, as a → ∞. Then, from Lemmas B.1(3) and A.3,

1√
aka

a∑
j=a−ka+1

[{(
vja(ε) − vja(ε)

)
Ba,M(vja(ε))

}√ j

a − j + 1

]

≤
√

ka

a(1 − a−δ(a))

(
va1−δ(a)−1,a(ε) − va1−δ(a)−1,a(ε)

)
Ba,M(va1−δ(a)−1,a(ε))

+ cε

√
8

ε
a3/16Ba,M(v

a−k
1/4
a ,a

(ε)) +
√

8

ε
k−1/4
a Ba,M(vaa(ε)),

where 1 − log(a −
√

a
2 log(58

ε
) + 1)/ loga ≤ δ(a) < 1 − log(a − cεa

3/16k
5/8
a +

1)/ loga. From Lemmas B.1(1), B.1(2), B.3(6), (B.3), and the fact that
va1−δ(a)−1,a(ε) − va1−δ(a)−1,a(ε) = O( 1

a1/2(1−a−δ(a))
), the term (B.1) also tends to

zero and Assumption B is satisfied in this case. Lastly, we suppose that for some
0 < r ≤ 1, ka/a → r as a → ∞. Divide numerator and denominator of (B.1) by
a1/2 and consider the numerator and denominator separately. Since (B.4) and

1

a

a∑
j=a−ka+1

[{(
vja(ε) − vja(ε)

)
Ba,M(vja(ε))

}√ j

a − j + 1

]

≤ 1√
1 − a−δ(a)

(
va1−δ(a)−1,a(ε) − va1−δ(a)−1,a(ε)

)
Ba,M(va1−δ(a)−1,a(ε))

+
√

8

ε
a3/16Ba,M(va−a1/4,a(ε)) +

√
8

ε
a−1/4Ba,M(vaa(ε))

→ 0 as a → ∞
with 1 − log(a −

√
a
2 log(58

ε
) + 1)/ loga ≤ δ(a) < 1 − log(a − a13/16 + 1)/ loga,

the term (B.1) converges to 0 as a → ∞ in this case. Thus, Assumption B holds
as ka tends to infinity with a. Since Assumptions A, B and C of CGJ1967 are
satisfied, the proof is done.

APPENDIX C: PROOF OF THEOREM 4.2

C.1. Proof of Lemmas 4.2–4.4.

C.1.1. Proof of Lemma 4.2. We observe that
√

aQt
a(ka)

σ t
a(ka)

= 1√
aσ t

a(ka)

a∑
i=1

αt
ia(ka)(Vi − 1),

where Vi are i.i.d. random variables with the distribution function G(v) = 1−e−v ,
v ≥ 0. Note that g(v) = e−v , v ≥ 0, E(Vi − 1) = 0, Var(Vi − 1) = 1, and E(|Vi −
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1|3) = 12/e − 2. Let

s2
a =

a∑
i=1

Var
(
αt

ia(ka)(Vi − 1)
)= a∑

i=1

(αt
ia(ka))

2 = a(σ t
a(ka))

2,

β3
a =

a∑
i=1

E
(|αt

ia(ka)(Vi − 1)|3)= (12

e
− 2
) a∑

i=1

|αt
ia(ka)|3,

ra = β3
a

s3
a

=
(

12

e
− 2
)∑a

i=1 |αt
ia(ka)|3

a3/2(σ t
a(ka))3 .

Using Berry–Esseen theorem of Galambos [(1995), page 180] we have

sup
−∞<x<∞

|St
a(xsa) − 
(x)| ≤ 0.8ra as a → ∞,

where St
a is a distribution function of

∑a
i=1 αt

ia(ka)(Vi − 1) and 
 is a standard
normal distribution function. Thus, we have

sup
−M<t<M
−∞<x<∞

|Ha,t (x) − 
(x)|

= sup
−M<t<M
−∞<x<∞

∣∣St
a

(
x
√

aσ t
a(ka)

)− 
(x)
∣∣

≤ 0.8
(

12

e
− 2
)

sup
−M<t<M

{
max1≤i≤a|αt

ia(ka)|√
aσ t

a(ka)

}
→ 0 as a → ∞,

provided that ka → ∞, as a → ∞.

C.1.2. Proof of Lemma 4.3. For convenience, we rewrite

Rt
a(ka) = 1

a

a∑
j=a−ka+1

{(Vj,a − ν̃ja)G
t
ja(Vj,a)},

where

Gt
ja(v) =

⎧⎪⎨⎪⎩
H̃a,t (v) − H̃a,t (ν̃ja)

v − ν̃ja

− H̃ ′
a,t (ν̃ja), if v �= ν̃ja ,

0, if v = ν̃ja .

Let gt
ja(ε) = supvja(ε)<v<vja(ε)|Gt

ja(v)|, where vja(ε) and vja(ε) are given in
Lemma B.1. Then, we have

P

{
|Rt

a(ka)| ≤ 1

a

a∑
j=a−ka+1

gM
ja(ε)|Vj,a − ν̃ja| for all |t | < M

}
≥ 1 − ε.(C.1)
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It follows from (C.1) that

P

{
sup

−M<t<M

|Rt
a(ka)| ≤ 1

a

a∑
j=a−ka+1

gM
ja(ε)|Vj,a − ν̃ja|

}
≥ 1 − ε.

From Assumption B and Proposition 2 of CGJ1967, we have
∑a

j=a−ka+1 gM
ja(ε)×

|Vj,a − ν̃ja| = op(
√

aσM
a (ka)), so that sup−M<t<M |√aRt

a(ka)| = op(σM
a (ka)).

Also, it is easily verified that σM
a (ka)/σ

0
a (ka) = O(1) (Lemma 4.5), provided that

ka → ∞ as a → ∞. Consequently,

sup
−M<t<M

∣∣∣∣
√

aRt
a(ka)

σ t
a(ka)

∣∣∣∣≤ sup
−M<t<M

|√aRt
a(ka)|

σ 0
a (ka)

= op(1).

C.1.3. Proof of Lemma 4.4. We have already proved that for given any |t | <

M ,

T t
L

∗
(ka) =

√
aQt

a(ka)

σ t
a(ka)

+
√

aRt
a(ka)

σ t
a(ka)

d→ N(0,1) as a → ∞ (Theorem 4.1)

provided that ka → ∞, as a → ∞. From Lemmas 4.2 and 4.3, we have

sup
−M<t<M
−∞<x<∞

|Fa,t (x) − 
(x)| → 0 as a → ∞,

provided that ka → ∞, as a → ∞.

C.2. Proof of Theorem 4.2. For any given δ1 > 0, there exists M > 0 such
that

P(|t | ≥ M) < δ1.

From Lemma 4.4, any given δ2 > 0, there exists a0 such that∣∣P (T̂ ∗
L(ka) ≤ x||t | < M

)− 
(x)
∣∣< δ2 for all a > a0.

Thus, we have∣∣P (T̂ ∗
L(ka) ≤ x

)− 
(x)
∣∣≤ ∣∣P (T̂ ∗

L(ka) ≤ x||t | < M
)− 
(x)

∣∣
+ P(|t | ≥ M) < δ1 + δ2

for all a > a0. Take ε/2 = max{δ1, δ2}. Then∣∣P (T̂ ∗
L(ka) ≤ x

)− 
(x)
∣∣< ε for all a > a0.

Thus, provided that ka → ∞, as a → ∞, we have

T̂ ∗
L(ka)

d→ N(0,1) as a → ∞.
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APPENDIX D: PROOF OF THEOREM 4.3

D.1. Proof of Lemmas 4.5–4.7.

D.1.1. Proof of Lemma 4.5. We need to show that

sup
−M<t<M

∣∣∣∣σ t
a(ka)

σ 0
a (ka)

− 1
∣∣∣∣= σM

a (ka) − σ 0
a (ka)

σ 0
a (ka)

→ 0 as a → ∞,

provided that ka → ∞ as a → ∞. Suppose first that ka/a → 0 as a → ∞. Since√
a/kaσ

0
a (ka) > 0, it is enough to show that

√
a/ka(σ

M
a (ka) − σ 0

a (ka)) → 0, as
a → ∞. We first have a(σM

a (ka))
2 ≤ (ka(2−ka/a)){maxa−ka+1≤j≤a H̃ ′

a,M(ν̃ja)}2

and a(σ 0
a (ka))

2 ≥ (ka[1+ka(a −ka)/((a +1)(ka +1))]){H̃ ′
a,0(ν̃a−ka+1,a)}2. Con-

sequently, we obtain√
a

ka

(
σM

a (ka) − σ 0
a (ka)

)

≤
√

2 − ka

a

{
max

a−ka+1≤j≤a
H̃ ′

a,M(ν̃ja)
}

−
√

1 + ka(a − ka)

(a + 1)(ka + 1)
{H̃ ′

a,0(ν̃a−ka+1,a)} → 0

as a → ∞. Next, we suppose that for some 0 < r ≤ 1, ka/a → r as a → ∞.
Then σ 0

a (ka) > 0, so we need to prove that σM
a (ka) − σ 0

a (ka) → 0, as a → ∞. We
observe that

(σM
a (ka))

2 − (σ 0
a (ka))

2

= 1

a

a−ka∑
i=1

(
1

a − i + 1

)2
{(

a∑
j=a−ka+1

H̃ ′
a,M(ν̃ja)

)2

−
(

a∑
j=a−ka+1

H̃ ′
a,0(ν̃ja)

)2}

+ 1

a

a∑
i=a−ka+1

{(
1

a − i + 1

a∑
j=i

H̃ ′
a,M(ν̃ja)

)2

−
(

1

a − i + 1

a∑
j=i

H̃ ′
a,0(ν̃ja)

)2}

≤ K
[

max
a−ka+1≤j≤a

(
H̃ ′

a,M(ν̃ja) − H̃ ′
a,0(ν̃ja)

)]→ 0 as a → ∞.
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Since (σM
a (ka))

2 − (σ 0
a (ka))

2 = (σM
a (ka) + σ 0

a (ka))(σ
M
a (ka) − σ 0

a (ka)), we have

σM
a (ka) − σ 0

a (ka) → 0 as a → ∞.

D.1.2. Proof of Lemma 4.6. We hope to show that

sup
−M<t<M

∣∣∣∣
√

a(μt
a(ka) − μ0

a(ka))

σ 0
a (ka)

∣∣∣∣=
√

a(μM
a (ka) − μ0

a(ka))

σ 0
a (ka)

→ 0 as a → ∞,

provided that ka → ∞, as a → ∞. From the fact that G−1
a,M(1− e−ν̃ia )−G−1

a,0(1−
e−ν̃ia ) is increasing in i and Taylor’s expansion, we have

μM
a (ka) − μ0

a(ka) = 1

a

a∑
i=a−ka+1

(
G−1

a,M(1 − e−ν̃ia ) − G−1
a,0(1 − e−ν̃ia )

)
≤ ka

a

(
G−1

a,M(1 − e−ν̃aa ) − G−1
a,0(1 − e−ν̃aa )

)
= ka

a
· O
(

M2

a
G−1

a,M(1 − e−ν̃aa )

)
.

Note that the last equality is justified by the similar argument of the proof of
Lemma B.2(3). Applying the same argument of the proof of Lemma B.2(1), it
follows that

G−1
a,M(1− e−ν̃aa ) ≤ (2 log(a +1)−2 log

(√
π/2
)+2 log

(
eM/(2

√
a) + e−M/(2

√
a)))2.

Suppose first that ka/a → 0 as a → ∞. Since
√

a/kaσ
0
a (ka) > 0, it is enough to

show that
a√
ka

(
μM

a (ka) − μ0
a(ka)

)→ 0 as a → ∞.(D.1)

Since
√

ka

a
· G−1

a,M(1−e−ν̃aa )√
a

→ 0 as a → ∞, (D.1) is satisfied. Next, we suppose that

for some 0 < r ≤ 1, ka/a → r as a → ∞. Then, σ 0
a (ka) > 0, so we need to prove

that √
a
(
μM

a (ka) − μ0
a(ka)

)→ 0 as a → ∞.(D.2)

Since ka

a
· G−1

a,M(1−e−ν̃aa )√
a

→ 0 as a → ∞, (D.2) is also satisfied.

D.1.3. Proof of Lemma 4.7. Suppose that ka/a → r , 0 ≤ r ≤ 1, and ka → ∞,
as a → ∞. Then

μ0
a(ka) = 1

a

a∑
i=a−ka+1

H̃a,0(ν̃ia) � 1

a

a∑
i=1

I

(
i

a + 1
>

a − ka

a + 1

)
G−1

a,0

(
i

a + 1

)

→
∫ 1

0
I (t > 1 − r)G−1

a,0(t) dt =
∫ ∞
G−1

a,0(1−r)
uga,0(u) du as a → ∞.
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Note that if r = 1, μ0
a(ka) → 1, as a → ∞. Also, we have

(σ 0
a (ka))

2 � 1

a2

a∑
j=1

a∑
l=1

{
I

(
j

a + 1
>

a − ka

a + 1

)
I

(
l

a + 1
>

a − ka

a + 1

)

×
(

1 − j

a + 1

)(
1 − l

a + 1

)
× min{j/(a + 1), l/(a + 1)}

1 − min{j/(a + 1), l/(a + 1)}
× 1

ga,0(G
−1
a,0(j/(a + 1)))

1

ga,0(G
−1
a,0(l/(a + 1)))

}

→
∫ 1

0

∫ 1

0
I (t > 1 − r)I (s > 1 − r)

(
min(t, s) − ts

)
× 1

ga,0(G
−1
a,0(t))

1

ga,0(G
−1
a,0(s))

dt ds

=
∫ 1

0

∫ 1

0
I (t > 1 − r)I (s > 1 − r)

(
min(t, s) − ts

)
dG−1

a,0(t) dG−1
a,0(s).

Note that if r = 1, σ 0
a (ka) → √

2, as a → ∞.

D.2. Proof of Theorem 4.3. From Theorem 4.2, Lemmas 4.5, 4.6, 4.7 and
Slutsky’s theorem, it follows that

T̃L(ka) = T̂L(ka) − aμ0
a(ka)√

aσ 0
a (ka)

= s2 σ̂a(ka)

σ 0
a (ka)

T̂ ∗
L(ka) + s2

√
a(μ̂a(ka) − μ0

a(ka))

σ 0
a (ka)

+ μ0
a(ka)

σ 0
a (ka)

√
a(s2 − 1)

d→ N

(
0,1 + 2μ2

r

σ 2
r (n − 1)

)
as a → ∞.
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SUPPLEMENTARY MATERIAL

Supplement to “Order Thresholding” (DOI: 10.1214/09-AOS782SUPP;
.pdf). We prove Theorems 3.1, 4.1, 4.2 and 4.3 of the paper “Order Threshold-
ing.” A number of auxiliary results that are needed for these proofs are also stated
and proved.

http://dx.doi.org/10.1214/09-AOS782SUPP
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