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Clinical trials are complex and usually involve multiple objectives such
as controlling type I error rate, increasing power to detect treatment differ-
ence, assigning more patients to better treatment, and more. In literature,
both response-adaptive randomization (RAR) procedures (by changing ran-
domization procedure sequentially) and sequential monitoring (by chang-
ing analysis procedure sequentially) have been proposed to achieve these
objectives to some degree. In this paper, we propose to sequentially moni-
tor response-adaptive randomized clinical trial and study it’s properties. We
prove that the sequential test statistics of the new procedure converge to a
Brownian motion in distribution. Further, we show that the sequential test
statistics asymptotically satisfy the canonical joint distribution defined in
Jennison and Turnbull (2000). Therefore, type I error and other objectives
can be achieved theoretically by selecting appropriate boundaries. These re-
sults open a door to sequentially monitor response-adaptive randomized clin-
ical trials in practice. We can also observe from the simulation studies that,
the proposed procedure brings together the advantages of both techniques, in
dealing with power, total sample size and total failure numbers, while keeps
the type I error. In addition, we illustrate the characteristics of the proposed
procedure by redesigning a well-known clinical trial of maternal-infant HIV
transmission.

1. Introduction. Clinical trials usually involve multiple competing objectives
such as maximizing the power of detecting clinical difference among treatments,
minimizing total sample size and protecting more people from possibly inferior
treatments. To achieve these objectives, two different techniques have been pro-
posed in literature: (i) the analysis approach—by analyzing the observed data
sequentially [sequential monitoring, Jennison and Turnbull (2000)], and (ii) the
design approach—by changing the allocation probability sequentially [response-
adaptive randomization, Hu and Rosenberger (2006)]. In this paper, we discuss
how to combine the two procedures in one clinical trial in order to utilize both of
their advantages.

In experiments where data accumulates sequentially, it is natural to conduct a
sequential analysis. Sequential techniques originated from a methodology of long
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history based on Brownian motion. Wald’s classic work about the sequential prob-
ability ratio test (SPRT) [Wald (1947)] led to the application of sequential analysis
in numerous fields of statistics. Armitage (1957, 1975) introduced sequential meth-
ods to clinical studies, which required monitoring results on a patient-by-patient
basis. Pocock (1977) proposed sequential monitoring of clinical trials based on
a group basis. Since then, many authors have done important work on group se-
quential studies. These work are summarized in Jennison and Turnbull (2000) and
Proschan, Lan and Wittes (2006).

The main advantages of sequential monitoring were listed in Jennison and Turn-
bull (2000). First, it is ethical to monitor clinical trials sequentially because we
could ensure that patients are not exposed to dangerous treatments and we could
stop trials as soon as possible if needed. Second, administratively one needs to en-
sure that the protocol is not violated and the assumption, which the clinical trial
is based on, is correct and valid. Third, sequential monitoring can decrease sam-
ple size and cost. With all the above advantages, sequential monitoring has now
become a standard technique in conducting clinical trials.

The idea of response-adaptive randomization (RAR) can be traced back to
Thompson (1933) and Robbins (1952). The play-the-winner rule [Zelen (1969)]
and the randomized play-the-winner rule [Wei and Durham (1978)] were proposed
to reduce number of patients in the inferior treatments. Hu and Rosenberger (2003)
proved theoretically that adaptive randomization can be used to increase statistical
efficiency in some clinical trials. In literature, many papers showed its efficient and
ethical advantages over fixed designs [Hu and Rosenberger (2006)]. With modern
technology and high capability of collecting data, it becomes easier and easier to
implement adaptive designs in sequential experiments. Some clinical trials have
already implemented the response-adaptive designs [Rout et al. (1993), Tamura et
al. (1994), Andersen (1996), etc.].

Bayesian adaptive designs have also been proposed and studied in literature.
Berry (2005) provided some comprehensive introduction of Bayesian designs in
clinical trials. Recently, Cheng and Shen (2005) proposed to sequentially monitor
a Bayesian adaptive design using decision-theoretic approaches and allowing the
maximum sample size to be sequentially adjusted by the observed data. Lewis,
Lipsky and Berry (2007) proposed a Bayesian decision-theoretic group sequential
design for a disease with two possible outcomes based on a quadratic loss function.
Wathen and Thall (2008) studied Bayesian adaptive model selection for optimizing
group sequential clinical trials. In this paper, we focus on sequential monitoring of
response-adaptive randomized clinical trials.

Traditionally, sequential monitoring deals with fixed designs (usually with equal
allocation). No systematic study is available about sequential monitoring a se-
quential experiment using response-adaptive randomization, except a simulation
study by Coad and Rosenberger (1999). They found that the expected number of
treatment failures can be further reduced by combining the triangular test with
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the randomized play-the-winner rule. In this paper, we will study both theoretical
properties and finite sample properties of combining sequential monitoring with
response-adaptive randomization.

Sequential monitoring procedures use responses to stop or continue a clinical
trial. Response-adaptive randomization procedures sequentially estimate the pa-
rameters and update the allocation probability of the next patient. To monitor a
response-adaptive randomized clinical trial sequentially, one needs to study the
two sequential procedures simultaneously. This is conceptually difficult because:
(1) the number of patients assigned to each treatment is a random variable at each
time point; (2) both the treatment assignments (probabilities) and the estimators
of parameters (test statistics) depend on the responses at each time point. These
problems arise from the sequential updating of estimators of the parameters and
the allocation probability function, which leads to difficulties in finding the joint
distribution of sequential test statistics. We overcome above difficulties by (i) ap-
proximating these different processes by martingale processes at each time point
simultaneously; (ii) then using continuous Gaussian approximation to study these
martingale processes simultaneously.

In this paper, we discuss sequential monitoring of doubly adaptive biased coin
design proposed by Hu and Zhang (2004) for comparing two treatments. Under
widely satisfied conditions, we show that the sequential test statistics converge
to (i) a standard Brownian motion in distribution under null hypothesis; and (ii)
a drifted Brownian motion in distribution under alternative hypothesis. For a stan-
dard Brownian motion, the critical value for fixed type I error rate has been well
studied in literature. Therefore, the problem of controlling type I error is the-
oretically solved. Further, we show that the sequential test statistics satisfy the
canonical joint distribution defined in Jennison and Turnbull (2000) asymptoti-
cally. Hence, one can apply the group sequential methods in the book to response-
adaptive randomized clinical trials.

Simulation results support our theoretical founds in terms of type I error and
display that sequential monitoring of response-adaptive randomization procedure
could increase power and decrease total failure number. Also compared to com-
plete randomization, sequential monitoring of response-adaptive randomization
procedure could stop earlier, and thus reduce the actual sample size. In other words,
the proposed procedure achieves the goals of both RAR and sequential monitor-
ing. We also redesign an experiment evaluating the effect of zidovudine treatment
in reducing the risk of maternal-infant HIV transmission performed by Connor et
al. (1994). The proposed procedure can be used to decrease the number of HIV
infected people and increase the power comparing to the complete randomization.

In Section 2, we introduce the notation, describe the framework and state the
main theorem. In Sections 3 and 4, we use both generated data and real data to
compare the proposed procedure with other randomization procedures. Conclu-
sions are in Section 5 and technical proofs are given in the Appendix.
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2. Sequential monitoring of response-adaptive randomization procedures.

2.1. Notation and framework. We first describe the framework for the ran-
domized adaptive designs. In this article, we consider clinical trials with two
treatments 1 and 2. Let Ti = (Ti,1, Ti,2) = (1,0), i = 1, . . . , n, if the ith patient
is assigned to treatment 1, and (0,1) otherwise, where n is the sample size.
N(n) = (N1(n),N2(n)), where Nj(n) = ∑n

i=1 Tij , j = 1,2, is the number of pa-
tients in treatment j . Let X = (X1, . . . ,Xn)

′, where Xi = (Xi1,Xi2), i = 1, . . . , n,
is a random matrix of responses variable and Xij , j = 1,2, are d-dimensional ran-
dom vectors. Here, only one element of Xi , say Xij , can be observed if the ith
patient is assigned to treatment j . We assume that X1, . . . ,Xn are independent and
identical distributed with unknown parameter (θ1, θ2), where θ j is the correspond-
ing dj -dimensional parameter vector (θj1, . . . , θjdj

) of treatment j (j = 1,2). To
simplify the notation, we assume that the parameter vectors of both treatments
have the same dimension (d1 = d2 = d). Without loss of generality, we also as-
sume that θ j = E(Xij ). Otherwise, we can transform X and treat the transforma-
tion as responses to make the former equation hold if such transformation exists.
Such transformation usually exists asymptotically. See Gwise, Hu and Hu (2008)
and Hu and Zhang (2004) for further discussion.

Let [nt] denote the largest integer that is smaller than or equal to nt for t ∈ [0,1].
Then N([nt]) = (N1([nt]),N2([nt])) and Nj([nt]) = ∑[nt]

i=1 Tij , j = 1,2. Note that
t = N/n when N is the number of patients who have already been enrolled. We
introduce the so-called information time t in order to formulate this problem into
the Skorohod topology [Ethier and Kurts (1986)]. After N = [nt] patients have
been assigned and the responses observed, we use the modified sample means
θ̂ [nt] = (θ̂ [nt],1, θ̂ [nt],2) to estimate the parameter θ = (θ1, θ2), that is,

θ̂ [nt],1 =
∑[nt]

i=1 Ti,1Xi1 + θ0,1

N1([nt]) + 1
and θ̂ [nt],2 =

∑[nt]
i=1 Ti,2Xi2 + θ0,2

N2([nt]) + 1
.(2.1)

Here, we add 1 in the denominator to prevent discontinuity, and add θ0,j , say 0.5,
to estimate θ j when no patient has been assigned to the treatment j , j = 1,2.

Let ρ = (ρ1, ρ2) be the target allocation proportion. Usually ρ is obtained based
on some optimal criteria and depends on unknown parameter θ . The selection
of ρ = ρ(θ) has been studied by Hayre (1979), Jennison and Turnbull (2000)
and Tymofyeyev, Rosenberger and Hu (2007). In practice, the parameters are un-
known. Therefore, we have to first estimate them according to previous treatment
assignments and responses so that we can target the allocation proportion. We con-
sider a general family of doubly adaptive biased coin design (DBCD) [Eisele and
Woodroofe (1995)] here.

Doubly adaptive biased coin design: (i) assign the first 2n0 patients to treatment
1 and 2 by some restricted randomization procedures [permuted block or truncated
binomial randomization, see Rosenberger and Lachin (2002)]; (ii) when the lth
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(l > 2n0) patient arrives and all the responses on the previous l − 1 patients are
available, we compute θ̂ l−1 and ρ̂l−1 = ρ(θ̂ l−1); (iii) then assign the lth patient to
treatment 1 with probability

g
(
N1(l − 1)/(l − 1), ρ1(θ̂ l−1)

)
,

where g(s, r) : [0,1] × [0,1] → [0,1] is the allocation function. Hu and Zhang
(2004) proposed (γ ≥ 0):

g(γ )(0, r) = 1,

g(γ )(1, r) = 0,(2.2)

g(γ )(s, r) = r(r/s)γ

r(r/s)γ + (1 − r)((1 − r)/(1 − s))γ
.

The design has drawn much attention since it was proposed and its advantages
and properties can be found in Hu and Rosenberger (2003), Rosenberger and Hu
(2004) and Tymofyeyev, Rosenberger and Hu (2007).

To compare two treatments in clinical trials, one consider a general hypothesis
test:

H0 :h(θ1) = h(θ2) versus H1 :h(θ1) �= h(θ2),

where h is a �d → � function of parameters. In this paper, we assume h(θ j ) is
continuous and twice differentiable in a small neighborhood of θ j , j = 1,2. If
one would like to test the above hypothesis at time point t ∈ (0,1], it is natural to
construct the test statistic as

Zt

(
N([nt])

[nt] , θ̂([nt])
)

= h(θ̂1([nt])) − h(θ̂2([nt]))√
V̂ar(h(θ̂1([nt]))) + V̂ar(h(θ̂2([nt])))

.(2.3)

Here, V̂ar(h(θ̂1([nt]))) and V̂ar(h(θ̂2([nt]))) are some consistent estimators of the
variances of h(θ̂1([nt])) and h(θ̂2([nt])), respectively. There is no covariance term
on the denominator since the two terms on the numerator are asymptotically inde-
pendent [Hu, Rosenberger and Zhang (2006)]. Without loss of generality, we also
assume that for some functions v1 and v2

[nt]V̂ar(h(θ̂ j ([nt]))) = vj

(
N([nt])

[nt] , θ̂([nt])
)(

1 + o(1)
)

a.s. j = 1,2.

It is easy to see that both vj (y, z) and Zt(y, z) are �2+2d → � function, where y
is a two-dimensional vector and z is a 2d-dimensional vector. Examples of using
this formulation are discussed in Section 2.3.
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2.2. Main results. Based on the notation in Section 2.1, we observe the ran-
dom processes (T1, . . . ,T[nt]), (X1, . . . ,X[nt]), N([nt]), θ̂ [nt], ρ(θ̂ [nt]) and Zt at
time point t . When a response-adaptive randomization procedure is used, these
random processes have the following characteristics different from those in fixed
designs:

(1) The allocation (N([nt])) at any time t is a random vector instead of a constant
in fixed designs.

(2) The allocation (N([nt])) and (T1, . . . ,T[nt]) are not independent with the re-
sponses (X1, . . . ,X[nt]) and the parameter estimator vector θ̂ [nt].

(3) The elements θ̂1[nt] and θ̂2[nt] depend on each other at any given time t ∈
(0,1].

These differences directly lead to difficulties in deriving the joint distributions of
sequential testing statistics.

To sequentially monitor a clinical trial, we need to figure out how to control
the type I error. The answer to this question relies on the derivation of the as-
ymptotical joint distribution of the sequential statistics and right choices of the
boundaries. Before we give the main theorem, we need the following conditions
for the response X, target allocation ρ(θ), allocation function g and the function
vj (y, z), j = 1,2.

(A1) For some ε > 0, E‖X1‖2+ε < ∞;
(A2) g(s, r) is jointly continuous and twice differentiable at (ρ1, ρ1);
(A3) g(r, r) = r for all r ∈ (0,1) and g(s, r) is strictly decreasing in s and

strictly increasing in r on (0,1) × (0,1);
(A4) ρ(z) is a continuous function and twice continuously differentiable in a

small neighborhood of θ ;
(A5) vj (y, z) is jointly continuous and twice differentiable in a small neighbor-

hood of (ρ, θ);
(A6) Zt(y, z) is a continuous function and it is twice continuously differentiable

in a small neighborhood of vector (ρ, θ).

REMARK 2.1. All the conditions are widely satisfied. An example of a design
which satisfies these conditions is DBCD in Hu and Zhang (2004). Condition (A1)
is used to ensure the consistency of the procedure and asymptotic normality of
the allocation proportions. Condition (A3) forces the actual allocation proportion
to approach the theoretically targeted one. Conditions (A4), (A5) and (A6) are
satisfied in all the examples in Chapter 5 of Hu and Rosenberger (2006).

THEOREM 2.1. Let Bt = √
tZt in the space D[0,1] with Skorohod topology.

Assume conditions (A1)–(A6) are satisfied. Then we have the following two results:

(i) Under H0, Bt is asymptotically a standard Brownian motion in distribu-
tion.
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(ii) Under H1, Bt − √
nμt is asymptotically a standard Brownian motion in

distribution, where

μ = (h(θ1) − h(θ2))√
v1(ρ, θ) + v2(ρ, θ)

.

Based on Theorem 2.1, we can obtain the asymptotical distribution of the se-
quence of test statistics {Zt1, . . . ,ZtK }, where 0 ≤ t1 ≤ t2 ≤ · · · ≤ tK ≤ 1. Because
Zti = (

√
ti)

−1Bti , we have asymptotically:

(i) {Zt1, . . . ,ZtK } is multivariate normal;
(ii) EZti = μ

√
nti ; and

(iii) Cov(Zti ,Ztj ) = √[nti]/[ntj ],0 ≤ ti ≤ tj ≤ 1.

Therefore, the sequence of test statistics {Zt1, . . . ,ZtK } has the asymptotical
canonical joint distribution defined in Jennison and Turnbull (2000).

REMARK 2.2. Based on the canonical joint distribution of the sequence of test
statistics {Zt1, . . . ,ZtK }, we can see that the doubly adaptive biased coin design
has a simple form of information time, which is just the proportion of the sample
size enrolled. This is because the DBCD consistently allocates same proportion
of patients to different treatments from the beginning to the end asymptotically.
We conjecture that this simple form of information time is true for most response-
adaptive randomization procedures.

Based on Theorem 2.1, we can easily choose the correct critical values for
the asymptotic Brownian process, so that the inflation of the type I error will
be avoided. Moreover, we can also make use of all the well-known properties of
Brownian process to do further analysis on the process of sequentially monitoring
a response-adaptive randomization procedure. Because {Zt1, . . . ,ZtK } satisfies the
canonical joint distribution asymptotically, we can apply the sequential techniques
in Chapters 2, 3, 4, 5, 6, 7 of Jennison and Turnbull (2000) to response-adaptive
randomized clinical trials. We may also apply different types of spending func-
tions to monitor a response-adaptive randomized clinical trial sequentially. Here,
we will use α spending functions proposed by Lan and DeMets (1983).

Any increasing function α(t) defined on [0,1] with α(0) = 0 and α(1) = α

is called a α spending function. We spend α(ti) − α(ti−1) of the total type I er-
ror rate at time point ti , so that α(ti) has been spent after this point. For time
ti , i = 1,2, . . . , we can sequentially obtain the boundaries. This method does not
require the predetermined number of looks and equally spaced looks. We can per-
form the interim monitor anytime during the trial. Such a procedure is usually pre-
ferred by Data and Safety Monitoring Boards (DSMB). Proschan, Lan and Wittes
(2006) provided three special spending functions. The first one approximates the
O’Brien–Fleming boundaries [O’Brien and Fleming (1979)]

α1(t) = 2{1 − �(zα/2/t1/2)}.
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The second one is the linear spending function:

α2(t) = αt.

The third one approximates the Pocock boundaries [Pocock (1982)]:

α3(t) = α ln{1 + (e − 1)t}.
The O’Brien–Fleming-like function spends little of the type I error at early

looks. Consequently, the boundary for the last look is very close to what it would
have been without sequential monitoring. Conversely, the Pocock-like function re-
jects the null hypothesis easier with smaller boundaries for early looks and then
has to use a reasonably large critical value at the end to keep the type I error. The
linear function is between these two. Therefore, the three functions above repre-
sent three typical types of spending function. Finally, it is worth mentioning that
these three spending functions are corresponding to the process Zt .

2.3. Examples. Here, we use two examples to illustrate how to sequentially
monitor the response-adaptive randomization procedures based on Theorem 2.1.

EXAMPLE 1 (Continuous responses from normal populations). Suppose the
responses of the two treatments are from two normal distributions Yi1 ∼ N(μ1, σ

2
1 )

and Yi2 ∼ N(μ2, σ
2
2 ), i = 1, . . . , n. We would like to compare μ1 and μ2. In this

case, θ1 = (μ1, σ
2
1 +μ2

1), θ2 = (μ2, σ
2
2 +μ2

2), Xij = (Yij , Y
2
ij ) and h(θ j ) = θj1 =

μj , j = 1,2. Then the hypotheses are

H0 :μ1 = μ2 versus H1 :μ1 �= μ2.

Let target allocation proportion be the Neyman allocation [Jennison and Turnbull
(2000)] with

ρ1 = σ1

σ1 + σ2
and ρ2 = 1 − ρ1 = σ2

σ1 + σ2
.(2.4)

We can use other target allocation proportions, for example, the optimal allocation
proportion [Zhang and Rosenberger (2006)] and the DA-optimal allocation pro-
portion [Gwise, Hu and Hu (2008)]. The sequential statistics Zt(y, z) is a function
from �6 to �:

Zt(y, z) = z11 − z21√
(z12 − z2

11)/([nt]y1) + (z22 − z2
21)/([nt]y2)

,

where y = N([nt])/[nt] and z = θ̂ = (θ̂11([nt]), θ̂12([nt]), θ̂21([nt]), θ̂22([nt])). It
is easy to see that h(θ̂1([nt])) = μ̂1([nt]) and h(θ̂2([nt])) = μ̂2([nt]). Also the
natural variance estimators are

V̂ar(h(θ̂1([nt]))) = σ̂ 2
1 ([nt])

N1([nt]) and V̂ar(h(θ̂2([nt]))) = σ̂ 2
2 ([nt])

N2([nt]) ,
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where σ̂ 2
1 ([nt]) and σ̂ 2

2 ([nt]) are the usual unbiased estimators of σ 2
1 and σ 2

2 based
on the first [nt] responses (N1([nt]) from treatment 1 and N2([nt]) from treat-
ment 2), respectively. Therefore,

v1(ρ, θ) = σ 2
1

ρ1
and v2(ρ, θ) = σ 2

2

ρ2
.

The test statistic is then

Zt = μ̂1([nt]) − μ̂2([nt])√
σ̂ 2

1 ([nt])/N1([nt]) + σ̂ 2
2 ([nt])/N2([nt])

.(2.5)

Then based on Theorem 2.1, the joint distribution of Bt = √
tZt is asymptotically

a standard Brownian process under H0. Under H1, Bt − √
nμt is asymptotically a

standard Brownian motion in distribution, where

μ = μ1 − μ2√
σ 2

1 /ρ1 + σ 2
2 /(1 − ρ1)

.

EXAMPLE 2 (Binary responses). Assume Yi1 ∼ Bin(1,p1) and Yi2 ∼ Bin(1,
p2), i = 1, . . . , n, and we would like to compare p1 and p2. In this case, θ1 = (p1),
θ2 = (p2), Xij = (Yij ) and h(θ j ) = θj1, j = 1,2. The hypotheses are

H0 :p1 = p2 versus H1 :p1 �= p2.

Three common target allocations are: (i) Neyman allocation,

ρ1 =
√

p1(1 − p1)√
p1(1 − p1) + √

p2(1 − p2)
and

(2.6)

ρ2 =
√

p2(1 − p2)√
p1(1 − p1) + √

p2(1 − p2)
;

(ii) optimal allocation proposed by Rosenberger et al. (2001),

ρ1 =
√

p1√
p1 + √

p2
and ρ2 =

√
p2√

p1 + √
p2

;(2.7)

(iii) Urn allocation [Wei and Durham (1978)],

ρ1 = q2

q1 + q2
and ρ2 = q1

q1 + q2
.(2.8)

Neyman allocation is a commonly discussed allocation which is related to the
efficiency issue in the field of response-adaptive randomization procedures. We
studied sequential monitoring of response-adaptive designs with Neyman alloca-
tion in order to show that our proposed procedure is able to achieve various objects.
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In this case, Zt(y, z) is a function from �4 to �:

Zt(y, z) = z11 − z21√
z11(1 − z11)/([nt]y1) + z21(1 − z21)/([nt]y2)

,

where y = (N1([nt])/[nt],N2([nt])/[nt]), z = (θ̂11([nt]), θ̂21([nt])), h(θ̂1([n ×
t])) = p̂1([nt]) and h(θ̂2([nt])) = p̂2([nt]). The corresponding variance estima-
tors are

V̂ar(h(θ̂1([nt]))) = p̂1([nt])(1 − p̂1([nt]))
N1([nt])

and

V̂ar(h(θ̂2([nt]))) = p̂2([nt])(1 − p̂2([nt]))
N2([nt]) .

Therefore,

v1(ρ, θ) = p1(1 − p1)

ρ1
and v2(ρ, θ) = p2(1 − p2)

ρ2
.

The test statistic is

Zt = (
p̂1([nt]) − p̂2([nt]))

(2.9)

×
(√

p̂1([nt])1 − p̂1([nt])
N1([nt]) + p̂2([nt])1 − p̂2([nt])

N2([nt])
)−1

.

Then Bt = √
tZt converges to a standard Brownian process in distribution un-

der H0. Under H1, Bt − √
nμt is asymptotically a standard Brownian motion in

distribution, where

μ = p1 − p2√
p1(1 − p1)/ρ1 + p2(1 − p2)/(1 − ρ1)

.

Theorem 2.1 can be applied to different situations such as the examples consid-
ered in Chapter 5 of Hu and Rosenberger (2006). In Examples 1 and 2, now assume
we would like to look at the process at three points: t1 = 0.2, t2 = 0.5 and t3 = 1.
Then we can use the corresponding critical values from the three spending func-
tions [Proschan, Lan and Wittes (2006)] in the last subsection for Zt to keep the
overall type I error 0.05: O’Brien–Fleming-like boundaries (4.877, 2.963, 1.969),
linear boundaries (2.576, 2.377, 2.141) and Pocock-like boundaries (2.438, 2.333,
2.225).
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TABLE 1
Example 1 with Neyman allocation, μ1 = μ2 = 1, σ1 = 1, σ2 = 2

Critical values Randomization Type I error ρ̂1 (s.e.)

B–F-like DBCD 0.055 0.333 (0.020)
B–F-like CR 0.052 0.500 (0.022)
Linear DBCD 0.048 0.333 (0.020)
Linear CR 0.053 0.500 (0.023)
Pocock-like DBCD 0.051 0.332 (0.020)
Pocock-like CR 0.052 0.500 (0.023)

3. Simulation study. In Section 2, we obtained the asymptotical distribution
of the test statistic Zt . In this section, we will use the two examples in Section 2 to
study the finite sample properties of the proposed procedure.

In Examples 1 and 2, we use the doubly adaptive biased coin design with Hu and
Zhang’s allocation function in (2.2) and γ = 2 is used. In Tables 1–5, we use the
same total sample size 500. The first 50 patients (n0 = 25) are randomly assigned
to treatments 1 and 2 by using permuted block randomization. Then, for the lth
(l > 50) patient, the unknown parameters are estimated by using (2.1) based on the
first l − 1 responses with θ0,1 = θ0,2 = 0.5. For normal responses in Example 1,
we estimate σ 2

1 and σ 2
2 by using the standard unbiased estimators based on the first

l − 1 responses.
For simplicity, we look at the test at three time points [n1 = 100 (t1 = 0.2),

n2 = 250 (t2 = 0.5) and n = 500 (t3 = 1)]. Then the three sets of spending func-
tion boundaries in Section 2.3 are used to ensure α = 0.05. For each spending
function, the first row in the table is for DBCD and the second row is for complete
randomization (denoted as CR in the tables). All the simulations are based on 5000
replications.

In Table 1, we simulate Example 1 with two normal responses N(1,1) and
N(1,2) by using the Neyman allocation (2.4). We find that the type I error of
sequentially monitoring the response-adaptive randomization procedure and com-

TABLE 2
Example 2 with optimal allocation, p1 = p2 = 0.5

Critical values Randomization Type I error ρ̂1 (s.e.)

B–F-like DBCD 0.051 0.500 (0.016)
B–F-like CR 0.046 0.500 (0.023)
Linear DBCD 0.055 0.500 (0.019)
Linear CR 0.061 0.500 (0.023)
Pocock-like DBCD 0.056 0.500 (0.019)
Pocock-like CR 0.050 0.500 (0.022)
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TABLE 3
Example 1 with Neyman allocation, μ1 = 1, μ2 = 1.4, σ1 = 1, σ2 = 2

Critical values Randomization Power ρ̂1 (s.e.) N1 N2 N3

B–F-like DBCD 0.847 0.333 (0.021) 2 1013 3222
B–F-like CR 0.807 0.500 (0.024) 1 842 3193
Linear DBCD 0.812 0.332 (0.027) 594 1429 2035
Linear CR 0.765 0.500 (0.028) 477 1380 1970
Pocock-like DBCD 0.792 0.332 (0.028) 741 1443 1774
Pocock-like CR 0.738 0.500 (0.028) 544 1309 1835

plete randomization are both well kept at the 0.05 level. We also report the
mean and standard deviation of actual allocation proportion (ρ̂1) for treatment 1
[N(1,1)]. We find that the mean agrees with Neyman allocation and the standard
deviation is reasonably small for DBCD. This indicates that the DBCD is able
to target the theoretical targeted allocation proportion very well. In Table 2, we
simulate the Example 2 with two binary responses p1 = p2 = 0.5 and the target
allocation is the optimal allocation (2.7). We obtain the same conclusion as Ta-
ble 1. We have also done simulations for some other cases, and similar results
are obtained. These numerical results indicate that sequential monitoring of the
response-adaptive randomization will not inflate the type I error with the appropri-
ate boundaries based on Theorem 2.1.

Next, we show other advantages of the sequential monitoring of the response-
adaptive randomization procedure. In Table 3, we simulate Example 1 with two
normal responses N(1,1) and N(1.4,2) using Neyman allocation (2.4) as the tar-
get allocation that maximizes the power. The power of the sequential monitoring
of the response-adaptive randomization procedure is about 5%–8% higher than
sequentially monitoring the complete randomization. Ni in the table is the num-
ber of rejections at the ith look. Rejection at the first two looks means stopping
the trial earlier. DBCD with sequential monitoring obviously stops the trial earlier
than complete randomization.

TABLE 4
Example 2 with urn allocation, p1 = 0.5, p2 = 0.625

Critical values Randomization Power ρ̂1 (s.e.) N1 N2 N3 Total failures (s.e.)

B–F-like DBCD 0.811 0.426 (0.033) 4 839 3214 211 (13)
B–F-like CR 0.811 0.500 (0.024) 1 839 3215 217 (13)
Linear DBCD 0.762 0.421 (0.041) 503 1396 1912 206 (14)
Linear CR 0.767 0.500 (0.029) 521 1300 2016 212 (14)
Pocock-like DBCD 0.749 0.421 (0.042) 609 1325 1809 205 (14)
Pocock-like CR 0.738 0.501 (0.029) 603 1312 1773 211 (15)
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TABLE 5
Example 2 with optimal allocation, p1 = 0.5, p2 = 0.625

Critical values Randomization Power ρ̂1 (s.e.) N1 N2 N3 Total failures (s.e.)

B–F-like DBCD 0.810 0.471 (0.017) 4 863 3185 214 (12)
B–F-like CR 0.805 0.501 (0.024) 4 795 3229 218 (13)
Linear DBCD 0.768 0.468 (0.022) 520 1354 1964 210 (14)
Linear CR 0.762 0.500 (0.029) 474 1367 1971 214 (14)
Pocock-like DBCD 0.754 0.469 (0.023) 673 1309 1787 210 (14)
Pocock-like CR 0.749 0.500 (0.03) 602 1351 1793 213 (15)
1.96 DBCD 0.805 0.472 (0.015) NA NA NA 217 (11)
1.96 CR 0.802 0.500 (0.022) NA NA NA 221 (11)

In Table 4, we simulate Example 2 with two binary responses p1 = 0.5 and
p2 = 0.625 using the urn allocation (2.8) as the target allocation that assigns more
people to the better treatment. If we reject the null hypothesis at the first two looks,
we assign all the remaining patients to the estimated better treatment and count the
total failure number. We do this only for the comparison in the simulation study. In
a real clinical trial, we stop the trial if the null hypothesis is rejected at an interim
look. From the mean total failure number, the DBCD with sequential monitoring
has lower failure numbers than complete randomization for each type of spending
function. N1, N2, and N3 show that our methods stop the trial a little earlier and
the power is almost the same.

In Table 5, we simulate Example 2 with two binary responses p1 = 0.5 and
p2 = 0.625 using the optimal allocation (2.7) used to maximize the power while
keeping the total failure number. We deal with the remaining patients in the same
way as in Table 4 if we reject the null hypothesis at the first two looks. We find
that sequential monitoring of the response-adaptive randomization procedure can
achieve the aim of optimal allocation. Its power is larger and its failure number
is less than the complete randomization procedure. In this table, we also do the
simulation without sequential monitoring. That is, we only look at the test once at
the end of the trial and the critical value is 1.96 for the nominal significance level
0.05. We report it at the last two rows. It is obvious that sequential monitoring can
reduce the total failures.

Based on the simulation results, we can see the advantages of sequentially mon-
itoring response-adaptive randomized clinical trials: (i) controlling type I error
well; (ii) reducing the total number of failures; (iii) increasing power; and (iv) stop-
ping the trail earlier (reducing total sample size).

4. Re-designing the HIV transmission trial. Maternal-infant transmission is
the primary means by which infants are infected by HIV virus. Connor et al. (1994)
reported a trial to evaluate the drug AZT (Zidovudine treatment) in reducing the
risk of maternal-infant HIV transmission. In this clinical trial, 477 HIV-infected



SEQUENTIAL MONITORING OF RESPONSE-ADAPTIVE TRIALS 2231

TABLE 6
Re-designed the HIV trial with full sample size

Target allocation Critical values ρ̂1 (s.e.) Power Total failures (s.e.)

CR linear 0.500 (0.039) 0.999 60.1 (11.1)
CR 1.96 0.501 (0.023) 0.999 80.7 (8.2)
Urn allocation linear 0.751 (0.062) 0.996 52.3 (9.2)
Optimal allocation linear 0.527 (0.021) 0.997 56.4 (10.8)

pregnant women were enrolled from April 1991 to December 1993 and assigned
to the Zidovudine treatment group and placebo group with a 50–50 randomization
scheme. This experiment was a randomized, double-blind and placebo-controlled
trial. 239 were allocated to the treatment group and 238 to the placebo group. At
the end of the trial, 8.3% of the infant from the treatment group were infected by
the HIV virus, while 25.5% from the placebo group were infected.

In Table 6, we redesign the study by sequential monitoring of both complete
randomization (the first two rows in the table) and response-adaptive randomiza-
tion [DBCD (2.2) with γ = 2] (the last three rows in the table). We assume the
success rate for the treatment group is p1 = 0.917 and that for the placebo group
is p2 = 0.745 (as reported in the original paper). We look at the test at the three
same time points as mentioned in the last section, n1 = 95 (t1 = 0.2), n2 = 143
(t2 = 0.5) and n = 239 (t3 = 1). The boundary we use is the linear spending func-
tion (2.576, 2.377, 2.141) except the second row in the table where we do the equal
allocation without sequential monitoring. We report the actual allocation propor-
tion for the treatment group, power and the total HIV-infected number. As before,
if we reject the null hypothesis at the first two looks, we will assign all the remain-
ing patients to the estimated better treatment. We find that the sequential monitor-
ing technique will decrease the HIV-infected number dramatically from the first
two rows. Response-adaptive randomization technique will also reduce the HIV-
infected number compared to the complete randomization. Sequential monitoring
DBCD while targeting at the urn allocation has the least HIV-infected number,
which agrees with the aim of urn allocation.

In Table 7, we reduce the full sample size to 245 (to achieve power 0.95 for
complete randomization) and keep all the other settings unchanged. We obtain the
same conclusion about the HIV-infected number as in Table 6. We also find that
targeting optimal allocation with DBCD has slightly higher power than targeting
equal allocation when sequential monitoring is used. Targeting urn allocation with
DBCD has slightly less power but the HIV-infected number in this way is the least.
Overall, sequential monitoring of the response-adaptive randomization procedure
is better than that of complete randomization, since it reduces the HIV-infected
number and remains good power.
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TABLE 7
Re-designed the HIV trial with sample size n = 245

Target allocation Critical values ρ̂1 (s.e.) Power Total failures (s.e.)

CR B–F-like 0.500 (0.036) 0.947 40.1 (7.0)
CR linear 0.501 (0.042) 0.942 36.6 (7.5)
CR 1.96 0.500 (0.032) 0.958 43.1 (5.8)
Urn allocation B–F-like 0.745 (0.068) 0.920 30.7 (5.9)
Urn allocation linear 0.747 (0.074) 0.885 29.3 (6.1)
Optimal allocation B–F-like 0.528 (0.023) 0.952 36.8 (6.7)
Optimal allocation linear 0.529 (0.025) 0.945 32.8 (7.3)

5. Conclusion remarks. Now sequential monitoring becomes a standard
technique in clinical trials. To apply response-adaptive randomization in clinical
trials, it is important to know how to sequentially monitor adaptive randomized
trials. In this paper, we overcome this hurdle and show the advantages of sequen-
tial monitoring response-adaptive randomized clinical trials both theoretically and
numerically. We use a Gaussian process in the Skorohod topology to describe the
relationship between the allocation and parameter estimators. One of the main con-
tributions of this paper is to show that sequential statistics can be asymptotically
approximated by a Brownian process in distribution under both null and alternative
hypotheses. Further, we find that the sequential test statistics satisfy the canonical
joint distribution asymptotically. Consequently, the results of this paper not only
solve the problem of preserving a preset type I error but may lead to many area of
potential future research.

We have studied how to sequentially monitor a clinical trial based on doubly
adaptive biased coin design proposed by Eisele and Woodroofe (1995) and Hu
and Zhang (2004). Another important family of response-adaptive randomization
procedure is based on urn models, which include randomized play-the-winner rule
[Wei and Durham (1978)], generalized Friedman’s urn models [Athreya and Kar-
lin (1968), Bai and Hu (2005)], drop-the-loser rule [Ivanova (2003)], sequential
estimation-adjusted urn models [Zhang, Hu and Cheung (2006)], etc. The tech-
nique used in this paper opens a door to study the properties of sequential monitor-
ing of clinical trials based on these urn models or the efficient randomized adaptive
designs [Hu, Zhang and He (2009)]. We leave this for future study.

In this paper, we have used α-spending function to calculate the critical bound-
aries. Because the sequential test statistics satisfy the canonical joint distribution
asymptotically, we can implement all the sequential techniques introduced in Jen-
nison and Turnbull (2000) based on this canonical form. Also we can use the op-
timal spending functions in Anderson (2007), or the beta spending functions in
DeMets (2006). We also leave the details for future research.
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APPENDIX: PROOFS

First, we introduce some further notation. For a function η(u,w) :�L × �M →
�2, we denote the partial derivative matrices as

∇u(η) =
(

∂ηk

∂ui

; i = 1, . . . ,L, k = 1,2
)

L×2

and

∇w(η) =
(

∂ηk

∂wj

; j = 1, . . . ,M, k = 1,2
)

M×2
.

Let H = ∇r (g(r, s),1 − g(r, s))|(ρ1,ρ1) and E = ∇s(g(r, s),1 − g(r, s))|(ρ1,ρ1)

be the partial derivative matrices of the allocation function g. Further, let V =
diag(var(X11)/ρ1,var(X12)/ρ2), �3 = (∇(ρ)|θ )′V ∇(ρ)|θ , �1 = diag(ρ) − ρ′ρ
and �2 = E′�3E. In Hu and Zhang (2004), they studied the asymptotic prop-
erties of N(n), ρ̂(n) and θ̂(n) at the end of the trial. Based on their results, one
can do the corresponding statistical inference after observing all responses of the
clinical trial. To monitor the response-adaptive randomized trial sequentially, we
need to know the theoretical properties of the process N([nt]) and θ̂([nt]) for any
given t ∈ (0,1]. To do this, we start with Lemma A.1.

LEMMA A.1. Let W1t and W2t be two independent standard two-dimensional
Brownian processes. N([nt]), θ̂([nt]), ρ and θ are defined as in Section 2. Under
the conditions of Theorem 2.1, we have

n−1/2([nt])
(

N([nt])
[nt] − ρ, θ̂([nt]) − θ

)
→ (Gt ,W2tV

1/2)(A.1)

in distribution in the space D[0,1] with the Skorohod topology, where the Gaussian
process

Gt =
∫ t

0
(dW1x)�

1/2
1

(
t

x

)H

+
∫ t

0
(dW2x)�

1/2
2

[∫ t

x

1

y

(
t

y

)H

dy

]
,(A.2)

which is the solution of the stochastic differential equation

dGt = (dW1t )�
1/2
1 + W2t�

1/2
2

t
dt + Gt

t
H dt with G0 = 0,

and aH is the matrix power function defined as

aH = eH lna =
∞∑

j=0

(lna)j

j ! Hk.
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PROOF. It is worth noting that the response-adaptive design in Theorem 2.1
satisfies all the conditions of Hu and Zhang (2004). So all the results in Hu and
Zhang (2004) are valid. We will prove this lemma by using the weak convergence
of the martingale [cf. Theorem 4.1 of Hall and Heyde (1980)]. To do this, we first
approximate the process (N([nt])

[nt] − ρ, θ̂([nt]) − θ) by a martingale and then prove
the following two facts: (1) Lindeberg condition holds for the approximated mar-
tingale process; and (2) the limiting covariance of n−1/2([nt])(([nt])−1N([nt]) −
ρ, θ̂([nt]) − θ) agrees with that of (Gt ,W2tV

1/2).
Now, we use the martingale approximation of N(n)−nρ and θ̂(n)− θ from Hu

and Zhang (2004). Let Fm = σ(T1, . . . ,Tm,X1, . . . ,Xm) be the σ -field generated
by the previous m stages. Then under Fm−1, Tm and Xm are independent, and

E[Tm1|Fm−1] = g

(
N1(m − 1)

m − 1
, ρ̂1(m − 1)

)
.

Let Qn = ∑n
m=1 �Qm, where �Qm = (�Qm,1,�Qm,2) = (�Qm,1k,�Qm,2k ;

k = 1, . . . , d) and �Qm,jk = Tm,j (Xm,jk − θjk)/ρj , j = 1,2. Then Qn =
O(

√
n log logn) a.s. is a sequence of martingales and we can prove

θ̂(n) − θ = Qn

n
+ O

(
log logn

n

)
a.s.(A.3)

Let Mn = ∑n
m=1 �Mm, where �Mm = Tm − E[Tm|Fm−1], and Bn,m as defined

in Hu and Zhang (2004), then

N(n) − nρ =
n∑

m=1

�MmBn,m +
n∑

m=1

�Qm∇(ρ)
∣∣∣
θ
E

n∑
k=m

1

k
Bn,k + o(n−1/2−δ/3)

:= Un + o(n−1/2−δ/3)

almost surely, where Un is a sum of martingale differences.
We can approximate the process N([nt]) − [nt]ρ and θ̂([nt]) − θ (for any point

t ∈ (0,1]) similarly as N(n) − nρ and θ̂(n) − θ . We obtain

θ̂([nt]) − θ = Q[nt]
[nt] + O

(
log log[nt]

[nt]
)

a.s.(A.4)

and

N([nt]) − [nt]ρ

=
[nt]∑
m=1

�MmB[nt],m +
[nt]∑
m=1

�Qm∇(ρ)
∣∣∣
θ
E

[nt]∑
k=m

1

k
B[nt],k + o(([nt])−1/2−δ/3)

:= U[nt] + o(([nt])−1/2−δ/3)

almost surely.
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Hu and Zhang (2004) proved that both martingales Qn and Un satisfy the Lind-
berg conditions. Similarly, we can show that both martingales Q[nt] and U[nt] also
satisfy the Lindberg conditions. Now we just have to calculate the covariance ma-
trix of the martingales Q[nt] and U[nt]. First, based on the results of Hu and Zhang
(2004), we have

ρ̂(n) − ρ = O

(√
log logn

n

)
and n−1N(n) − ρ = O

(√
log logn

n

)
almost surely. Therefore, for any t ∈ (0,1], we have

ρ̂([nt]) − ρ = O

(√
log log[nt]

[nt]
)

and

(A.5)

([nt])−1N([nt]) − ρ = O

(√
log log[nt]

[nt]
)

almost surely. Now, we can calculate Var[�M[nt]|F[nt]−1], Var[�Q[nt]|F[nt]−1]
and Cov[�M[nt],�Q[nt]|F[nt]−1].

First, �M[nt] = T[nt] − E[T[nt]|F[nt]−1] is a binary random vector. Based on
conditions (A2), (A3) and (A.5), we have

Var
[
�M[nt]|F[nt]−1

] = �1 + o(1)(A.6)

almost surely. Similarly, we can show

Var
[
�Q[nt]|F[nt]−1

] = V + o(1)(A.7)

and

Cov
[
�M[nt],�Q[nt]|F[nt]−1

] = o(1)(A.8)

almost surely.
Based on results (A.6), (A.7) and (A.8), it follows that for any 0 < s < t < 1,

Cov
[
Q[ns],Q[nt]

] = Cov

( [ns]∑
m=1

�Qm,

[nt]∑
m=1

�Qm

)

= ns
(
V + o(1)

) = nsV + o(n),

Cov
[
U[ns],U[nt]

] = n ∧11 (s, t) + o(n),

Cov
[
Q[ns],U[nt]

] = Cov

[ [ns]∑
m=1

�Qm,

[nt]∑
m=1

�MmB[nt],m

+
[nt]∑
m=1

�Qm∇(ρ)
∣∣∣
θ
E

[nt]∑
k=m

1

k
B[nt],k

]
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= Cov

[ [ns]∑
m=1

�Qm,

[nt]∑
m=1

�MmB[nt],m
]

+ Cov

[ [ns]∑
m=1

�Qm,

[nt]∑
m=1

�Qm∇(ρ)
∣∣∣
θ
E

[nt]∑
k=m

1

k
B[nt],k

]

= Cov

[ [ns]∑
m=1

�Qm,

[nt]∑
m=1

�Qm∇(ρ)
∣∣∣
θ
E

[nt]∑
k=m

1

k
B[nt],k

]

= (
V ∇(ρ)|θE + o(1)

) [ns]∑
m=1

( [nt]∑
k=m

1

k
B[nt],k

)

= nV ∇(ρ)
∣∣
θE

∫ s

0
dx

[∫ t

x

t

y

(
t

y

)H

dy

]
+ o(n)

= n ∧21 (s, t) + o(n),

and similarly,

Cov
[
Q[nt],U[ns]

] = n ∧12 (s) + o(n),

where

∧11(s, t) =
∫ s

0

(
s

x

)H ′
�1

(
t

x

)H

dx

+
∫ s

0
dx

[∫ s

x

1

y

(
s

y

)H

dy

]′
�2

[∫ t

x

1

y

(
t

y

)H

dy

]
,

∧21(s, t) = V ∇(ρ)
∣∣
θE

∫ s

0
dx

[∫ t

x

t

y

(
t

y

)H

dy

]
,

∧12(s) =
∫ s

0
dx

[∫ s

x

s

y

(
s

y

)H

dy

]
E′∇(ρ)

∣∣′
θV.

Therefore, the asymptotic covariance function of n−1/2(U[nt],Q[nt]) agrees
with that of (Gt ,W2tV

1/2). So by weak convergence of the martingale [cf. Theo-
rem 4.1 of Hall and Heyde (1980)], we have

n−1/2([nt])
(

N([nt])
[nt] − ρ, θ̂([nt]) − θ

)
→ (Gt ,W2tV

1/2)

in distribution in the space D[0,1] with the Skorohod topology. �

PROOF OF THEOREM 2.1. We assume for j = 1,2

[nt]V̂ar(h(θ̂ j ([nt]))) = [nt]vj

(
N([nt])/[nt], θ̂([nt]))(1 + oP (1)

)
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and

[nt]Var(h(θ̂ j ([nt]))) = [nt]vj (ρ, θ),

where v is a continuous function. We also assume

[nt]vj

(
N([nt])/[nt], θ̂([nt])) = [nt]vj (ρ, θ) + O

(√
log log[nt]

[nt]
)

a.s.,

which holds for most circumstances, since

N([nt])/[nt] = ρ + O

(√
log log[nt]

[nt]
)

a.s.

and

θ̂([nt]) = θ + O

(√
log log[nt]

[nt]
)

a.s.

So

[nt]V̂ar(h(θ̂ j ([nt]))) = [nt]Var(h(θ̂ j ([nt]))) + OP

(√
log log[nt]

[nt]
)
.

That is, [nt]V̂ar(h(θ̂ j ([nt]))) converges to [nt]Var(h(θ̂ j ([nt]))), j = 1,2, in prob-
ability. By Slutsky’s theorem, the sequential statistics

Bt

(
N([nt])

[nt] , θ̂([nt])
)

= √
t

h(θ̂1([nt])) − h(θ̂2([nt]))√
V̂ar(h(θ̂1([nt]))) + V̂ar(h(θ̂2([nt])))

and

B∗
t (θ̂([nt])) = √

t
h(θ̂1([nt])) − h(θ̂2([nt]))√

Var(h(θ̂1([nt]))) + Var(h(θ̂2([nt])))
have the same distribution asymptotically. So we only need to prove the sequential
statistics B∗

t converges to Brownian motion in distribution. Now

h(θ̂ j ) − h(θ j ) = (θ̂ j − θ j )
(
∂h(θ j )/∂θ j

)′ + o(‖θ̂ j − θ j‖1+δ)

= (θ̂ j − θ j )
(
∂h(θ j )/∂θ j

)′ + o(n−1/2−δ/3) a.s., j = 1,2.

It is easy to see that

Var[θ̂ j ([nt])] = Var[θ̂ j (n)]/t + o(n−1) a.s., j = 1,2.

Here, we define

C =
√

Var[h(θ̂1([nt]))] + Var[h(θ̂2([nt]))]
√

Var[h(θ̂1([ns]))] + Var[h(θ̂2([ns]))]
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and

D = (
∂h(θ1)/∂θ1,−∂h(θ2)/∂θ2

)
.

Then

B∗
t (θ̂([nt])) = √

t
h(θ̂1([nt])) − h(θ̂2([nt]))√

Var(h(θ̂1([nt]))) + Var(h(θ̂2([nt])))

= √
t
h(θ1) − h(θ2) + (θ̂([nt]) − θ)D′ + o(n−1/2−δ/3)√

Var(h(θ̂1([nt]))) + Var(h(θ̂2([nt])))
.

By the conclusion of Lemma A.1:

n−1/2([nt])(θ̂([nt]) − θ
) → (W2tV

1/2)

in distribution in the space D[0,1] with the Skorohod topology. Under H0, we have

B∗
t = √

t
n1/2([nt])−1W2tV

1/2D′√
Var(h(θ̂1([nt]))) + Var(h(θ̂2([nt])))

+ o(n−δ/3)

almost surely. So the sequential statistics B∗
t converges to a Gaussian process in

distribution. In order to prove that B∗
t converges to a “Brownian process” in distri-

bution, it is enough to show EB∗
t → 0 and for any 0 < s < t < 1,

cov(B∗
t ,B∗

s ) → s,

cov(B∗
t ,B∗

s ) = n
√

ts

[nt][ns]
cov(W2t ,W2s)DV D′

C
+ o(n−δ/3)

= n
√

ts3/2

[nt][ns]
DV D′

C
+ o(n−δ/3)

= n
√

ts3/2

[nt][ns]
D(nVar[θ̂(n) − θ] + o(1))D′

C
+ o(n−δ/3)

= n2√ts3/2

[nt][ns]
∂h(θ1)/∂θ1 Var[θ̂1(n) − θ1] ∂h(θ1)/∂θ ′

1

C

+ n2√ts3/2

[nt][ns]
∂h(θ2)/∂θ2 Var[θ̂2(n) − θ2] ∂h(θ2)/∂θ ′

2

C
+ o(1)

= n2√ts3/2

[nt][ns]
Var[h(θ̂1(n))] + Var[h(θ̂2(n))]

C
+ o(1)

= n2ts2

[nt][ns] + o(1)

→ s a.s.



SEQUENTIAL MONITORING OF RESPONSE-ADAPTIVE TRIALS 2239

It is easy to see that EB∗
t → 0. This completes the proof and shows that Bt is

asymptotical Brownian process in distribution.
Under H1, the sequential statistics

B∗
t (θ̂([nt])) = √

t
h(θ̂1([nt])) − h(θ̂2([nt])) − (h(θ1) − h(θ2))√

V̂ar(h(θ̂1([nt]))) + V̂ar(h(θ̂2([nt])))

+ √
t

h(θ1) − h(θ2)√
V̂ar(h(θ̂1([nt]))) + V̂ar(h(θ̂2([nt])))

.

With similar proof, the first term converges to a standard Brownian motion in dis-
tribution asymptotically. Because

[nt]V̂ar(h(θ̂ j ([nt]))) = vj

(
N([nt])

[nt] , θ̂([nt])
)(

1 + o(1)
)

a.s. j = 1,2,

we have that
√

t
h(θ1) − h(θ2)√

V̂ar(h(θ̂1([nt]))) + V̂ar(h(θ̂2([nt])))
converges to

t

√
n(h(θ1) − h(θ2))√

v1(ρ, θ) + v2(ρ, θ)
= √

nμt(A.9)

in probability. Therefore, under H1, by Slutsky’s theorem, B∗
t − √

nμt converges
to a standard Brownian motion asymptotically. �
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