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NONPARAMETRIC INFERENCE OF QUANTILE CURVES FOR
NONSTATIONARY TIME SERIES1

BY ZHOU ZHOU
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The paper considers nonparametric specification tests of quantile curves
for a general class of nonstationary processes. Using Bahadur representation
and Gaussian approximation results for nonstationary time series, simultane-
ous confidence bands and integrated squared difference tests are proposed to
test various parametric forms of the quantile curves with asymptotically cor-
rect type I error rates. A wild bootstrap procedure is implemented to allevi-
ate the problem of slow convergence of the asymptotic results. In particular,
our results can be used to test the trends of extremes of climate variables,
an important problem in understanding climate change. Our methodology is
applied to the analysis of the maximum speed of tropical cyclone winds. It
was found that an inhomogeneous upward trend for cyclone wind speeds is
pronounced at high quantile values. However, there is no trend in the mean
lifetime-maximum wind speed. This example shows the effectiveness of the
quantile regression technique.

1. Introduction. After fitting a nonparametric model, one often asks whether
it can be simplified into certain parametric, semiparametric or more parsimonious
nonparametric forms. Recently, there has been an enormous interest in developing
nonparametric specification tests; see, for example, Hall and Titterington (1988),
Eubank and Speckman (1993), Härdle and Mammen (1993), Ingster (1993), Zheng
(1996), Hart (1997), Stute (1997), Xia (1998), Horowitz and Spokoiny (2001),
Fan, Zhang and Zhang (2001) and Fan and Jiang (2007) among others. Many of
the previous results concern nonparametric inference of the (conditional) mean or
density functions for independent data.

The primary goal of this paper is to perform nonparametric specification tests of
quantile curves for a class of nonstationary processes that can be called locally sta-
tionary processes [Draghicescu, Guillas and Wu (2009) and Zhou and Wu (2009)].
Conceptually, the local stationarity is characterized by the smoothly time-varying
data generating mechanisms of the processes. More precisely, let {Xi,n}ni=1 be the
observed sequence. We shall adopt the following formulation:

Xi,n = G(i/n, Fi), i = 1,2, . . . , n,(1)
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where Fi = (. . . , εi−1, εi), εi , i ∈ Z, are independent and identically distributed
(i.i.d.) random variables, and G : [0,1] × R

∞ �→ R is a measurable function such
that ζi(t) := G(t, Fi) is a properly defined random variable for all t ∈ [0,1]. Here,
local stationarity means that the random function ζi(t) is smooth in t ∈ [0,1] in
an appropriate sense. Process (1) covers a wide range of nonstationary linear and
nonstationary nonlinear processes and it naturally extends many existing stationary
time series models into the nonstationary setting. See Zhou and Wu (2009) for
more discussion and examples. In the sequel, for notational convenience, we shall
write Xi,n as Xi .

The paper is motivated by the important problem of understanding the trends of
extremes and variability of climate variables. As stated in Katz and Brown (1992),
“understanding climate change demands attention to changes in climate variabil-
ity and extremes.” By interpreting climate extremes as upper and lower quantiles
and climate variability as interpercentile ranges, the nonparametric quantile es-
timation [Koenker (2005)] provides a simple and effective means to address the
latter problem. On the other hand, climatologists often want to know whether a
simple linear or quadratic function is appropriate to describe the trends. The para-
metric description of the trends is more interpretable and efficient than its non-
parametric counterparts if the parametric model is correctly specified. To address
the latter issue, it is necessary to develop nonparametric specification tests for the
quantile curves.

For independent data, there have been a few results on nonparametric speci-
fication tests of quantile curves. He and Zhu (2003) and Kim (2007) proposed
tests based on the cusum process of the residuals and the Rao-score statistics,
respectively. The tests use fitted values and residuals under the null hypothesis
(namely the parametric model) and therefore enjoy the advantage of avoiding the
need for nonparametric function estimation. On the other hand, however, the above
tests are sensitive only to a restrictively small class of alternatives; namely alter-
natives in the neighborhood of the parametric null. An alternative specification
test which achieves minimax rate over a large class of smooth functions is pro-
posed in Horowitz and Spokoiny (2002). It seems that the test is tailored to the
specific problem of testing linearity. For other contributions, see Zheng (1998),
Rosenkrantz (2000) and Wang (2007, 2008).

To our knowledge, testing parametric functional forms of quantile curves under
the time series setting has not yet been considered in the literature. In this paper, we
shall conduct the specification tests by directly comparing the nonparametric quan-
tile estimates and the parametric null. In principle, if some global measure such as
the L∞ norm or the L2 norm is large for the difference between the nonparamet-
ric fits and the parametric null, then there is evidence against the parametric null
hypothesis. This approach is intuitively plausible and it is easy to understand. For
nonparametric inference of the mean functions, this very idea has been widely ap-
plied; see, for example, Eubank and Speckman (1993) and Härdle and Mammen
(1993) among others.
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Nevertheless, obtaining the asymptotic distributions of appropriately normal-
ized global measures of the deviations of the quantile curves has been a very dif-
ficult problem when dependence is present. Generally speaking, the latter prob-
lem can be solved if we have (i) unform Bahadur representations of the estimated
quantile curves and (ii) a sharp Gaussian approximation result for the weighted
empirical processes of the nonstationary time series (Xi)

n
i=1. Recently, Zhou and

Wu (2009) obtained a sharp uniform Bahadur representation for the local linear
quantile estimates of locally stationary time series. On the other hand, Wu and
Zhou (2010) established Gaussian approximation results for partial sums of non-
stationary time series with nearly optimal rates. An extension of the latter result
addresses the above issue (ii); see Theorem 4 below.

With the recent progress in Bahadur representations and Gaussian approxima-
tions for locally stationary time series, we are able to construct in this paper simul-
taneous confidence bands (SCB) (based on the L∞ norm) and integrated squared
difference tests (ISDT) (based on the L2 norm) for the quantile curves as tools for
the nonparametric inference. The SCB is shown to asymptotically achieve the cor-
rect coverage probability. Moreover, we prove that the ISDT asymptotically attain
the correct type I error rate and are asymptotically optimal in terms of rates of con-
vergence for nonparametric hypothesis testing in the sense of Ingster (1993). Our
results shed new light on nonparametric specification tests of M-type estimates for
nonstationary time series.

The rest of the paper is structured as follows. Section 2 introduces the local
linear quantile estimates and the dependence measures. Section 3 presents the as-
ymptotic results on the nonparametric specification tests. In particular, asymptotic
results on the SCB and ISDT are presented in Sections 3.2 and 3.3, respectively.
A wild bootstrap procedure is introduced in Section 4 to address the issue of slow
convergence of the SCB and ISDT tests. Section 4 also contains discussions on
bandwidth selection and nuisance parameter estimation. Section 5 presents two
simulation studies to compare accuracy and sensitivity of various nonparametric
tests. The global tropical cyclone data is studied in Section 6. Proofs are given in
Section 7.

2. Preliminaries. We now introduce some notation. For a vector v = (v1, v2,

. . . , vp) ∈ R
p , let |v| = (

∑p
i=1 v2

i )
1/2. For a p × p matrix A, define |A| =

sup{|Av| : |v| = 1}. For a random vector V, write V ∈ Lq (q > 0) if ‖V‖q :=
[E(|V|q)]1/q < ∞ and ‖V‖ = ‖V‖2. Denote by ⇒ the weak convergence. For
an interval I ⊂ R, denote by Ci I , i ∈ N, the collection of functions that have
ith order continuous derivatives on I , and, for D ⊂ R

d , let C D be the collec-
tion of real-valued functions that are continuous on D. A function f : Rd → R is
said Lipschitz continuous on D ⊂ R

d if there exists a finite constant C, such that
|f (x1)−f (x2)| ≤ C|x1 −x2| for all x1, x2 ∈ D. For x ∈ R, define x+ = max(x,0).
The symbol C denotes a finite generic constant which may vary from line to line.
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2.1. Local linear quantile estimator. Recall ζi(t) = G(t, Fi). Let F(t, x) =
P(ζi(t) ≤ x), x ∈ R, be the cumulative distribution function (cdf) of ζi(t), t ∈
[0,1]; let Qα(t) be the αth quantile function of ζi(t), α ∈ (0,1), namely Qα(t) =
infx{F(t, x) ≥ α}. Suppose Qα(t) is smooth on [0,1]. As Qα(t1) ≈ Qα(t)+ (t1 −
t)Q′

α(t) for t1 close to t , Qα(t) and Q′
α(t) can be estimated by the local linear

approach [Koenker (2005)]

(Q̂α,bn(t), Q̂
′
α,bn

(t)) = arg min
(β0,β1)

n∑
i=1

ρα

(
Xi − β0 − β1(ti − t)

)
Kbn(ti − t),

where ti = i/n, ρα(x) = αx+ + (1 − α)(−x)+ is the check function. Here K is a
kernel function, Kbn(·) = K(·/bn) and bn = bn(α) > 0 is the bandwidth depending
on α. We shall omit the subscript bn in Q̂ and Q̂′ hereafter if no confusion will be
caused.

2.2. The dependence measures. It is shown [Condition (B1) of Zhou and Wu
(2009)] that the asymptotic behavior of the local linear quantile estimator is deter-
mined by the dependence structure of

Fk(t, x, Fi) := ∂k
P{G(t, Fi+1) ≤ x|Fi}

∂xk
, k = 0,1,2,3.

To quantify the dependence structure of the above processes, let us consider
a generic nonlinear system {H(t, x, Fi)}i∈Z, where (t, x) ∈ [0,1] × R and
H : [0,1] × R × R

∞ �→ R is a measurable function such that H(t, x, Fi) is well
defined for all (t, x) ∈ [0,1] × R. Let ε′

i , i ∈ Z, be an i.i.d. copy of εj , j ∈ Z. For
k ≥ 0, let F ∗

k = (F−1, ε
′
0, ε1, . . . , εk) and define the physical dependence measure

δH (k,p) = sup
(t,x)∈[0,1]×R

‖H(t, x, Fk) − H(t, x, F ∗
k )‖p.(2)

Here we recall ‖ · ‖p = [E(| · |p)]1/p . Note that δH (k,p) measures the overall
dependence of H(t, x, Fk) on the input ε0. The physical dependence measures are
by their definition closely related to the data generating mechanism and hence are
easy to work with; see Section 4 of Zhou and Wu (2009) for the related calculations
for locally linear and nonlinear time series models.

We shall call the system {H(·, ·, Fi)}i∈Z uniformly geometric moment contract-
ing of order p [UGMC(p)] if δH (k,p) decays exponentially with respect to k;
namely

δH (k,p) = O(χk), 0 < χ < 1.(3)

Following Section 4 of Zhou and Wu (2009), condition (3) is readily verifiable for
a large class of nonstationary nonlinear processes and nonstationary linear models.
All our results will be presented in terms of the physical dependence measures and
the UGMC conditions.
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Note that UGMC(2) is stronger than the stability condition of Zhou and Wu
(2009). Analogous results of this paper can be proved with δH (k,p) decaying
algebraically at a sufficiently fast rate. However, the technical details are much
lengthier and we chose to use the UGMC condition for clarity of presentation.

3. Main results.

3.1. Assumptions. We shall make the following assumptions on the process
(Xi) and the kernel K .

(A1) f (t, x) is Lipschitz continuous on [0,1] × R, where f (t, ·) is the density
function of ζi(t). Assume inft∈[0,1] f (t,Qα(t)) > 0.

(A2) Let J (t, x, Fi) = I {G(t, Fi) ≤ x} and

σ 2(t) =
∞∑

i=−∞
cov[J (t,Qα(t), F0), J (t,Qα(t), Fi)].(4)

Assume σ(t) is Lipschitz continuous on [0,1] and inft∈[0,1] σ(t) > 0.
(A3) (Stochastic Lipschitz continuity condition.) There exists q ≥ 1, such that

‖ζi(t1) − ζi(t2)‖q ≤ C|t1 − t2| holds for all t1, t2 ∈ [0,1].
(A4) Assume that, for k = 1,2,3, Fk(t, x, Fi) := ∂kF (t, x, Fi)/∂xk exists and∑∞

k=0 δFi
(k,4) < ∞, for i = 1,2,3.

(A5) F(t, x, Fi) is UGMC(4).
(A6) There exists C0 < ∞ such that sup(t,x)∈[0,1]×R F1(t, x, Fi) < C0 almost

surely.
(K1) K(·) ∈ K, where K is the collection of density functions K such that K is

symmetric with support [−1,1] and K ∈ C 1[−1,1]. For K(·) ∈ K and j ≥ 1,
define

φK =
∫ 1

−1
K2(x) dx, CK =

∫ 1
−1|K ′(x)|2 dx

φK

,

μj,K =
∫ 1

−1
xjK(x)dx.

We shall omit the subscript K in the sequel if no confusion will be caused.

A few remarks on the above regularity conditions are in order. The function
σ 2(t) in condition (A2) is called the long-run variance function of {J (t,Qα(t),
Fi )}∞i=−∞ to account for the dependence of the series. Note that σ 2(t) is well
defined even for heavy-tailed processes (Xi) since 0 ≤ I {G(t, Fi) ≤ x} ≤ 1. Con-
dition (A3) means local stationarity and it asserts smoothness of G(t, Fi) with
respect to time t . Conditions (A4) and (A5) assert that processes {Fk(t, x, Fi)},
k = 0,1,2,3, are short range dependent (SRD). Conditions (A3)–(A5) can be ver-
ified for a large class of nonstationary linear and nonlinear processes by the argu-
ments in Section 4 of Zhou and Wu (2009). Condition (A6) is mild and it means
that the conditional density function of J (t, x, Fi) is bounded. A popular choice
of the kernel function is the Epanechnikov kernel K(x) = 3 max(0,1 − x2)/4.
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3.2. Simultaneous confidence bands. The simultaneous confidence band
(SCB) is a classic tool for nonparametric inference. To construct a 100(1 − β)%
SCB for Qα(·), one finds two functions l and u depending on (Xi)

n
i=1, such that

lim
n→∞P

(
l(t) ≤ Qα(t) ≤ u(t) for all t ∈ (0,1)

) = 1 − β.

A candidate function for Qα(·) is rejected at level β if it is not fully contained
in the SCB. The SCB provides appreciable direct visual information on the over-
all variability of the fitted curves. See, for example, Bickel and Rosenblatt (1973)
for the inference of density functions; Eubank and Speckman (1993), Sun and
Loader (1994), Neumann and Kreiss (1998), Wu and Zhao (2007) and Zhao and
Wu (2008) for the inference of (conditional) mean functions and Fan and Zhang
(2000) for the inference of coefficient functions of varying coefficient models. In
this section, we shall establish the asymptotic theory for the maximal absolute
deviation of Q̂α(t) from Qα(t) on (0,1). The theoretical results facilitate con-
struction of a SCB of Qα(t) which asymptotically achieves the nominal coverage
probability.

THEOREM 1. Assume Qα(·) ∈ C 3[0,1] and conditions (A1)–(A6) and (K1)
hold. Further assume

√
nbn/ log5 n → ∞ and nb7

n logn → 0, then we have

lim
n→∞P

[
sup
t∈Tn

{√
nbnf (t,Qα(t))√

φσ(t)

× |Q̂α(t) − Qα(t) − μ2b
2
nQ

′′
α(t)/2|

}
(5)

− B(m∗) ≤ x√
2 logm∗

]
= e−2e−x

,

where Tn = [bn,1 − bn], m∗ = 1/bn and

B(m∗) = (2 logm∗)1/2 + (2 logm∗)−1/2[logC − 2 logπ − 2 log 2]/2.

For a fixed level β , Theorem 1 implies that one can construct a 100(1 − β)%
simultaneous confidence band for Qα(t)

Q̂α(t) − μ2b
2
nQ

′′
α(t)/2 ±

√
φσ(t)√

nbnf (t,Qα(t))

(
BK(m∗) + uβ√

2 logm∗
)
,(6)

where uβ = − log log[(1 − β)−1/2]. By Theorem 1, SCB (6) asymptotically

achieves the right coverage probability 1 − β . Note that V (t) :=
√

φσ(t)√
nbnf (t,Qα(t))

is

the asymptotic standard deviation of Q̂α(t) [Theorem 1 of Zhou and Wu (2009)].
The following theorem concerns the local power of the SCB (6).
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THEOREM 2. Suppose Qα(t) = Qo
α(t)+γnη(t)+o(γn), where Qo

α(t), η(t) ∈
C[0,1], γn = 1/

√−2nbn logbn and o(γn) is uniform in t on [0,1]. Then under
conditions of Theorem 1, we have

lim
n→∞ P

[
sup
t∈Tn

{√
nbnf (t,Qα(t))√

φσ(t)

× |Q̂α(t) − Qo
α(t) − μ2b

2
nQ

′′
α(t)/2|

}
(7)

− B(m∗) ≤ x√
2 logm∗

]
= e−s(η)e−x

,

where

s(η) =
∫ 1

0
exp

{
η(t)f (t,Qα(t))√

φσ(t)

}
dt +

∫ 1

0
exp

{−η(t)f (t,Qα(t))√
φσ(t)

}
dt.

Theorem 2 follows from similar arguments to those in the proof of Theorem 1
and Theorem A1 of Bickel and Rosenblatt (1973). Details are omitted.

Theorem 2 implies that SCB (6) can detect alternatives with the rate γn. For the
100(1−β)% SCB (6), the asymptotic power of the test H0 :Qα(t) = Qo

α(t) versus
Ha :Qα(t) �= Qo

α(t) is

1 − (1 − β)s(η)/2(8)

under the local alternatives specified in Theorem 2. Since s(η) ≥ 2 and s(η) = 2 if
and only if η(t) ≡ 0, our test based on the SCB is always asymptotically unbiased
under such alternatives. In the case of density function inference for i.i.d. data, the
same result was obtained by Bickel and Rosenblatt (1973).

3.2.1. Optimality of the SCB. If the local linear smoothing technique is
adopted and the bandwidth series (bn) is fixed, then SCB (6) is optimal in the
sense that asymptotically it covers the minimum area. To see this, a Lagrange mul-
tiplier argument can be implemented. A similar argument can be found in Zhou
and Wu (2010) for nonparametric inference of time-varying coefficients in func-
tional linear models. Note by equations (46) and (47) in Section 7, we have under
conditions of Theorem 1,

sup
t∈Tn

|[Q̂α(t) − Qα(t) − μ2b
2
nQ

′′
α(t)/2]/V (t) − �n(t)| = oP(log−1/2 n),(9)

where �n(t) = ∑n
i=1 ViKbn(ti − t)/

√
φnbn with (Vi)

n
i=1 i.i.d. standard normal. In

other words, the simultaneous fluctuations of [Q̂α(t) − Qα(t) − μ2b
2
nQ

′′
α(t)/2]/

V (t) are asymptotically equivalent to those of �n(t). Let si = (2i − 1)bn, i =
1, . . . , gn, where gn = �1/(2bn)�. From (9), Q̂α(si)−Qα(si)−μ2b

2
nQ

′′
α(si)/2 are

asymptotically independent N(0,V 2(si)). Suppose a band

l(si) ≤ Q̂α(si) − Qα(si) − μ2b
2
nQ

′′
α(si)/2 ≤ u(si), i = 1,2, . . . , gn,
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achieves a preassigned coverage probability 1 −β . From the above discussion, we
see that the coverage probability restriction can be asymptotically written as

c(n, bn) :=
gn∏
i=1

[
�

(
u(si)/V (si)

) − �
(
l(si)/V (si)

)] = 1 − β,

where �(·) is the normal cumulative distribution function (cdf). In order to achieve
the minimum average length, one minimizes the following Lagrange multiplier:

gn∑
i=1

[u(si) − l(si)] − λ{log[c(n, bn)] − log(1 − β)}.(10)

Simple calculations show that the minimum is achieved at u(si) = −l(si) =
g(n, bn,β)V (si), where g(n, bn,β) is a deterministic function. The important
message here is that the asymptotically optimal SCB at each time point t should
have length proportional to the asymptotic standard deviation of Q̂α(t), which is
the case in our construction.

3.3. The integrated squared difference test (ISDT). Another popular basis for
nonparametric inference is L2-distance based tests. In general, one calculates a L2

norm related distance between the fitted nonparametric curve and the parametric
null, and a large distance indicates violation of the null hypothesis. Most of the
existing results on the L2 type tests are for independent data. See, for instance,
Bickel and Rosenblatt (1973), Härdle and Mammen (1993), Zheng (1996), Fan,
Zhang and Zhang (2001), Zhang and Dette (2004) and Fan and Jiang (2005) among
others.

A simple way to construct a L2 type test is to use the statistic Tn = ∫ 1
0 [Q̂α(t) −

Qα(t)]2π(t) dt . However, the bias of the local linear estimate Q̂α(t) is of order
O(b2

n + 1
nbn

) and is not negligible for the asymptotic analysis. The extra bias term
complicates the asymptotic distribution and reduces the precision of the test Tn.
See also Härdle and Mammen (1993) for a related discussion in the case of condi-
tional mean inference. To overcome the disadvantage, we shall use the following
jackknife bias reduction technique [Wu and Zhao (2007)]:

Q̃α,bn(t) = 2Q̂α,bn(t) − Q̂
α,

√
2bn

(t).(11)

It can be shown that bias of Q̃α(t) is of order o(b2
n + 1

nbn
) uniformly on [0,1]

if Qα(t) ∈ C 2[0,1]. Note that using (11) is equivalent to using the second-order
kernel

K∗(x) := 2K(x) − K
(
x/

√
2
)
/
√

2.

To test H0 :Qα(t) = Qo
α(t) versus Ha :Qα(t) �= Qo

α(t), we propose the following
test statistic

T ∗
n =

∫
T ∗

n

[Q̃α(t) − Qo
α(t)]2π(t) dt,(12)
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where T ∗
n = [√2bn,1 − √

2bn] and the weight π(t) are assumed to be nonnega-
tive and Lipschitz continuous in t ∈ [0,1]. The following theorem establishes the
asymptotic normality of T ∗

n .

THEOREM 3. Assume that Qα(t) ∈ C 2[0,1]; that conditions (A1)–(A6) and
(K1) hold and that Qα(t) = Qo

α(t) + �nη(t) + o(�n), where Qo
α(t), η(t) ∈

C[0,1], �n = n−1/2b
−1/4
n and o(�n) is uniform in t on [0,1]. Further assume

nb4
n/ log10 n → ∞ and nb

9/2
n = O(1). We have

n
√

bnT
∗
n − 1√

bn

K∗ � K∗(0)

∫ 1

0
π∗(t) dt −

∫ 1

0
η2(t)π(t) dt

(13)

⇒ N

(
0,2

∫
R

[K∗ � K∗(t)]2 dt

∫ 1

0
π∗(t)2 dt

)
,

where � denotes the convolution operator and π∗(t) = π(t)σ 2(t)/f 2(t,Qα(t)).

When η(t) ≡ 0, Theorem 3 unveils the asymptotic null distribution of T ∗
n . The

ISDT can detect alternatives with the rate �n. Under the local alternatives specified
in Theorem 3, simple calculations based on (13) show that the asymptotic power
of the ISDT with level β equals

�

( ∫ 1
0 η2(t)π(t) dt

[2 ∫
R
[K∗ � K∗(t)]2 dt

∫ 1
0 π∗(t)2 dt]1/2

− z1−β

)
,(14)

where �(·) and z1−β denote the cumulative distribution function and the 1 − β

quantile of the standard normal distribution. Therefore, a simple use of the
Cauchy–Schwarz inequality shows that choosing weights π(t) proportional to
η2(t)f 4(t,Qα(t))/σ 4(t) maximizes the above asymptotic power. Of course, in
real applications it is difficult to specify η(t). Therefore, one can simply choose
π(t) ≡ 1. On the other hand, we suggest choosing π(t) = f 2(t, Q̂α(t))/σ̂ 2(t),
which leads to an easier implementation of the bootstrap. See the discussions in
Section 4.1 for more details.

COROLLARY 1. Under conditions of Theorem 3, T ∗
n can detect alternatives

with departure rate n−4/9 if the bandwidth bn = O(n−2/9).

REMARK 1. If Xi is distributed as N(μ(ti), σ
2), and the Xi’s are indepen-

dent, then inference of quantile curves is equivalent to inference of the mean func-
tion μ(·). In this case, Ingster (1993) and Lepski and Spokoiny (1999) proved that
the optimal rate for testing H0 :Qα(t) = Qo

α(t) is n−4/9. Hence, the integrated
squared difference test T ∗

n is optimal in the sense that it achieves the optimal rate
of convergence. Furthermore, Corollary 1 implies that for nonparametric quantile
function testing, weak dependence and local stationarity do not deteriorate the op-
timal rate. However, it should be noted that when there is long memory, the rate
will be deteriorated.
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REMARK 2. Since γn � �n, the ISDT test T ∗
n dominates the test based on

SCB (6) if bandwidths of the same order are used for the tests; namely T ∗
n is

asymptotically more powerful. Therefore a general rule of thumb is to use the
SCB when one wants to explore the overall pattern of the quantile curves and to
implement the ISDT test when one is interested in verifying a specific parametric
null. On the other hand, as stated in Härdle and Mammen (1993), “certainly from
a more data analytic point of view distances would be more satisfactory which
reflect similarities in the shape of the regression functions.” For a moderate sample
size, intuitively, the ISDT test would be more powerful compared to the SCB test
if the true quantile curve differs from the null in a systematic and even way; while
the SCB test is better when the latter difference is abrupt or “bumpy,” in which
case the L2 norm does not reflect the characteristics of the difference. Hence, if
there is some prior knowledge on the shape of the discrepancy, one could select a
test accordingly. In Section 5, we shall conduct a simulation study to compare the
powers of the two tests under various alternatives.

4. Implementation.

4.1. A wild bootstrap procedure. The asymptotic results in Section 3 are
based on the uniform Gaussian approximations of Q̂α(t) − Qα(t) on (0,1). It
is known that the convergence rates of the L∞ and L2 norms of the corresponding
Gaussian processes are very slow (see also proofs in Section 7). For example, when
bn(α) = O(n−1/5), the convergence rates of the L∞ and L2 norms are 1/ log1/2 n

and n−1/10, respectively. Therefore, for moderate sample sizes, tests based on the
asymptotic theory are not reliable.

For nonparametric inference, the bootstrap is a classic tool for achieving faster
convergence. It is impossible to have a complete list of literature here and we shall
only mention several representatives. Among others, Mammen (1993), Härdle and
Mammen (1993), Chapter 8 of Shao and Tu (1995), Stute, Gonzalez Manteiga
and Presedo Quindimil (1998), Neumann and Kreiss (1998) and Fan and Jiang
(2007) considered wild bootstrap inference for conditional mean regression for
independent data; Jhun (1988), Faraway and Jhun (1990) and Hall (1993) consid-
ered bootstrap inference of the density function for i.i.d. data. For nonparametric
inference of dependent data, among others, Politis and Romano (1994) proposed
a stationary bootstrap for simultaneous inference of the spectral density functions
of weakly dependent stationary time series and Wu and Zhao (2007) used a wild
bootstrap technique to test the mean function under stationary errors. For other
contributions, see Barrio and Matrán (2000).

On the other hand, there is also large literature on bootstrap methods for para-
metric quantile regression. See, for example, Chapter 3.9 of Koenker (2005) and
references therein for independent data and Fitzenberger (1998) for the moving
block bootstrap for strong mixing samples.
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Despite the huge literature on bootstrap strategies for nonparametric inference
and parametric quantile regression, there have been few results on bootstrap meth-
ods for nonparametric quantile inference for nonstationary time series. The major
difficulty lies in the fact that joint distributions of subseries within different time
spans can be drastically different for a nonstationary process; therefore it is chal-
lenging to capture the variability of the process in every local structure in order to
make valid nonparametric inferences.

To circumvent the above difficulties, here we shall adopt a different wild boot-
strap technique. A similar technique was proposed in Wu and Zhao (2007) for non-
parametric inference of the mean function under stationary errors. The key idea is
still uniform Gaussian approximation of Q̂α(t) − Qα(t) on (0,1). However, in-
stead of resorting to asymptotic theory, we shall directly simulate the finite sample
L2 and L∞ norms of the Gaussian processes. More precisely, let us assume the
bandwidth bn(α) = O(n−1/5) and Qα(t) ∈ C 3[0,1] for illustrative purposes. Then
by the proofs of Theorems 1 and 3 in Section 7, we can obtain after elementary
calculations that

sup
t∈T ∗

n

∣∣∣∣f (t,Q(t))

σ (t)
[Q̃(t) − Q(t)] − Xn(t)

∣∣∣∣ = OP(n−11/20 log2 n)(15)

and ∣∣∣∣
∫

T ∗
n

[Q̃α(t) − Qα(t)]2π̃(t) dt −
∫

T ∗
n

Xn(t)
2 dt

∣∣∣∣ = OP(nβ log5/2 n),(16)

where

Xn(t) =
n∑

i=1

ViK
∗
bn

(ti − t)/(nbn)

with (Vi) i.i.d. standard normal, π̃(t) = f 2(t,Qα(t))/σ 2(t) and β = −0.95. Note
that here the bias-corrected estimator Q̃(·) is used in (15) in order to avoid esti-
mating the unpleasant bias term μ2b

2
nQ

′′
α(t)/2 of the SCB.

An important observation of (15) and (16) is that Xn(t) does not depend on the
observations (Xi) and has a simple and explicit form. Therefore, one can gener-
ate a large sample of i.i.d. copies of Xn(t) and use the distributions of the L∞
and L2 norms of the sample to approximate the distributions of the corresponding
norms of Q̃(t) − Q(t) by virtue of (15) and (16). The following are the detailed
procedures.

(1) Choose bandwidth bn according to the procedures in Section 4.3.
(2) Obtain Q̃α(t) by (2) and (11).
(3) Obtain estimate σ̂ (t), f̂ (t,Qα(t)) from (19) and (20) below. Let π̂(t) =

f̂ 2(t,Qα(t))/σ̂ 2(t).
(4S) Generate i.i.d. standard normal random variables Vi , i = 1,2, . . . , n. Calcu-

late �n,S = sup0≤t≤1|Xn(t)|.
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(4I) Generate i.i.d. standard normal random variables Vi , i = 1,2, . . . , n. Calcu-
late �n,I = ∫ 1

0 X2
n(t) dt .

(5) Repeat (4) B times and obtain the estimated quantile q̂1−β of �n.
(6S) The 100(1−β)% SCB of Qα(t) can be constructed as Q̃α(t)± q̂1−β/

√
π̂(t).

Accept the null hypothesis Qα(·) = Qo
α(·) at level 1 − β if and only Qo

α(·) is
fully contained in the SCB.

(6I) Accept the null hypothesis Qα(·) = Qo
α(·) at level 1 − β if and only if∫ 1

0 [Q̃α(t) − Qo
α(t)]2π̂(t) dt ≤ q̂1−β .

One should use steps (1)–(3), (4S), (5) and (6S) when performing hypothesis test-
ing via the SCB. On the other hand, steps (1)–(3), (4I), (5) and (6I) should be
adopted when testing via the ISDT. The number of replications B can be chosen
as 2000. It is immediate to obtain p-values of the tests. For instance, the p-value
of the squared difference test is P(�n,I >

∫ 1
0 [Q̃α(t)−Qo

α(t)]2π̂(t) dt), which can
be estimated by the bootstrap distribution of �n,I .

Let {f (t, θ)} be a parametric family of functions that depends on t ∈ [0,1] and
θ ∈ � ⊂ R

k . Often one wants to test Qα(t) = f (t, θ) at level 1 − β for some
unknown θ ∈ �. Under the null hypothesis, we have a parametric model and one
generally expects to obtain a root-n consistent estimator θ̂ of the true parameter
value θ0 by the parametric quantile regression method of Keonker (2005). Note
that the convergence rates of our SCB and ISDT tests are always slower than

√
n.

Therefore, if the null is true, f (t, θ̂ ) can be treated as the true value of Qα(t) and
one just needs to replace Qo

α(·) in steps (1)–(6) by f (t, θ̂ ) and the resulting testing
procedures are still valid.

The following proposition validates the above procedure for the case {f (t, θ)} =
{θ�g(t)}, where θ ∈ R

k and g(t) : [0,1] → R
k is a known function. We shall first

make the following constraint on g:

(B1) assume g(·) ∈ C[0,1] and G := ∫ 1
0 g(t)g�(t) dt is nonsingular.

PROPOSITION 1. Assume that Qα(t) = θ�
0 g(t) for some θ0 ∈ R

k and that
conditions (A1), (A5) and (B1) hold. Then

|θ̂α − θ0| = OP(n−1/2),(17)

where θ̂α = arg minθ

∑n
i=1 ρα(Xi − θ�g(i/n)).

4.2. Estimation of the density and long-run variance functions. We see from
(15) and (16) that obtaining a good estimate of f (t,Q(t))/σ (t) is necessary and
important for making our inferences. Here, we suggest using the estimation tech-
niques in Zhou and Wu (2009), which are essentially local versions of the popular
subsampling long-run variance estimator and kernel density estimator for station-
ary data. Since the time series is approximately stationary within comparatively
small time spans, the methods are shown to be consistent. See Section 3.4 in Zhou
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and Wu (2009) for more details. For the sake of completeness, we present the
estimators here.

For t ∈ (0,1), let sn(t) = max(�nt − nbn�,1), ln(t) = min(�nt + nbn�, n) and

Nn(t) = {i ∈ N : sn(t) ≤ i ≤ ln(t)}.(18)

Let Zi,α = ψα(Xi − Q̂α(i/n)). For a sequence mn with mn → ∞ and nbn/mn →
∞, we shall estimate σ 2(t) by

σ̂ 2(t) = mn

|Nn(t)| − mn + 1

ln(t)−mn+1∑
j=sn(t)

(∑j+mn−1
i=j Zi,α

mn

− Z̄n(t)

)2

,(19)

where Z̄n(t) = ∑
i∈Nn(t) Zi,α/|Nn(t)| and |Nn(t)| = ln(t) − sn(t) + 1 is the cardi-

nality of Nn(t).
For f (t,Qα(t)), we shall use

f̂ (t,Qα(t)) = 1

|Nn(t)|hn

∑
i∈Nn(t)

K#
hn

(
Q̂α(t) − Xi

)
,(20)

where K# ∈ K is a kernel and hn is the bandwidth satisfying hn → 0 and nbnhn →
∞.

We refer to Zhou and Wu (2009) for a discussion on the selection of the tuning
parameters mn and τn.

4.3. Bandwidth selection. Choosing a good bandwidth bn(α) is important in
practical applications. For quantile curve estimation, Zhou and Wu (2009) pro-
posed the following way to choose the bandwidth based on modifications of ex-
isting bandwidth selectors for independent data. By Theorem 1 of the latter paper
regarding asymptotic normality of Q̂α(t), we have

b∗
n(α)

bind
n (α)

=
[∫ 1

0 σ 2(t) dt

α(1 − α)

]1/5

:= ρ∗(α),(21)

where b∗
n(α) denotes the optimal weighted asymptotic mean integrated squared

error (AMISE) bandwidth, bind
n (α) is the optimal bandwidth obtained under inde-

pendence and ρ∗(α) is called the variance correction factor which accounts for
the dependence. Note that α(1−α) = Var(J (t,Qα(t), Fi)). For independent data,
there have been many discussions on bandwidth selection for nonparametric quan-
tile estimation; see, for instance, Yu and Jones (1998), Fan and Gijbels (1996)
and Ghosh and Draghicescu (2002) among others. Hence, one could first select a
bandwidth bind

n (α) by treating the data as if they were independent. After that, the
variance correction factor ρ∗(α) can be estimated by the following:

ρ̂∗(α) = (σ̃ 2)1/5

(α(1 − α))1/5 ,
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where

σ̃ 2 = m̃

n − m̃ + 1

n−m̃+1∑
j=1

(
1

m̃

j+m̃−1∑
i=j

ςi,α − ς̄n,α

)2

,

ςi,α = ψα(Xi − Q̂α,bind
n (α)(t)), ς̄n,α = ∑n

i=1 ςi,α/n and m̃ = �n1/3�. It can be
shown that ρ̂∗(α) is a consistent estimate of ρ∗(α) and we shall point out that
the selected bandwidth b∗

n(α) typically varies with respect to α [see also Yu and
Jones (1998)]. Moreover, since the jackknife bias reduction technique reduces the
bias of the local linear quantile estimates to second order, following Wu and Zhao
(2007), we suggest using b

jack
n (α) = 2b∗

n(α) for the nonparametric estimation when
the jackknife is implemented. We refer the interested reader to Sections 3.1.1 and
3.3 of Zhou and Wu (2009) for more details on the bandwidth selection.

The bandwidth selected for quantile curve estimation provides a reasonable
starting point for nonparametric tests [Fan and Jiang (2007)]. For the SCB test, we
suggest using the bandwidth b

jack
n (α) following Eubank and Speckman (1993) and

Wu and Zhao (2007). For the ISDT test T ∗
n , Corollary 1 implies that the bandwidth

which renders the optimal power is of order n−2/9 = n−1/5n−1/45. Following Fan
and Jiang (2007), we suggest using the bandwidth b

jack
n (α) × n−1/45 for the ISDT

test.

5. Simulation studies. In this section, we perform simulation studies to in-
vestigate the accuracy and power of the proposed tests for moderate sample sizes.
Let us consider the following time-varying AR(1) model

G(t, Fi) = a0(t) + a1(t)G(t, Fi−1) + δ(t)εi,(22)

where a0(t), a1(t) and δ(t) are continuous functions on [0,1], maxt |a1(t)| < 1,
mint δ(t) > 0 and εi are i.i.d. with ‖εi‖p < ∞ for some p > 0. We observe the
time series Xi = G(i/n, Fi), i = 1,2, . . . , n.

It is clear that G(t, Fi) has the representation

G(t, Fi) = a0(t)

1 − a1(t)
+ δ(t)

∞∑
j=0

[a1(t)]j εi−j .(23)

The UGMC and local stationarity conditions of (22) can be easily verified by the
results in Section 4.1 of Zhou and Wu (2009).

5.1. Accuracy of the SCB and ISDT tests. In this subsection, we describe a
simulation study to compare the accuracy of the asymptotic and bootstrap tests
for both light tailed and heavy tailed processes. To this end, we shall use the
time-varying AR(1) process (22) with a0(t) = 0, a1(t) = sin(2πt)/2 and δ(t) =
exp((t − 1/4)2). Consider the following two scenarios:

(a) εi ∼ N(0,1); (b) εi ∼ SαS(1.8).
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Here, SαS(1.8) denotes the standard symmetric α stable distribution with index
1.8 which has the characteristic function exp(−|t |1.8), t ∈ R. It is easy to show that
the SαS(1.8) distribution has mean 0 and infinite variance. Therefore, scenarios (a)
and (b) represent light tailed and heavy tailed processes, respectively. Elementary
calculations show that under scenarios (a) and (b),

Qα(t) = δ(t)

[1 − |a1(t)|ν]1/ν
Qε

α,(24)

where Qε
α is the αth quantile of εi and ν = 2 and 1.8 in scenarios (a) and (b),

respectively.
We shall compare type I error rates of the following six tests: the asymptotic

SCB test (AS) based on Theorem 1; the asymptotic ISDT test (AI) based on The-
orem 3; the bootstrap SCB test (BS); the bootstrap ISDT test (BI); the asymptotic
point-wise confidence band (PC) and the Bonferroni confidence band (BF) based
on Theorem 1 of Zhou and Wu (2009). The Bonferroni confidence band is sim-
ply the point-wise confidence band at level β/n, where β is the desired level. We
generate time-varying AR(1) processes under scenarios (a) and (b) with length
n = 300 and perform the above six tests at the nominal level 5% for the following
four quantile curves α = 0.5, 0.75, 0.9 and 0.95. Bandwidths are chosen according
to Section 4.3 and the critical values q̂0.95 of the bootstrap tests are based on 2000
bootstrap samples. The simulated type I error rates with 1000 replicates are shown
in Table 1 below.

It is clear from the output of Table 1 that point-wise confidence bands are not
appropriate for nonparametric inference. The Bonferroni confidence band test is
too conservative, namely the band is too wide. On the other hand, the asymptotic
SCB test (AS) is conservative and the asymptotic ISDT test (AI) tends to slightly
inflate the type I error. As discussed in Section 4.1, the loss of accuracy of the
asymptotic tests is due to their slow convergence rates.

TABLE 1
Simulated type I error rates for the six tests with nominal level 5% under scenarios (a) and (b).

Series length n = 300 with 1000 replicates

α = 0.5 α = 0.75 α = 0.9 α = 0.95

Test (a) (b) (a) (b) (a) (b) (a) (b)

AS 2.2% 2.6% 2.7% 2.8% 2.1% 9.9% 2% 21.7%
AI 8% 6.5% 7.2% 6.9% 7.4% 10.4% 6.7% 21.4%
BS 4.8% 6% 4.4% 5.4% 4% 10.4% 4% 23.8%
BI 5.6% 5.3% 5.2% 5.2% 5.2% 9.3% 5.5% 20.2%
BF 1.5% 0.8% 1.7% 1.6% 1.3% 5.5% 0.2% 14.1%
PC 61.3% 61% 53.9% 53.1% 45.4% 40.8% 45.7% 44.2%
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For the bootstrap tests, the nominal type I error is achieved except for extreme
quantiles of heavy tailed processes. It is not difficult to see that data is relatively
sparse at high quantiles and very large jumps occur more frequently for heavy
tailed processes. These facts suggest that for extreme quantile inference of heavy
tailed processes, a relatively large sample size is needed in order to achieve the
desired accuracy. We performed the bootstrap tests at 5% level for scenario (b) for
n = 500 and with 1000 replicates. Simulated type I errors of the BS and BI tests
were 0.061 and 0.056, respectively, for the 90% quantile curve. However, for the
95% quantile, the corresponding simulated type I errors were 0.139 and 0.131,
respectively, which were still way larger than the nominal. When n was increased
to 1000, accuracy of the bootstrap tests were achieved for the 95% quantile curve
under scenario (b).

5.2. Power comparison of the SCB and ISDT tests. As discussed in Remark 2,
for a moderate sample size, power of the SCB and ISDT tests are greatly influ-
enced by the shape of Qα(t) − Qo

α(t). Recall that Qo
α(t) is the hypothesized value

of Qα(t). In this subsection, we present a simulation to compare the power per-
formance of the above two tests under various shapes of Qα(t) − Qo

α(t). To this
end, we consider model (22) with a0(t) = ϕ(t)(1 − a1(t)), a1(t) = sin(2πt)/2,
δ(t) = exp((t − 1/4)2) and εi i.i.d. N(0,1). Then

Qα(t) = ϕ(t) + Qo
α(t) where Qo

α(t) = δ(t)

[1 − a2
1(t)]1/2

Qε
α.(25)

We test the hypothesis H0 :Qα(·) = Qo
α(·) versus Ha :Qα(·) �= Qo

α(·). Consider
the following two situations:

(i) ϕ(t) = c1; (ii) ϕ(t) = c2 exp
(−c3(t − 1/2)2)

,

where ci , i = 1,2,3, are positive constants. Cases (i) and (ii) correspond to flat
and bumpy differences of the true and hypothesized quantile curves, respectively.
Note that as c3 gets larger, we observe sharper peaks in ϕ(t). In our simulations,
we follow steps (1) to (6) in Section 4.1 and perform the SCB and ISDT tests at
5% level with n = 300 and α = 0.5, 0.75, 0.9 and 0.95. Various values of c1 and
(c2, c3) are investigated and for each of the values we perform 1000 replicates and
record the simulated probability of rejecting the null hypothesis. The simulated
power curves of case (i) and (ii) are shown in Figures 1 and 2, respectively.

Generally, the displays in Figures 1 and 2 are consistent with our arguments in
Remark 2 that for a moderate sample size the ISDT test is more powerful when ϕ(·)
is flat and the SCB test performs better when ϕ(·) changes abruptly. On the other
hand, when the peak of ϕ(·) is not sharp enough; namely when c3 is relatively
small, we see from Figure 2 that the ISDT test is still more powerful than the
SCB test, which can be explained by the fact that the ISDT test asymptotically
dominates the SCB test.
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FIG. 1. Power curves for the 50%, 75%, 90% and 95% quantiles under case (i) of Section 5.2. The
solid lines are the power curves for the ISDT test and the dashed lines are the power curves for the
SCB test.

FIG. 2. Power curves for the 50%, 75%, 90% and 95% quantiles under case (ii) of Section 5.2.
The solid lines are the power curves for the ISDT test and the dashed lines are the power curves for
the SCB test.
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6. The global tropical cyclone data. One of the most important conse-
quences of global warming is the increase of ocean temperature. Theoretical ar-
guments and modeling studies indicate that tropical cyclone winds should in-
crease with increasing ocean temperature [Elsner, Kossin and Jagger (2008)].
Meanwhile, climatologists are very interested in finding empirical evidences on
the change of intensity of tropical cyclone winds. In a recent paper, Elsner,
Kossin and Jagger (2008) tackled the latter problem partially by fitting linear
trends for quantiles of the global tropical cyclone data. The data set contains
satellite-derived lifetime-maximum wind speeds of 2098 tropical cyclones over
the globe during the period 1981–2006. It is available at James Elsner’s website at
http://myweb.fsu.edu/jelsner/extspace/globalTCmax4.txt. We shall refer to Elsner,
Kossin and Jagger (2008) for a detailed description on how the data are obtained
and the related issues. Figure 3 shows the time series plot of the data. Significant
linearly increasing trends were found in high quantiles of the global tropical cy-
clone data in Elsner, Kossin and Jagger (2008). In other words, the worst tropical
cyclones are getting stronger over the globe.

In this section, we are mainly interested in the following issues. First, we shall
compare our quantile-based tests with the mean-based approaches to see whether
the increase of intensity of the worst tropical cyclones is due to a shift of mean.
Second, we shall test whether the linear trend used in Elsner, Kossin and Jagger
(2008) is sufficient to describe the change of the high quantiles of the global cy-
clone winds. This is an important issue because the parametric linearity assumption
implies homogeneous change of the wind speeds. However, much complex yet im-
portant information on the dynamics of high wind speeds may be buried under this
assumption.

To address the first issue, we follow the procedures in Zhou and Wu (2010)
and provide a SCB for the mean curve of the global tropical cyclone series. The
bandwidth is chosen as 0.16. The left panel of Figure 4 shows the 95% SCB. The
height of the horizontal line is the average of all cyclone wind speeds. It is clear that

FIG. 3. Time series plot of tropical cyclone lifetime-maximum wind speed (1981–2006).

http://myweb.fsu.edu/jelsner/extspace/globalTCmax4.txt
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FIG. 4. Trends in mean and 90% quantile of global tropical cyclone lifetime-maximum wind speed,
with 95% simultaneous confidence bands.

the horizontal line is fully contained in the SCB. The p-value for testing constancy
of the mean trend is 0.11. Therefore, statistically there is no trend in the average
tropical cyclone speeds. In fact, one of the main reasons why scientists did not find
interesting signals in the intensity of global tropical cyclone winds before Elsner,
Kossin and Jagger (2008) is due to the focus on mean trends.

We performed the SCB and ISDT tests on the linearity of the 90% quantile
curve to address the second issue. The bandwidths of the SCB and ISDT tests are
chosen as 0.21 and 0.18, respectively. Both tests give p-values less than 0.001. The
right panel of Figure 4 shows the 95% SCB. It is clear from the SCB that there is
an inhomogeneous increasing trend of the 90% quantile curve. More specifically,
the quantile curve underwent a sharp increase during the period November 1982 to
September 1992, and after that the trend became flat. This information cannot be
retrieved if the linear trend analysis in Elsner, Kossin and Jagger (2008) is adopted.
Furthermore, the inhomogeneous trend in high quantiles provides climatologists
with useful information on the underlying complex mechanisms producing the
hurricane climate.

7. Proofs. Unless otherwise specified, we will only prove results for α = 1/2,
since results for other quantiles follow similarly. We shall also omit the subscript
α in the notation if no confusion will be caused.

Consider a system H(t, x, Fi) defined in Section 2.2. Let g : [0,1] �→ R be
a measurable function. Define H(t, Fi) = H(t, g(t), Fi). Then Zi := H(ti, Fi)

i = 1,2, . . . , n, defines a nonstationary time series. Recall ti = i/n. Let SZ(i) =∑i
j=1 Zj , i = 1,2, . . . , n. The following invariance principle for (Zi)

n
i=1 plays an

important role in both establishing the asymptotic theory of the testing methods
and justifying the wild bootstrap procedures.

THEOREM 4. Assume that (i) EH(t, Fi) = 0 for all t ∈ [0,1]; that (ii)
sup(t,x)∈[0,1]×R‖H(t, x, Fi)‖4 < c0 for some finite constant c0; that (iii) H sat-
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isfies UGMC(4) and that (iv) there exists q ≥ 1/4, such that for all i ≥ 0

‖P0{H(s1, Fi) − H(s2, Fi)}‖ ≤ C|s1 − s2|q(26)

holds for all s1, s2 ∈ [0,1], where Pk(·) = E(·|Fk) − E(·|Fk−1) for k ≥ 0. Then
on a richer probability space, there exists i.i.d. standard normal random variables

(Vi)
n
1 and a process S◦

Z(i) with {S◦
Z(i)}ni=1

D= {SZ(i)}ni=1, such that

max
i≤n

∣∣∣∣∣S◦
Z(i) −

i∑
j=1

υ(j/n)Vj

∣∣∣∣∣ = oP(n1/4 log2 n),(27)

where υ(s) = [∑k∈Z cov(H(s, g(s), F0),H(s, g(s), Fk))]1/2, 0 ≤ s ≤ 1.

PROOF. Note υ(s) = ‖P0
∑∞

k=0 H(s, Fk)‖. Let H(t, Fi) = 0 if t > 1. By
Corollary 1 of Wu and Zhou (2010), it follows that under conditions (i) and (ii),
there exist i.i.d. standard normal random variables (Vi)

n
1 and a process S◦

Z(i) with

{S◦
Z(i)}ni=1

D= {SZ(i)}ni=1, such that

max
i≤n

∣∣∣∣∣S◦
Z(i) −

i∑
j=1

υ̃jVj

∣∣∣∣∣ = oP(n1/4 log3/2 n),(28)

where υ̃j = ‖P0
∑∞

k=0 H(tj + tk, Fk)‖. Based on (26),

‖P0{H(ti, Fk) − H(ti + tk, Fk)}‖ ≤ t
q
k(29)

for 0 ≤ k ≤ n − i. On the other hand, by Theorem 1 of Wu (2005), we obtain

‖P0{H(ti, Fk) − H(ti + tk, Fk)}‖ ≤ 2δH (k,2)(30)

for all k ≥ 0. By (29), (30) and the fact that δH (k,2) ≤ δH (k,4) = O(χk) for some
0 < χ < 1, we have for all 1 ≤ j ≤ n − �n1/4�,

(
υ(j/n) − υ̃j

)2 ≤
∥∥∥∥∥P0

∞∑
k=0

[H(tj , Fk) − H(tj + tk, Fk)]
∥∥∥∥∥

2

≤
( ∞∑

k=0

‖P0[H(tj , Fk) − H(tj + tk, Fk)]‖
)2

≤
(

k∗∑
k=0

t
q
k +

∞∑
k=k∗

2χk

)2

= O(n−1/2 logn5/2),

where k∗ = �− logn/ logχ�. Note for n − �n1/4� < j ≤ n, (υ(j/n) − υ̃j )
2 =

O(1). Therefore,
∑n

j=1(υ(j/n) − υ̃j )
2 = O(n1/2 log5/2 n). Hence,

max
i≤n

∣∣∣∣∣
i∑

j=1

υ(j/n)Vj −
i∑

j=1

υ̃jVj

∣∣∣∣∣ = OP((n1/2 log5/2 n)1/2 log1/2 n)

(31)
= oP(n1/4 log2 n).
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By (28) and (31), Theorem 4 follows. �

REMARK 3. The Gaussian approximation in Theorem 4 shows that partial
sums of a short range dependent (SRD) locally stationary process can be approx-
imated by weighted sums of i.i.d. standard normal random variables. We shall
call υ2(t) = ∑

k∈Z cov(H(t, F0),H(t, Fk)) the long-run variance of the system
{H(t, Fi)} at time t . The weight υ(t) captures the local dependence of the series
(Zi) at t ; while the fluctuation of υ(t) on [0,1] is due to the nonstationarity of the
series. Following the arguments in Wu and Zhou (2010), the bound oP(n1/4 log2 n)

in (27) is optimal within a multiplicative logarithmic factor.

We shall state and prove the following Lemma 1 and Lemma 2 before we pro-
ceed to the proof of Theorem 1.

LEMMA 1. Assume Q(t) ∈ C 2[0,1]; that conditions (A1)–(A6) and (K1)
hold, and that bn → 0 with nb

3/2
n → ∞, then we have

sup
t∈Tn

|f (t,Q(t))[Q̂(t) − Q(t)] − Sn(t) − ES∗
n(t)|

= OP

(
π

1/2
n logn + b

3/4
n√

nbn

+ bnπn + π2
n

)
,

where πn = (nbn)
−1/2(logn + (bn)

−1/4 + (nb5
n)

1/2),

Sn(t) =
n∑

i=1

ψ
(
Xi − Q(ti)

)
Kbn(t − ti)/(nbn)(32)

with ψα(x) = α − I {x ≤ 0}, and

S∗
n(t) =

n∑
i=1

ψ
(
Xi − Q(t) − (ti − t)Q′(t)

)
Kbn(t − ti)/(nbn).

PROOF. A careful check of the proof of Theorem 3 of Zhou and Wu (2009)
shows that under conditions of Lemma 1

sup
t∈Tn

|f (t,Q(t))[Q̂(t) − Q(t)] − S∗
n(t)|

(33)

= OP

(
π

1/2
n logn√

nbn

+ bnπn + π2
n

)
.

Let ψ(i, t) = ψ(Xi − Q(ti)) − ψ(Xi − Q(t) − (ti − t)Q′(t)),

Mn(t) =
n∑

i=1

Piψ(i, t)Kbn(t − ti)/(nbn),

Nn(t) =
n∑

i=1

{E[ψ(i, t)|Fi−1] − Eψ(i, t)}Kbn(t − ti)/(nbn).
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Note the summands of Mn(t) form a triangular array of martingale differences and
Nn(t) is differentiable with respect to t . Using similar chaining arguments as those
in the proof of Lemmas 5 and 6 in Zhou and Wu (2009), we have

sup
t∈[0,1]

|Mn(t)| = OP

(
bn logn√

nbn

)
, sup

t∈[0,1]
|Nn(t)| = OP

(
b

3/4
n√
nbn

)
.(34)

Note Sn(t) − (S∗
n(t) − ES∗

n(t)) = Mn(t) + Nn(t). Therefore, by (33), (34) and the

fact that bn logn = o(b
3/4
n ), we show that Lemma 1 holds. �

LEMMA 2. Let {Vi} be i.i.d. standard normal random variables. Assume con-
dition (K1) and bn → 0 with nbn/(logn)2 → ∞. Then for any x ∈ R

lim
n→∞P

[
1√

φnbn

sup
t∈Tn

∣∣∣∣∣
n∑

i=1

ViKbn(ti − t)

∣∣∣∣∣ − B(m∗) ≤ x√
2 logm∗

]
= e−2e−x

.

Lemma 2 follows from classic results for extremes of Gaussian processes. See,
for example, Bickel and Rosenblatt (1973) and Lemma 2 of Wu and Zhao (2007).
Details are omitted.

PROOF OF THEOREM 1. Consider the system {1/2 − J (t, x, Fi)}, (t, x) ∈
[0,1] × R. Recall J (t, x, Fi) = I {G(t, Fi) ≤ x}. Let J(t, Fi) = 1/2 − J (t ,
Q(t), Fi). We shall first show that J(t, Fi) satisfies conditions of Theorem 4. Ob-
viously EJ(t, Fi) = 0 and ‖1/2 − J (t, x, Fi)‖4 ≤ 1 for all t ∈ [0,1] and x ∈ R.
Based on (A5), condition (iii) of Theorem 4 holds. We now check (iv). Note for
any i ≥ 0

‖P0{J(s1, Fi) − J(s2, Fi)}‖ ≤ ‖J(s1, Fi) − J(s2, Fi)‖
(35)

= ‖J (s1,Q(s1), Fi) − J (s2,Q(s2), Fi)‖.
Based on (A6) and the smoothness condition on Q(t),

‖J (s2,Q(s1), Fi) − J (s2,Q(s2), Fi)‖ ≤ C|s1 − s2|1/2.(36)

On the other hand,

‖J (s1,Q(s1), Fi) − J (s2,Q(s1), Fi)‖ ≤ I + II,(37)

where I = ‖[J (s1,Q(s1), Fi) − J (s2,Q(s1), Fi)]I {|ζi(s1) − ζi(s2)| ≤ δ}‖ and
II = {|ζi(s1) − ζi(s2)| > δ}‖. Recall ζi(t) = G(t, Fi). Using condition (A6), we
have for all δ > 0,

I ≤ ‖I {Q(s1) − δ ≤ ζi(s1) ≤ Q(s1)}‖ + ‖I {Q(s1) ≤ ζi(s1) ≤ Q(s1) + δ}‖
(38)

≤ Cδ1/2.
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By condition (A3), there exists q ≥ 1, such that

II ≤ ‖ζi(s1) − ζi(s2)‖q/2
q

δq/2 ≤ C
|s1 − s2|q/2

δq/2 .(39)

Let δ = |s1 − s2|q/(q+1), then (37), (38) and (39) imply that

‖J (s1,Q(s1), Fi) − J (s2,Q(s1), Fi)‖ ≤ C|s1 − s2|s,(40)

where s = q
2(1+q)

≥ 1
4 . By (35), (36) and (40), we have condition (iv) of Theorem 4

holds. Therefore, Theorem 4 implies that there exist i.i.d. standard normal random
variables (Vi)

n
1, such that

max
i≤n

∣∣∣∣∣SJ(i) −
i∑

j=1

σ(tj )Vj

∣∣∣∣∣ = oP(n1/4 log2 n),(41)

where SJ(i) = ∑i
k=1 J(tk, Fk). Recall σ(t) was defined in (4). Define

�n(t) =
n∑

i=1

σ(ti)ViKbn(ti − t)/(nbn),(42)

�n(t) =
{
Kbn(t1 − t) +

n∑
i=2

|Kbn(ti − t) − Kbn(ti−1 − t)|
}/

(nbn).(43)

By the summation by parts formula and (41), we obtain

sup
t∈Tn

|Sn(t) − �n(t)| ≤ sup
t∈Tn

�n(t)max
i≤n

∣∣∣∣∣SJ(i) −
i∑

j=1

σ(tj )Vj

∣∣∣∣∣
(44)

= oP

(
n1/4 log2 n

nbn

)
.

By the Lipschitz continuity of σ(t) in (A2), it is easy to see that

sup
t∈Tn

|�n(t) − �∗
n(t)| = OP

(
bn logn√

nbn

)
,(45)

where �∗
n(t) = σ(t)

∑n
i=1 ViKbn(ti − t)/(nbn). By Lemma 1, (44), (45) and the

fact that bn logn = o(b
3/4
n ), it follows that

sup
t∈Tn

|f (t,Q(t))[Q̂(t) − Q(t)] − �∗
n(t) − ES∗

n(t)|
(46)

= OP

(
π

1/2
n logn + b

3/4
n√

nbn

+ bnπn + π2
n + n1/4 log2 n

nbn

)
.
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It is easy to check that under bandwidth conditions of Theorem 1, the right-hand
side of (46) is of order oP((nbn logn)−1/2). On the other hand, by condition (A1)
and a Taylor expansion, we have

sup
t∈Tn

|ES∗
n(t) − μ2f (t,Q(t))Q′′(t)b2

n/2| = O

(
b3
n + 1

nbn

)
(47)

= o((nbn logn)−1/2).

By Lemma 2, (46) and (47), Theorem 1 follows. �

Let

Sn(t) =
n∑

i=1

ψ
(
Xi − Q(ti)

)
K∗

bn
(t − ti)/(nbn),

(48)

S o
n(t) =

n∑
i=1

ψ
(
Xi − Q(t) − (ti − t)Q′(t)

)
K∗

bn
(t − ti)/(nbn).

Define

Yn(t) = Q̃(t) − Q(t) − ES o
n(t)/f (t,Q(t)).(49)

We shall introduce several lemmas before proceeding to the proof of Theorem 3.

LEMMA 3. Under the conditions of Theorem 3, we have

√
n

∫
T ∗

n

Yn(t)π(t) dt ⇒ N

(
0,

∫ 1

0
� 2(t) dt

)
,(50)

where �(t) = π(t)σ (t)/f (t,Q(t)).

PROOF. By Lemma 1, we have

sup
t∈T ∗

n

|f (t,Q(t))Yn(t) − Sn(t)|
(51)

= OP

(
π

1/2
n logn + b

3/4
n√

nbn

+ bnπn + π2
n

)
.

On the other hand, arguments similar to those in the proof of (44) and (45) lead
to

sup
t∈T ∗

n

|Sn(t) − σ(t)Xn(t)| = oP

(
n1/4 log2 n

nbn

+ bn logn√
nbn

)
,(52)

where

Xn(t) =
n∑

i=1

ViK
∗
bn

(ti − t)/(nbn).(53)
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Recall (Vi)
n
1 are i.i.d. standard normal random variables defined in (41). Hence, by

(51), (52) and the bandwidth conditions of Theorem 3, it follows that

sup
t∈T ∗

n

∣∣∣∣Yn(t) − σ(t)

f (t,Q(t))
Xn(t)

∣∣∣∣ = oP(n−1/2).(54)

Furthermore, it is easy to obtain that

√
n

∫
T ∗

n

Xn(t)�(t) dt ⇒ N

(
0,

∫ 1

0
� 2(t) dt

)
.(55)

By (54) and (55), this lemma follows. �

LEMMA 4. Recall (13) for the definition of π∗(t) and (53) for the definition
of Xn(t). We have

n
√

bn

∫
T ∗

n

Xn(t)
2π∗(t) dt − 1√

bn

K∗ � K∗(0)

∫ 1

0
π∗(t) dt

⇒ N

(
0,2

∫
R

[K∗ � K∗(t)]2 dt

∫ 1

0
π∗(t)2 dt

)
.

PROOF. Define

In =
n∑

i=1

R2
i

∫
T ∗

n

[K∗
bn

(ti − t)]2π∗(t) dt/(nb3/2
n ),

IIn = ∑
1≤i �=j≤n

RiRj

∫
T ∗

n

K∗
bn

(ti − t)K∗
bn

(tj − t)π∗(t) dt/(nb3/2
n ).

Then by the central limit theorem for In, it follows that

In = 1√
bn

K∗ � K∗(0)

∫ 1

0
π∗(t) dt + OP

(
1

nb
3/2
n

+ 1√
nbn

)
(56)

= 1√
bn

K∗ � K∗(0)

∫ 1

0
π∗(t) dt + oP(1).

On the other hand, by Theorem 2.1 of de Jone (1987), elementary but tedious
calculations show that

IIn ⇒ N

(
0,2

∫
R

[K∗ � K∗(t)]2 dt

∫ 1

0
π∗(t)2 dt

)
.(57)

Since n
√

bn

∫
T ∗

n
Xn(t)

2π∗(t) dt = In + IIn, by (56) and (57), the lemma follows.
�
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PROPOSITION 2. Let T̃n = ∫
T ∗

n
Y2

n(t)π(t) dt . Then under the conditions of
Theorem 3, we have

n
√

bnT̃n − 1√
bn

K∗ � K∗(0)

∫ 1

0
π∗(t) dt

(58)

⇒ N

(
0,2

∫
R

[K∗ � K∗(t)]2 dt

∫ 1

0
π∗(t)2 dt

)
.

PROOF. By (51) and (52), we have

sup
t∈T ∗

n

∣∣∣∣Yn(t) − σ(t)

f (t,Q(t))
Xn(t)

∣∣∣∣ = OP(νn),(59)

where νn = π
1/2
n logn+b

3/4
n√

nbn
+ bnπn + π2

n + n1/4 log2 n
nbn

.
On the other hand, it is easy to show that

sup
t∈T ∗

n

|Xn(t)| = OP

(
log1/2 n√

nbn

)
.(60)

Therefore, (59) and (60) imply that

sup
t∈T ∗

n

|Yn(t)| = OP

(
log1/2 n√

nbn

)
.(61)

Hence, by (59), (60), (61) and bandwidth conditions of Theorem 3,∣∣∣∣T̃n −
∫

T ∗
n

[Xn(t)]2π∗(t) dt

∣∣∣∣
=

∣∣∣∣
∫

T ∗
n

�n(t)

(
Yn(t) + σ(t)

f (t,Q(t))
Xn(t)

)
π(t) dt

∣∣∣∣
(62)

≤ C sup
t∈T ∗

n

|�n(t)| sup
t∈T ∗

n

[
|Yn(t)| +

∣∣∣∣ σ(t)

f (t,Q(t))
Xn(t)

∣∣∣∣
]

= OP

(
νn

(
log1/2 n√

nbn

))
= oP

(
1

n
√

bn

)
,

where �n(t) = Yn(t) − σ(t)
f (t,Q(t))

Xn(t). Therefore, by Lemma 4, we illustrate that
Proposition 2 holds. �

PROOF OF THEOREM 3. First, note

Q̃(t) − Qo(t) = Yn(t) + ES o
n(t)/f (t,Q(t)) + �n

(
η(t) + o(1)

)
.
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Therefore,

T ∗
n = T̃n +

∫
T ∗

n

[
ES o

n(t)/f (t,Q(t)) + �n

(
η(t) + o(1)

)]2
π(t) dt

+ 2
∫

T ∗
n

Yn(t)
[
ES o

n(t)/f (t,Q(t)) + �n

(
η(t) + o(1)

)]
π(t) dt(63)

:= T̃n + I ∗
n + II∗

n.

Since Q(t) ∈ C 2[0,1], simple calculations show that

sup
t∈T ∗

n

|ES o
n(t)| = o(b2

n) + O

(
1

nbn

)
.(64)

By the bandwidth conditions of Theorem 3, it follows that

I ∗
n − �2

n

∫
T ∗

n

η2(t)π(t) dt = o(b4
n + b2

n�n) = o(�2
n).(65)

By Lemma 3,

�n

∫
T ∗

n

Yn(t)[η(t) + o(1)]π(t) dt = OP(�nn
−1/2)

(66)
= oP(n−1(bn)

−1/2).

Similarly, ∫
T ∗

n

Yn(t)[ES o
n(t)/f (t,Q(t))]π(t) dt = oP(n−1(bn)

−1/2).(67)

Hence, Proposition 2, (63), (65), (66) and (67) imply that Theorem 3 holds. �

REMARK 4. Under the null hypothesis Q(t) = Qo(t), we see from the
above proof that the bias Bn(t) influences the asymptotic behavior of T ∗

n

through two terms
∫

T ∗
n

B2
n(t)π(t) dt and

∫
T ∗

n
Yn(t)Bn(t)π(t) dt , where Bn(t) =

ES o(t)/f (t,Q(t)). The jackknife bias reduction technique reduces those two ef-
fects to second order. However, it can be shown that if the original estimate Q̂(t)

is used in the L2 test, then the first term is not negligible under the optimal band-
width bn = O(n−2/9), which complicates the asymptotic analysis and reduces the
precision of the test.

PROOF OF PROPOSITION 1. Proposition 1 follows from Lemmas 5 and 6 be-
low. �

LEMMA 5. Let Ln = ∑n
i=1 ψ(ei)g(ti). Then under the conditions of Proposi-

tion 1, we have Ln = OP(
√

n).
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PROOF. Let Ln,k = ∑n
i=1 Pi−kψ(ei)g(ti). Recall the operator Pk is defined in

Theorem 4. Then the summands of Ln,k are martingale differences. By the orthog-
onality, we have for k ≥ 1

‖Ln,k‖2 =
n∑

i=1

‖Pi−kψ(ei)g(ti)‖2 =
n∑

i=1

|g(ti)|2‖Pi−kψ(ei)‖2

≤ Cnδ2
F (k − 1,2).

Similar arguments also imply ‖Ln,k‖2 ≤ Cn. Therefore,

‖Ln‖ =
∞∑

k=0

‖Ln,k‖ ≤ C
√

n

(
1 +

∞∑
k=1

δF (k − 1,2)

)
≤ C

√
n.

Hence, Lemma 5 follows. �

LEMMA 6. Under the conditions of Proposition 1, we have

Hαθ̃α −
n∑

i=1

ψα(ei)g(ti)/
√

n = op(1),(68)

where θ̃α = √
n(θ̂α − θ0), ei = Xi − Qα(ti) and

Hα =
∫ 1

0
g(t)g�(t)f (t,Qα(t)) dt.

PROOF. We shall omit the subscript α in the proof. Let gn(t) = g(t)/
√

n. By
arguments similar to those of Lemma 3 of Wu (2007), we have for any fixed con-
stant c and fixed θ ≤ c,

var

(
n∑

i=1

ηi(θ)

)
= o(1),(69)

where ηi(θ) = ρ(ei − g�
n (ti)θ) − ρ(ei) + g�

n (ti)θψ(ei). On the other hand, ele-
mentary calculations based on the Taylor expansion show that

n∑
i=1

E[ηi(θ)] =
n∑

i=1

[
f (ti,Q(ti))

2
|g�

n (ti)θ |2 + o(|g�
n (ti)θ |2)

]
(70)

= θ�Hθ

2
+ o(1).

From equations (69), (70) and the convexity lemma [Pollard (1991), page 187], we
obtain

sup
θ≤c

∣∣∣∣∣
n∑

i=1

[
ρ

(
ei − g�

n (ti)θ
) − ρ(ei) + g�

n (ti)θψ(ei)
] − θ�Hθ

2

∣∣∣∣∣ = oP(1).(71)
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Now a standard argument using properties of convex functions will lead to (68).
See, for example, the proofs of Theorems 2.2 and 2.4 in Bai, Rao and Wu (1992).
Details are omitted. �
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