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WEAKLY DEPENDENT FUNCTIONAL DATA

BY SIEGFRIED HÖRMANN AND PIOTR KOKOSZKA1

Université Libre de Bruxelles and Utah State University

Functional data often arise from measurements on fine time grids and are
obtained by separating an almost continuous time record into natural consec-
utive intervals, for example, days. The functions thus obtained form a func-
tional time series, and the central issue in the analysis of such data consists in
taking into account the temporal dependence of these functional observations.
Examples include daily curves of financial transaction data and daily patterns
of geophysical and environmental data. For scalar and vector valued stochas-
tic processes, a large number of dependence notions have been proposed,
mostly involving mixing type distances between σ -algebras. In time series
analysis, measures of dependence based on moments have proven most use-
ful (autocovariances and cumulants). We introduce a moment-based notion
of dependence for functional time series which involves m-dependence. We
show that it is applicable to linear as well as nonlinear functional time series.
Then we investigate the impact of dependence thus quantified on several im-
portant statistical procedures for functional data. We study the estimation of
the functional principal components, the long-run covariance matrix, change
point detection and the functional linear model. We explain when temporal
dependence affects the results obtained for i.i.d. functional observations and
when these results are robust to weak dependence.

1. Introduction. The assumption of independence is often too strong to be
realistic in many applications, especially if data are collected sequentially over
time. It is then natural to expect that the current observation depends to some de-
gree on the previous observations. This remains true for functional data and has
motivated the development of appropriate functional time series models. The most
popular model is the autoregressive model of Bosq [14]. This model and its vari-
ous extensions are particularly useful for prediction (see, e.g., Besse, Cardot and
Stephenson [11] Damon and Guillas [23], Antoniadis and Sapatinas [4]). For many
functional time series it is, however, not clear what specific model they follow, and
for many statistical procedures it is not necessary to assume a specific model. In
such cases, it is important to know what the effect of the dependence on a given
procedure is. Is it robust to temporal dependence, or does this type of dependence
introduce a serious bias? To answer questions of this type, it is essential to quantify
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the notion of temporal dependence. For scalar and vector time series, this question
has been approached from a number of angles, but, except for the linear model of
Bosq [14], for functional time series data no general framework is available. Our
goal in this paper is to propose such a framework, which applies to both linear and
nonlinear dependence, develop the requisite theory and apply it to selected prob-
lems in the analysis of functional time series. Our examples are chosen to show
that some statistical procedures for functional data are robust to temporal depen-
dence as quantified in this paper, while other require modifications that take this
dependence into account.

While we focus here on a general theoretical framework, this research has been
motivated by our work with functional data arising in space physics and envi-
ronmental science. For such data, especially for the space physics data, no vali-
dated time series models are currently available, so to justify any inference drawn
from them, they must fit into a general, one might say, nonparametric, dependence
scheme. An example of space physics data is shown in Figure 1. Temporal depen-
dence from day to day can be discerned, but has not been modeled.

The paper is organized as follows. In Section 2 we introduce our dependence
condition and illustrate it with several examples. In particular, we show that the
linear functional processes fall into our framework, and present some nonlinear
models that also do. It is now recognized that the functional principal compo-
nents (FPCs) play a far greater role than their multivariate counterparts (Yao and

FIG. 1. Ten consecutive functional observations of a component of the magnetic field recorded at
College, Alaska. The vertical lines separate days. Long negative spikes lasting a few hours corre-
spond to the aurora borealis.
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Lee [64], Hall and Hosseini-Nasab [33], Reiss and Ogden [51], Benko, Härdle
and Kneip [6], Müller and Yao [45]). To develop theoretical justification for pro-
cedures involving the FPCs, it is necessary to use the convergence of the esti-
mated FPCs to their population counterparts. Results of this type are available
only for independent observations (Dauxois, Pousse and Romain [24], and lin-
ear processes, Bosq [14], Bosq and Blanke [15]). We show in Section 3 how the
consistency of the estimators for the eigenvalues and eigenfunctions of the covari-
ance operator extends to dependent functional data. Next, in Section 4, we turn to
the estimation of an appropriately defined long-run variance matrix for functional
data. For most time series procedures, the long-run variance plays a role analogous
to the variance–covariance matrix for independent observations. Its estimation is
therefore of fundamental importance, and has been a subject of research for many
decades (Anderson [1], Andrews [3] and Hamilton [34] provide the background
and numerous references). In Sections 5 and 6, we illustrate the application of the
results of Sections 3 and 4 on two problems of recent interest: change point detec-
tion for functional data and the estimation of kernel in the functional linear model.
We show that the detection procedure of Berkes et al. [7] must be modified if the
data exhibit dependence, but the estimation procedure of Yao, Müller and Wang
[65] is robust to mild dependence. Section 5 also contains a small simulation study
and a data example. The proofs are collected in the Appendix.

2. Approximable functional time series. The notion of weak dependence
has, over the past decades, been formalized in many ways. Perhaps the most pop-
ular are various mixing conditions (see Doukhan [25], Bradley [16]), but in re-
cent years several other approaches have also been introduced (see Doukhan and
Louhichi [26] and Wu [62], [63], among others). In time series analysis, moment
based measures of dependence, most notably autocorrelations and cumulants, have
gained a universal acceptance. The measure we consider below is a moment-type
quantity, but it is also related to the mixing conditions as it considers σ -algebras
m time units apart, with m tending to infinity.

A most direct relaxation of independence is the m-dependence. Suppose {Xn} is
a sequence of random elements taking values in a measurable space S. Denote by
F −

k = σ {. . . ,Xk−2,Xk−1,Xk} and F +
k = σ {Xk,Xk+1,Xk+2, . . .} the σ -algebras

generated by the observations up to time k and after time k, respectively. Then
the sequence {Xn} is said to be m-dependent if for any k, the σ -algebras F −

k and
F +

k+m are independent.
Most time series models are not m-dependent. Rather, various measures of de-

pendence decay sufficiently fast, as the distance m between the σ -algebras F −
k

and F +
k+m increases. However, m-dependence can be used as a tool to study prop-

erties of many nonlinear sequences (see, e.g., Hörmann [35] and Berkes, Hör-
mann and Schauer [8] for recent applications). The general idea is to approximate
{Xn,n ∈ Z} by m-dependent processes {X(m)

n , n ∈ Z}, m ≥ 1. The goal is to estab-
lish that for every n the sequence {X(m)

n ,m ≥ 1} converges in some sense to Xn, if
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we let m → ∞. If the convergence is fast enough, then one can obtain the limiting
behavior of the original process from corresponding results for m-dependent se-
quences. Definition 2.1 formalizes this idea and sets up the necessary framework
for the construction of such m-dependent approximation sequences. The idea of
approximating scalar sequences by m-dependent nonlinear moving averages ap-
pears already in Section 21 of Billingsley [12], and it was developed in several
directions by Pötscher and Prucha [48].

In the sequel we let H = L2([0,1], B[0,1], λ) be the Hilbert space of square
integrable functions defined on [0,1]. For f ∈ H we set ‖f ‖2 = ∫ 1

0 |f (t)|2 dt .
All our random elements are assumed to be defined on some common probability
space (�, A,P ). For p ≥ 1 we denote by Lp = Lp(�, A,P ) the space of (classes
of) real valued random variables such that ‖X‖p = (E|X|p)1/p < ∞. Further we
let L

p
H = L

p
H (�, A,P ) be the space of H valued random variables X such that

νp(X) = (E‖X‖p)1/p < ∞.

DEFINITION 2.1. A sequence {Xn} ∈ L
p
H is called Lp–m-approximable if

each Xn admits the representation,

Xn = f (εn, εn−1, . . .),(2.1)

where the εi are i.i.d. elements taking values in a measurable space S, and f is a
measurable function f :S∞ → H . Moreover we assume that if {ε′

i} is an indepen-
dent copy of {εi} defined on the same probability space, then letting

X(m)
n = f (εn, εn−1, . . . , εn−m+1, ε

′
n−m, ε′

n−m−1, . . .),(2.2)

we have
∞∑

m=1

νp

(
Xm − X(m)

m

)
< ∞.(2.3)

For our applications, choosing p = 4 will be convenient, but any p ≥ 1 can be
used, depending on what is needed. (Our definition makes even sense if p < 1, but
then νp is no longer a norm.) Definition 2.1 implies that {Xn} is strictly stationary.

It is clear from the representation of Xn and X
(m)
n that E‖Xm −X

(m)
m ‖p = E‖X1 −

X
(m)
1 ‖p , so that condition (2.3) could be formulated solely in terms of X1 and the

approximations X
(m)
1 . Obviously the sequence {X(m)

n , n ∈ Z} as defined in (2.2) is
not m-dependent. To this end we need to define for each n an independent copy
{ε(n)

k } of {εk} (this can always be achieved by enlarging the probability space)

which is then used instead of {ε′
k} to construct X

(m)
n ; that is, we set

X(m)
n = f

(
εn, εn−1, . . . , εn−m+1, ε

(n)
n−m, ε

(n)
n−m−1, . . .

)
.(2.4)

We will call this method the coupling construction. Since this modification leaves
condition (2.3) unchanged, we will assume from now on that the X

(m)
n are defined
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by (2.4). Then, for each m ≥ 1, the sequences {X(m)
n , n ∈ Z} are strictly stationary

and m-dependent, and each X
(m)
n is equal in distribution to Xn.

The coupling construction is only one of a variety of possible m-dependent
approximations. In most applications, the measurable space S coincides with H ,
and the εn represent model errors. In this case, we can set

X̃(m)
n = f (εn, εn−1, . . . , εn−m+1,0,0, . . .).(2.5)

The sequence {X̃(m)
n , n ∈ Z} is strictly stationary and m-dependent, but X

(m)
n is no

longer equal in distribution to Xn. This is not a big problem but requires additional
lines in the proofs. For the truncation construction (2.5), condition (2.3) is replaced
by

∞∑
m=1

νp

(
Xm − X̃(m)

m

)
< ∞.(2.6)

Since E‖X̃(m)
m −X

(m)
m ‖p = E‖X̃(m)

m −Xm‖p , (2.6) implies (2.3), but not vice versa.
Thus the coupling construction allows to study a slightly broader class of time
series.

An important question that needs to be addressed at this point is how our
notion of weak dependence compares to other existing ones. The closest rel-
ative of Lp–m-approximability is the notion of Lp-approximability studied by
Pötscher and Prucha [48] for scalar and vector-valued processes. Since our de-
finition applies with an obvious modification to sequences with values in any
normed vector spaces H (especially R or R

n), it can been seen as a generaliza-
tion of Lp-approximability. There are, however, important differences. By defin-
ition, Lp-approximability only allows for approximations that are, like the trun-
cation construction, measurable with respect to a finite selection of basis vectors,
εn, . . . , εn−m, whereas the coupling construction does not impose this condition.
On the other hand, Lp-approximability is not based on independence of the in-
novation process. Instead independence is relaxed to certain mixing conditions.
Clearly, m-dependence implies the CLT, and so our Lp–m-approximability im-
plies central limit theorems for practically all important time series models. As we
have shown in previous papers [5, 8, 35, 36], a scalar version of this notion has
much more potential than solely giving central limit theorems.

The concept of weak dependence introduced in Doukhan and Louhichi [26] is
defined for scalar variables in a very general framework and has been successfully
used to prove (empirical) FCLTs. Like our approach, it does not require smooth-
ness conditions. Its extensions to problems of functional data analysis have not
been studied yet.

Another approach to weak dependence is a martingale approximation, as de-
veloped in Gordin [31] and Philipp and Stout [47]. In the context of sequences
{Xk} of the form (2.1), particularly complete results have been proved by Wu [62,



1850 S. HÖRMANN AND P. KOKOSZKA

63]. Again, Lp–m-approximability cannot be directly compared to approximating
martingale conditions; the latter hold for a very large class of processes, but, unlike
Lp–m-approximability, they apply only in the context of partial sums.

The classical approach to weak dependence, developed in the seminal papers
of Rosenblatt [54] and Ibragimov [37], uses the strong mixing property and its
variants like β , φ, ρ and ψ mixing. The general idea is to measure the maximal
dependence between two events lying in the “past” F −

k and in the “future” F +
k+m,

respectively. The fading memory is described by this maximal dependence decay-
ing to zero for m growing to ∞. For example, the α-mixing coefficient is given
by

αm = sup{|P(A ∩ B) − P(A)P (B)|A ∈ F −
k ,B ∈ F +

k+m, k ∈ Z}.
A sequence is called α-mixing (strong mixing) if αm → 0 for m → ∞.

This method yields very sharp results (for a complete account of the classical
theory (see Bradley [16]), but verifying mixing conditions of the above type is not
easy, whereas the verification of Lp–m-approximability is almost immediate as
our examples below show. This is because the Lp–m-approximability condition
uses directly the model specification Xn = f (εn, εn−1, . . .). Another problem is
that even when mixing applies (e.g., for Markov processes), it typically requires
strong smoothness conditions. For example, for the AR(1) process

Yk = 1
2Yk−1 + εk

with Bernoulli innovations, strong mixing fails to hold (cf. Andrews [2]). Since
c-mixing, where c is either of ψ , φ, β or ρ, implies α-mixing, {Yk} above satis-
fies none of these mixing conditions, whereas Example 2.1 shows that the AR(1)
process is Lp–m-approximable without requiring any smoothness properties for
the innovations process. Consequently our condition does not imply strong mix-
ing. On the other hand, Lp–m-approximability is restricted to a more limited class
of processes, namely processes allowing the representation Xn = f (εn, εn−1, . . .).
We emphasize, however, that all time series models used in practice (scalar, vector
or functional) have this representation (cf. [49, 59, 60]), as an immediate conse-
quence of their “forward” dynamics, for example, their definitions by a stochastic
recurrence equations. See the papers of Rosenblatt [55–57] for sufficient criteria.

We conclude that Lp–m-approximability is not directly comparable with clas-
sical mixing coefficients.

The following lemma shows how Lp–m-approximability is unaffected by linear
transformations, whereas independence assumptions are needed for product type
operations.

LEMMA 2.1. Let {Xn} and {Yn} be two Lp–m-approximability sequences in
L

p
H . Define:

• Z
(1)
n = A(Xn), where A ∈ L;
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• Z
(2)
n = Xn + Yn;

• Z
(3)
n = Xn ◦ Yn (point-wise multiplication);

• Z
(4)
n = 〈Xn,Yn〉;

• Z
(5)
n = Xn ⊗ Yn.

Then {Z(1)
n } and {Z(2)

n } are Lp–m-approximable sequences in L
p
H . If Xn and Yn

are independent, then {Z(4)
n } and {Z(5)

n } are Lp–m-approximable sequences in the
respective spaces. If E supt∈[0,1] |Xn(t)|p + E supt∈[0,1] |Yn(t)|p < ∞, then {Z(3)

n }
is Lp–m-approximable in L

p
H .

PROOF. The first two relations are immediate. We exemplify the rest of the
simple proofs for Zn = Z

(5)
n . For this we set Z

(m)
m = X

(m)
m ⊗ Y

(m)
m and note that

Zm and Z
(m)
m are (random) kernel operators, and thus Hilbert–Schmidt operators.

Since ∥∥Zm − Z(m)
m

∥∥
L ≤ ∥∥Zm − Z(m)

m

∥∥
S

≤
(∫ ∫ (

Xm(t)Ym(s) − X(m)
m (t)Y (m)

m (s)
)2

dt ds

)1/2

≤ √
2
(‖Xm‖∥∥Ym − Y (m)

m

∥∥ + ∥∥Y (m)
m

∥∥∥∥Xm − X(m)
m

∥∥)
,

the proof follows from the independence of Xn and Yn. �

The proof shows that our assumption can be modified and independence is not
required. However, if X,Y are not independent, then E|XY | �= E|X|E|Y |. We
have then to use the Cauchy–Schwarz inequality and obviously need 2p moments.

We want to point out that only a straightforward modification is necessary
in order to generalize the theory of this paper to noncausal processes Xn =
f (. . . , εn+1, εn, εn−1, . . .). Our framework can be also extended to nonstationary
sequences, for example, those of the form (2.1) where {εk} is a sequence of inde-
pendent, but not necessarily identically distributed, or random variables where

Xn = fn(εn, εn−1, . . .).

The m-dependent coupled process can be defined in the exact same way as in the
stationary case

X(m)
n = fn

(
εn, εn−1, . . . , εn−m+1, ε

(n)
n−m, ε

(n)
n−m−1, . . .

)
.

A generalization of our method to nonstationarity would be useful, especially when
the goal is to develop methodology for locally stationary data. Such work is, how-
ever, beyond the intended scope of this paper.

We now illustrate the applicability of Definition 2.1 with several examples. Let
L = L(H,H) be the set of bounded linear operators from H to H . For A ∈ L
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we define the operator norm ‖A‖L = sup‖x‖≤1 ‖Ax‖. If the operator is Hilbert–
Schmidt, then we denote with ‖A‖S its Hilbert–Schmidt norm. Recall that for any
Hilbert–Schmidt operator A ∈ L, ‖A‖L ≤ ‖A‖S .

EXAMPLE 2.1 (Functional autoregressive process). Suppose � ∈ L satisfies
‖�‖L < 1. Let εn ∈ L2

H be i.i.d. with mean zero. Then there is a unique stationary
sequence of random elements Xn ∈ L2

H such that

Xn(t) = �(Xn−1)(t) + εn(t).(2.7)

For details see Chapter 3 of Bosq [14]. The AR(1) sequence (2.7) admits the ex-
pansion Xn = ∑∞

j=0 �j(εn−j ) where �j is the j th iterate of the operator � . We

thus set X
(m)
n = ∑m−1

j=0 �j(εn−j ) + ∑∞
j=m �j(ε

(n)
n−j ). It is easy to verify that for

every A in L, νp(A(Y )) ≤ ‖A‖Lνp(Y ). Since Xm − X
(m)
m = ∑∞

j=m(�j (εm−j ) −
�j(ε

(m)
m−j )), it follows that νp(Xm − X

(m)
m ) ≤ 2

∑∞
j=m‖�‖j

Lνp(ε0) = O(1) ×
νp(ε0)‖�‖m

L . By assumption ν2(ε0) < ∞ and therefore
∑∞

m=1 ν2(Xm − X
(m)
m ) <

∞, so condition (2.6) holds with p ≥ 2, as long as νp(ε0) < ∞.

The argument in the above example shows that a sufficient condition to obtain
Lp–m-approximability is

‖f (am, . . . , a1, x0, x−1, . . .) − f (am, . . . , a1, y0, y−1, . . .)‖
≤ cm‖f (x0, x−1, . . .) − f (y0, y−1, . . .)‖,

where
∑

m≥1 cm < ∞. This holds for a functional AR(1) process and offers an at-
tractive sufficient and distribution-free condition for Lp–m-approximability. The
interesting question, whether one can impose some other, more general condi-
tions on the function f that would imply Lp–m-approximability remains open.
For example, the simple criterion above does not apply to general linear processes.
We recall that a sequence {Xn} is said to be a linear process in H if Xn =∑∞

j=0 �j(εn−j ) where the errors εn ∈ L2
H are i.i.d. and zero mean, and each �j is

a bounded operator. If
∑∞

j=1 ‖�j‖2
L < ∞, then the series defining Xn converges

a.s. and in L2
H (see Section 7.1 of Bosq [14]).

A direct verification, following the lines of Example 2.1, yields sufficient con-
ditions for a general linear process to be Lp–m-approximable.

PROPOSITION 2.1. Suppose {Xn} ∈ L2
H is a linear process whose errors sat-

isfy νp(ε0) < ∞, p ≥ 2. The operator coefficients satisfy

∞∑
m=1

∞∑
j=m

‖�j‖ < ∞.(2.8)

Then {Xn} is Lp–m-approximable.
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We note that condition (2.8) is comparable to the usual assumptions made in
the scalar case. For a scalar linear process the weakest possible condition for weak
dependence is

∞∑
j=0

|ψj | < ∞.(2.9)

If it is violated, the resulting time series are referred to as strongly dependent, long
memory, long-range dependent or persistent. Recall that (2.9) merely ensures the
existence of fundamental population objects like an absolutely summable autoco-
variance sequence or a bounded spectral density. It is, however, too weak to estab-
lish any statistical results. For example, for the asymptotic normality of the sample
autocorrelations we need

∑
jψ2

j < ∞, for the convergence of the periodogram
ordinates

∑√
j |ψj | < ∞. Many authors assume

∑
j |ψj | < ∞ to be able to use

all these basic results. The condition
∑

j |ψj | < ∞ is equivalent to (2.8).
We next give a simple example of a nonlinear Lp–m-approximable sequence.

It is based on the model used by Maslova et al. [44] to simulate the so-called so-
lar quiet (Sq) variation in magnetometer records (see also Maslova et al. [43]).
In that model, Xn(t) = Un(S(t) + Zn(t)) represents the part of the magnetome-
ter record on day n which reflects the magnetic field generated by ionospheric
winds of charged particles driven by solar heating. These winds flow in two el-
liptic cells, one on each day-side of the equator. Their position changes from day
to day, causing a different appearance of the curves, Xn(t), with changes in the
amplitude being most pronounced. To simulate this behavior, S(t) is introduced
as the typical pattern for a specific magnetic observatory, Zn(t), as the change in
shape on day n and the scalar random variable Un as the amplitude on day n. With
this motivation, we formulate the following example.

EXAMPLE 2.2 (Product model). Suppose {Yn} ∈ L
p
H and {Un} ∈ Lp are both

Lp–m-approximable sequences, independent of each other. The respective rep-
resentations are Yn = g(η1, η2, . . .) and Un = h(γ1, γ2, . . .). Each of these se-
quences could be a linear sequence satisfying the assumptions of Proposition 2.1,
but they need not be. The sequence Xn(t) = UnYn(t) is then a nonlinear Lp–m-
approximable sequence with the underlying i.i.d. variables εn = (ηn, γn). This fol-
lows by after a slight modification from Lemma 2.1.

Example 2.2 illustrates the principle that in order for products of Lp–m-
approximable sequences to be Lp–m-approximable, independence must be as-
sumed. It does not have to be assumed as directly as in Example 2.2; the important
point being that appropriately-defined functional Volterra expansions should not
contain diagonal terms so that moments do not pile up. Such expansions exist (see,
e.g., Giraitis, Kokoszka and Leipus [28], for all nonlinear scalar processes used
to model financial data). The model Xn(t) = Yn(t)Un is similar to the popular
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scalar stochastic volatility model rn = vnεn used to model returns rn on a specula-
tive asset. The dependent sequence {vn} models volatility, and the i.i.d. errors εn,
independent of the vn, generate unpredictability in returns.

Our next examples focus on functional extensions of popular nonlinear models,
namely the bilinear model of [32] and the celebrated ARCH model of Engle [27].
Both models will be treated in more detail in forthcoming papers. Proofs of Propo-
sitions 2.2 and 2.3 are available upon request.

EXAMPLE 2.3 (Functional bilinear process). Let (εn) be an H -valued i.i.d.
sequence and let ψ ∈ H ⊗ H and φ ∈ H ⊗ H ⊗ H . Then the process defined as
the recurrence equation,

Xn+1(t) =
∫

ψ(t, s)Xn(s) ds +
∫ ∫

φ(t, s, u)Xn(s)εn(u) ds du + εn+1(t),

is called functional bilinear process.
A neater notation can be achieved by defining ψ :H → H , the kernel operator

with the kernel function φ(t, s), and φn :H → H , the random kernel operator with
kernel

φn(t, s) =
∫

φ(t, s, u)εn(u) du.

In this notation, we have

Xn+1 = (ψ + φn)(Xn) + εn+1(2.10)

with the usual convention that (A+B)(x) = A(x)+B(x) for operators A,B . The
product of two operators AB(x) is interpreted as successive application A(B(x)).

A formal solution to (2.10) is

Xn+1 =
∞∑

k=0

k−1∏
j=0

(ψ + φn−j )(εn+1−k)(2.11)

and the approximating sequence is defined by

X̃(m)
n =

m∑
k=0

k−1∏
j=0

(ψ + φn−j )(εn+1−k).

The following proposition establishes sufficient conditions for the Lp–m-
approximability.

PROPOSITION 2.2. Let {Xn} be the functional bilinear process defined in
(2.10). If E log‖ε0‖ < ∞ and E log‖ψ + φ0‖ < 0, then a unique strictly station-
ary solution for this equation exists. The solution has (L2-)representation (2.11). If
νp((ψ +φ0)(ε0)) < ∞ and E‖ψ +φ0‖p

S < 1, the process is Lp–m-approximable.
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EXAMPLE 2.4 (Functional ARCH). Let δ ∈ H be a positive function and let
{εk} an i.i.d. sequence in L4

H . Further, let β(s, t) be a nonnegative kernel function
in L2([0,1]2, B2[0,1], λ2). Then we call the process

yk(t) = εk(t)σk(t), t ∈ [0,1],(2.12)

where

σ 2
k (t) = δ(t) +

∫ 1

0
β(t, s)y2

k−1(s) ds,(2.13)

the functional ARCH(1) process.
Proposition 2.3 establishes conditions for the existence of a strictly stationary

solution to (2.12) and (2.13) and its Lp–m-approximability.

PROPOSITION 2.3. Define K(ε2
1) = (

∫∫
β2(t, s)ε4

1(s) ds dt)1/2. If there is
some p > 0 such that E{K(ε2

1)}p < 1 then (2.12) and (2.13) have a unique strictly
stationary and causal solution and the sequence {yk} is Lp–m-approximable.

3. Convergence of eigenvalues and eigenfunctions. Denote by C = E[〈X,
·〉X] the covariance operator of some X ∈ L2

H . The eigenvalues and eigenfunc-
tions of C are a fundamental ingredient for principal component analysis which
is a key technique in functional data analysis. In practice, C and its eigenval-
ues/eigenfunctions are unknown and must be estimated. The purpose of this sec-
tion is to prove consistency of the corresponding estimates for L4-m-approximable
sequences. The results derived below will be applied in the following sections. We
start with some preliminary results.

Consider two compact operators C,K ∈ L with singular value decompositions

C(x) =
∞∑

j=1

λj 〈x, vj 〉fj , K(x) =
∞∑

j=1

γj 〈x,uj 〉gj .(3.1)

The following lemma is proven in Section VI.1 of (see Gohberg, Golberg and
Kaashoek [30], Corollary 1.6, page 99).

LEMMA 3.1. Suppose C,K ∈ L are two compact operators with singular
value decompositions (3.1). Then, for each j ≥ 1, |γj − λj | ≤ ‖K − C‖L.

We now tighten the conditions on the operator C by assuming that it is Hilbert–
Schmidt, symmetric and positive definite. These conditions imply that fj = vj

in (3.1), C(vj ) = λjvj and
∑

j λ2
j < ∞. Consequently λj are eigenvalues of C

and vj the corresponding eigenfunctions. We also define

v′
j = ĉj vj , ĉj = sign(〈uj , vj 〉).

Using Lemma 3.1, the next lemma can be established by following the lines of the
proof of Lemma 4.3 of Bosq [14].
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LEMMA 3.2. Suppose C,K ∈ L are two compact operators with singular
value decompositions (3.1). If C is Hilbert–Schmidt, symmetric and positive defi-
nite, and its eigenvalues satisfy

λ1 > λ2 > · · · > λd > λd+1,(3.2)

then

‖uj − v′
j‖ ≤ 2

√
2

αj

‖K − C‖L, 1 ≤ j ≤ d,

where α1 = λ1 − λ2 and αj = min(λj−1 − λj , λj − λj+1),2 ≤ j ≤ d.

Let {Xn} ∈ L2
H be a stationary sequence with covariance operator C. In prin-

ciple we could now develop a general theory for H valued sequences, where
H is an arbitrary separable Hilbert space. In practice, however, the case H =
L2([0,1], B[0,1], λ) is most important. In order to be able to fully use the struc-
ture of H and and not to deal with technical assumptions, we need the two basic
regularity conditions below, which will be assumed throughout the paper without
further notice.

ASSUMPTION 3.1. (i) Each Xn is measurable (B[0,1] × A)/BR.
(ii) supt∈[0,1] E|X(t)|2 < ∞.

Assumption 3.1(i) is necessary in order that the sample paths of Xn are mea-
surable. Together with (ii) it also implies that C is an integral operator with kernel
c(t, s) = Cov(X1(t),X1(s)) whose estimator is

ĉ(t, s) = N−1
N∑

n=1

(
Xn(t) − X̄N(t)

)(
Xn(s) − X̄N(s)

)
.(3.3)

Then natural estimators of the eigenvalues λj and eigenfunctions vj of C are the
eigenvalues λ̂j and eigenfunctions v̂j of Ĉ, the operator with the kernel (3.3). By
Lemmas 3.1 and 3.2 we can bound the estimation errors for eigenvalues and eigen-
functions by ‖C − Ĉ‖2

S . Mas and Mennetau [42] show that transferring asymptotic
results from the operators to the eigenelements holds quite generally, including a.s.
convergence, weak convergence or large deviation principles. This motivates the
next result.

THEOREM 3.1. Suppose {Xn} ∈ L4
H is an L4–m-approximable sequence with

covariance operator C. Then there is some constant UX < ∞, which does not
depend on N , such that

NE‖Ĉ − C‖2
S ≤ UX.(3.4)
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If the Xn have zero mean, then we can choose

UX = ν4
4(X) + 4

√
2ν3

4(X)

∞∑
r=1

ν4
(
Xr − X(r)

r

)
.(3.5)

The proof of Theorem 3.1 is given in Section A.1. Let us note that by Lemma 3.1
and Theorem 3.1,

NE[|λj − λ̂j |2] ≤ NE‖Ĉ − C‖2
L ≤ NE‖Ĉ − C‖2

S ≤ UX.

Assuming (3.2), by Lemma 3.2 and Theorem 3.1, [ĉj = sign(〈v̂j , vj 〉)],

NE[‖ĉj v̂j − vj‖2] ≤
(

2
√

2

αj

)2

NE‖Ĉ − C‖2
L ≤ 8

α2
j

NE‖Ĉ − C‖2
S ≤ 8UX

α2
j

with the αj defined in Lemma 3.2.
These inequalities establish the following result.

THEOREM 3.2. Suppose {Xn} ∈ L4
H is an L4–m-approximable sequence and

assumption (3.2) holds. Then, for 1 ≤ j ≤ d ,

lim sup
N→∞

NE[|λj − λ̂j |2] < ∞, lim sup
N→∞

NE[‖ĉj v̂j − vj‖2] < ∞.(3.6)

Relations (3.6) have become a fundamental tool for establishing asymptotic
properties of procedures for functional simple random samples which are based on
the functional principal components. Theorem 3.2 shows that in many cases one
can expect that these properties will remain the same under weak dependence; an
important example is discussed in Section 6. The empirical covariance kernel (3.3)
is, however, clearly designed for simple random samples, and may not be optimal
for representing dependent data in the most “useful” way. The term “useful” de-
pends on the application. Kargin and Onatski [38] show that a basis different than
the eigenfunctions vk is optimal for prediction with a functional AR(1) model. An
interesting open problem is how to construct a basis optimal in some general sense
for dependent data. In Section 4 we focus on a related, but different, problem of
constructing a matrix which “soaks up” the dependence in a manner that allows
the extension of many multivariate time series procedures to a functional setting.
The construction of this matrix involves arbitrary basis vectors vk estimated by v̂k

in such a way that (3.6) holds.

4. Estimation of the long-run variance. The main results of this section are
Corollary 4.1 and Proposition 4.1 which state that the long-run variance matrix ob-
tained by projecting the data on the functional principal components can be consis-
tently estimated. The concept of the long-run variance, while fundamental in time
series analysis, has not been studied for functional data, and not even for scalar
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approximable sequences. It is therefore necessary to start with some preliminaries
which lead to our main results and illustrate the role of the Lp–m-approximability.

Let {Xn} be a scalar (weakly) stationary sequence. Its long-run variance is
defined as σ 2 = ∑

j∈Z γj , where γj = Cov(X0,Xj ), provided this series is ab-
solutely convergent. Our first lemma shows that this is the case for L2–m-
approximable sequences.

LEMMA 4.1. Suppose {Xn} is a scalar L2–m-approximable sequence. Then
its autocovariance function γj = Cov(X0,Xj ) is absolutely summable, that is,∑∞

j=−∞ |γj | < ∞.

PROOF. Observe that for j > 0,

Cov(X0,Xj ) = Cov
(
X0,Xj − X

(j)
j

) + Cov
(
X0,X

(j)
j

)
.

Since

X0 = f (ε0, ε−1, . . .), X
(j)
j = f (j)(εj , εj−1, . . . , ε1, ε

(j)
0 , ε

(j)
−1, . . .

)
,

the random variables X0 and X
(j)
j are independent, so Cov(X0,X

(j)
j ) = 0, and

|γj | ≤ [EX2
0]1/2[

E
(
Xj − X

(j)
j

)2]1/2
. �

The summability of the autocovariances is the fundamental property of weak
dependence because then N Var[X̄N ] → ∑∞

j=−∞ γj ; that is, the variance of the
sample mean converges to zero at the rate N−1, the same as for i.i.d. observations.
A popular approach to the estimation of the long-run variance is to use the kernel
estimator

σ̂ 2 = ∑
|j |≤q

ωq(j)γ̂j , γ̂j = 1

N

N−|j |∑
i=1

(Xi − X̄N)
(
Xi+|j | − X̄N

)
.

Various weights ωq(j) have been proposed and their optimality properties studied
(see Anderson [1] and Andrews [3], among others). In theoretical work, it is typ-
ically assumed that the bandwith q is a deterministic function of the sample size
such that q = q(N) → ∞ and q = o(Nr), for some 0 < r ≤ 1. We will use the
following assumption:

ASSUMPTION 4.1. The bandwidth q = q(N) satisfies q → ∞, q2/N → 0,

and the weights satisfy ωq(j) = ωq(−j) and

|ωq(j)| ≤ b(4.1)

and, for every fixed j ,

ωq(j) → 1.(4.2)
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All kernels used in practice have symmetric weights and satisfy conditions (4.1)
and (4.2).

The absolute summability of the autocovariances is not enough to establish the
consistency of the kernel estimator σ̂ 2. Traditionally, summability of the cumulants
has been assumed to control the fourth order structure of the data. Denoting μ =
EX0, the fourth order cumulant of a stationary sequence is defined by

κ(h, r, s) = Cov
(
(X0 − μ)(Xh − μ), (Xr − μ)(Xs − μ)

) − γrγh−s − γsγh−r .

The ususal sufficient condition for the consistency of σ̂ is
∞∑

h=−∞

∞∑
r=−∞

∞∑
s=−∞

|κ(h, r, s)| < ∞.(4.3)

Recently, Giraitis et al. [29] showed that condition (4.3) can be replaced by a
weaker condition,

sup
h

∞∑
r=−∞

∞∑
s=−∞

|κ(h, r, s)| < ∞.(4.4)

A technical condition we need is

N−1
q(N)∑
k,l=0

N−1∑
r=1

∣∣Cov
(
X0

(
Xk − X

(k)
k

)
,X(r)

r X
(r+�)
r+�

)∣∣ → 0.(4.5)

By analogy to condition (4.4), it can be replaced by a much stronger, but a more
transparent condition,

sup
k,l≥0

∞∑
r=1

∣∣Cov
(
X0

(
Xk − X

(k)
k

)
,X(r)

r X
(r+�)
r+�

)∣∣ < ∞.(4.6)

To explain the intuition behind conditions (4.5) and (4.6), consider the linear
process Xk = ∑∞

j=0 cjXk−j . For k ≥ 0,

Xk − X
(k)
k =

∞∑
j=k

cj εk−j −
∞∑

j=k

cj ε
(k)
k−j .

Thus X0(Xk − X
(k)
k ) depends on

ε0, ε−1, ε−2, . . . and ε
(k)
0 , ε

(k)
−1, ε

(k)
−2, . . .(4.7)

and X
(r)
r X

(r+�)
r+� depends on

εr+�, . . . , ε1, ε
(r)
0 ε

(r)
−1, ε

(r)
−2, . . . and ε

(r+�)
0 ε

(r+�)
−1 , ε

(r+�)
−2 , . . . .

Consequently, the covariances in (4.6) vanish except when r = k or r + � = k, so
condition (4.6) always holds for linear processes.
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For general nonlinear sequences, the difference

Xk − X
(k)
k = f (εk, . . . , ε1, ε0, ε−1, . . .) − f

(
εk, . . . , ε1, ε

(k)
0 , ε

(k)
−1, . . .

)
,

cannot be expressed only in terms of the errors (4.7), but the errors εk, . . . , ε1

should approximately cancel, so that the difference Xk − X
(k)
k is small and very

weakly correlated with X
(r)
r X

(r+�)
r+� .

With this background, we now formulate the following result.

THEOREM 4.1. Suppose {Xn} ∈ L4 is an L4–m-approximable and assume

condition (4.5) holds. If Assumption 4.1 holds, then σ̂ 2 P→ ∑∞
j=−∞ γj .

Theorem 4.1 is proven in Section A.1. The general plan of the proof is the same
as that of the proof of Theorem 3.1 of Giraitis et al. [29], but the verification of
the crucial relation (A.5) uses a new approach based on L4–m-approximability.
The arguments preceding (A.5) show that replacing X̄N by μ = EX0 does not
change the limit. We note that the condition q2/N → 0 we assume is stronger than
the condition q/N → 0 assumed by Giraitis et al. [29]. This difference is of little
practical consequence, as the optimal bandwidths for the kernels used in practice
are typically of the order O(N1/5). Finally, we notice that by further strengthening
conditions on the behavior of the bandwidth function q = q(N), the convergence
in probability in Theorem 4.1 could be replaced by the almost sure convergence,
but we do not pursue this research here. The corresponding result under condition
(4.4) was established by Berkes et al. [9]; it is also stated without proof as part of
Theorem A.1 of Berkes et al. [10].

We now turn to the vector case in which the data are of the form

Xn = [X1n,X2n, . . . ,Xdn]T , n = 1,2, . . . ,N.

Just as in the scalar case, the estimation of the mean by the sample mean does
not affect the limit of the kernel long-run variance estimators, so we assume that
EXin = 0 and define the autocovariances as

γr(i, j) = E[Xi0Xjr ], 1 ≤ i, j ≤ d.

If r ≥ 0, γr(i, j) is estimated by N−1 ∑N−r
n=1 XinXj,n+r , but if r < 0, it is estimated

by N−1 ∑N−|r|
n=1 Xi,n+|r|Xj,n. We therefore define the autocovariance matrices

�̂r =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

N−1
N−r∑
n=1

XnXT
n+r , if r ≥ 0,

N−1
N−|r|∑
n=1

Xn+|r|XT
n , if r < 0.
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The variance Var[N−1X̄n] has (i, j)-entry

N−2
N∑

m,n=1

E[XimXjn] = N−1
∑

|r|<N

(
1 − |r|

N

)
γr(i, j),

so the long-run variance is

� =
∞∑

r=−∞
�r , �r := [γr(i, j),1 ≤ i, j ≤ d],

and its kernel estimator is

�̂ = ∑
|r|≤q

ωq(r)�̂r .(4.8)

The consistency of �̂ can be established by following the lines of the proof
of Theorem 4.1 for every fixed entry of the matrix �̂. Conditition (4.5) must be
replaced by

N−1
q(N)∑
k,l=0

N−1∑
r=1

max
1≤i,j≤d

∣∣Cov
(
Xi0

(
Xjk − X

(k)
jk

)
,X

(r)
ir X

(r+�)
j,r+�

)∣∣ → 0.(4.9)

Condition (4.9) is analogous to cumulant conditions for vector processes which
require summability of fourth order cross-cumulants of all scalar components (see,
e.g., Andrews [3], Assumption A, page 823).

For ease of reference we state these results as a theorem.

THEOREM 4.2. (a) If {Xn} ∈ L2
Rd is an L2–m-approximable sequence, then

the series
∑∞

r=−∞ �r converges absolutely. (b) Suppose {Xn} ∈ L4
Rd an L4–m-

approximable sequence such that condition (4.9) holds. If Assumption 4.1 holds,

then �̂
P→ �.

We are now able to turn to functional data. Suppose {Xn} ∈ L2
H is a zero mean

sequence, and v1, v2, . . . , vd is any set of orthonormal functions in H . Define
Xin = ∫

Xn(t)vi(t) dt , Xn = [X1n,X2n, . . . ,Xdn]T and �r = Cov(X0,Xr ). A di-
rect verification shows that if {Xn} is Lp–m-approximable, then so is the vector
sequence {Xn}. We thus obtain the following corollary.

COROLLARY 4.1. (a) If {Xn} ∈ L2
H is an L2–m-approximable sequence, then

the series
∑∞

r=−∞ �r converges absolutely. (b) If, in addition, {Xn} is L4–m-

approximable and Assumption 4.1 and condition (4.9) hold, then �̂
P→ �.

In Corollary 4.1, the functions v1, v2, . . . , vd form an arbitrary orthonormal de-
terministic basis. In many applications, a random basis consisting of the estimated
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principal components v̂1, v̂2, . . . , v̂d is used. The scores with respect to this basis
are defined by

η̂�i =
∫ (

Xi(t) − X̄N(t)
)
v̂�(t) dt, 1 ≤ � ≤ d.

To use the results established so far, it is convenient to decompose the stationary
sequence {Xn} into its mean and a zero mean process; that is, we set Xn(t) =
μ(t) + Yn(t), where EYn(t) = 0. We introduce the unobservable quantities

β�n =
∫

Yn(t)v�(t) dt, β̂�n =
∫

Yn(t)v̂�(t) dt, 1 ≤ � ≤ d.(4.10)

We then have the following proposition which will be useful in most statistical
procedures for functional time series. An application to change point detection is
developed in Section 5.

PROPOSITION 4.1. Let Ĉ = diag(ĉ1, . . . , ĉd), with ĉi = sign(〈vi, v̂i〉). Sup-
pose {Xn} ∈ L4

H is L4–m-approximable and that (3.2) holds. Assume further that
Assumption 4.1 holds with a stronger condition q4/N → 0. Then

|�̂(β) − �̂(Ĉβ̂)| = oP (1) and |�̂(η̂) − �̂(β̂)| = oP (1).

The proof of Proposition 4.1 is delicate and is presented in Section A.1. We note
that condition (4.9) does not appear in the statement of Proposition 4.1. Its point is
that if �̂(β) is consistent under some conditions, then so is �̂(η̂).

5. Change point detection. Functional time series are obtained from data
collected sequentially over time, and it is natural to expect that conditions under
which observations are made may change. If this is the case, procedures devel-
oped for stationary series will produce spurious results. In this section, we develop
a procedure for the detection of a change in the mean function of a functional time
series, the most important possible change. In addition to its practical relevance,
the requisite theory illustrates the application of the results developed in Sections 3
and 4. The main results of this Section, Theorems 5.1 and 5.2, are proven in Sec-
tion A.2.

We thus consider testing the null hypothesis,

H0 :EX1(t) = EX2(t) = · · · = EXN(t), t ∈ [0,1].
Note that under H0, we do not specify the value of the common mean.

Under the alternative, H0 does not hold. The test we construct has a particularly
good power against the alternative in which the data can be divided into several
consecutive segments, and the mean is constant within each segment but changes
from segment to segment. The simplest case of only two segments (one change
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point) is specified in Assumption 5.2. First we note that under the null hypothesis,
we can represent each functional observation as

Xi(t) = μ(t) + Yi(t), EYi(t) = 0.(5.1)

The following assumption specifies conditions on μ(·) and the errors Yi(·) needed
to establish the convergence of the test statistic under H0.

ASSUMPTION 5.1. The mean μ in (5.1) is in H . The error functions Yi ∈ L4
H

are L4–m-approximable mean zero random elements such that the eigenvalues of
their covariance operator satisfy (3.2).

Recall that the L4–m-approximability implies that the Yi are identically distrib-
uted with ν4(Yi) < ∞. In particular, their covariance function,

c(t, s) = E[Yi(t)Yi(s)], 0 ≤ t, s ≤ 1,

is square integrable, that is, is in L2([0,1] × [0,1]).
We develop the theory under the alternative of exactly one change point, but the

procedure is applicable to multiple change points by using a segmentation algo-
rithm described in Berkes et al. [7] and dating back at least to Vostrikova [61].

ASSUMPTION 5.2. The observations follow the model

Xi(t) =
{

μ1(t) + Yi(t), 1 ≤ i ≤ k∗,
μ2(t) + Yi(t), k∗ < i ≤ N ,

in which the Yi satisfy Assumption 5.1, the mean functions μ1 and μ2 are in L2

and

k∗ = [nθ ] for some 0 < θ < 1.

The general idea of testing is similar to that developed in Berkes et al. [7] for in-
dependent observations, the central difficulty is in accommodating the dependence.
To define the test statistic, recall that bold symbols denote d-dimensional vec-
tors, for example, η̂i = [η̂1i , η̂2i , . . . , η̂di]T . To lighten the notation, define the par-
tial sums process, SN(x, ξ) = ∑�Nx�

n=1 ξn, x ∈ [0,1], and the process, LN(x, ξ) =
SN(x, ξ) − xSN(1, ξ), where {ξn} is a generic Rd -valued sequence. Denote by
�(ξ) the long-run variance of the sequence {ξn}, and by �̂(ξ) its kernel estimator
(see Section 4). The proposed test statistic is then

TN(d) = 1

N

∫ 1

0
LN(x, η̂)T �̂(η̂)−1LN(x, η̂) dx.(5.2)

Our first theorem establishes its asymptotic null distribution.
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THEOREM 5.1. Suppose H0 and Assumption 5.1 hold. If the estimator �̂(η̂)

is consistent, then

TN(d)
d→ T (d) :=

d∑
�=1

∫ 1

0
B2

� (x) dx,(5.3)

where {B�(x), x ∈ [0,1]}, 1 ≤ � ≤ d are independent Brownian bridges.

The distribution of the random variable T (d) was derived by Kiefer [39]. The
limit distribution is the same as in the case of independent observations; this is
possible because the long-run variance estimator �̂(η̂) soaks up the dependence.
Sufficient conditions for its consistency are stated in Section 4, and, in addition to
the assumptions of Theorem 5.1, they are: Assumption 4.1 with q4/N → 0, and
condition (4.9).

The next result shows that our test has asymptotic power 1. Our proof requires
the following condition:

�̂(η̂)
a.s.→ � where � is some positive definite matrix.(5.4)

Condition (5.4) could be replaced by weaker technical conditions, but we prefer
it, as it leads to a transparent, short proof. Essentially, it states that the matrix �̂(η̂)

does not become degenerate in the limit, and the matrix � has only positive eigen-
values. A condition like (5.4) is not needed for independent Yi because that case
does not require normalization with the long-run covariance matrix. To formulate
our result, introduce vectors μ1,μ2 ∈ R

d with coordinates∫
μ1(t)v�(t) dt and

∫
μ2(t)v�(t) dt, 1 ≤ � ≤ d.

THEOREM 5.2. Suppose Assumption 5.2 and condition (5.4) hold. If the vec-

tors μ1 and μ2 are not equal, then TN(d)
P→ ∞.

We conclude this section with two numerical examples which illustrate the ef-
fect of dependence on our change point detection procedure. Example 5.1 uses
synthetic data while Example 5.2 focuses on particulate pollution data. Both show
that using statistic (5.2) with �̂(η̂) being the estimate for just the covariance, not
the long-run covariance matrix, leads to spurious rejections of H0, a nonexistent
change point can be detected with a large probability.

EXAMPLE 5.1. We simulate 200 observations of the functional AR(1) process
of Example 2.1, when � has the parabolic integral kernel ψ(t, s) = γ · (2 − (2x −
1)2 − (2y − 1)2). We chose the constant γ such that ‖�‖S = 0.6 (the Hilbert–
Schmidt norm). The innovations {εn} are standard Brownian bridges. The first
3 principal components explain approximately 85% of the total variance, so we
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compute the test statistic T200(3) given in (5.2). For the estimation of the long-run
covariance matrix � we use the Bartlett kernel

ω(1)
q (j) =

{
1 − |j |/(1 + q), if |j | ≤ q;
0, otherwise.

We first let q = 0 which corresponds to using just the sample covariance of {η̂n}
in the normalization for the test statistic (5.2) (dependence is ignored). We use
1000 replications and the 5% confidence level. The rejection rate is 23.9%, much
higher than the nominal level of 5%. In contrast, using an appropriate estimate for
the long-run variance, the reliability of the test improves dramatically. Choosing
an optimal bandwidth q is a separate problem which we do not pursue here. Here

we adapt the formula q ≈ 1.1447(aN)1/3, a = 4ψ2

(1+ψ)4 valid for a a scalar AR(1)
process with the autoregressive coefficient ψ (Andrews [3]). Using this formula
with ψ = ‖�‖S = 0.6 results in q = 4. This choice gives the empirical rejection
rate of 3.7%, much closer to the nominal rate of 5%.

EXAMPLE 5.2. This example, which uses pm10 (particulate matter with di-
ameter < 10 μm, measured in μg/m3) data, illustrates a similar phenomenon as
Example 5.1. For the analysis we use pm10 concentration data measured in the
Austrian city of Graz during the winter of 2008/2009 (N=151). The data are given
in 30 minutes resolution, yielding an intraday frequency of 48 observations. As in
Stadtlober, Hörmann and Pfeiler [58] we use a square root transformation to re-
duce heavy tails. Next we remove possible weekly periodicity by subtracting the
corresponding mean vectors obtained from the different weekdays. A time series
plot of this new sequence is given in Figure 2. The data look relatively stable, al-
though a shift appears to be possible in the center of the time series. It should be

FIG. 2. Seasonally detrended
√
pm10, Nov 1, 2008–Mar 31, 2009.
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FIG. 3. Left panel: sample autocorrelation function of the first empirical PC scores. Right panel:
sample partial autocorrelation function of the first empirical PC scores.

emphasized, however, that pm10 data, like many geophysical time series, exhibit
a strong, persistent, positive autocorrelation structure. These series are stationary
over long periods of time with an appearance of local trends or shifts at various
time scales (random self-similar or fractal structure).

The daily measurement vectors are transformed into smooth functional data us-
ing 15 B-splines functions of order 4. The functional principal component analysis
yields that the first three principal components explain ≈ 84% of the total variabil-
ity, so we use statistic (5.2) with d = 3. A look at the acf and pacf of the first
empirical PC scores (Figure 3) suggests an AR(1), maybe AR(3) behavior. The
second and third empirical PC scores show no significant autocorrelation struc-
ture. We use the formula given in Example 5.1 with ψ = 0.70 (acf at lag 1) and
N = 151 and obtain q ≈ 4. This gives T151(3) = 0.94 which is close to the critical
value 1.00 when testing at a 95% confidence level but does not support rejection
of the no-change hypothesis. In contrast, using only the sample covariance matrix
in (5.3) gives T151(3) = 1.89 and thus a clear and possibly wrongful rejection of
the null hypothesis.

6. Functional linear model with dependent regressors. The functional lin-
ear model is one of the most widely used tools of FDA. Its various forms are
introduced in Chapters 12–17 of Ramsay and Silverman [50]. To name a few re-
cent references we mention Cuevas, Febrero and Fraiman [22], Malfait and Ram-
say [41], Cardot et al. [18], Cardot, Ferraty and Sarda [19], Chiou, Müller and
Wang [21], Müller and Stadtmüller [46], Yao, Müller and Wang [65], Cai and
Hall [17], Chiou and Müller [20], Li and Hsing [40], Reiss and Ogden [51], Reiss
and Ogden [52, 53].
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We focus on the fully functional model of the form

Yn(t) =
∫

ψ(t, s)Xn(s) + εn(t), n = 1,2 . . . ,N,(6.1)

in which both the regressors and the responses are functions. The results of this
section can be easily specialized to the case of scalar responses.

In (6.1), the regressors are random functions, assumed to be independent and
identically distributed. As explained in Section 1, for functional time series the
assumption of the independence of the Xn is often questionable, so it is important
to investigate if procedures developed and theoretically justified for independent
regressors can still be used if the regressors are dependent.

We focus here on the estimation of the kernel ψ(t, s). Our result is motivated by
the work of Yao, Müller and Wang [65] who considered functional regressors and
responses obtained from sparce independent data measured with error. The data
that motivates our work are measurements of physical quantities obtained with
negligible errors or financial transaction data obtained without error. In both cases
the data are available at fine time grids, and the main concern is the presence of
temporal dependence between the curves Xn. We therefore merely assume that the
sequence {Xn} ∈ L4

H is L4–m-approximable, which, as can be easily seen, implies
the L4–m-approximability of {Yn}. To formulate additional technical assumptions,
we need to introduce some notation.

We assume that the errors εn are i.i.d. and independent of the Xn, and denote by
X and Y random functions with the same distribution as Xn and Yn, respectively.
We work with their expansions

X(s) =
∞∑
i=1

ξivi(s), Y (t) =
∞∑

j=1

ζjuj (t),

where the vj are the FPCs of X and the uj the FPCs of Y , and ξi = 〈X,vi〉, ζj =
〈Y,uj 〉. Indicating with the “hat” the corresponding empirical quantities, an esti-
mator of ψ(t, s) proposed by Yao, Müller and Wang [65] is

ψ̂KL(t, s) =
K∑

k=1

L∑
�=1

λ̂−1
� σ̂�kûk(t)v̂�(s),

where σ̂�k is an estimator of E[ξ�ζk]. We will work with the simplest estimator,

σ̂�k = 1

N

N∑
i=1

〈Xi, v̂�〉〈Yi, ûk〉,(6.2)

but any estimator for which Lemma A.1 holds can be used without affecting the
rates.

Let λj and γj be the eigenvalues corresponding to vj and uj . Define αj as in
Lemma 3.2, and define α′

j accordingly with γj instead of λj . Set

hL = min{αj ,1 ≤ j ≤ L}, h′
L = min{α′

j ,1 ≤ j ≤ L}.
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To establish the consistency of the estimator ψ̂KL(t, s) we assume that

� :=
∞∑

k=1

∞∑
�=1

(E[ξ�ζk])2

λ2
�

< ∞(6.3)

and that the following assumption holds:

ASSUMPTION 6.1. (i) We have λ1 > λ2 > · · · and γ1 > γ2 > · · · .
(ii) We have K = K(N), L = L(N) → ∞ and KL

λL min{hK,h′
L} = o(N1/2).

For model (6.1), condition (6.3) is equivalent to the assumption that ψ(t, s) is
a Hilbert–Schmidt kernel, that is,

∫∫
ψ2(t, s) dt ds < ∞. It is formulated in the

same way as in Yao, Müller and Wang [65] because this form is convenient in
the theoretical arguments. Assumption 6.1 is much shorter than the corresponding
assumptions of Yao, Müller and Wang [65] which take up over two pages. This
is because we do not deal with smoothing and so can isolate the impact of the
magnitude of the eigenvalues on the bandwidths K and L.

THEOREM 6.1. Suppose {Xn} ∈ L4
H is a zero mean L4–m-approximable se-

quence independent of the sequence of i.i.d. errors {εn}. If (6.3) and Assump-
tion 6.1 hold, then∫ ∫

[ψ̂KL(t, s) − ψ(t, s)]2 dt ds
P→ 0, (N → ∞).(6.4)

The proposition of Theorem 6.1 is comparable to the first part of Theorem 1 in
Yao, Müller and Wang [65]. Both theorems are established under (6.3) and finite
fourth moment conditions. Otherwise the settings are quite different. Yao, Müller
and Wang [65] work under the assumption that the subject (Yi,Xi), i = 1,2, . . .

are independent and sparsely observed whereas the crucial point of our approach
is that we allow dependence. Thus Theorems 1 and 2 in the related paper Yao,
Müller and Wang [66], which serve as the basic ingredients for their results, can-
not be used here and have to be replaced directly with the theory developed in
Section 3 of this paper. Furthermore, our proof goes without complicated assump-
tions on the resolvents of the covariance operator, in particular without the very
technical assumptions (B.5) of Yao, Müller and Wang [65]. In this sense, our short
alternative proof might be of value even in the case of independent observations.

APPENDIX

We present the proofs of results stated in Sections 3–6. Throughout we
will agree on the following conventions. All Xn ∈ L2

H satisfy Assumption 3.1.
A generic X, which is assumed to be equal in distribution to X1, will be used at
some places. Any constants occurring will be denoted by κ1, κ2, . . . . The κi may
change their values from proof to proof.
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A.1. Proofs of the results of Sections 3 and 4.

PROOF OF THEOREM 3.1. We assume for simplicity that EX = 0 and set

ĉ(t, s) = N−1
N∑

n=1

Xn(t)Xn(s), c(t, s) = E[X(t)X(s)].

The proof with a general mean function μ(t) requires some additional but sim-
ilar arguments. The Cauchy–Schwarz inequality shows that ĉ(·, ·) and c(·, ·) are
Hilbert–Schmidt kernels, so Ĉ − C is a Hilbert–Schmidt operator with the kernel
ĉ(t, s) − c(t, s). Consequently,

NE‖Ĉ − C‖2
S = N

∫ ∫
Var

[
N−1

N∑
n=1

(
Xn(t)Xn(s) − E[Xn(t)Xn(s)])

]
dt ds.

For fixed s and t , set Yn = Xn(t)Xn(s) − E[Xn(t)Xn(s)]. Due the stationarity of
the sequence {Yn} we have

Var

(
N−1

N∑
n=1

Yn

)
= N−1

∑
|r|<N

(
1 − |r|

N

)
Cov(Y1, Y1+r )

and so

N Var

(
N−1

N∑
n=1

Yn

)
≤ Var(Y1) + 2

∞∑
r=1

|Cov(Y1, Y1+r )|.

Setting Y
(m)
n = X

(m)
n (t)X

(m)
n (s) − E[Xn(t)Xn(s)], we obtain

|Cov(Y1, Y1+r )| =
∣∣Cov

(
Y1, Y1+r − Y

(r)
1+r

)∣∣ ≤ [Var(Y1)]1/2[
Var

(
Y1+r − Y

(r)
1+r

)]1/2
.

Consequently, NE‖Ĉ − C‖2
S is bounded from above by∫ ∫

Var[X(t)X(s)]dt ds

+ 2
∞∑

r=1

∫ ∫
[Var(X(t)X(s))]1/2

× [
Var

(
X1+r (t)X1+r (s) − X

(r)
1+r (t)X

(r)
1+r (s)

)]1/2
dt ds.

For the first summand we have the upper bound ν4
4(X) because∫ ∫

E[X2(t)X2(s)]dt ds = E

∫
X2(t) dt

∫
X2(s) ds = ν4

4(X).(A.1)

To find upper bounds for the summands in the infinite sum, we use the inequality

|ab − cd|2 ≤ 2a2(b − d)2 + 2d2(a − c)2,(A.2)
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which yields∫ ∫
[Var(X(t)X(s))]1/2[

Var
(
X1+r (t)X1+r (s) − X

(r)
1+r (t)X

(r)
1+r (s)

)]1/2
dt ds

≤
∫ ∫

[E(X2(t)X2(s))]1/2[
E

(
X1+r (t)X1+r (s)

− X
(r)
1+r (t)X

(r)
1+r (s)

)2]1/2
dt ds

≤ √
2

∫ ∫
[E(X2(t)X2(s))]1/2[

EX2
1+r (t)

(
X1+r (s) − X

(r)
1+r (s)

)2]1/2
dt ds

+ √
2

∫ ∫
[E(X2(t)X2(s))]1/2

× [
EX

(r)2
1+r (s)

(
X1+r (t) − X

(r)
1+r (t)

)2]1/2
dt ds.

For the first term, using the Cauchy–Schwarz inequality and (A.1), we obtain∫ ∫
[E(X2(t)X2(s))]1/2[

EX2
1+r (t)

(
X1+r (s) − X

(r)
1+r (s)

)2]1/2
dt ds

≤ ν2
4(X)

{
E

[∫
X2

1+r (t) dt

∫ (
X1+r (s) − X

(r)
1+r (s)

)2
ds

]}1/2

≤ ν2
4(X){E‖X1+r‖4}1/4{

E
∥∥X1+r (s) − X

(r)
1+r (s)

∥∥}1/4

= ν3
4(X)ν4

(
X1 − X

(r)
1

)
.

The exact same argument applies for the second term. The above bounds imply
(3.4). �

PROOF OF THEOREM 4.1. As in Giraitis et al. [29], set μ = EX0 and

γ̃j = 1

N

N−|j |∑
i=1

(Xi − μ)
(
Xi+|j | − μ

)
,

Sk,� =
�∑

i=k

(Xi − μ).

Observe that

γ̂j − γ̃j =
(

1 − |j |
N

)
(X̄N − μ)2 + 1

N
(X̄N − μ)

(
S1,N−|j | + S|j |+1,N

) =: δj .

We therefore have the decomposition

σ̂ 2 = ∑
|j |≤q

ωq(j)γ̃j + ∑
|j |≤q

ωq(j)δj =: σ̂ 2
1 + σ̂ 2

2 .
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The proof will be complete once we have shown that

σ̂ 2
1

P→
∞∑

j=−∞
γj(A.3)

and

σ̂ 2
2

P→ 0.(A.4)

We begin with the verification of the easier relation (A.4). By (4.1),

E|σ̂ 2
2 | ≤ b

∑
|j |≤q

E|δj |

≤ b
∑

|j |≤q

E(X̄N − μ)2

+ b

N
[E(X̄N − μ)2]1/2

∑
|j |≤q

[
E

(
S1,N−|j | + S|j |+1,N

)2]1/2
.

By Lemma 4.1,

E(X̄N − μ)2 = 1

N

∑
|j |≤N

(
1 − |j |

N

)
γj = O(N−1).

Similarly E(S1,N−|j | + S|j |+1,N )2 = O(N). Therefore,

E|σ̂ 2
2 | = O(qN−1 + N−1N−1/2qN1/2) = O(q/N).

We now turn to the verification of (A.3). We will show that Eσ̂ 2
1 → ∑

j γj and
Var[σ̂ 2

1 ] → 0.
By (4.2),

Eσ̂ 2
1 = ∑

|j |≤q

ωq(j)
N − |j |

N
γj →

∞∑
j=−∞

γj .

By (4.1), it remains to show that∑
|k|,|�|≤q

|Cov(γ̃k, γ̃�)| → 0.(A.5)

To lighten the notation, without any loss of generality, we assume from now on that
μ = 0, so that

Cov(γ̃k, γ̃�) = 1

N2 Cov

(N−|k|∑
i=1

XiXi+|k|,
N−|�|∑
j=1

XjXj+|�|
)
.
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Therefore, by stationarity,

|Cov(γ̃k, γ̃�)| ≤ 1

N2

N∑
i,j=1

∣∣Cov
(
XiXi+|k|,XjXj+|�|

)∣∣

= 1

N

∑
|r|<N

(
1 − |r|

N

)∣∣Cov
(
X0X|k|,XrXr+|�|

)∣∣.
The last sum can be split into three terms corresponding to r = 0, r < 0 and r > 0.

The contribution to the left-hand side of (A.5) of the term corresponding to
r = 0 is

N−1
∑

|k|,|�|≤q

∣∣Cov
(
X0X|k|,X0X|�|

)∣∣ = O(q2/N).

The terms corresponding to r < 0 and r > 0 are handled in the same way, so we
focus on the contribution of the summands with r > 0 which is

N−1
∑

|k|,|�|≤q

N−1∑
r=1

(
1 − r

N

)∣∣Cov
(
X0X|k|,XrXr+|�|

)∣∣.
We now use the decompositions

Cov
(
X0X|k|,XrXr+|�|

) = Cov
(
X0X|k|,X(r)

r X
(r+|�|)
r+|�|

)
+ Cov

(
X0X|k|,XrXr+|�| − X(r)

r X
(r+|�|)
r+|�|

)
and

Cov
(
X0X|k|,X(r)

r X
(r+|�|)
r+|�|

) = Cov
(
X0X

(|k|)
|k| ,X(r)

r X
(r+|�|)
r+|�|

)
+ Cov

(
X0

(
X|k| − X

(|k|)
|k|

)
,X(r)

r X
(r+|�|)
r+|�|

)
.

By Definition 2.1, X0 depends on ε0, ε−1, . . . while the random variables
X

(k)
|k| ,X

(r)
r and X

(r+|�|)
r+|�| depend on ε1, ε2, . . . , εk∨(r+|�|) and errors independent

of the εi . Therefore Cov(X0X
(|k|)
|k| ,X

(r)
r X

(r+|�|)
r+|�| ) is equal to

E
[
X0X

(|k|)
|k| X(r)

r X
(r+|�|)
r+|�|

] − E
[
X0X|k|

]
E

[
X(r)

r X
(r+|�|)
r+|�|

]
= E[X0]E[

X
(|k|)
|k| X(r)

r X
(r+|�|)
r+|�|

] − E[X0]E[
X

(|k|)
|k|

][
X(r)

r X
(r+|�|)
r+|�|

] = 0.

We thus obtain

Cov
(
X0X|k|,XrXr+|�|

) = Cov
(
X0

(
X|k| − X

(|k|)
|k|

)
,X(r)

r X
(r+|�|)
r+|�|

)
+ Cov

(
X0X|k|,XrXr+|�| − X(r)

r X
(r+|�|)
r+|�|

)
.



DEPENDENT FUNCTIONAL DATA 1873

By Assumption (4.5), it remains to verify that

N−1
∑

|k|,|�|≤q

N−1∑
r=1

∣∣Cov
(
X0X|k|,XrXr+|�| − X(r)

r X
(r+|�|)
r+|�|

)∣∣ → 0.

This is done using the technique introduced in the proof of Theorem 3.1. By the
Cauchy–Schwarz inequality, the problem reduces to showing that

N−1
∑

|k|,|�|≤q

N−1∑
r=1

{
E

[
X2

0X
2|k|

]}1/2{
E

[(
XrXr+|�| − X(r)

r X
(r+|�|)
r+|�|

)2]}1/2 → 0.

Using (A.2), this in turn is bounded by constant times

N−1
∑

|k|,|�|≤q

∞∑
r=1

{
E

[
Xr − X(r)

r

]4}1/4
,

which tends to zero by L4–m-approximability and the condition q2/N → 0. �

PROOF OF PROPOSITION 4.1. We only show the first part, the second is simi-
lar. Let ωq(h) be the Bartlett estimates satisfying Assumption 4.1. Without loss of
generality we will assume below that the constant b in (4.1) is 1. Then the element
in the kth row and �th column of �̂(β) − �̂(Ĉβ̂) is∑

|h|≤q

ωq(h)

N

∑
1≤n≤N−|h|

(
βknβ�,n+|h| − ĉkβ̂knĉ�β̂�,n+|h|

)

= ∑
|h|≤q

ωq(h)

N

∑
1≤n≤N−|h|

βkn

(
β�,n+|h| − ĉ�β̂�,n+|h|

)

+ ∑
|h|≤q

ωq(h)

N

∑
1≤n≤N−|h|

ĉ�β̂�,n+|h|(βkn − ĉkβ̂kn)

= F1(N, k, �) + F2(N, k, �).

For reasons of symmetry it is enough to estimate F1(N, k, �). We have for any
tN > 0

P
(|F1(N, k, �)| > ε

)
≤ ∑

|h|≤q

P

(
ωq(h)

N

∑
1≤n≤N−|h|

βkn

(
β�,n+|h| − ĉ�β̂�,n+|h|

)
>

ε

2q + 1

)

≤ ∑
|h|≤q

P

( ∑
1≤n≤N−|h|

β2
kn

∑
1≤n≤N−|h|

(
β�,n+|h| − ĉ�β̂�,n+|h|

)2
>

ε2N2

(2q + 1)2

)

≤ (2q + 1)P

( ∑
1≤n≤N

β2
kn > N(2q + 1)tN

)



1874 S. HÖRMANN AND P. KOKOSZKA

+ (2q + 1)P

( ∑
1≤n≤N

(β�n − ĉ�β̂�n)
2 >

ε2N

tN(2q + 1)3

)

= (2q + 1)
(
P1(k,N) + P2(�,N)

)
.

By the Markov inequality and the fact that the βkn, 1 ≤ n ≤ N , are identically
distributed, we get for all k ∈ {1, . . . , d}

(2q + 1)P1(k,N) ≤ E(β2
k1)

tN
≤ E‖Y1‖2

tN
,

which tends to zero as long as tN → ∞.
The estimation of P2(�,N) requires a little bit more effort. We notice first that

lim sup
N→∞

1

N
Var

( ∑
1≤n≤N

‖Yn‖2
)

≤ ∑
h∈Z

|Cov(‖Y1‖2,‖Yh‖2)| < ∞.(A.6)

The summability of the latter series follows by now routine estimates from (2.3).
For any x, y > 0 we have

P

( ∑
1≤n≤N

(β�n − ĉ�β̂�n)
2 > x

)

= P

( ∑
1≤n≤N

(∫
Yn(t)

(
v�(t) − ĉ�v̂�(t)

)
dt

)2

> x

)

≤ P

( ∑
1≤n≤N

‖Yn‖2‖v�(t) − ĉ�v̂�(t)‖2 > x

)

≤ P

( ∑
1≤n≤N

‖Yn‖2 > xy

)
+ P

(‖v�(t) − ĉ�v̂�(t)‖2 > x/y
)

= P21(N) + P22(�,N).

If we require that y > NE‖Y1‖2/x, then by the Markov inequality and (A.6) we
have

P21(N) ≤ κ1

(
xy√
N

− √
NE‖Y1‖2

)−2

for some constant κ1 which does not depend on N . By Theorem 3.2 and again the
Markov inequality there exists a constant κ2 such that for all � ∈ {1, . . . , d}

P22(�,N) ≤ κ2
y

xN
.

The x in the term P2(�,N) is given by

x = ε2N

tN(2q + 1)3 .
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Set y = 2NE‖Y1‖2/x. Then for all � ∈ {1, . . . , d}

P21(N) ≤ κ1
1

(E‖Y1‖2)2N
and P22(�,N) ≤ κ2

2E‖Y1‖2

ε4N2 t2
N(2q + 1)6.(A.7)

Letting tN = (2q+1)1/2 shows that under q4/N → 0 the term (2q+1)P2(�,N) →
0. This finishes the proof of Proposition 4.1. �

A.2. Proofs of Theorems 5.1 and 5.2. The proof of Theorem 5.1 relies on
Theorem A.1 of Aue et al. [5], which we state here for ease of reference.

THEOREM A.2. Suppose {ξn} is a d-dimensional L2–m-approximable mean
zero sequence. Then

N−1/2SN(·, ξ)
d→ W(ξ)(·),(A.8)

where {W(ξ)(x), x ∈ [0,1]} is a mean zero Gaussian process with covariances,

Cov(W(ξ)(x),W(ξ)(y)) = min(x, y)�(ξ).

The convergence in (A.8) is in the d-dimensional Skorokhod space Dd([0,1]).

PROOF OF THEOREM 5.1. Let

GN(x, ξ) = 1

N
Ln(x, ξ)T �̂(ξ)−1Ln(x, ξ)T .

We notice that replacing the LN(x, η̂) with LN(x, β̂) does not change the test sta-
tistic in (5.2). Furthermore, since by the second part of Proposition 4.1 |�̂(η̂) −
�̂(β̂)| = oP (1), it is enough to study the limiting behavior of the sequence
GN(x, β̂). This is done by first deriving the asymptotics of GN(x,β) and then
analyzing the effect of replacing β with β̂ .

Let β
(m)
i be the m-dependent approximations for βi which are obtained by re-

placing Yi(t) in (4.10) by Y
(m)
i (t). For a vector v in Rd we let |v| be its Euclidian

norm. Then

E
∣∣β1 − β

(m)
1

∣∣2 = E

d∑
�=1

(
β�1 − β

(m)
�1

)2

=
d∑

�=1

E

(∫ (
Y1(t) − Y

(m)
1 (t)

)
v�(t) dt

)2

≤
d∑

�=1

E

∫ (
Y1(t) − Y

(m)
1 (t)

)2
dt

∫
v2
� (t) dt

= dν2
2
(
Y1 − Y

(m)
1

)
.
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Since by Lyapunov’s inequality we have ν2(Y1 − Y
(m)
1 ) ≤ ν4(Y1 − Y

(m)
1 ), (2.3)

yields that
∑

m≥1(E|β1 − β
(m)
1 |2)1/2 < ∞. Thus Theorem A.2 implies that

1√
N

SN(x,β)
Dd [0,1]−→ W(β)(x).

The coordinatewise absolute convergence of the series �(β) follows from part (a)
of Theorem 4.2. By assumption the estimator �̂(β) is consistent, and consequently∫

GN(x,β) dx
D[0,1]−→

d∑
�=1

∫
B2

� (x) dx

follows from the continuous mapping theorem.
We turn now to the effect of changing GN(x,β) to GN(x, β̂). Due to the

quadratic structure of GN(x, ξ), we have GN(x, β̂) = GN(x, Ĉβ̂) when Ĉ =
diag(ĉ1, ĉ2, . . . , ĉd). To finish the proof it is thus sufficient to show that

sup
x∈[0,1]

1√
N

|SN(x,β) − SN(x, Ĉβ̂)| = oP (1)(A.9)

and

|�̂(β) − �̂(Ĉβ̂)| = oP (1).(A.10)

Relation (A.10) follows from Proposition 4.1. To show (A.9) we observe that by
the Cauchy–Schwarz inequality and Theorem 3.2

sup
x∈[0,1]

1

N
|SN(x,β) − SN(x, Ĉβ̂)|2

= sup
x∈[0,1]

1

N

d∑
�=1

∣∣∣∣∣
∫ �Nx�∑

n=1

Yn(t)
(
v�(t) − ĉ�v̂�(t)

)
dt

∣∣∣∣∣
2

≤ 1

N
sup

x∈[0,1]

∫ (�Nx�∑
n=1

Yn(t)

)2

dt ×
d∑

�=1

∫ (
v�(t) − ĉ�v̂�(t)

)2
dt

≤ 1

N

∫
max

1≤k≤N

(
k∑

n=1

Yn(t)

)2

dt × OP (N−1).

Define

g(t) = E|Y1(t)|2 + 2(E|Y1(t)|2)1/2
∑
r≥1

(
E

∣∣Y1+r (t) − Y
(r)
1+r (t)

∣∣2)1/2
.

Then by similar arguments as in Section A.1 we have

E

(
N∑

n=1

Yn(t)

)2

≤ Ng(t).
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Hence by Menshov’s inequality (see, e.g., Billingsley [13], Section 10) we infer
that

E max
1≤k≤N

(
k∑

n=1

Yn(t)

)2

≤ (log log 4N)2Ng(t).

Notice that (2.3) implies
∫

g(t) dt < ∞. In turn we obtain that

1

N

∫
max

1≤k≤N

(
k∑

n=1

Yn(t)

)2

dt = OP ((log logN)2),

which proves (A.9). �

PROOF OF THEOREM 5.2. Notice that if the mean function changes from
μ1(t) to μ2(t) at time k∗ = �Nθ�, then LN(x, η̂) can be written as

LN(x, β̂) + N

{
x(1 − θ)[μ̂1 − μ̂2], if x ≤ θ ;
θ(1 − x)[μ̂1 − μ̂2], if x > θ ,

(A.11)

where

μ̂1 =
[∫

μ1(t)v̂1(t) dt,

∫
μ1(t)v̂2(t) dt, . . . ,

∫
μ1(t)v̂d(t) dt

]T

and μ̂2 is defined analogously.
It follows from (A.11) that TN(d) can be expressed as the sum of three terms:

TN(d) = T1,N (d) + T2,N (d) + T3,N (d),

where

T1,N (d) = 1

N

∫ 1

0
LN(x, β̂)T �̂(η̂)−1LN(x, β̂) dx;

T2,N (d) = N

2
θ(1 − θ)[μ̂1 − μ̂2]T �̂(η̂)−1[μ̂1 − μ̂2];

T3,N (d) =
∫ 1

0
g(x, θ)LN(x, β̂)T �̂(η̂)−1[μ̂1 − μ̂2]dx,

with g(x, θ) = 2{x(1 − θ)I{x≤θ} + θ(1 − x)I{x>θ}}.
Since � in (5.4) is positive definite (p.d.), �̂(η̂) is almost surely p.d. for large

enough N (N is random). Hence for large enough N the term T1,N (d) is nonnega-
tive. We will show that N−1T2,N (d) ≥ κ1 + oP (1), for a positive constant κ1, and
N−1T3,N (d) = oP (1). To this end we notice the following. Ultimately all eigen-
values of �̂(η̂) are positive. Let λ∗(N) and λ∗(N) denote the largest, respectively,
the smallest eigenvalue. By Lemma 3.1, λ∗(N) → λ∗ a.s. and λ∗(N) → λ∗ a.s.,
where λ∗ and λ∗ are the largest and smallest eigenvalue of �. Next we claim that

|μ̂1 − μ̂2| = |μ1 − μ2| + oP (1).
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To obtain this, we use the relation ‖v̂i − ĉj vj‖ = oP (1) which can be proven sim-
ilarly as Lemma A.1 of Berkes et al. [7], but the law of large numbers in a Hilbert
space must be replaced by the ergodic theorem. The ergodicity of {Yn} follows
from the representation Yn = f (εn, εn−1, . . .). Notice that because of the presence
of a change point it cannot be claimed that ‖v̂i − ĉj vj‖ = OP (N−1/2).

It follows that if N is large enough, then

[μ̂1 − μ̂2]T �̂(η̂)−1[μ̂1 − μ̂2] >
1

2λ∗ |μ̂1 − μ̂2|2 = 1

2λ∗ |μ1 − μ2|2 + oP (1).

To verify N−1T3,N (d) = oP (1), observe that

sup
x∈[0,1]

|LN(x, β̂)T �̂(η̂)−1[μ̂1 − μ̂2]|

≤ sup
x∈[0,1]

|LN(x, β̂)| × |�̂(η̂)−1| × |μ̂1 − μ̂2|

= oP (N)|μ1 − μ2|.
We used the matrix norm |A| = sup|x|≤1|Ax| and |�̂(η̂)−1| a.s−→ |�−1| < ∞. �

A.3. Proof of Theorem 6.1. We first establish a technical bound which im-
plies the consistency of the estimator σ̂�k given in (6.2). Let ĉ� = sign(〈v�, v̂�〉)
and d̂k = sign(〈uk, ûk〉).

LEMMA A.1. Under the assumptions of Theorem 6.1 we have

lim sup
N→∞

NE|σ�k − ĉ�d̂kσ̂�k|2 ≤ κ1

(
1

α2
k

+ 1

(α′
�)

2

)
,

where κ1 is a constant independent of k and �.

PROOF. It follow from elementary inequalities that

|σ�k − ĉ�d̂kσ̂�k|2 ≤ 2T 2
1 + 2T 2

2 ,

where

T1 = 1

N

∫ ∫ (
N∑

i=1

(
Xi(s)Yi(t) − E[Xi(s)Yi(t)])

)
uk(s)v�(t) dt ds;

T2 = 1

N

N∑
i=1

∫ ∫
E[Xi(s)Yi(t)][uk(t)v�(s) − d̂kûk(t)ĉ�v̂�(s)]dt ds.

By the Cauchy–Schwarz inequality and (A.2) we obtain

T 2
1 ≤ 1

N2

∫ ∫ (
N∑

i=1

Xi(s)Yi(t) − E[Xi(s)Yi(t)]
)2

dt ds;

T 2
2 = 2ν2

2(X)ν2
2(Y )(‖uk − d̂kûk‖2 + ‖v� − ĉ�v̂�‖2).
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Hence by similar arguments as we used for the proof of Theorem 3.1 we get
NET 2

1 = O(1). The proof follows now immediately from Lemma 3.2 and The-
orem 3.1. �

Now we are ready to verify (6.4). We have

ψ̂KL(t, s) =
K∑

k=1

L∑
�=1

λ̂−1
� σ̂�kûk(t)v̂�(s).

The orthogonality of the sequences {uk} and {v�} and (6.3) imply that∫ ∫ ( ∑
k>K

∑
�>L

λ−1
� σ�kuk(t)v�(s)

)2

dt ds

= ∑
k>K

∑
�>L

∫ ∫
λ−2

� σ 2
�ku

2
k(t)v

2
� (s) dt ds

= ∑
k>K

∑
�>L

λ−2
� σ 2

�k → 0 (L,K → ∞).

Therefore, letting

ψKL(t, s) =
K∑

k=1

L∑
�=1

λ−1
� σ�kuk(t)v�(s),

(6.4) will follow once we show that∫ ∫
[ψKL(t, s) − ψ̂KL(t, s)]2 dt ds

P→ 0 (N → ∞).

Notice that by the Cauchy–Schwarz inequality the latter relation is implied by

KL

K∑
k=1

L∑
�=1

∫ ∫
[λ−1

� σ�kuk(t)v�(s) − λ̂−1
� σ̂�kûk(t)v̂�(s)]2 dt ds

P→ 0

(A.12)
(N → ∞).

A repeated application of (A.2) and some basic algebra yield
1
4 [λ−1

� σ�kuk(t)v�(s) − λ̂−1
� σ̂�kûk(t)v̂�(s)]2

≤ λ−2
� |σ�k − ĉ�d̂kσ̂�k|2û2

k(t)v̂
2
� (s) + σ̂ 2

�k|λ−1
� − λ̂−1

� |2û2
k(t)v̂

2
� (s)

+ σ 2
�kλ

−2
� |uk(t) − d̂kûk(t)|2v2

� (s) + σ 2
�kλ

−2
� |v�(s) − ĉ�v̂�(s)|2û2

k(t).

Hence
1
4

∫ ∫
[λ−1

� σ�kuk(t)v�(s) − λ̂−1
� σ̂�kûk(t)v̂�(s)]2 dt ds

≤ λ−2
� |σ�k − ĉ�d̂kσ̂�k|2 + σ̂ 2

�k|λ−1
� − λ̂−1

� |2

+ σ 2
�kλ

−2
� (‖uk − d̂kûk‖2 + ‖v� − ĉ�v̂�‖2).
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Thus in order to get (A.12) we will show that

KL

K∑
k=1

L∑
�=1

λ−2
� |σ�k − ĉ�d̂kσ̂�k|2 P→ 0;(A.13)

KL

K∑
k=1

L∑
�=1

σ̂ 2
�k|λ−1

� − λ̂−1
� |2 P→ 0;(A.14)

KL

K∑
k=1

L∑
�=1

σ 2
�kλ

−2
� (‖uk − d̂kûk‖2 + ‖v� − ĉ�v̂�‖2)

P→ 0.(A.15)

We start with (A.13). By Lemma A.1 and Assumption 6.1 we have

E

(
KL

K∑
k=1

L∑
�=1

λ−2
� |σ�k − ĉ�d̂kσ̂�k|2

)
→ 0 (N → ∞).

Next we prove relation (A.14). In order to shorten the proof we replace σ̂�k

by σ�k . Otherwise we would need a further intermediate step, requiring similar
arguments which follow. Now for any 0 < ε < 1 we have

P

(
KL

K∑
k=1

L∑
�=1

σ 2
�k|λ−1

� − λ̂−1
� |2 > ε

)

= P

(
KL

K∑
k=1

L∑
�=1

σ 2
�kλ

−2
�

∣∣∣∣ λ̂� − λ�

λ̂�

∣∣∣∣
2

> ε

)

≤ P

(
max

1≤�≤L

∣∣∣∣ λ̂� − λ�

λ̂�

∣∣∣∣
2

>
ε

�KL

)

≤
L∑

�=1

P

(∣∣∣∣ λ̂� − λ�

λ̂�

∣∣∣∣
2

>
ε

�KL
∩ |λ� − λ̂�| < ελ�

)

+
L∑

�=1

P

(∣∣∣∣ λ̂� − λ�

λ̂�

∣∣∣∣
2

>
ε

�KL
∩ |λ� − λ̂�| ≥ ελ�

)

≤
L∑

�=1

[
P

(
|λ̂� − λ�|2 >

ε

�KL
λ�(1 − ε)

)
+ P(|λ� − λ̂�|2 ≥ ε2λ2

�)

]

≤ κ2

(
KL2

εNλL

+ 1

εNλ2
L

)
,

by an application of the Markov inequality and Theorem 3.2. According to our
Assumption 6.1 this also goes to zero for N → ∞.
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Finally we prove (A.15). By Lemma 3.2 and Theorem 3.1 we infer that

E

(
KL

K∑
k=1

L∑
�=1

σ 2
�kλ

−2
� (‖uk − d̂kûk‖2 + ‖v� − ĉ�v̂�‖2)

)

≤ κ3
KL

N

K∑
k=1

L∑
�=1

σ 2
�kλ

−2
�

(
1

α2
k

+ 1

α′
�

2

)

≤ 2κ3�
KL

N min{hL,h′
K}2 .

Assumption 6.1(ii) assures that the last term goes to zero. The proof is now com-
plete.
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