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We develop a new method for constructing “good” designs for computer
experiments. The method derives its power from its basic structure that builds
large designs using small designs. We specialize the method for the construc-
tion of orthogonal Latin hypercubes and obtain many results along the way.
In terms of run sizes, the existence problem of orthogonal Latin hypercubes
is completely solved. We also present an explicit result showing how large or-
thogonal Latin hypercubes can be constructed using small orthogonal Latin
hypercubes. Another appealing feature of our method is that it can easily
be adapted to construct other designs; we examine how to make use of the
method to construct nearly orthogonal and cascading Latin hypercubes.

1. Introduction. Scientists are increasingly using experiments on computer
simulators to help understand physical systems. Computer experiments differ from
physical experiments in that the systems are usually deterministic, and thus the
response in computer experiments is unchanged if a design point is replicated.
The lack of random error presents challenges to both the design and analysis of
experiments [e.g., see Sacks et al. (1989)].

Similar to physical experiments, computer experiments are performed with a
variety of goals in mind. Objectives include factor screening [Welch et al. (1992),
Linkletter et al. (2006)], building an emulator of the simulator [Sacks et al. (1989)],
optimization [Jones, Schonlau and Welch (1998)] and model calibration [Kennedy
and O’Hagan (2001)]. Latin hypercube designs [McKay, Beckman and Conover
(1979)] are commonly used for computer experiments. These designs have the
feature that when projected onto one dimension, the equally-spaced design points
ensure that each of the input variables has all portions of its range represented.

While constructing Latin hypercube designs is fairly easy, it is more challenging
to find these designs when optimality criteria are imposed. For details of optimal-
ity criteria, see Shewry and Wynn (1987), Morris and Mitchell (1995), Joseph and
Hung (2008) and the references therein. In this article, we focus on the orthogo-
nality of Latin hypercubes. Ye (1998), Steinberg and Lin (2006) and Cioppa and
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Lucas (2007) developed methods for constructing orthogonal Latin hypercubes.
These methods all have restrictions on the run size n. The approach of Ye (1998)
and Cioppa and Lucas (2007) gives designs for n = 2k or 2k +1, and the method of
Steinberg and Lin (2006) provides designs for n = 22k

where k ≥ 2 is an integer.
Practitioners would appreciate a methodology that can quickly produce designs
with more flexible run sizes.

In this article, a new construction is proposed for finding “good” Latin hyper-
cube designs for computer experiments. The method is simple and uses small de-
signs to construct larger designs with desirable properties. Our methodology is
quite powerful insofar as it allows orthogonal Latin hypercubes to be constructed
for any run size n where n �= 4k + 2. When n = 4k + 2, we prove that an orthog-
onal Latin hypercube does not exist. Another important feature of our method is
that it can easily be adapted to construct nearly orthogonal Latin hypercubes and
cascading Latin hypercubes [Handcock (1991)].

The article is outlined as follows. Section 2 introduces notation, presents a gen-
eral method of construction and discusses how to obtain Latin hypercubes based
on this general structure. Section 3 devotes itself to the construction of orthogonal
Latin hypercubes. Besides several general theoretical results and many concrete
examples, an existence result is also established here. In Section 4, we examine
how the general method can be used to construct nearly orthogonal Latin hyper-
cubes. We conclude the article with some remarks in Section 5. The proofs for
some theoretical results are deferred to Appendix for a smooth flow of the main
ideas and results.

2. A general method of construction. Consider designs of n runs with
m factors of s levels where 2 ≤ s ≤ n. Without loss of generality, the s lev-
els are taken to be centered at zero and equally spaced. For odd s, the levels
are taken as −(s − 1)/2, . . . ,−1,0,1, . . . , (s − 1)/2, and for even s, they are
−(s − 1)/2, . . . ,−1/2,1/2, . . . , (s − 1)/2. The levels, except for level 0 in the
case of odd s, are assumed to be equally replicated in each design column to en-
sure that linear main effects are all orthogonal to the grand mean. Such a design is
denoted by D(n, sm) and can be represented by an n × m matrix D = (dij ) with
entries from the set of s levels as described above. In this notation, an m-factor
Latin hypercube design is a D(n, sm) with n = s.

2.1. Construction method. Let A = (aij )n1×m1 be a matrix with entries aij =
±1, B = (bij )n2×m2 be a D(n2, s

m2
2 ), C = (cij )n1×m1 be a D(n1, s

m1
1 ) and D =

(dij )n2×m2 be a matrix with entries dij = ±1. Let γ be a real number. New designs
are found using the following construction:

L = A ⊗ B + γC ⊗ D,(2.1)
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where the Kronecker product A ⊗ B is the n1n2 × m1m2 matrix,

A ⊗ B =

⎡
⎢⎢⎢⎣

a11B a12B · · · a1m1B

a21B a22B · · · a2m1B
...

...
. . .

...

an11B an12B · · · an1m1B

⎤
⎥⎥⎥⎦

with aijB itself being an n2 × m2 matrix. The resulting design L in (2.1) has
n = n1n2 runs and m = m1m2 factors.

The above construction has an interesting interpretation. As an illustration, con-
sider a simple case in which A = (1,1)T and C = (1/2,−1/2)T . Design L in (2.1)
has a column,

⎛
⎜⎝

b + γ

2
d

b − γ

2
d

⎞
⎟⎠ ,(2.2)

where b is a column of B and d is a column of D. Further let d = (d1, . . . , dn2)
T .

Since di = ±1, the column (2.2) can be viewed as simultaneously shifting each
level in b to the left and the right by γ /2. If we view b as a block of level settings,
then we are shifting two identical blocks b, one to the left and the other to the
right. We will show in Section 2.2 that with the appropriate choices of A, B , C, D

and γ , the levels in each column of L in (2.1) are equally spaced and unreplicated,
thus resulting in a Latin hypercube.

Now consider all m columns of L under this simple case. Each one-dimensional
block b becomes an m-dimensional stratum, B . Suppose D is a matrix of plus ones.
Then the design points in B + γD/2 can be obtained by shifting the entire stratum
B to the right by γ /2. Similarly, the design points in B −γD/2 can be obtained by
shifting the entire stratum B to the left by γ /2. In this case, closely clustered points
in each stratum are expected. This feature can be utilized to construct cascading
Latin hypercubes [Lin (2008)].

We shall see that the orthogonality or near orthogonality of L in (2.1) is deter-
mined by the orthogonality or near orthogonality of A, B , C and D, the correla-
tions between the columns in A and those in C, and the correlations between the
columns in B and those in D. As a result, the method allows orthogonal and nearly
orthogonal Latin hypercubes to be easily constructed.

Vartak (1955) appears to be the first to use the Kronecker product systematically
to construct statistical experimental designs. In a recent work, Bingham, Sitter and
Tang (2009) introduced a method for constructing a rich class of designs that are
suitable for use in computer experiments. Their approach corresponds to γ = 0 in
the general construction given in (2.1). The designs in that paper have many levels
and are not Latin hypercubes in general.
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2.2. Latin hypercubes. The following result shows how to obtain Latin hyper-
cubes from the construction in (2.1).

LEMMA 1. Let γ = n2. Then design L in (2.1) is a Latin hypercube if:

(i) both B and C are Latin hypercubes and
(ii) at least one of the following two conditions is true:

(a) A and C satisfy that for any i, if p and p′ are such that cpi = −cp′i ,
then api = ap′i ;

(b) B and D satisfy that for any j , if q and q ′ are such that bqj = −bq ′j ,
then dqj = dq ′j .

The proof is given in the Appendix. Just in terms of constructing Latin hy-
percubes, Lemma 1 is not of much significance in itself as one can easily obtain
a Latin hypercube simply by combining several permutations of the set of levels.
The significance of Lemma 1 lies in the fact that it produces Latin hypercubes with
the structure in (2.1) and thus provides a path to the construction of orthogonal and
cascading Latin hypercubes.

Condition (i) in Lemma 1 is not really a condition, and it simply tells us to
choose B and C to be Latin hypercubes. In order for L to be a Latin hypercube,
the only mild condition is that in (ii) of Lemma 1. Two situations where condition
(ii) is obviously met are as follows: (α) C has a foldover structure in the sense that
C = (CT

0 ,−CT
0 )T , and A has the form A = (AT

0 ,AT
0 )T ; (β) A or D is a matrix

of all plus ones. Both situations are useful. Theorem 3 of Section 3.3 is derived
under situation (α). Situation (β) can be used for constructing cascading Latin
hypercubes. We now give an example to illustrate Lemma 1.

EXAMPLE 1. Consider the construction of Latin hypercubes of 32 runs with
32 factors. We choose n1 = m1 = 2 and n2 = m2 = 16 so that n = n1n2 = 32 and
m = m1m2 = 32. To meet condition (ii) in Lemma 1, let A be a matrix of all plus
ones. Now let γ = n2 = 16 and D = (dij ) be any 16 × 16 matrix of ±1. For L

in (2.1) to be a Latin hypercube, we need both B and C to be Latin hypercubes.
Let us use C = [(1/2,−1/2)T , (−1/2,1/2)T ]T and B = B0/2 where B0 is listed
in Table 1. According to Lemma 1, design L in (2.1) is then a 32 × 32 Latin
hypercube.

3. Constructing orthogonal Latin hypercubes. We first consider in Sec-
tion 3.1 the construction of orthogonal Latin hypercubes with run sizes n that
are multiples of eight. The results here are offered directly by the construction
in (2.1). In Section 3.2, additional techniques are employed for constructing or-
thogonal Latin hypercubes of other run sizes. Results from the application of the
methods in Sections 3.1 and 3.2 are presented in Section 3.3.
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TABLE 1
Design matrix of B0 in Example 1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−15 5 9 −3 7 11 −11 7 −9 3 −15 5 11 −11 7 −7
−13 1 1 13 −7 −11 11 −7 −1 −13 −13 1 13 5 5 −3
−11 7 −7 −11 13 −1 −1 −13 9 −3 15 −5 −5 11 −7 7
−9 3 −15 5 −13 1 1 13 1 13 13 −1 −13 −5 −5 3
−7 −11 11 −7 11 −7 7 11 5 15 −3 −9 −9 3 9 11
−5 −15 3 9 −11 7 −7 −11 13 −1 −1 −13 −1 9 11 15
−3 −9 −5 −15 1 13 13 −1 −5 −15 3 9 1 7 −11 −11
−1 −13 −13 1 −1 −13 −13 1 −13 1 1 13 9 −9 −9 −15

1 13 13 −1 −9 3 −15 5 11 −7 7 11 −7 −7 −15 −9
3 9 5 15 9 −3 15 −5 3 9 5 15 −15 −13 −13 −13
5 15 −3 −9 −3 −9 −5 −15 −11 7 −7 −11 15 −3 15 9
7 11 −11 7 3 9 5 15 −3 −9 −5 −15 7 15 13 13
9 −3 15 −5 −5 −15 3 9 −7 −11 11 −7 5 13 −3 5

11 −7 7 11 5 15 −3 −9 −15 5 9 −3 3 −1 −1 1
13 −1 −1 −13 −15 5 9 −3 7 11 −11 7 −11 −15 3 −5
15 −5 −9 3 15 −5 −9 3 15 −5 −9 3 −3 1 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

3.1. Orthogonal Latin hypercubes of n = 8k runs. A design or matrix X =
(x1, . . . , xm) is said to be orthogonal if the inner product of any two columns is
zero, that is, xT

i xj = 0 for all i �= j . The next result provides a set of sufficient
conditions for design L in (2.1) to be orthogonal.

LEMMA 2. Design L in (2.1) is orthogonal if:

(i) A, B , C and D are all orthogonal, and
(ii) at least one of the two, AT C = 0 and BT D = 0, holds.

The proof is simple, making use of the following properties of the Kronecker
product:

(A ⊗ B)T = AT ⊗ BT and (A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD).(3.1)

Lemma 1 tells how to make L in (2.1) a Latin hypercube whereas Lemma 2 tells
how to make it orthogonal. When the two lemmas are combined, we have a way
of obtaining orthogonal Latin hypercubes.

THEOREM 1. Let γ = n2. Then design L in (2.1) is an orthogonal Latin hy-
percube if:

(i) A and D are orthogonal matrices of ±1;
(ii) B and C are orthogonal Latin hypercubes;

(iii) at least one of the two, AT C = 0 and BT D = 0, is true;
(iv) at least one of the following two conditions is true:

(a) A and C satisfy that for any i, if p and p′ are such that cpi = −cp′i ,
then api = ap′i ;
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(b) B and D satisfy that for any j , if q and q ′ are such that bqj = −bq ′j ,
then dqj = dq ′j .

The role played by A and D is very different from that of B and C in Theorem 1.
To help understand Theorem 1, one may think that B and C are the building mater-
ial while A and D provide a blueprint for the construction. Small orthogonal Latin
hypercubes B and C are used to construct a large orthogonal Latin hypercube L in
Theorem 1. Exactly how the construction is accomplished is guided by A and D

which are orthogonal matrices of ±1. In addition to the right blueprint and build-
ing material, a considerable amount of care is necessary for the final structure to
be right. This is achieved via γ = n2 and conditions (iii) and (iv) in Theorem 1.

Note that A and D may or may not be square matrices, and the orthogonality
of A and D is imposed on their columns. In some mathematics literature, such
matrices are called Hadamard submatrices. For convenience, we simply call A or
D an orthogonal matrix when its columns are orthogonal. Hadamard matrices and
orthogonal arrays with levels ±1 are all such orthogonal matrices in our termi-
nology. A Hadamard matrix is a square orthogonal matrix of ±1. An orthogonal
array with two levels ±1 requires that each of the four combinations (−1,−1),
(−1,+1), (+1,−1) and (+1,+1) occurs the same number of times in every two
columns. For some comprehensive discussion on these and other topics in the the-
ory of factorial designs, we refer to Dey and Mukerjee (1999), Hedayat, Sloane
and Stufken (1999) and Mukerjee and Wu (2006).

Because of the orthogonality of A and D, we must have that n1 and n2 are equal
to two or multiples of four. The case where n1 = n2 = 2 is trivial. Consequently,
Theorem 1 can be used to construct orthogonal Latin hypercubes of n = 8k runs,
thereby providing designs that are unavailable in Ye (1998) and Steinberg and Lin
(2006). When n = n1n2 is a multiple of 16, Theorem 1 becomes more powerful.
This point will be highlighted in Section 3.3. We now revisit Example 1 for an
illustration of Theorem 1.

EXAMPLE 2. In Example 1, the first 12 columns of B form a 16-run orthog-
onal Latin hypercube constructed by Steinberg and Lin (2006). If D is chosen to
be a Hadamard matrix of order 16 in Example 1, Theorem 1 tells us the first 12
columns of L in Example 1 constitute a 32×12 orthogonal Latin hypercube which
has one more orthogonal factor than the 32 × 11 orthogonal Latin hypercube ob-
tained by Cioppa and Lucas (2007).

When n1 = n2, a stronger result than Theorem 1 can be established, again using
the properties of the Kronecker product given in (3.1).

PROPOSITION 1. If n1 = n2 = n0 and A,B,C,D and γ are chosen according
to Theorem 1, then design (L,U ) is an orthogonal Latin hypercube with 2m1m2
factors where L is as in Theorem 1 and U = −n0A ⊗ B + C ⊗ D.
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We now discuss how to choose A,B,C,D and γ to construct orthogonal Latin
hypercubes. According Theorem 1, we have that γ = n2. Matrices A and D need to
be orthogonal with entries of ±1. As discussed earlier, two level orthogonal arrays
and Hadamard matrices are all such orthogonal matrices. Theorem 1 requires that
designs B and C be orthogonal Latin hypercubes. All known orthogonal Latin
hypercubes from the existing literature can be used here. Later in this paper (see
Table 3), we obtain a collection of small orthogonal Latin hypercubes through
a computer search for this purpose. So far, all are straightforward. The nontrivial
aspect from applying Theorem 1 is to satisfy conditions (iii) and (iv) which require
that A and C (or B and D) jointly have certain properties. In this paper, we satisfy
these two conditions by choosing A of form A = (AT

0 ,AT
0 )T and C of form C =

(CT
0 ,−CT

0 )T where A0 and C0 are such that all the columns in the matrix,

(A,C) =
[
A0 C0
A0 −C0

]
,(3.2)

are mutually orthogonal. In Section 3.3 we provide a method of finding such or-
thogonal matrices with the structure in (3.2) when proving Theorem 3. Comments
similar to those in this paragraph can also be made regarding the application of
Proposition 2 in Section 3.2.

3.2. Orthogonal Latin hypercubes with other run sizes. Consider an orthogo-
nal Latin hypercube of n runs with m ≥ 2 factors. Trivially, run size n cannot be
two or three. So we must have n ≥ 4. The next result provides a complete charac-
terization of the existence of an orthogonal Latin hypercube in terms of run size n.

THEOREM 2. There exists an orthogonal Latin hypercube of n ≥ 4 runs with
more than one factor if and only if n �= 4k + 2 for any integer k.

The Appendix contains a proof for Theorem 2. Equivalently, Theorem 2 says
that the run size of an orthogonal Latin hypercube has to be odd or a multiple
of 4. Theorem 1 provides a method for constructing orthogonal Latin hypercubes
of n = 8k runs. The present section examines how to construct orthogonal Latin
hypercubes of other run sizes.

The basic idea of our method is quite simple. To obtain an orthogonal Latin
hypercube, we stack up two orthogonal designs with mutually exclusive and ex-
haustive sets of levels. To make it precise, we use S to denote the set of n levels of
a Latin hypercube of n runs. Let S = Sa ∪ Sb where Sa ∩ Sb = φ, and let na and
nb be the numbers of levels in Sa and Sb, respectively. Suppose that there exist an
na × m orthogonal design Da with levels in Sa and an nb × m orthogonal design
Db with levels in Sb, where for both Da and Db, each level appears precisely once
within each column. Then

L =
(

Da

Db

)
(3.3)
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is an n × m orthogonal Latin hypercube with n = na + nb. Note that Da and Db

themselves are not necessarily Latin hypercubes.
We consider two special choices for Sa and Sb. For easy reference later in the

paper, we call them two stacking methods. Our first stacking method chooses na

and nb such that |na − nb| = 1 with the corresponding Sa = {−(na − 1),−(na −
3), . . . , na − 3, na − 1} and Sb = {−(nb − 1),−(nb − 3), . . . , nb − 3, nb − 1}. This
implies that both Da/2 and Db/2 in (3.3) are orthogonal Latin hypercubes. We
may assume that na is odd and nb is even in the above. By Theorem 2, we know
that nb has form 4k. It follows that na has form 4k − 1 or 4k + 1. Thus the first
stacking method allows orthogonal Latin hypercubes of run sizes 8k−1 and 8k+1
to be constructed.

The second stacking method is more generally applicable and it chooses Sa =
{−(na − 1)/2,−(na − 3)/2, . . . , (na − 3)/2, (na − 1)/2} and

Sb = {−(n − 1)/2, . . . ,−(na + 1)/2, (na + 1)/2, . . . , (n − 1)/2},(3.4)

where n = na + nb. For this choice, Da is an orthogonal Latin hypercube while
Db is not. We examine how to construct an orthogonal design Db with level set
Sb given in (3.4). Now consider the matrices in Table 2. Each of the four matri-
ces in Table 2 has the following properties: (i) it has real entries ±x1, . . . ,±xn/2;
(ii) both xi and −xi occur exactly once in each column; (iii) every two columns are
orthogonal. We note that the matrices in Table 2 are related to but different from
orthogonal designs in the combinatorics literature [Geramita and Seberry (1979)].

The matrices in Table 2 can be used to construct orthogonal Latin hypercubes
of n runs by setting xi = (2i − 1)/2 for i = 1, . . . , n/2. They also provide a di-
rect construction of orthogonal designs Db with level set Sb in (3.4) by choosing
xi = (na + 2i − 1)/2 for i = 1, . . . , nb/2. Most importantly, they are useful in the
following result that allows us to construct Db with level set Sb in (3.4) for more
general nb.

PROPOSITION 2. Let γ = 1. Then design L in (2.1) is an orthogonal design
with level set {−(na +n−1)/2, . . . ,−(na +1)/2, (na +1)/2, . . . , (na +n−1)/2}
if:

(i) A and D are orthogonal matrices of ±1;
(ii) B is an orthogonal Latin hypercube, and C is an orthogonal design with

level set ±(na + n2)/2,±(na + 3n2)/2, . . . ,±(na + (n1 − 1)n2)/2;
(iii) at least one of the two, AT C = 0 and BT D = 0, is true;
(iv) at least one of the following two conditions is true:

(a) A and C satisfy that for any i, if p and p′ are such that cpi = −cp′i ,
then api = ap′i ;

(b) B and D satisfy that for any j , if q and q ′ are such that bqj = −bq ′j ,
then dqj = dq ′j .
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TABLE 2
Four useful matrices

n

2 4 8 16

x1 x1 x2 x1 −x2 x4 x3 x1 −x2 −x4 −x3 −x8 x7 x5 x6

−x1 x2 −x1 x2 x1 x3 −x4 x2 x1 −x3 x4 −x7 −x8 −x6 x5

−x1 −x2 x3 −x4 −x2 −x1 x3 −x4 x2 x1 −x6 −x5 x7 −x8

−x2 x1 x4 x3 −x1 x2 x4 x3 x1 −x2 −x5 x6 −x8 −x7

−x1 x2 −x4 −x3 x5 −x6 −x8 x7 x4 x3 −x1 −x2

−x2 −x1 −x3 x4 x6 x5 −x7 −x8 x3 −x4 x2 −x1

−x3 x4 x2 x1 x7 −x8 x6 −x5 x2 −x1 −x3 x4

−x4 −x3 x1 −x2 x8 x7 x5 x6 x1 x2 x4 x3

−x1 x2 x4 x3 x8 −x7 −x5 −x6

−x2 −x1 x3 −x4 x7 x8 x6 −x5

−x3 x4 −x2 −x1 x6 x5 −x7 x8

−x4 −x3 −x1 x2 x5 −x6 x8 x7

−x5 x6 x8 −x7 −x4 −x3 x1 x2

−x6 −x5 x7 x8 −x3 x4 −x2 x1

−x7 x8 −x6 x5 −x2 x1 x3 −x4

−x8 −x7 −x5 −x6 −x1 −x2 −x4 −x3

Orthogonality of design L follows from Lemma 2. That L has a desired set of
levels can easily be established which follows a similar path to that for Lemma 1.
Comparing Proposition 2 with Theorem 1, we see that the only changes are those
made to γ and C. Mathematically, Theorem 1 is a special case of Proposition 2
as one can obtain the former from the latter by setting na = 0. We present them
separately because they carry different messages and serve different purposes in
this paper.

Design C required in Proposition 2 can easily be obtained from the matrices in
Table 2. By letting n = nb in Proposition 2, design L in Proposition 2 can then
used as our Db as it has desired level set Sb in (3.4). The run size nb of such
Db has form nb = 8k. Since there is no restriction in the run size na of Da , other
than that Da is an orthogonal Latin hypercube, this second stacking method allows
orthogonal Latin hypercubes of any run size n �= 4k + 2 to be constructed.

TABLE 3
The maximum number m of columns in OLH(n,m) by the algorithm for 4 ≤ n ≤ 21

n 4 5 7 8 9 11 12 13 15 16 17 19 20 21

m 2 2 3 4 5 7 6 6 6 12 6 6 6 6
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EXAMPLE 3. In Example 2, if we choose γ = 1 and let C = (−17/2,17/2)T ,
Proposition 2 gives an orthogonal design Db of nb = 32 runs for 12 factors, where
each column of Db is a permutation of −16,−15, . . . ,−1, 1, . . . ,15,16. Now let
na = 1 and Da be a row of zeros. Then stacking up Da and Db gives a 33 × 12
orthogonal Latin hypercube.

3.3. Some results. The methods in Sections 3.1 and 3.2 both build large or-
thogonal Latin hypercubes from small ones. To apply the methods, we need to find
orthogonal Latin hypercubes with small runs. Various efficient algorithms can be
helpful in this regard. Lin (2008) reported an algorithm adapted from that of Xu
(2002). The key idea of the algorithm is to add columns sequentially to an exist-
ing design. To add a column, two operations, pairwise switch and exchange, are
used. A pairwise switch switches a pair of distinct levels in a column. For a candi-
date column, the algorithm searches for all possible pairwise switches and makes
the pairwise switch that achieves the best improvement. This search and pairwise
switch procedure is repeated until an orthogonal Latin hypercube is found. An
exchange replaces the candidate column by a randomly generated column. The
exchange step is repeated at most T1 (user-specified) times if no orthogonal Latin
hypercube is obtained. Since the procedure relies on the initial random columns,
the entire procedure is repeated T2 times. Apart from the sequential idea, the ef-
ficiency of the algorithm benefits from its fast updates of orthogonality. An up-
date is needed when a pairwise switch is applied. The maximum number m of the
columns in orthogonal Latin hypercubes of n runs found by the algorithm is given
in Table 3 for 4 ≤ n ≤ 21 except for n = 16, in which case, our algorithm finds
m = 6. The entry m = 12 for n = 16 in Table 3 is due to Steinberg and Lin (2006).
The detailed design matrices for the orthogonal Latin hypercubes in Table 3 are
presented in Lin (2008) and also available from the authors.

For a concise presentation of the results in this section, we use OLH(n,m) to
denote an orthogonal Latin hypercube of n runs for m factors. We now present a
general result from the application of Theorem 1 in Section 3.1 and the second
stacking method in Section 3.2.

THEOREM 3. Suppose that an OLH(n,m) is available where n is a multiple
of 4 such that a Hadamard matrix of order n exists. Then we have that:

(i) the following orthogonal Latin hypercubes, an OLH(2n,m), an OLH(4n,
2m), an OLH(8n,4m) and an OLH(16n,8m), can all be constructed;

(ii) all the following orthogonal Latin hypercubes, an OLH(2n + 1,m), an
OLH(4n + 1,2m), an OLH(8n + 1,4m) and an OLH(16n + 1,8m) can also be
constructed.

We give a proof for Theorem 3. The proof in fact provides a detailed proce-
dure for the actual construction of these orthogonal Latin hypercubes. Part (i) of
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Theorem 3 results from an application of Theorem 1 in Section 3.1. In the general
construction (2.1), we choose B to be the given OLH(n,m). Matrix D is obtained
by taking m columns from a Hadamard matrix of order n. Design C is chosen to
be an orthogonal Latin hypercube derived from a matrix in Table 2. Note that each
of the four matrices in Table 2 has a fold-over structure in that it can be written
as (XT ,−XT )T . Now let A = (ST , ST )T where S is obtained from X by setting
xi = 1 for all i. With the above choices for A, B , C and D, conditions (i), (ii),
(iii) and (iv) in Theorem 1 are all satisfied. This proves part (i) of Theorem 3. The
proof for part (ii) of Theorem 3 is similar, involving the second stacking method
with na = 1 and an application of Proposition 2.

Theorem 3 is a very powerful result. By repeated application of Theorem 3,
one can obtain many infinite series of orthogonal Latin hypercubes. For example,
starting with an OLH(12,6) from Table 3, we can obtain an OLH(192,48) which
can be used in turn to construct an OLH(768,96) and so on. For another exam-
ple, an OLH(256,248) in Steinberg and Lin (2006) can be used to construct an
OLH(1024,496), an OLH(4096,1984) and so on.

One important problem in the study of orthogonal Latin hypercubes is to deter-
mine the maximum number m∗ of factors for an OLH(n,m∗) to exist. Theorem 2
says that m∗ = 1 if n is 3 or has form n = 4k + 2 and that m∗ ≥ 2 otherwise. This
result is now strengthened below.

PROPOSITION 3. The maximum number m∗ of factors for an orthogonal Latin
hypercube of n = 16k + j runs has a lower bound given below:

(i) m∗ ≥ 6 for all n = 16k + j where k ≥ 1 and j �= 2,6,10,14;
(ii) m∗ ≥ 7 for n = 16k + 11 where k ≥ 0;

(iii) m∗ ≥ 12 for n = 16k,16k + 1 where k ≥ 2;
(iv) m∗ ≥ 24 for n = 32k,32k + 1 where k ≥ 2;
(v) m∗ ≥ 48 for n = 64k,64k + 1 where k ≥ 2.

Part (i) of Proposition 3 is obtained as follows. By our second stacking method
with the use of the 16 × 8 matrix in Table 2, we can construct an OLH(n + 16,m)

where m ≤ 8 if an OLH(n,m) is available. Part (i) of Proposition 3 will be
true if we can claim that an OLH(n,6) exists for all 17 ≤ n ≤ 32 except for
n = 18,22,26,30. We already know that the claim is true for n = 17,19,20,21
from Table 3 and for n = 32 from Example 2. Note that an OLH(11,6) can be ob-
tained by choosing any six columns from the OLH(11,7) in Table 3. For n = 23,
we use the first stacking method by choosing na = 11 and nb = 12 and using an
OLH(11,6) and the OLH(12,6) in Table 3. The case n = 24 follows from apply-
ing part (i) of Theorem 3 to the OLH(12,6) in Table 3. For n = 25, an OLH(25,6)

can be constructed using the first stacking method with na = 13 and nb = 12. For
n = 27, we apply the second stacking method by choosing na = 11 and nb = 16.
The second stacking method also allows the construction of an OLH(28,6), an
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OLH(29,6) and an OLH(31,6). We choose na = 12 and nb = 16 for n = 28,
na = 13 and nb = 16 for n = 29, and na = 15 and nb = 16 for n = 31. Part (ii)
follows from the existence of an OLH(11,7) in Table 3. Parts (iii), (iv) and (v)
follows from an application of Theorem 3.

The following remarks are in order regarding Proposition 3. If we wish, we can
obtain sharper lower bounds on m∗ for certain values of n by applying Theorem 3.
For example, using the OLH(12,6) in Table 3, we can establish that m∗ ≥ 6 × 8k

for n = 12 × 16k . We will not dwell further on this issue but are satisfied with the
general lower bound in Proposition 3. The lower bound in Proposition 3 is derived
from the small orthogonal Latin hypercubes found by our algorithm. Therefore,
improved bounds will be naturally available in the future if better results are ob-
tained from computer search.

Lin (2008) in her thesis provides a comprehensive table of orthogonal Latin
hypercubes for all n ≤ 256. Here we present the results in Table 4 for the case
where n is a multiple of 16. The first column is the run size and the second column
is the number of factors obtained by our methods. Those entries marked with an
∗ are given by Proposition 1. The remaining columns of Table 4 give the number
of factors obtained by the methods of Ye (1998), Steinberg and Lin (2006) and
Cioppa and Lucas (2007). Table 4 clearly shows that our methods can provide
orthogonal Latin hypercubes when other methods cannot be applied. When other
methods are applicable, our methods give many more factors than these existing

TABLE 4
Orthogonal Latin hypercubes of n = 16k runs where k ≥ 2

n m Ye SL CL

32 12 8 0 11
48 12 0 0 0
64 32∗ 10 0 16
80 12 0 0 0
96 24 0 0 0

112 12 0 0 0
128 48 12 0 22
144 24∗ 0 0 0
160 24 0 0 0
176 12 0 0 0
192 48 0 0 0
208 12 0 0 0
224 24 0 0 0
240 12 0 0 0
256 192∗ 14 248 29

Note: Ye: the number of orthogonal columns by Ye (1998); SL: the
number of orthogonal columns by Steinberg and Lin (2006); CL: the
number of orthogonal columns by Cioppa and Lucas (2007).
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methods with the only exception given by n = 256, for which case Steinberg and
Lin (2006) found an OLH(256,248).

4. Nearly orthogonal Latin hypercubes. The general construction in (2.1)
is very versatile and can also be used to construct nearly orthogonal and cascading
Latin hypercubes. Due to space limitation, we omit the discussion on cascading
Latin hypercubes and refer the reader to Lin (2008). In what follows, we provide a
brief discussion on nearly orthogonal Latin hypercubes; interested readers can find
more details in Lin’s thesis (2008).

To assess near orthogonality, we adopt two measures defined in Bingham, Sit-
ter and Tang (2009). For a design D = (d1, . . . , dm), where dj is the j th column
of D, define ρij (D) to be dT

i dj /[dT
i did

T
j dj ]1/2. If the mean of the level settings

in dj for all j = 1, . . . ,m is zero, then ρij (D) is simply the correlation coefficient
between columns di and dj . Near orthogonality can be measured by the maxi-
mum correlation ρM(D) = maxi,j |ρij (D)| and the average squared correlation
ρ2(D) = ∑

i<j ρ2
ij (D)/[(m(m − 1)/2]. Smaller values of ρM(D) and ρ2(D) im-

ply near orthogonality. Obviously, if ρM(D) = 0 or ρ2(D) = 0, then an orthogonal
Latin hypercube is obtained. The following result shows how the method in (2.1)
can be used to construct nearly orthogonal Latin hypercubes.

PROPOSITION 4. Suppose that A, B , C, D and γ in (2.1) are chosen accord-
ing to Lemma 1 so that design L in (2.1) is a Latin hypercube. In addition, we
assume that A and D are orthogonal and that at least one of the two, AT C = 0
and BT D = 0, holds true. We then have that:

(i) ρ2(L) = w1ρ
2(B) + w2ρ

2(C);
(ii) ρM(L) = Max{w3ρM(B),w4ρM(C)},

where w1, w2, w3 and w4 are given by w1 = (m2 −1)(n2
2 −1)2/[(m1m2 −1)(n2 −

1)2], w2 = n4
2(m1 − 1)(n2

1 − 1)2/[(m1m2 − 1)(n2 − 1)2], w3 = (n2
2 − 1)/(n2 − 1)

and w4 = n2
2(n

2
1 − 1)/(n2 − 1).

The proof for Proposition 4 is in the Appendix. Proposition 4 says that if B and
C are nearly orthogonal, the resulting Latin hypercube L is also nearly orthogonal.
An example, illustrating the use of this result, is considered below.

EXAMPLE 4. Let A = (1,1)T , C = (1/2,−1/2)T , and γ = 16. Choose a
16 × 15 nearly orthogonal Latin hypercube B = B0/2 where B0 is displayed in
Table 5, and B has ρ2(B) = 0.0003 and ρM(B) = 0.0765. Taking any 15 columns
of a Hadamard matrix of order 16 to be D and then applying (2.1), we obtain
a Latin hypercube L of 32 runs and 15 factors. As ρ2(C) = ρM(C) = 0, we
have ρ2(L) = (n2

2 −1)2ρ2(B)/(n2 −1)2 = 0.0621ρ2(B) = 0.00002 and ρM(L) =
(n2

2 − 1)ρM(B)/(n2 − 1) = 0.2493ρM(B) = 0.0191.
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TABLE 5
Design matrix of B0 in Example 4

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−15 15 −13 13 −5 −13 5 3 −1 5 −7 5 −9 −9 5
−13 −15 −3 3 7 3 15 −11 13 −5 7 −13 −7 −3 −3
−11 −9 −5 −11 −15 13 −5 11 −9 9 9 3 −5 −1 −11
−9 −1 9 −15 −11 1 −1 −13 5 −1 −15 7 1 3 15
−7 1 −7 7 15 15 −13 9 −5 −13 −3 −1 −1 7 13
−5 13 11 −5 9 −7 −3 −9 −13 11 13 −9 −3 13 1
−3 −5 13 15 −9 −9 −11 1 7 −9 15 11 9 1 −1
−1 −11 3 −7 11 −15 13 15 −7 −3 −9 9 7 9 −5

1 3 −9 −3 −1 −5 −15 −1 11 3 −11 −15 15 5 −15
3 −3 15 11 3 9 1 −7 −15 1 −13 −3 3 −15 −9
5 9 7 −1 5 11 9 13 15 15 5 1 11 −7 9
7 7 −1 −13 13 −1 −7 −5 9 −7 3 15 −13 −11 −13
9 5 −11 −9 −7 −3 7 −3 −11 −15 11 −7 13 −13 7

11 11 5 5 −13 7 11 5 3 −11 −5 −5 −11 15 −7
13 −7 −15 9 1 5 3 −15 −3 13 1 13 5 11 3
15 −13 1 1 −3 −11 −9 7 1 7 −1 −11 −15 −5 11

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

A more general result than Proposition 4 can be obtained if A and D are nearly
orthogonal and at least one of the two, AT C = 0 and BT D = 0, approximately
holds. However, besides being very complicated, such a general result does not
greatly enhance our capability of constructing nearly orthogonal Latin hypercubes
as the orthogonality of A and D and that between A and C is much easier to
achieve than the orthogonality of B and C. Our result as in Proposition 4 makes a
more focused presentation. Lin (2008) also contains a table of small, nearly orthog-
onal Latin hypercubes, based on which we can construct large nearly orthogonal
Latin hypercubes via Proposition 4.

5. Concluding remarks. We have presented a general method of construction
for orthogonal, nearly orthogonal and cascading Latin hypercubes. The method
uses small designs to build large designs. It turns out that some appealing proper-
ties in small designs can be carried over to large designs. We have also obtained a
result on the existence of orthogonal Latin hypercubes. The power of the general
method is further enhanced by the methods of stacking. Although our methods are
motivated by computer experiments, they are potentially useful for constructing
other designs such as permutation arrays which are widely applied to data trans-
mission over power lines [see Colbourn, Kløve and Ling (2004) and the reference
therein].

Many researchers are increasingly interested in using polynomial models for
computer experiments though Gaussian process models are still very popular.
Polynomials are attractive because they allow gradual building of a suitable model
by starting with simple linear terms and then gradually introducing higher-order
terms. Orthogonal and nearly orthogonal Latin hypercubes are directly useful
when polynomial models are considered. If one insists on using Gaussian-process
models, orthogonality and near orthogonality can be viewed as stepping stones to
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space-filling designs. This is because a good space-filling design must be orthogo-
nal or nearly so as the design points when projected on to two dimensions should
be uniformly scattered. Thus the search for space-filling designs can be restricted
to orthogonal and nearly orthogonal designs instead of all designs. A rich class of
orthogonal and nearly orthogonal Latin hypercubes can be obtained by consider-
ing a generalization of the construction method in this paper. The generalization
makes use of an idea in Bingham, Sitter and Tang (2009) [for more details, we
refer to Lin (2008)]. It is part of our research plan to write a paper on this topic in
the future.

APPENDIX

PROOF OF LEMMA 1. We provide a proof under (a) in condition (ii) of
Lemma 1. The proof is essentially the same if condition (b) is met. For design
L in (2.1) to be a Latin hypercube, we need to show that each column of L is a
permutation of −(n−1)/2,−(n−3)/2, . . . , (n−3)/2, (n−1)/2 where n = n1n2.
Without loss of generality, we will prove that this is the case for the first column
of design L. For ease in notation, let (a1, . . . , an1)

T , (b1, . . . , bn2)
T , (c1, . . . , cn1)

T

and (d1, . . . , dn2)
T be the first columns of A, B , C and D, respectively. Then the

entries of the first column of L are given by

aibj + n2cidj where i = 1, . . . , n1 and j = 1, . . . , n2.(A.1)

As C is a Latin hypercube, we have that c1, . . . , cn1 are a permutation of −(n1 −
1)/2,−(n1 − 3)/2, . . . , (n1 − 3)/2, (n1 − 1)/2. For any given odd u such that
1 ≤ u ≤ n1, consider the two distinct levels, −(n1 − u)/2 and (n1 − u)/2, of C.
(The two levels may be the same level 0 when n1 is odd. This simple case will
be dealt with later.) For this given u, let i and i′ be the unique indices such
that ci = (n1 − u)/2 and ci′ = −(n1 − u)/2. As dj = ±1, the two numbers cidj

and ci′dj must always have opposite signs and thus always give the two points
−(n1 − u)/2 and (n1 − u)/2 on the real line. Therefore, the two numbers n2cidj

and n2ci′dj always give the two points −n2(n1 − u)/2 and n2(n1 − u)/2 for any
j = 1, . . . , n2. By condition (a), we have that ai = ai′ . Since B is a Latin hypercube
of n2 runs, we have that b1, . . . , bn2 are a permutation of −(n2 − 1)/2,−(n2 −
3)/2, . . . , (n2 − 3)/2, (n2 − 1)/2. As ai = ±1, we have that aib1, . . . , aibn2 are
also a permutation of −(n2 −1)/2,−(n2 −3)/2, . . . , (n2 −3)/2, (n2 −1)/2. Since
ai′ = ai , this shows that the 2n2 points given by aibj + n2cidj and ai′bj + n2ci′dj

for j = 1, . . . , n2 can be divided into two sets of n2 points with the first set
of n2 points given by −n2(n1 − u)/2 + bj for j = 1, . . . , n2 and the second
set of n2 points given by n2(n1 − u)/2 + bj for j = 1, . . . , n2. The n2 points
−n2(n1 − u)/2 + bj for j = 1, . . . , n2 are centered at −n2(n1 − u)/2, and equally
spaced with two adjacent points separated by an interval of length one. A similar
remark can be made about the other set of n2 points. We note that if u = n1 when
n1 is odd, for the unique i with ci = 0, the n2 numbers aibj + n2cidj = aibj for
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j = 1, . . . , n2 are simply the set of bj s for j = 1, . . . , n2. By allowing the odd u to
vary in the range 1 ≤ u ≤ n1, we see that the n1n2 numbers in (A.1) are precisely
these n points, −(n−1)/2,−(n−3)/2, . . . , (n−3)/2, (n−1)/2, where n = n1n2.
The proof is complete. �

PROOF OF THEOREM 2. The sufficiency part of Theorem 2 can be proved
directly which involves the construction of an orthogonal Latin hypercube of n

runs with m ≥ 2 factors for any n that does not have form 4k + 2. We omit this
part of the proof as the existence result also follows from Proposition 3 in Sec-
tion 3.3 when we establish a lower bound on the maximum number of factors in
an orthogonal Latin hypercube.

It remains to show that there does not exist an orthogonal Latin hypercube
of n = 4k + 2 runs with m ≥ 2 factors. Now suppose that such an orthog-
onal Latin hypercube exists, and let a = (a1, . . . , an)

T and b = (b1, . . . , bn)
T

be its two columns. Then we have that both a and b are permutations of
{1/2,3/2, . . . , (n − 1)/2,−1/2,−3/2, . . . ,−(n − 1)/2}. Note that

∑n
i=1 ai =

0,
∑n

i=1 bi = 0. Without loss of generality, we assume that a = (1/2,3/2,
. . . , (n − 1)/2,−1/2,−3/2, . . . ,−(n − 1)/2)T . In other words, we have ai =
−ai+n/2 = (2i − 1)/2. Since a and b are orthogonal, we have that

∑n
i=1 aibi =

2−1 ∑n/2
i=1[(2bi)i − (2bi+n/2)(i − 1)] = 0. Note that both 2bi and 2bi+n/2 are odd,

i = 1, . . . , n/2. The quantity (2bi)i − (2bi+n/2)(i − 1) must be odd as (2bi)i and
(2bi+n/2)(i − 1) cannot be both even or both odd. In addition, n/2 must be odd. It
is obvious that the addition or subtraction among an odd number of odd integers
gives an odd integer. This leads to a contradiction. �

PROOF OF PROPOSITION 4. Parts (i) and (ii) can be obtained by noting that

LT L = (A ⊗ B + γC ⊗ D)T (A ⊗ B + γC ⊗ D)

= (AT A) ⊗ (BT B) + γ (AT C) ⊗ (BT D)

+ γ (CT A) ⊗ (DT B) + γ 2(CT C) ⊗ (DT D)

= n1Im1 ⊗ (BT B) + n2
2(C

T C) ⊗ (n2Im2),

where Im1 and Im2 are identity matrices of size m1 and m2, respectively. The sec-
ond step follows by the properties of the Kronecker product given in (3.1). The last
step is due to the orthogonality of A and D, either of the conditions AT C = 0 and
BT D = 0, and γ = n2. In addition, for an n × m Latin hypercube L, the sum of
squares of the elements in each of its columns is n(n2 − 1)/12. Thus the m × m

correlation matrix among the m columns of L is given by [n(n2 − 1)/12]−1LT L.
Based on the elements in the correlation matrix, ρ2(L) and ρM(L) can be com-
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puted in the following way:

ρ2(L) = (
m1n

2
1m2(m2 − 1)[n2(n

2
2 − 1)/12]2ρ2(B)

+ n6
2m2m1(m1 − 1)[n1(n

2
1 − 1)/12]2ρ2(C)

)

× (
m1m2(m1m2 − 1)[n(n2 − 1)/12]2)−1

= (m2 − 1)(n2
2 − 1)2ρ2(B) + n4

2(m1 − 1)(n2
1 − 1)2ρ2(C)

(m1m2 − 1)(n2 − 1)2

and ρm(L) is the larger value between n1n2[(n2
2 − 1)/12]ρM(B)/[n(n2 − 1)/12]

and n3
2n1[(n2

1 − 1)/12]ρM(C)/[n(n2 − 1)/12]. With the definition of w1, w2, w3
and w4, we complete the proof. �
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