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ADAPTIVE ESTIMATION OF STATIONARY GAUSSIAN FIELDS

BY NICOLAS VERZELEN1

INRA and SUPAGRO

We study the nonparametric covariance estimation of a stationary
Gaussian field X observed on a regular lattice. In the time series setting,
some procedures like AIC are proved to achieve optimal model selection
among autoregressive models. However, there exists no such equivalent re-
sults of adaptivity in a spatial setting. By considering collections of Gaussian
Markov random fields (GMRF) as approximation sets for the distribution
of X, we introduce a novel model selection procedure for spatial fields. For
all neighborhoods m in a given collection M, this procedure first amounts
to computing a covariance estimator of X within the GMRFs of neighbor-
hood m. Then it selects a neighborhood m̂ by applying a penalization strat-
egy. The so-defined method satisfies a nonasymptotic oracle-type inequality.
If X is a GMRF, the procedure is also minimax adaptive to the sparsity of
its neighborhood. More generally, the procedure is adaptive to the rate of ap-
proximation of the true distribution by GMRFs with growing neighborhoods.

1. Introduction. In this paper, we study the estimation of the distribution of
a stationary Gaussian field X = (X[i,j ])(i,j)∈� indexed by the nodes of a square
lattice � of size p ×p. This problem is often encountered in spatial statistics or in
image analysis.

Various estimation methods have been proposed to handle this question. Most of
them fall into two categories. On the one hand, one may consider direct covariance
estimation. A traditional approach amounts to computing an empirical variogram
and then fitting a suitable parametric variogram model such as the exponential or
Matérn model (Cressie [10], Chapter 2). Some procedures also apply to nonregular
lattices. However, a bad choice of the variogram model may lead to poor results.
The issue of variogram model selection has not been completely solved yet al-
though some procedures based on cross-validation have been proposed. See [10],
Section 2.6.4, for a discussion. Most of the nonparametric (Hall, Fisher and Hoff-
mann [19]) and semiparametric (Im, Stein and Zhu [21]) methods are based on the
spectral representation of the field. To our knowledge, these procedures have not
yet been shown to achieve adaptiveness; that is, their rate of convergence does not
adapt to the complexity of the correlation functions.
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An alternative approach to the problem amounts to considering the conditional
distribution at one node given the remaining nodes. This point of view is closely
connected to the notion of Gaussian Markov random field (GMRF). Let G be a
graph whose vertex set is �. The field X is GMRF with respect to G if it sat-
isfies the following property: for any node (i, j) ∈ �, conditionally to the set
of variables X[k,l] such that (k, l) is a neighbor of (i, j) in G , X[i,j ] is indepen-
dent from all the remaining variables. GMRFs are also sometimes called Gaussian
graphical models. A huge literature develops around this subject since Gaussian
graphical models are promising tools to analyze complex high-dimensional sys-
tems involved, for instance, in postgenomic data. In other applications, GMRFs
are relevant because they allow one to perform a Markov chain Monte Carlo run
quickly using Markov properties (e.g., [31]). See Lauritzen [24] or Edwards [14]
for introductions to Gaussian graphical models and Markov properties. In the se-
quel, we assume that the node (0,0) belongs to �. Since we assume that the field
X is stationary, defining a graph G is equivalent to defining the neighborhood m

of the node (0,0). Indeed, the neighborhood of any node (i, j) ∈ � is the trans-
position of m by (i, j). In the sequel, we call m the neighborhood of a GMRF. If
the neighborhood is empty, then the Markov property states that the components
of X are all independent. Alternatively, any zero-mean Gaussian stationary field is
a GMRF with respect to the complete neighborhood [i.e., containing all the nodes
except (0,0)].

Numerous papers have been devoted to parametric estimation for stationary
GMRFs with a known neighborhood. The authors have derived their asymptotic
properties of such estimators (see [3, 5, 16]). If the field X is assumed to be a
GMRF with respect to a known neighborhood, in each of these works, the issue
of neighborhood selection has been less studied. Besag and Kooperberg [4], Rue
and Tjelmeland [31], Song, Fuentes and Ghosh [33] and Cressie and Verzelen [11]
have tackled the problem of approximating the distribution of a Gaussian field by
a GMRF, but this requires the knowledge of the true distribution. Guyon and Yao
have stated in [18] necessary conditions and sufficient conditions for a model se-
lection procedure to choose asymptotically the true neighborhood of a GMRF with
probability one.

In this paper, we study a nonparametric estimation procedure based on neigh-
borhood selection. In short, we select a suitable neighborhood and estimate the
distribution of X in the space of stationary GMRFs with respect to this neighbor-
hood. The objective is not to estimate the “true” neighborhood. We rather want
to select a neighborhood that allows to estimate well the distribution of X (i.e.,
to minimize a risk). In fact, we do not even assume that the true correlation of
X corresponds to a GMRF. This estimation procedure is relevant for two main
reasons:

• To our knowledge, it is the first nonparametric estimator in a spatial setting
which achieves adaptive rates of convergence.
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• In most of the statistical applications where GMRFs are involved, the neighbor-
hood is a priori unknown. Our procedure allows one to select a “good” neigh-
borhood.

Our problem on a two-dimensional field has a natural one-dimensional counter-
part in time series analysis. It is indeed known that an auto-regressive process (AR)
of order p is also a GMRF with 2p nearest neighbors and reciprocally (see [17],
Section 1.3). In this one-dimensional setting, our issue reformulates as follows:
how can we select the order of an AR to estimate well the distribution of a time
series? It is known that order selection by minimization of criteria like AICC, AIC
or FPE satisfy asymptotically oracle inequalities (Shibata [32] and Hurvich and
Tsai [20]). We refer to Brockwell and Davis [9] and McQuarrie and Tsai [26] for
detailed discussions. However, one cannot readily extend these results to a spatial
setting because of computational and theoretical difficulties.

In the rest of this introduction, we further describe the framework and we sum-
marize the main results of the paper.

1.1. Conditional regression. Let us now make precise the notation and present
the ideas underlying our approach. In the sequel, � stands for the toroidal lattice of
size p×p. We consider the random field X = (X[i,j ])1≤i,j≤p indexed by the nodes
of �. Additionally, Xv refers to the vectorialized version of X with the convention
X[i,j ] = Xv[(i−1)×p+j ] for any 1 ≤ i, j ≤ p. Using this new notation amounts to
“forgetting” the spatial structure of X and allows one to get into a more classical
statistical framework. For the sake of simplicity, the components of X are defined
modulo p in the remainder of the paper.

Throughout this paper, we assume the field X is centered. In practice, the sta-
tistician has to first subtract some parametric form of the mean value. Hence, the
vector Xv follows a zero-mean Gaussian distribution N (0,�) where the p2 × p2

matrix � is nonsingular but unknown. Also, we suppose that the field X is station-
ary on the torus �. More precisely, for any r > 0, any (i, j) ∈ {1, . . . , p}2 and any
(k1, l1), . . . , (kr , lr ) ∈ {1, . . . , p}2r , it holds that(

X[k1,l1], . . . ,X[kr ,lr ]
)∼ (X[k1+i,l1+j ], . . . ,X[kr+i,lr+j ]

)
.

We observe n ≥ 1 i.i.d. replications of the vector Xv . In the sequel, Xv denotes
the p2 ×n matrix of the n observations of Xv . For any 1 ≤ i ≤ n, the p ×p matrix
Xi stands for the ith observation of the field X. All these notations are recalled in
Table 1. In practice, the number of observations n often equals one. Our goal is to
estimate the matrix �.

We sometimes assume that the field X is isotropic. Let G be the group of vector
isometries of the unit square. For any node (i, j) ∈ � and any isometry g ∈ G,
g·(i, j) stands for the image of (i, j) in � under the action of g. We say that X is
isotropic on � if for any r > 0, g ∈ G, and (k1, l1), . . . , (kr , lr ) ∈ {1, . . . , p}2r ,(

X[k1,l1], . . . ,X[kr ,lr ]
)∼ (X[g·(k1,l1)], . . . ,X[g·(kr ,lr )]

)
.
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As mentioned earlier, we aim at estimating the distribution of the field X

through a conditional distribution approach. By standard Gaussian derivations
(see, for instance, [24], Appendix C), there exists a unique p × p matrix θ such
that θ[0,0] = 0 and

X[0,0] = ∑
(i,j)∈�\{(0,0)}

θ[i,j ]X[i,j ] + ε[0,0],(1)

where the random variable ε[0,0] follows a zero-mean normal distribution and is
independent from the covariates (X[i,j ])(i,j)∈�\{(0,0)}. Equation (1) describes the
conditional distribution of X[0,0] given the remaining variables. Since the field X is
stationary, the matrix θ also satisfies θ[i,j ] = θ[−i,−j ] for any (i, j) ∈ �. Let us note
σ 2, the conditional variance of X[0,0], and Ip2 , the identity matrix of size p2. The
matrix θ is closely related to the covariance matrix � of Xv through the following
property:

� = σ 2(Ip2 − C(θ)
)−1

,(2)

where the p2 × p2 matrix C(θ) is defined as C(θ)[i1(p−1)+j1,i2(p−1)+j2] :=
θ[i2−i1,j2−j1] for any 1 ≤ i1, i2, j1, j2 ≤ p. The matrix (Ip2 − C(θ)) is called the
partial correlation matrix of the field X. The so-defined matrix C(θ) is symmetric
block circulant with p × p blocks as stated below. We refer to [29], Section 2.6 or
the book of Gray [15] for definitions and main properties on circulant and block
circulant matrices.

LEMMA 1.1. Let θ be a square matrix of size p such that

for any 1 ≤ i, j ≤ p θ[i,j ] = θ[−i,−j ];(3)

then the matrix C(θ) is symmetric block circulant with p × p blocks. Conversely,
if B is a p2 × p2 symmetric block circulant matrix with p × p blocks, then there
exists a square matrix θ of size p satisfying (3) and such that B = C(θ).

A proof is given in the technical Appendix [36]. In conclusion, estimating the
matrix �/σ 2 amounts to estimating the matrix C(θ) which is also equivalent to
estimating the p × p matrix θ . This is why we shall focus on the estimation of the
matrix θ .

Let us make precise the set of possible values for θ . In the sequel, � denote
the vector space of the p × p matrices that satisfy θ[0,0] = 0 and θ[i,j ] = θ[−i,−j ]
for any (i, j) ∈ �. A matrix θ ∈ � corresponds to the distribution of a stationary
Gaussian field if and only if the p2 × p2 matrix (Ip2 − C(θ)) is positive definite.
This is why we define the convex subset �+ of � by

�+ := {θ ∈ � s.t.
(
Ip2 − C(θ)

)
is positive definite

}
.(4)
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The set of covariance matrices of stationary Gaussian fields on � with unit condi-
tional variance is therefore in one to one correspondence with the set �+. Let us
define the corresponding set �iso and �+,iso for isotropic Gaussian fields:

�iso := {θ ∈ �,θ[i,j ] = θ[g·(i,j)],∀(i, j) ∈ �,∀g ∈ G
}

and
(5)

�+,iso := �+ ∩ �iso.

1.2. Model selection. We have the issue of covariance estimation as an esti-
mation problem for conditional regressions (1). However, the set �+ of admissible
parameters for the estimation is huge. The dimension of � is indeed of the same
order as p2 whereas we only observe p2 nonindependent data if n equals one. In
order to avoid the curse of dimensionality, it is natural to assume that the target θ

is approximately sparse.
It is indeed likely that the coefficients θ[i,j ] are close to zero for the nodes (i, j)

which are far from the origin (0,0). By (1), this means that X[0,0] is well predicted
by the covariates X[i,j ] whose corresponding nodes (i, j) are close to the origin.
In other terms, the true covariance is presumably well approximated by a GMRF
with a reasonable neighborhood. The main difficulty is that we do not know a
priori what “reasonable” means. We want to adapt to the sparsity of the matrix θ .

In the sequel, m refers to a subset of � \ {0,0}. We call it a model. By (1), the
property, “X is a GMRF with respect to the neighborhood m,” is equivalent to,
“the support of θ is included in m.” We are given a nested collection M of models.
For any of these models m ∈ M, we compute θ̂m,ρ1 , the conditional least squares
estimator (CLS), of θ for the model m by maximizing the pseudolikelihood over a
subset of matrices θ whose support is included in m. These estimators, as well as
their dependency on the quantity ρ1, are defined in Section 2.

The model m that minimizes the risk of θ̂m,ρ1 over the collection M is called an
oracle and is noted m∗. In practice, this model is unknown and we have to estimate
it. The art of model selection is to pick a model m ∈ M that is large enough to
enable a good approximation of θ but is small enough so that the variance of θ̂m,ρ1

is small. Let us reformulate the approach in terms of GMRFs: given a collection
M of neighborhoods, we compute an estimator of θ in the set of GMRFs with
neighborhood m for any m ∈ M. Our purpose is to select a suitable neighborhood
m̂ so that the estimator θ̂m̂ has a risk as small as possible.

A classical method to estimate a good model m̂ is achieved through penalization
with respect to the size of the models. In the following expression, γn,p(·) stands
for the CLS empirical contrast that we shall define in Section 2. We select a model
m̂ by minimizing the criterion,

m̂ = arg min
m∈M

[γn,p(θ̂m,ρ1) + pen(m)],(6)

where pen(·) denotes a positive function defined on M. In this paper, we prove
that under a suitable choice of the penalty function pen(·), the risk of the estimator
θ̂m̂ is as small as possible.
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1.3. Risk bounds and adaptation. We shall assess our procedure using two dif-
ferent loss functions. First, we introduce the loss function l(·, ·) that measures how
well we estimate the conditional distribution (1) of the field. For any θ1, θ2 ∈ �,
the distance l(θ1, θ2) is defined by

l(θ1, θ2) := 1

p2 tr
[(

C(θ1) − C(θ2)
)
�
(
C(θ1) − C(θ2)

)]
.(7)

Let us reformulate l(θ1, θ2) in terms of conditional expectation,

l(θ1, θ2) = Eθ

{[
Eθ1

(
X[0,0]|X�\{0,0}

)− Eθ2

(
X[0,0]|X�\{0,0}

)]2}
,

where Eθ (·) stands for the expectation with respect to the distribution of Xv ,
N (0, σ 2(Ip2 − C(θ))−1). Hence, l(θ̂ , θ) corresponds the mean squared predic-
tion loss which is often used in the random design regression framework, in
time series analysis [20] or in spatial statistics [33]. Moreover, the loss function
l(θ̂ , θ) is also connected to the notion of kriging error. The kriging predictor
(Stein [34]) of X[0,0] is defined as the best linear combination of the covariates
(X[k,l])(k,l)∈�\{(0,0} for predicting the value X[0,0]. By (1), this predictor is ex-
actly

∑
(k,l)∈�\{(0,0} θ[k,l]X[k,l], and the mean squared prediction error is σ 2. If we

do not know θ but we are given an estimator θ̂ , then the corresponding kriging
predictor

∑
(k,l)∈�\{(0,0} θ̂[k,l]X[k,l] has a mean squared prediction error equal to

σ 2 + l(θ̂ , θ). Kriging is a key concept in spatial statistics, and it is therefore in-
teresting to consider a loss function that measures the kriging performances when
one estimates θ .

We shall also assess our results using the Frobenius distance noted ‖ · ‖F and
defined by ‖A‖2

F :=∑
1≤i,j≤p A2[i,j ]. Observe that the Frobenius distance ‖θ1 −

θ2‖2
F also equals the Frobenius distance between the partial correlation matrices

(Ip2 − C(θ1)) and (Ip2 − C(θ2)) (up to a factor p2)

‖θ1 − θ2‖2
F = 1

p2

∥∥(Ip2 − C(θ1)
)− (Ip2 − C(θ2)

)∥∥2
F .(8)

Our aim is then to define a suitable penalty function pen(·) in (6) so that the
estimator θ̂m̂,ρ1 performs almost as well as the oracle estimator θ̂m∗,ρ1 . For any
model m ∈ M, we define θm,ρ1 as the matrix which minimizes the loss l(θ ′, θ) over
the sets of matrices θ ′ corresponding to model m. The loss l(θm,ρ1, θ) is called the
bias. Our main result is stated in Section 3. We provide a condition on the penalty
function pen(·), so that the selected estimator satisfies a risk bound of the form

Eθ [l(θ̂m̂,ρ1, θ)] ≤ L inf
m∈M

[
l(θm,ρ1, θ) + ϕmax(�)

Card(m)

np2

]
,(9)

where ϕmax(�) is the largest eigenvalue of �, and Card(·) stands for the cardi-
nality. Contrary to most results in a spatial setting, this upper bound on the risk is
nonasymptotic and holds in a general setting. The term ϕmax(�)Card(m)/(np2)
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grows linearly with the size of m and goes to 0 with n and p. In Sec-
tion 4, we prove that the variance term of a model m is of the same order as
ϕmax(�)Card(m)/(np2). Hence, the bound (9) tells us that the risk of θ̂m̂,ρ1 is
smaller than a quantity which is the same order as the risk Eθ [l(θ̂m∗,ρ1, θ)] of the
oracle m∗. We say that the selected estimator achieves an oracle-type inequality.

In Section 4, we bound the asymptotic expectations E[l(θ̂m,ρ1, θ)] and connect
them to the variance terms in bound (9). As a consequence, we prove that under
mild assumptions on the target θ , the upper bound (9) is optimal from the as-
ymptotic point of view (up to a multiplicative numerical constant). We discuss the
assumptions in Section 5. In Section 6, we compute nonasymptotic minimax lower
bounds with respect to the loss functions l(·, ·) and ‖ · ‖2

F . We then derive that un-
der mild assumptions, our estimator θ̂m̂,ρ1 is minimax adaptive to the sparsity of θ

and minimax adaptive to the decay of θ .
To our knowledge, these are the first oracle-type inequalities in a spatial setting.

The computation of the minimax rates of convergence is also new. Moreover, most
of our results are nonasymptotic. Although we have considered a square on the
two-dimensional lattice, our method straightforwardly extends to any d-dimen-
sional toroidal rectangle with d ≥ 1. In the one-dimensional setting, we retrieve a
oracle-type inequality that is close to the work of Shibata [32]. Yet, he has stated
an asymptotic oracle inequality for the estimation of autoregressive processes. In
contrast, our result applies on a torus and is only optimal up to constants but it
is nonasympotic, and, most of all, it applies for higher-dimensional lattices. In
Section 7, we further discuss the advantages and the weak points of our method.
Moreover, we mention the extensions and the simulations made in a subsequent
paper [37]. All the proofs are postponed to Section 8 and to the Appendix [36].

1.4. Some notation. Throughout this paper, L,L1,L2, . . . denote constants
that may vary from line to line. The notation L(·) specifies the dependency on
some quantities. For any matrix A, ϕmax(A) and ϕmin(A), respectively, refer the
largest eigenvalue and the smallest eigenvalues of A. We recall that ‖A‖F is the
Frobenius norm of A. For any matrix θ of size p, ‖θ‖1 stands for the sum of
of the absolute values of the components of θ ; we call it its l1 norm. In the se-
quel, 0p is the square matrix of size p whose indices are 0. Given ρ > 0, the
ball B1(0p;ρ) is defined as the set of square matrices of size p whose l1 norm is
smaller than ρ. Finally, Table 1 gathers the notation involving X.

TABLE 1
Notations for the random field and the data

X Matrix of size p × p Random field
Xv Vector of length p2 Vectorialized version of X

Xv Matrix of size p2 × n Observations of Xv

Xi Matrix of size p × p ith observation of the field X
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2. Model selection procedure. In this section, we formally define our model
selection procedure.

2.1. Collection of models. For any node (i, j) belonging to the lattice �, let
us define the toroidal norm by

|(i, j)|2t := [i ∧ (p − i)]2 + [j ∧ (p − j)]2.

We aim at selecting a “good” neighborhood for the GMRF. Since X corresponds
to some “spatial” process, it is natural to assume that nodes that are close to (0,0)

are more likely to be significant. This is why we restrict ourselves in the sequel to
the collection M1 of neighborhoods.

DEFINITION 2.1. A subset m ⊂ � \ {(0,0)} belongs to M1 if there exists a
number rm > 1 such that

m = {(i, j) ∈ � \ {(0,0)} s.t. |(i, j)|t ≤ rm
}
.(10)

The collection M1 is totally ordered with respect to the inclusion and we there-
fore order our models m0 ⊂ m1 ⊂ · · · ⊂ mi · · · . For instance, m0 corresponds to
the empty neighborhood whereas m1 stands for the neighborhood of size 4. See
Figure 1 for other examples.

For any model m ∈ M1, we define the vector space �m as the subset of the
elements of � whose support is included in m. We recall that � is defined in
Section 1.1. Similarly �iso

m is the subset of �iso whose support is included in m.
The dimensions of �m and �iso

m are, respectively, noted dm and d iso
m . Since we

FIG. 1. Examples of models. The four gray nodes refer to m1. The model m2 also contains the
nodes with a cross whereas m3 contains all the nodes except (0,0).
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aim at estimating the positive matrix (Ip2 − C(θ)), we shall consider the convex
subsets of �+

m and �+,iso
m that correspond to nonnegative precision matrices,

�+
m := �m ∩ �+ and �+,iso

m := �iso
m ∩ �+,iso.(11)

For instance, the set �+
m1

is in one-to-one correspondence with the sets of GMRFs
whose neighborhood is made of the four nearest neighbors. Similarly, �+

m1
is

in one-to-one correspondence with the GMRFs with eight nearest neighbors. In
our estimation procedure, we shall restrict ourselves to precision matrices whose
largest eigenvalue is upper bounded by a constant. This is why we define the sub-
sets �+

m2,ρ1
and �+,iso

m,ρ1
for any ρ1 ≥ 2:

�+
m,ρ1

:= {θ ∈ �+
m,ϕmax

(
Ip2 − C(θ)

)
< ρ1

}
,(12)

�+,iso
m,ρ1

:= {θ ∈ �+,iso
m ,ϕmax

(
Ip2 − C(θ)

)
< ρ1

}
.(13)

Finally, we need a generating family of the spaces �m and �iso
m . For any node

(i, j) ∈ � \ {(0,0)}, let us define the p × p matrix �i,j as

�i,j [k,l] :=
{

1, if (k, l) = (i, j) or (k, l) = −(i, j),
0, otherwise.

(14)

Hence, �m is generated by the matrices �i,j for which (i, j) belongs to m. Simi-
larly, for any (i, j) ∈ � \ {(0,0)}, let us define the matrix � iso

i,j by

� iso
i,j [k,l] :=

{
1, if ∃g ∈ G, (k, l) = g·(i, j),
0, otherwise.

(15)

2.2. Estimation by conditional least squares (CLS). Let us turn to the condi-
tional least squares estimator. For any θ ′ ∈ �+, the criterion γn,p(θ ′) is defined
by

γn,p(θ ′) := 1

np2

n∑
i=1

∑
1≤j1,j2≤p

(
Xi[j1,j2]

(16)

− ∑
(l1,l2)∈�\{(0,0)}

θ ′[l1,l2]Xi[j1+l1,j2+l2]
)2

.

In a nutshell, γn,p(θ ′) is a least squares criterion that allows one to perform
the simultaneous linear regression of all Xi[j1,j2] with respect to the covariates
(Xi[l1,l2])(l1,l2) �=(j1,j2). The advantage of this criterion is that it does not require the
computation of a determinant of a huge matrix as for the likelihood. We shall of-
ten use an alternative expression of γn,p(θ ′) in terms of the factor C(θ ′) and the
empirical covariance matrix XvXv∗,

γn,p(θ ′) = 1

p2 tr
[(

Ip2 − C(θ ′)
)
XvXv∗(Ip2 − C(θ ′)

)]
.(17)
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One proves the equivalence between these two expressions by coming back to the
definition of C(θ ′). Let ρ1 > 2 be fixed. For any model m ∈ M, we compute the
CLS estimators θ̂m,ρ1 and θ̂ iso

m,ρ1
by minimizing the criterion γn,p(·) as follows:

θ̂m,ρ1 := arg min
θ ′∈�+

m,ρ1

γn,p(θ ′) and θ̂ iso
m,ρ1

:= arg min
θ ′∈�

+,iso
m,ρ1

γn,p(θ ′),(18)

where A stands for the closure of the set A. The existence and the uniqueness of
θ̂m,ρ1 and θ̂ iso

m,ρ1
are ensured by the following lemma.

LEMMA 2.2. For any θ ∈ �+, γn,p(·) is almost surely strictly convex on �+.

The proof is postponed to the Appendix [36]. We discuss the dependency of
θ̂m,ρ1 on the parameter ρ1 in Section 5. For stationary Gaussian fields, minimiz-
ing the CLS criterion γn,p(·) over a set �+

m,ρ1
is equivalent to minimizing the

product of the conditional likelihoods (X[i,j ]|X−{i,j}), called conditional pseudo-
likelihood (CPL),

pLn(θ
′,Xv) := ∏

1≤i≤n,

(j1,j2)∈�

Ln,θ ′
(
Xi[j1,j2]|(Xi )−{j1,j2}

)

= (√2πσ
)−np2

exp
(
−1

2

np2γn,p(θ ′)
σ 2

)
,

where we recall that σ 2 refers to the conditional variance of any X[i,j ]. In fact,
CLS estimators were first introduced by Besag [2] who call them pseudolikelihood
estimators since they minimize the CPL.

Let us define the function γ (·) as an infinite sampled version of the CLS crite-
rion γn,p(·),

γ (θ ′) := Eθ [γn,p(θ ′)] = Eθ

[(
X[0,0] − ∑

(i,j) �=(0,0)

θ ′[i,j ]X[i,j ]
)2]

(19)

for any θ ′, θ ∈ �+. The function γ (θ ′) measures the prediction error of X[0,0] if
one uses

∑
(i,j) �=(0,0) θ

′[i,j ]X[i,j ] as a predictor. Moreover, it is a special case of the
CMLS criterion introduced by Cressie and Verzelen (see [11], (10)) to approximate
a Gaussian field by a GMRF. Hence, one may interpret the CLS criterion as a finite
sampled version of their approximation method. Observe that the function γ (·)
is minimized over �+ at the point θ and that γ (θ) = Varθ (X[0,0]|X−{0,0}) = σ 2.
Moreover, the difference γ (θ ′) − γ (θ) equals the loss l(θ ′, θ) defined by (7).

For any model m ∈ M, we introduce the projections θm,ρ1 and θ iso
m,ρ1

as the best

approximation of θ in �+
m,ρ1 and �

+,iso
m,ρ1 :

θm,ρ1 := arg min
θ ′∈�+

m,ρ1

l(θ ′, θ) and θ iso
m,ρ1

:= arg min
θ ′∈�

+,iso
m,ρ1

l(θ ′, θ).(20)



ESTIMATION OF GAUSSIAN FIELDS 1373

Since γ (·) is strictly convex on �+, the matrices θm,ρ1 and θ iso
m,ρ1

are uniquely
defined. By its definition (7), one may interpret l(·, ·) as an inner product on the
space �; therefore, the orthogonal projection of θ onto the convex closed set �+

m,ρ1

(resp., �
+,iso
m,ρ1 ) with respect to l(·, ·) is θm,ρ1 (resp., θ iso

m,ρ1
). It then follows from a

property of orthogonal projections that the loss of θ̂m,ρ1 is upper bounded by

l(θ̂m,ρ1, θ) ≤ l(θm,ρ1, θ) + l(θ̂m,ρ1, θm,ρ1).(21)

The first term l(θm,ρ1, θ) accounts for the bias whereas the second term l(θ̂m,ρ1,

θm,ρ1) is a variance term. Observe that θ ∈ �+
m does not necessarily imply that the

bias l(θm,ρ1, θ) is null because in general �+
m �= �+

m,ρ1 . This will be the case only
if θ satisfies the following hypothesis:

(H1): ϕmax
(
Ip2 − C(θ)

)
< ρ1.(22)

Assumption (H1) is necessary to ensure the existence of a model m ∈ M such
that the bias is zero (i.e., θm,ρ1 = θ ). By identity (2), one observes that (H1) is
equivalent to a lower bound on the smallest eigenvalue of �, i.e., ϕmin(�) ≤
σ 2/ρ1. We further discuss (H1) in Section 5.

For the sake of completeness, we recall the penalization criterion introduced
in (6). Given a subcollection of models M ⊂ M1 and a positive function pen:
M → R

+ that we call a penalty, we select a model as follows:

m̂ := arg min
m∈M

[γn,p(θ̂m,ρ1)] + pen(m)

and

m̂iso := arg min
m∈M

[γn,p(θ̂ iso
m,ρ1

)] + pen(m).

Observe that m̂ and m̂iso depend on ρ1. For the sake clarity, we do not emphasize
this dependency in the notation. In the sequel, we write θ̃ρ1 and θ̃ iso

ρ1
for θ̂m̂,ρ1 and

θ̂
iso,ρ1
m̂iso .

3. Main result. We now provide a nonasymptotic upper bound for the risk of
the estimators θ̃ρ1 and θ̃ iso

ρ1
. Let us recall that � stands for the covariance matrix

of Xv .

THEOREM 3.1. Let K be a positive number larger than a universal constant
K0 and let M be a subcollection of M1. If for every model m ∈ M,

pen(m) ≥ Kρ2
1ϕmax(�)

dm

np2 ,(23)

then for any θ ∈ �+, the estimator θ̃ρ1 satisfies

Eθ [l(θ̃ρ1, θ)] ≤ L1(K) inf
m∈M

[l(θm,ρ1, θ) + pen(m)] + L2(K)
ρ2

1ϕmax(�)

np2 .(24)



1374 N. VERZELEN

A similar bound holds if one replaces θ̃ρ1 by θ̃ iso
ρ1

, �+ by �+,iso, θm,ρ1 by θ iso
m , and

dm by d iso
m .

The proof is postponed to Section 8.2. It is based on a novel concentration in-
equality for suprema of Gaussian chaos stated in Section 8.1. The constant K0 is
made explicit in the proof. Observe that the theorem holds for any n, any p and
that we have not performed any assumption on the target θ ∈ �+ (resp., �+,iso).
If the collection M does not contain the empty model, one gets the more readable
upper bound,

Eθ [l(θ̃ρ1, θ)] ≤ L(K) inf
m∈M

[l(θm,ρ1, θ) + pen(m)].

This theorem tells us that θ̃ρ1 essentially performs as well as the best trade-off be-
tween the bias term l(θm,ρ1, θ) and ρ2

1ϕmax(�) dm

np2 that plays the role of a variance.
Here are some additional comments.

REMARK 1. Consider the special case where the target θ belongs to some
parametric set �+

m with m ∈ M. Suppose that the hypothesis (H1) defined in (22)
is fulfilled. Choosing a penalty pen(m) = Kρ2

1ϕmax(�) dm

np2 , we get

Eθ [l(θ̃ρ1, θ)] ≤ L(K)ρ2
1ϕmax(�)

dm

np2 .(25)

We shall prove in Sections 4.2 and 6.1 that this rate is optimal both from an as-
ymptotic oracle and a minimax point of view. We have mentioned in Section 2.2
that (H1) is necessary for bound (25) to hold. If ρ1 is chosen large enough, then
assumption (H1) is fulfilled. We do not have access to this minimal ρ1 that en-
sures (H1), since it requires the knowledge of θ . Nevertheless, we argue in Sec-
tion 5 that “moderate” values for ρ1 ensure assumption (H1) when the model m is
small.

REMARK 2. We have mentioned in the Introduction that our objective was to
obtain oracle inequalities of the form

Eθ [l(θ̃ρ1, θ)] ≤ L(K) inf
m∈M

E[l(θ̂m,ρ1, θ)] = L(K)E[(θ̂m∗,ρ1, θ)].

This is why we want to compare the sum l(θm,ρ1, θ)+ pen(m) with E[l(θ̂m,ρ1, θ)].
First, we provide in Section 4.1 a sufficient condition so that the risk E[l(θ̂m,ρ1, θ)]
decomposes exactly as the sum l(θm,ρ1, θ) + E[l(θ̂m,ρ1, θm,ρ1)]. Moreover, we
compute in Section 4.2 the asymptotic variance term E[l(θ̂m,ρ1, θm,ρ1)] and com-
pare it with the penalty term ρ2

1ϕmax(�) dm

np2 . We shall then derive oracle-type in-
equalities and discuss the dependency of the different bounds on ϕmax(�).
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REMARK 3. Condition (23) gives a lower bound on the penalty function
pen(·) so that the result holds. Choosing a proper penalty term according to (23)
therefore requires an upper bound on the largest eigenvalue of �. However, such
a bound is seldom known in practice. We shall mention in Section 7 a practical
method to calibrate the penalty.

A bound similar to (24) holds for the Frobenius distance between the partial
correlation matrices (Ip2 − C(θ)) and (Ip2 − C(θ̃ρ1)).

COROLLARY 3.2. Assume the same as in Theorem 3.1, except that there is
equality in (23). Then

Eθ [‖C(θ̃ρ1) − C(θ)‖2
F ]

≤ L1(K)
ϕmax(�)

ϕmin(�)
inf

m∈M

[
‖C(θm,ρ1) − C(θ)‖2

F + Kρ2
1dm

n

]
(26)

+ L2(K)
ϕmax(�)

ϕmin(�)

ρ2
1

n
.

A similar result holds for isotropic GMRFs.

PROOF. This is a consequence of Theorem 3.1. By definition (7) of the loss
function l(·, ·), the two following bounds hold:

p2l(θ1, θ2) ≥ ϕmin(�)‖C(θ1) − C(θ2)‖2
F ,

p2l(θ1, θ2) ≤ ϕmax(�)‖C(θ1) − C(θ2)‖2
F .

Gathering these bounds with (24) yields the result. �

The same comments as for Theorem 3.1 hold. We may express this Corollary 3.2
in terms of the risk E(‖θ̃ρ1 − θ‖2

F ), since ‖C(θ1) − C(θ2)‖2
F = p2‖θ1 − θ2‖2

F :

Eθ [‖θ̃ρ1 − θ‖2
F ] ≤ L1(K)

ϕmax(�)

ϕmin(�)
inf

m∈M

[
‖θm,ρ1 − θ‖2

F + Kρ2
1dm

np2

]

+ L2(K)
ϕmax(�)

ϕmin(�)

ρ2
1

np2 .

4. Parametric risk and asymptotic oracle inequalities. In this section, we
study the risk of the parametric estimators θ̂m,ρ1 in order to assess the optimality
of Theorem 3.1.

4.1. Bias-variance decomposition. The properties of the parametric estimator
θ̂m,ρ1 and of the projection θm,ρ1 differ slightly whether θm,ρ1 belongs to the open
set �+

m,ρ1
or to its border. Observe that Hypothesis (H1) defined in (22) does not
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necessarily imply that projection θm,ρ1 belongs to �+
m. This is why we introduce

condition (H2):

θ ∈ B1(0p,1) ⇐⇒ ‖θ‖1 < 1.(27)

The condition ‖θ‖1 < 1 is equivalent to (Ip2 − C(θ)) is strictly diagonally domi-
nant. Condition (H2) implies that the largest eigenvalue of (Ip2 −C(θ)) is smaller
than 2 and therefore that (H1) is fulfilled since ρ1 is supposed larger than 2. We
further discuss this assumption in Section 5.

LEMMA 4.1. Let θ ∈ �+ such that (H2) holds and let m ∈ M1. Then, the
minimum of γ (·) over �m is achieved in �+

m,2. This implies that

θm,ρ1 = arg min
θ ′∈�m

γ (θ ′) and γ (θm,ρ1) = Varθ
(
X[0,0]|Xm

)
.

Additionally, ‖θm,ρ1‖1 ≤ ‖θ‖1. The same results holds for θ iso
m,ρ1

if θ in �+,iso.

The proof is given in the technical Appendix [36]. The purpose of this prop-
erty is threefold. First, we derive that assumption (H2) ensures that θm,ρ1 belongs
�+

m,ρ1
and that the smallest eigenvalue of (Ip2 −C(θm,ρ1)) is larger than 1 −‖θ‖1.

Second, it allows to express the projection θm,ρ1 in terms of conditional expec-
tation (Corollary 4.2). Finally, we deduce a bias-variance decomposition of the
estimator θ̂m,ρ1 (Corollary 4.3). In other words, the equality holds in (21).

COROLLARY 4.2. Let θ ∈ �+ such that (H2) holds and let m ∈ M1. The
projection θm,ρ1 is uniquely defined by the equation

Eθ

(
X[0,0]|Xm

)= ∑
(i,j)∈m

θm,ρ1[i,j ]X[i,j ]

and θm,ρ1[i,j ] = 0 for any (i, j) /∈ m. Similarly, if θ ∈ �+,iso satisfies (H2), then
θ iso
m,ρ1

is uniquely defined by the equation

Eθ

(
X[0,0]|Xm

)= ∑
(i,j)∈m

θ iso
m,ρ1[i,j ]X[i,j ]

and θ iso
m,ρ1[i,j ] = 0 for any (i, j) /∈ m.

Consequently,
∑

1≤i,j≤p θm,ρ1[i,j ]X[i,j ] is the best linear predictor of X[0,0]
given the covariates X[i,j ] with (i, j) ∈ m. This is precisely the definition of the
kriging parameters (Stein [34]). Hence, the matrix θm,ρ1 corresponds to the kriging
parameters of X[0,0] with kriging neighborhood’s range of rm. The distance rm is
introduced in Definition 2.1 and stands for the radius of m.
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COROLLARY 4.3. Let θ ∈ �+ such that (H2) holds and let m ∈ M1. The
loss of θ̂m,ρ1 decomposes as l(θ̂m,ρ1, θ) = l(θm,ρ1, θ) + l(θ̂m,ρ1, θm,ρ1). If θ be-
longs to �+,iso

m and (H2) holds, then we also have the decomposition l(θ̂ iso
m,ρ1

, θ) =
l(θ iso

m,ρ1
, θ) + l(θ̂ iso

m,ρ1
, θm,ρ1).

A proof is provided in the technical Appendix [36]. If θ does not satisfy as-
sumption (H2), then θm,ρ1 does not necessarily belong to �+

m,ρ1
, and there may

not be such a bias variance decomposition.

4.2. Asymptotic risk. In this section, we evaluate the risk of each estimator
θ̂m,ρ1 and use it as a benchmark to assess the result of Theorem 3.1. We have
mentioned in Corollary 4.3 that under (H2) the risk Eθ [l(θ̂m,ρ1, θ)] decomposes
into the sum of the bias l(θm,ρ1, θ) and a variance term Eθ [l(θ̂m,ρ1, θm,ρ1)]. If this
last quantity is of the same order as the penalty pen(m) introduced in (23), then
Theorem 3.1 yields an oracle inequality. However, we are unable to express this
variance term Eθ [l(θ̂m,ρ1, θm,ρ1)] in a simple form. This is why we restrict our-
selves to study the risks when n tends to infinity. Nevertheless, these results give
us some hints to appreciate the strength and the weaknesses of Theorem 3.1 and
the upper bound (25).

In the following proposition, we adapt a result of Guyon [17], Section 4.3.2 to
obtain an asymptotic expression of the risk Eθ [l(θ̂m,ρ1, θm,ρ1)]. We first need to
introduce some new notation. For any model m in the collection M1 \ {∅}, we fix
a sequence (ik, jk)k=1,...,dm of integers such that (�i1,j1, . . . ,�idm,jdm

) is a basis of
the space �m. Then χm[0,0] stands for the random vector of size dm that contains
the neighbors of X[0,0]

χ∗
m[0,0] := [tr(�i1,j1X

v), . . . , tr(�idm,jdm
Xv)].

Additionally, for any θ ∈ �+, we define the matrices V , W and ILm as⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

V := covθ

(
χm[0,0]

)
,

W[k,l] := 1

p2 tr
[
C(�ik,jk

)
(
Ip2 − C(θm,ρ1)

)2(
Ip2 − C(θ)

)−2
C(�il,jl

)
]

for any k = 1, . . . , dm,

ILm := Diag(‖�ik,jk
‖2
F , k = 1, . . . , dm),

where for any vector u, Diag(u) is the diagonal matrix whose diagonal elements
are the components of u. We also define the corresponding quantities χ iso

m[0,0], V iso,

W iso and ILiso
m in order to consider the isotropic estimator θ̂ iso

m,ρ1
.

PROPOSITION 4.4. Let m be a model in M1 \ {∅}, and let θ be an element of
�+

m that satisfies (H1). Then θ̂m,ρ1 converges to θ in probability, and

lim
n→+∞np2

Eθ [l(θ̂m,ρ1, θ)] = 2σ 4 tr[ILmV −1].(28)
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Let θ in �+ such that (H2) is fulfilled. Then, θ̂m,ρ1 converges to θm,ρ1 in probability
and

lim
n→+∞np2

Eθ [l(θ̂m,ρ1, θm,ρ1)] = 2σ 4 tr(WV −1).(29)

Both results still hold for the estimator θ̂ iso
m,ρ1

if θ belongs to �+,iso and if one

replaces V , W , and ILm by V iso, W iso and ILiso
m .

In the first case, assumption (H1) ensures that θ ∈ �+
m,ρ1

whereas assumption
(H2) ensures that θm,ρ1 ∈ �+

m,ρ1
. The proof is based on the extension of Guyon’s

approach in the toroidal framework.
Expressions (28) and (29) are not easily interpretable in the present form. This

is why we first derive (28) when θ is zero. Observe that it is equivalent to the
independence of (X[i,j ])(i,j)∈�.

EXAMPLE 4.5. Assume that θ is zero. Then for any model m ∈ M1, the as-
ymptotic risks of θ̂m,ρ1 and θ̂ iso

m,ρ1
satisfy

lim
n→+∞np2

E0p [l(θ̂m,ρ1,0p)] = 2σ 2dm

and

lim
n→+∞np2

E0p [l(θ̂ iso
m,ρ1

,0p)] = 2σ 2d iso
m ,

where we recall that d iso
m is the dimension of the space �iso

m .

PROOF. Since the components of X are independent, the matrix V equals
σ 2ILm. We conclude by applying Proposition 4.4. �

Therefore, when the variables X[i,j ] are independent, the asymptotic risk of
θ̂m,ρ1 equals, up to a factor 2, the variance term of the least squares estimator in
the fixed design Gaussian regression framework. This quantity is of the same order
as the penalty introduced in Section 3. When the matrix θ is nonzero, we can lower
bound the limits (28) and (29).

COROLLARY 4.6. Let m be a model in M1 and let θ ∈ �+
m that satisfies (H1).

Then, the variance term is asymptotically lower bounded as follows:

lim
n→+∞np2

Eθ [l(θ̂m,ρ1, θ)] ≥ Lσ 2ϕmin[Ip2 − C(θ)]dm = Lσ 4 dm

ϕmax(�)
,(30)

where L is a universal constant. Let θ ∈ �+ that satisfies (H2). For any model
m ∈ M1,

lim
n→+∞np2

Eθ [l(θ̂m,ρ1, θm,ρ1)] ≥ Lσ 2(1 − ‖θ‖1)
3dm.(31)
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The proof is postponed to the technical Appendix [36]. Again, analogous lower
bounds hold for θ̂ iso

m,ρ1
when θ belongs to �iso,+. This corollary states that as-

ymptotically with respect to n the variance term of θ̂m,ρ1 is larger than the order
dm/(np2). This expression is not really surprising since dm stands for the dimen-
sion of the model m and np2 corresponds to the number of data observed. Let us
define Rθ,∞(θ̂m,ρ1, θm,ρ1) := limn→+∞ np2

Eθ [l(θ̂m,ρ1, θm,ρ1)] as the asymptotic
variance term for θ̂m,ρ1 rescaled by the number np2 of observations.

The first part of corollary (30) states that from an asymptotic point of view
the upper bound (25) is optimal. By Theorem 3.1, if we choose pen(m) =
Kρ2

1ϕmax(�) dm

np2 , then it holds that

E[l(θ̃ρ1, θ)] ≤ L
(
K,ρ1, ϕmin[Ip2 − C(θ)])Rθ,∞(θ̂m,ρ1, θ)

np2

for any model m ∈ M \ ∅ and any θ ∈ �+
m that satisfies (H1). This property holds

for any n and any p. Hence, θ̃ρ1 performs as well as the parametric estimator θ̂m,ρ1

if the support of θ belongs to some unknown model m and if θ satisfies (H1).
If we assume that ‖θ‖1 < 1 [hypothesis (H2)], we are able to derive a stronger

result.

PROPOSITION 4.7. Considering K ≥ K0, ρ1 ≥ 2, η < 1 and a collection
M ⊂ M1 \∅, we define the estimator θ̃ρ1 with the penalty pen(m) = Kρ2

1
dm

np2(1−η)
.

Then the risk of θ̃ρ1 is upper bounded by

Eθ [l(θ̃ρ1, θ)] ≤ L(K,ρ1, η) inf
m∈M

{
l(θm,ρ1, θ) + Rθ,∞(θ̂m,ρ1, θm,ρ1)

np2

}
(32)

for any θ ∈ �+ ∩ B1(0p, η).

Observe that this property holds for any n and any p. If the matrix θ is strictly
diagonally dominant, we therefore obtain an upper bound similar to an oracle in-
equality, except that the variance term Eθ [l(θ̂m,ρ1, θm,ρ1)] has been replaced by its
asymptotic counterpart Rθ,∞(θ̂m,ρ1, θm,ρ1)/(np

2). However, this inequality is not
valid uniformly over any η < 1: when η converges to one, the constant L(K,ρ1, η)

tends to infinity. Indeed, if ‖θ‖1 converges to one, the lower bound (31) on the vari-
ance term can behave like (1 − ‖θ‖1)

3dm/(np2) for some matrices θ whereas the
penalty term dm/[np2(1 − ‖θ‖1)] tends to infinity.

In the remaining part of the section, we illustrate that the constant L(K,η,ρ1)

has to go to infinity when η goes to one. Let us consider the model m1. It consists
of GMRFs with 4-nearest neighbors.

EXAMPLE 4.8. Let θ be a nonzero element of �iso
m1

; then the asymptotic risk
of θ̂ iso

m1,ρ1
simplifies as

lim
n→+∞np2

Eθ [l(θ̂ iso
m1,ρ1

, θ)] = 2
σ 4θ[1,0]

cov(X[1,0],X[0,0])
.(33)
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If we let size p of the network tend to infinity and θ[1,0] go to 1/4, the risk is
equivalent to

lim
p→+∞ lim

n→+∞np2
Eθ [l(θ̂ iso

m1,ρ1
, θ)] ∼

θ[1,0]→1/4

16σ 2(1 − 4θ[1,0])
log(16)

.

The proof is postponed to the technical Appendix [36]. If follows from the
second result that the lower bound (30) is sharp since in this particular case
ϕmin(Ip2 − C(θ)) = σ 2(1 − 4θ[1,0]). When θ[1,0] tends to 1/4, then ‖θ‖1 tends to
one, and Eθ [l(θ̂ iso

m1,ρ1
, θ)] behaves like σ 2(1−‖θ‖1)d

iso
m1

/(np2) whereas the penalty
pen(m1) given in Theorem 3.1 has to be larger than σ 2d iso

m1
/[np2(1 − ‖θ‖1)].

Hence, the variance term and the penalty pen(·) are not necessarily of the same
order when ‖θ‖1 tends to one. Theorem 3.1 cannot lead to an oracle inequality of
the type (32) which is valid uniformly on η < 1.

EXAMPLE 4.9. Let α be a positive number smaller than 1/4. For any integer
p which is divisible by 4, we define the p × p matrix θ(p) by⎧⎨⎩ θ

(p)
[p/4,p/4] = θ

(p)
[−p/4,p/4] = θ

(p)
[p/4,−p/4] = θ

(p)
[−p/4,−p/4] := α,

θ
(p)
[i,j ] := 0, else.

Then the variance term is asymptotically lower bounded as follows:

lim
p→+∞ lim

n→+∞np2
Eθ(p)

[
l
(
θ̂ (p)iso

m1,ρ1
,
[
θ(p)]iso

m1,ρ1

)]≥ Lσ 2

1 − 4α
.

The proof is postponed to the technical Appendix [36]. This variance term is of
order σ 2d iso

m /[np2(1 − ‖θ‖1)] = ϕmax(�)d iso
m /(np2) when ‖θ‖1 goes to one. The

penalty pen(m) introduced in Proposition 4.7 is therefore a sharp upper bound of
the variance terms.

On one hand, we take a penalty pen(m) larger than σ 2dm/(np2(1 − ‖θ‖1)). On
the other hand, the variance of θ̂m,ρ1 is of the order σ 2(1−‖θ‖1)dm/(np2) in some
cases. Bound (32) cannot, therefore, hold uniformly over any η < 1. We think that
it is intrinsic to the penalization strategy.

5. Comments on the assumptions. In this section, we discuss the depen-
dency of the estimators θ̂m,ρ1 on ρ1 as well as assumptions (H1) and (H2).

Dependency of θ̂m,ρ1 on ρ1. We recall that the estimator θ̂m,ρ1 is defined in
(18) as the minimizer of the CLS empirical contrast γn,p(·) over �+

m,ρ1
. It may

seem restrictive to perform the minimization over the set �+
m,ρ1

instead of �+
m.

Nevertheless, we advocate that it is not the case, at least for small models. Let us
indeed define

ρ(m) := sup
θ∈�+

m

ϕmax[Ip2 − C(θ)] and ρiso(m) := sup
θ∈�

+,iso
m

ϕmax[Ip2 − C(θ)].
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TABLE 2
Approximate computation of ρ(m) and

ρiso(m) for the four smallest models with p = 50

dm 2 4 6 10
ρ(m) 2.0 4.0 5.0 6.8

d iso
m 1 2 3 4

ρiso(m) 2.0 4.0 5.0 6.8

The quantities ρ(m) and ρiso(m) are finite since �+
m is bounded. If one takes ρ1

larger than ρ(m) [resp., ρiso(m)], then the set �+
m,ρ1

(resp., �+,iso
m,ρ1

) is exactly �+
m

(resp., �+,iso
m ). We illustrate in Table 2 that ρ(m) and ρiso(m) are small when

model m is small. Consequently, choosing a moderate value for ρ1 is not really
restrictive for small models. However, when the size of model m increases, the
sets �+

m,ρ1
and �+

m become different for moderate values of ρ1. In Section 7, we
discuss the choice of ρ1.

Assumption (H1) defined in (22) states that the largest eigenvalue of (Ip2 −
C(θ)) is smaller than ρ1. We have illustrated in Table 2 that if the support of θ

belongs to a small model m, then the maximal absolute value of (Ip2 − C(θ)) is
small. Hence, assumption (H1) is ensured for “moderate” values of ρ1 as soon as
the support of θ belongs to some small model. If θ is not sparse but approximately
sparse it is likely that the largest eigenvalue of θ remain moderate. In practice, we
do not know in advance if a given choice of ρ1 ensures (H1). In Section 7, we
discuss an extension of our procedure which does not require assumption (H1).

Assumption (H2) defined in (27) states that θ ∈ B1(0p,1) or equivalently that
the matrix (Ip2 − C(θ)) is diagonally dominant. Rue and Held prove in [29], Sec-
tion 2.7, that �+

m1
is included in B1(0p,1). They also point out that a small part

of �+
m2

does not belong to B1(0p,1). In fact, assumption (H2) becomes more and
more restrictive if the support of θ becomes larger. Nevertheless, assumption (H2)

is also quite common in the literature (as, for instance, in [17]).
If one looks closely at our proofs involving assumption (H2), one realizes that

this assumption is only made to ensure the following facts:

1. The projection θm,ρ1 belongs to the open set �+
m,ρ1

for any model m ∈ M
(Corollary 4.3).

2. The smallest eigenvalue of (Ip2 −C(θm,ρ1)) is lower bounded by some positive
number ρ2, uniformly over all models m ∈ M.

From empirical observations, these two last facts seem far more restrictive
than (H2). We used assumption (H2) in the statement of our results, because we
did not find any weaker but still simple condition that ensures facts 1 and 2.
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6. Minimax rates. In Theorem 3.1 and Proposition 4.7 we have shown that
under mild assumptions on θ the estimator θ̃ρ1 behaves almost as well as the best
estimator among the family {θ̂m,ρ1,m ∈ M}. We now compare the risk of θ̃ρ1 with
the risk of any other possible estimator θ̂ . This includes comparison with maxi-
mum likelihood methods. There is no hope to make a pointwise comparison with
an arbitrary estimator. Therefore, we classically consider the maximal risk over
some suitable subsets T of �+. The minimax risk over the set T is given by
infθ̂ supθ∈T Eθ [l(θ̂ , θ)] where the infimum is taken over all possible estimators
θ̂ of θ . Then the estimator θ̃ρ1 is said to be approximately minimax with respect to
the set T if the ratio,

supθ∈T Eθ [l(θ̃ρ1, θ)]
infθ̂ supθ∈T Eθ [l(θ̂ , θ)] ,

is smaller than a constant that does not depend on σ 2, n or p. An estimator is said
to be adaptive to a collection (Ti )i∈I if it is simultaneously minimax over each Ti .
The problem of designing adaptive estimation procedures is in general difficult. It
has been extensively studied in the fixed design Gaussian regression framework.
See for instance [6] for a detailed discussion. In the sequel, we adapt some of their
ideas to the GMRF framework.

We prove in Section 6.1 that the estimator θ̃ρ1 is adaptive to the unknown spar-
sity of the matrix θ . Moreover, it is also adaptive if we consider the Frobenius
distance between partial correlation matrices. In Section 6.2, we show that θ̃ρ1 is
also adaptive to the rates of decay of the bias.

We need to restrain ourselves to set of matrices θ such that the largest eigenvalue
of the covariance matrix � is uniformly bounded. This is why we define

∀ρ2 > 1 U (ρ2) :=
{
θ ∈ �,ϕmin

(
Ip2 − C(θ)

)≥ 1

ρ2

}
.(34)

Observe that θ ∈ U (ρ2) is exactly equivalent to ϕmax(�) ≤ σ 2ρ2 since � =
σ 2(Ip2 − C(θ)).

6.1. Adapting to unknown sparsity. In this subsection, we prove that under
mild assumptions the penalized estimator θ̃ρ1 is adaptive to the unknown sparsity
of θ . We first lower bound the minimax rate of convergence on given hypercubes.

DEFINITION 6.1. Let m be a model in the collection M1 \ ∅. We consider
(�i1,j1, . . . ,�idm,jdm

) a basis of the space �m defined by (14). For any θ ′ ∈ �+
m,

the hypercube Cm(θ ′, r) is defined as

Cm(θ ′, r) :=
{
θ ′ +

dm∑
k=1

�ik,jk
φk,φ ∈ {0,1}dm

}
,
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if the positive number r is small enough so that Cm(θ ′, r) ⊂ �+. For any
θ ′ ∈ �+,iso

m , we analogously define the hypercubes C iso
m (θ ′, r) using a basis

(� iso
i1,j1

, . . . ,� iso
idm,jdm

).

PROPOSITION 6.2. Let m be a model in M1 \ ∅ whose dimension dm is
smaller than p

√
n. Then, for any estimator θ̂ ,

sup
θ∈�+

m

Eθ [l(θ̂ , θ)] ≥ sup
θ∈�+

m,2

Eθ [l(θ̂ , θ)] ≥ Lσ 2 dm

np2 .(35)

Let θ ′ be an element of �+
m that satisfies (H2). For any estimator θ̂ of θ ,

sup
θ∈Co[Cm(θ ′,(1−‖θ ′‖1)/

√
np2)]

Eθ [l(θ̂ , θ)] ≥ Lσ 2ϕ2
min[Ip2 − C(θ ′)] dm

np2 ,(36)

where Co[Cm(θ ′, r)] denotes the convex hull of Cm(θ ′, r).

An analogous result holds for isotropic hypercubes. The first bound (35) means
that for any estimator θ̂ , the supremum of the risks Eθ [l(θ̂m,ρ1, θ)] over �+

m is
larger than σ 2dm/(np2) (up to some numerical constant). This rate σ 2dm/(np2) is
achieved by the CLS estimator by Theorem 3.1.

The second lower bound (36) is of independent interest. It implies that in a
small neighborhood of θ ′ the risk Eθ [l(θ̂m,ρ1, θ)] is larger than σ 2ϕ2

min[Ip2 −
C(θ ′)]dm/(np2). This confirms the lower bound (30) of Corollary 4.6 in a nonas-
ymptotic way. Indeed, these two expressions match up to a factor ϕmin[Ip2 −
C(θ ′)]. This difference comes from the fact that the lower bound (36) holds for
any estimator θ̂ . Bound (36) is sharp in the sense that the maximum likelihood
estimator θ̂ iso,mle

m1
of isotropic GMRF in m1 exhibits an asymptotic risk of order

σ 2ϕ2
min[Ip2 −C(θ)]/(np2) for the parameter θ studied in Example 4.8. It is shown

using the methodology introduced in the proof of Example 4.8. We now state that
θ̃ρ is adaptive to the sparsity of m.

COROLLARY 6.3. Considering K ≥ K0, ρ1 ≥ 2, ρ2 > 2 and a collection
M ⊂ M1, we define the estimator θ̃ρ1 with the penalty pen(m) = Kσ 2ρ2

1ρ2
dm

np2 .
For any nonempty model m,

sup
θ∈�+

m,ρ1∩U (ρ2)

Eθ [l(θ̃ρ1, θ)] ≤ L(K,ρ1, ρ2) inf
θ̂

sup
θ∈�+

m,ρ1∩U (ρ2)

E[l(θ̂ , θ)],(37)

where U (ρ2) is defined in (34).

A similar result holds for θ̃ iso
ρ1

and �+,iso
m,ρ1

. Corollary 6.3 is nonasymptotic and
applies for any n and any p. If θ belongs to some model m, then the optimal risk
from a minimax point of view is of order dm

np2 . In practice, we do not know the
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true model m. Nevertheless, the procedure simultaneously achieves the minimax
rates for all supports m possible. This means that θ̃ρ1 reaches this minimax rate
dm

np2 without knowing in advance the true model m.
The procedure is not adaptive to the smallest or the largest eigenvalue of (Ip2 −

C(θ)) which correspond to ρ1 and ρ2. Indeed, the constant L(K,ρ1, ρ2) depends
on ρ1 and ρ2. We are not aware of any other covariance estimation procedure
which is really adaptive to the smallest or the largest eigenvalue of the matrix.

Finally, θ̃ρ1 exhibits the same adaptive properties with respect to the Frobenius
norm.

COROLLARY 6.4. Under the same assumptions as Corollary 6.3,

sup
θ∈�+

m,ρ1∩U (ρ2)

Eθ [‖C(θ̃ρ1) − C(θ)‖2
F ]

≤ L(K,ρ1, ρ2) inf
θ̂

sup
θ∈�+

m,ρ1∩U (ρ2)

E[‖C(θ̂) − C(θ)‖2
F ].

PROOF. As in the proof of Corollary 3.2, we observe that

‖C(θ1) − C(θ2)‖F ≥ p2ρ1

σ 2 l(θ1, θ2),

if θ satisfies assumption (H1). We conclude by applying Proposition 6.2 and Corol-
lary 3.2. �

6.2. Adapting to the decay of the bias. In this section, we prove that the esti-
mator θ̃ρ1 is adaptive to a range of sets that we call pseudo-ellipsoids.

DEFINITION 6.5 (Pseudo-ellipsoids). Let (aj )1≤j≤Card(M1) be a nonincreas-
ing sequence of positive numbers. Then, θ ∈ �+ belongs to the pseudo-ellipsoid
E (a) if and only if

Card(M1)∑
i=1

varθ (X[0,0]|XN (mi−1)) − varθ (X[0,0]|XN (mi))

a2
i

≤ 1.(38)

Condition (38) measures how fast Varθ (X[0,0]|XN (mi)) tends to Varθ (X[0,0]|
X�\{(0,0)}). Suppose that assumption (H2) defined in (27) is fulfilled. By Corol-
lary 4.2, Varθ (X[0,0]|XN (mi)) is the sum of l(θmi

, θ) and σ 2, and condition (38) is
equivalent to

Card(M1)∑
i=1

l(θmi−1, θ) − l(θmi
, θ)

a2
i

≤ 1.(39)
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Hence, the sequence (ai) gives some condition on the rate of decay of the bias
when the dimension of the model increases. These sets E (a) are not true ellipsoids.
Nevertheless, one may consider them as counterparts of the classical ellipsoids
studied in the fixed design Gaussian regression framework (see, for instance, [25],
Section 4.3).

To prove adaptivity, we shall need the equivalence between conditions (38) and
(39). This equivalence holds if Varθ (X[0,0]|XN (mi)) decomposes as l(θmi

, θ) + σ 2

for any model m ∈ M1. As mentioned earlier, assumption (H2) is sufficient (but
not necessary) for this property to hold. This is why we restrict ourselves to study
sets of the type E (a) ∩ B1(0p,1). We shall also perform the following assumption
on the ellipsoids E (a):

(Ha): a2
i ≤ σ 2

dmi

for any 1 ≤ i ≤ |M1|.

It essentially means that the sequence (ai) converges fast enough toward 0. For
instance, all the sequences ai = σ(dmi

)−s with s ≥ 1/2 satisfy (Ha).

PROPOSITION 6.6. Under assumption (Ha), the minimax rate of estimation
on E (a) ∩ B1(0p,1) ∩ U (2) is lower bounded by

inf
θ̂

sup
θ∈E(a)∩B1(0p,1)∩U (2)

Eθ [l(θ̂ , θ)] ≥ L sup
1≤i≤Card(M1)

(
a2
i ∧ σ 2 dmi

np2

)
.(40)

This lower bound is analogous to the minimax rate of estimation for ellipsoids in
the Gaussian sequence model. Gathering Theorem 3.1 and Proposition 6.6 enables
to derive adaptive properties for θ̃ρ1 .

PROPOSITION 6.7. Considering K ≥ K0, ρ1 ≥ 2, ρ2 > 2 and the collec-
tion M1, we define the estimator θ̃ρ1 with the penalty pen(m) = Kσ 2ρ2

1ρ2
dm

np2 . For

any ellipsoid E (a) that satisfies (Ha) and such that a2
1 ≥ 1/(np2), the estimator

θ̃ρ1 is minimax over the set E (a) ∩ B1(0p,1) ∩ U (ρ2),

sup
θ∈E(a)∩B1(0p,1)∩U (ρ2)

Eθ [l(θ̃ρ1, θ)]
(41)

≤ L(K,ρ1, ρ2) inf
θ̂

sup
θ∈E(a)∩B1(0p,1)∩U (ρ2)

Eθ [l(θ̂ , θ)].

Let us first illustrate this result. We have mentioned earlier that assumption (Ha)

is satisfied for all sequences ai = σ(dmi
)−s with s ≥ 1/2. We note that E ′(s) such

a pseudo-ellipsoid. By Propositions 6.6 and 6.7, the minimax rate over one pseudo
ellipsoid E ′(s) is σ 2(np2)−2s/(1+2s). The larger s is, the faster the minimax rates
is. The estimator θ̃ρ1 achieves simultaneously the rate σ 2(np2)−2s/(1+2s) for all
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s ≥ 1/2. Consequently, θ̃ρ1 is adaptive to the rate s of decay of the bias: it achieves
the optimal rates without knowing s in advance.

Let us further comment on Proposition 6.7. By (41), the estimator θ̃ρ1 is adap-
tive over E (a)∩ B1(0p,1)∩ U (ρ2) for all sequences (a) such that (Ha) is satisfied
and such that a2

1 ≥ 1/(np2). Again, the result applies for any n and any p. The con-
dition a2

1 ≥ 1/(np2) is classical. It ensures that the pseudo-ellipsoid E (a) is not de-
generate, that is, that the minimax rates of estimation is not smaller than σ 2/(np2).
We explained earlier that we restrict ourselves to parameters θ in B1(0p,1) only
because this enforces the equivalence between (38) and (39). In contrast, the hy-
pothesis ϕmax(�) ≤ σ 2ρ2 is really necessary because we fail to be adaptive to ρ2.

COROLLARY 6.8. Under assumption (Ha), the minimax rate of estimation
over E (a) ∩ U (2) ∩ B1(0p,1) is lower bounded by

inf
θ̂

sup
θ∈E(a)∩B1(0p,1)∩U (2)

Eθ [‖C(θ̂) − C(θ)‖2
F ] ≥ L sup

1≤i≤Card(M1)

(
a2
i p

2 ∧ dmi

n

)
.

Under the same assumptions as Proposition 6.7,

sup
θ∈E(a)∩B1(0p,1)∩U (ρ2)

Eθ [‖C(θ̂) − C(θ)‖2
F ]

≤ L(K,ρ1, ρ2) inf
θ̂

sup
θ∈E(a)∩B1(0p,1)∩U (ρ2)

Eθ [‖C(θ̂) − C(θ)‖2
F ].

PROOF. As in the proof of Corollary 3.2, we observe that

‖C(θ1) − C(θ2)‖F ≥ p2[ϕmax(�)]−1l(θ1, θ2) ≥ p2

ρ2σ 2 l(θ1, θ2),

‖C(θ1) − C(θ2)‖F ≤ p2[ϕmin(�)]−1l(θ1, θ2) ≤ p2 ϕmax[Ip2 − C(θ)]
σ 2 l(θ1, θ2)

≤ ρ2p
2

σ 2 l(θ1, θ2),

if θ ∈ B1(0p,1)∩ Bop(ρ2). We conclude by applying Propositions 6.6 and 6.7. �

Again, θ̃ρ1 satisfies the same minimax properties with respect to the Frobenius
norm. All these properties easily extend to isotropic fields if one defines the corre-
sponding sets E iso(a) ∩ B1(0p,1) ∩ U (ρ2) of isotropic GMRFs.

7. Discussion.

7.1. Comparison with maximum likelihood estimation. Let us first compare
the computational cost, the CLS estimation method and the maximum likelihood
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estimator (MLE). For toroidal lattices, fast algorithms based on two-dimensional
fast-Fourier transformation (see, for instance, [31]) allow to compute the MLE as
fast as the CLS estimator. More details on the computation of the CLS estimators
for toroidal lattices are given in [37], Section 2.3. When the lattice is not a torus, the
MLE becomes intractable because it involves the optimization of a determinant of
size p2. In contrast, the CLS criterion γn,p(·) defined in (16) is a quadratic function
of θ . Consequently, CLS estimators are still computationally amenable. We extend
our model selection to nontoroidal lattices in [37].

Let us compare the risk of CLS estimators and MLE. Given a small-dimensional
model m, the risk of the parametric CLS estimator and the parametric MLE have
been compared from an asymptotic point of view ([17], Section 4.3). It is generally
accepted (see, for instance, Cressie [10], Section 7.3.1) and that parametric CLS
estimators are almost as efficient as parametric MLE for the major part of the pa-
rameter spaces �+

m. We have nonasymptotically assessed this statement in Propo-
sition 6.2 by minimax arguments. Nevertheless, for some parameters θ that are
close to the border of �+

m, Kashyap and Chellappa [22] have pointed out that CLS
estimators are less efficient than MLE. If we have proved nonasymptotic bounds
for CLS-based model selection method, we are not aware of any such result for
model selection procedures based on MLE.

7.2. Concluding remarks. We have developed a model selection procedure for
choosing the neighborhood of a GMRF. In Theorem 3.1, we have proven a nonas-
ymptotic upper bound for the risk of the estimator θ̃ρ1 with respect to the prediction
error l(·, ·). Under assumption (H1), this bound is shown to be optimal from an as-
ymptotic point of view if the support of θ belongs to one of the models in the
collection. If assumption (H2) is fulfilled, we are able to obtain an oracle-type in-
equality for θ̃ρ1 . Moreover, θ̃ρ1 is minimax adaptive to the sparsity of θ under (H1).
Finally, it simultaneously achieves the minimax rates of estimation over a large
class of sets E (a) if (H2) holds. Some of these properties still hold if we use the
Frobenius loss function. The case of isotropic Gaussian fields is handled similarly.

However, in the oracle inequality (32) and in the minimax bounds (37) and (41),
we either perform an assumption on the l1 norm of θ or on the smallest eigenvalue
of (Ip2 − C(θ)). When ‖θ‖1 tends to one or ϕmin[Ip2 − C(θ)] tends to 0, there is
a distortion between the upper bound Eθ [l(θ̃ρ1, θ)] provided by Theorem 3.1 and
the lower bounds given by Corollary 4.6 or Proposition 6.2. This limitation seems
intrinsic to our penalization method which is linear with respect to the dimension,
whereas the asymptotic variance term Eθ [l(θ̂m,ρ1, θ)] depends in a complex way
on the dimension of the model m and on the target θ . In our opinion, achieving
adaptivity with respect to the smallest eigenvalue of (Ip2 −C(θ)) (or, equivalently,
the largest value of �) would require a different penalization technique. Neverthe-
less, we are not aware of any procedure in a covariance estimation setting that is
adaptive to the largest eigenvalues of �.
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So far, we have provided an estimation procedure for (Ip2 −C(θ)) = σ 2�−1. If
we aim at estimating the precision matrix �−1, we also have to take into account
the quantity σ 2. It is natural to estimate it by σ̃ 2 := γn,p2(θ̃ρ1) as done for instance
by Guyon in [17], Section 4.3, in the parametric setting. Then, we obtain the es-
timate �̃−1 := σ̃ 2(Ip2 − C(θ̃ρ1). It is of interest to study the adaptive properties
of this estimator with respect to loss functions such as the Frobenius or operator
norm as is done in [28] in the nonstationary setting. Nevertheless, let us mention
that the matrix �̃−1 is not necessarily invertible since the estimator θ̃ρ1 belongs to
the closure of �+.

The choice of the quantity ρ1 is problematic. On one hand, ρ1 should be large
enough so that assumption (H1) is fulfilled. On the other hand, a large value of ρ1
yields worse bounds in Theorem 3.1. Moreover, the largest eigenvalue of (Ip2 −
C(θ)) is unknown in practice, which makes more difficult the choice of ρ1. We see
two possible answers to this issue:

• First, moderate values of ρ1 are sufficient to enforce (H1) if the target θ is sparse
as illustrated in Table 2.

• Second, we believe that the bounds for the risk are pessimistic with respect to ρ1.
A future direction of research is to derive risk bounds for θ̃ρ1 with ρ1 = +∞.
In [37], we illustrate that such a procedure gives rather good results in practice.

In Theorem 3.1, we only provide a lower bound of the penalty so that the pro-
cedure performs well. However, this bound depends on the largest eigenvalue of
� which is seldom known in practice and we did not give any advice for choos-
ing a “reasonable” constant K in practice. This is why we introduce in [37] a
data-driven method based on the slope heuristics of Birgé and Massart [7] for cal-
ibrating the penalty. We also provide numerical evidence of its performances on
simulated data. For instance, the procedure outperforms variogram-based methods
for estimating Matérn correlations.

We have mentioned in the Introduction that the toroidal assumption for the lat-
tice is somewhat artificial in several applications. Nevertheless, we needed to ne-
glect the edge effects in order to derive nonasymptotic properties for θ̃ρ1 as in
Theorem 3.1. In practice, it is often more realistic to suppose that we observe a
small window of a Gaussian field defined on the whole plane Z

2. The previous
nonasymptotic properties do not extend to this new setting. Nevertheless, Laksh-
man and Derin have shown in [23] that there is no phase transition within the valid
parameter space for GMRFs defined on the plane Z

2. In short, this implies that
the distribution of a field observed in a fixed window of a GMRF does not as-
ymptotically depend on the bound condition. Therefore, it is reasonable to think
that our estimation procedure performs well if it was adapted to this new setting.
In [37], we describe such an extension and we provide numerical evidence of its
performances.

7.3. Possible extensions. In many statistical applications stationary Gaussian
fields (or Gaussian Markov random fields) are not directly observed. For instance,
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Aykroyd [1] or Dass and Nair [13] use compound Gaussian Markov random fields
to account for nonstationarity and steep variations. The wavelet transform has
emerged as a powerful tool in image analysis. the wavelet coefficients of an image
are sometimes modeled using hidden Markov models [12, 27]. More generally,
the success of the GMRF is mainly due to the use of hierarchical models involving
latent GMRFs [30]. The study and the implementation of our penalization strategy
for selecting the complexity of the latent Markov models is an interesting direction
of research.

8. Proofs.

8.1. A concentration inequality. In this section, we prove a new concentration
inequality for suprema of Gaussian chaos of order 2. It will be useful for proving
Theorem 3.1.

PROPOSITION 8.1. Let F be a compact set of symmetric matrices of size r ,
(Y 1, . . . , Y n) be a n-sample of a standard Gaussian vector of size r and Z be the
random variable defined by

Z := sup
R∈F

tr[R(YY ∗ − Ir)].

Then

P
(
Z ≥ E(Z) + t

)≤ exp
[
−
(

t2

L1E(W)
∧ t

L2B

)]
,(42)

where the quantities B and W are such that

B := 2

n
sup
R∈F

ϕmax(R),

W := 4

n
sup
R∈F

tr(RYY ∗R′).

The main argument of this proof is to transfer a deviation inequality for suprema
of Rademacher chaos of order 2 to suprema of Gaussian chaos. Talagrand [35]
has first given in Theorem 1.2 a concentration inequality for such suprema of
Rademacher chaos. Boucheron et al. [8] have recovered the upper bound apply-
ing a new methodology based on the entropy method. We adapt their proof to
consider nonnecessarily homogeneous chaos of order 2. More details are found in
the technical Appendix [36].

8.2. Proof of Theorem 3.1.

PROOF. We only consider the case of anisotropic estimators. The proofs and
lemma are analogous for isotropic estimators. We first fix a model m ∈ M. By
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definition, the model m̂ satisfies

γn,p(θ̃ρ1) + pen(m̂) ≤ γn,p(θm,ρ1) + pen(m).

For any θ ′ ∈ �+, γ n,p(θ ′) stands for the difference between γn,p(θ ′) and its ex-
pectation γ (θ ′). Then, the previous inequality turns into

γ (θ̃ρ1) ≤ γ (θm,ρ1) + γ n,p(θm,ρ1) − γ n,p(θ̃ρ1) + pen(m) − pen(m̂).

Subtracting the quantity γ (θ) to both sides of this inequality yields

l(θ̃ρ1, θ) ≤ l(θm,ρ1, θ) + γ n,p(θm,ρ1) − γ n,p(θ̃ρ1) + pen(m) − pen(m̂).(43)

The proof is based on the control of the random variable γ n,p(θm,ρ1) − γ n,p(θ̃ρ1).

LEMMA 8.2. For any positive number α, ξ , and δ > 1 the event �ξ defined
by

�ξ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

γ n,p(θm,ρ1) − γ n,p(θ̃ρ1)

≤ 1√
δ
l(θ̃ρ1, θ) +

√
δ√

δ − 1
l(θm,ρ1, θ)

+ K0δ
2ρ2

1ϕmax(�)

np2

[
(1 + α/2)(dm + dm̂) + ξ2

δ − 1

]

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
,

satisfies

P(�c
ξ ) ≤ exp

{
−L1ξ

[
α√

1 + α/2
∧ √

n

]}

× ∑
m′∈M

exp
{
−L2

√
dm′
(

α√
1 + α/2

∧ α2

1 + α/2

)}
.

A similar lemma holds in the isotropic case. In particular, we choose α = (K −
K0)/K0 and δ = √

(1 + α)/(1 + α/2). Lemma 8.2 implies that on the event �ξ ,

γ n,p(θm,ρ1) − γ n,p(θ̃ρ1) ≤ 1√
δ(α)

l(θ̃ρ1, θ) +
√

δ(α)√
δ(α) − 1

l(θm,ρ1, θ) + pen(m)

+ pen(m̂) + K0ξ
2δ(α)2ρ2

1ϕmax(�)

np2(δ(α) − 1)
.

Thus, gathering this bound with inequality (43) yields

δ(α)1/2 − 1

δ(α)1/2 l(θ̃ρ1, θ) ≤ [1 + δ(α)−1/2(δ(α)1/2 − 1
)−1]

l(θm,ρ1, θ) + 2 pen(m)

+ K0ξ
2ρ2

1ϕmax(�)δ(α)2

np2(δ(α) − 1)
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with probability larger than 1 − P(�ξ ). Integrating this inequality with respect to
ξ > 0 leads to

δ(α)1/2 − 1

δ(α)1/2 Eθ [l(θ̃ρ1, θ)]

≤ [1 + δ(α)−1/2(δ(α)1/2 − 1
)−1]

l(θm,ρ1, θ)(44)

+ 2 pen(m) + δ(α)2L(α)

(δ(α) − 1)[α2/(1 + α/2) ∧ n]
ρ2

1ϕmax(�)

np2 .

We upper bound [(α2/(1 + α/2)) ∧ n]−1 by [(α2/(1 + α/2)) ∧ 1]−1. Since α =
K−K0

K0
, it follows that

Eθ [l(θ̃ρ1, θ)] ≤ L1(K)[l(θm,ρ1, θ) + pen(m)] + L2(K)
ρ2

1ϕmax(�)

np2 .

Taking the infimum over the models m ∈ M allows us to conclude. �

PROOF OF LEMMA 8.2. Throughout this proof, it is more convenient to ex-
press the quantities γ n,p(·) and l(·) in terms of covariance and precision matrices.
Thanks to (19), we also provide a matricial expression for γ (·):

γ (θ ′) = 1

p2 tr
[(

I − C(θ ′)
)
�
(
I − C(θ ′)

)]
.(45)

Gathering identities (45) and (17), we get

γ n,p(θm,ρ1) − γ n,p(θ̃ρ1)

= 1

p2 tr
[([Ip2 − C(θm,ρ1)]2 − [Ip2 − C(θ̃ρ1)]2)(XvXv∗ − �)

]
.

Since the matrices �, (Ip2 − C(θm,ρ1)) and (Ip2 − C(θ̃ρ1)) correspond to co-
variance or precision matrices of stationary fields on the two-dimensional torus,
they are symmetric block circulant. By Lemma A.1, they are jointly diagonaliz-
able in the same orthogonal basis. In the sequel, P stands for an orthogonal matrix
associated with this basis. Then the matrices C(θm,ρ1), C(θ̃ρ1) and �, respectively,
decompose in

C(θm,ρ1) = P ∗D(θm,ρ1)P, C(θ̃ρ1) = P ∗D(θ̃ρ1)P, � = P ∗D�P,

where the matrices D(θm,ρ1), D(θ̃ρ1) and D� are diagonal. Let the p2 × n matrix
Y be defined by Y := √

�−1Xv. Clearly, the components of Y follow independent
standard normal distributions. Gathering these new notation, we get

γ n,p(θm,ρ1) − γ n,p(θ̃ρ1)
(46)

= 1

p2 tr
[([Ip2 − D(θm,ρ1)]2 − [Ip2 − D(θ̃ρ1)]2)D�(YY∗ − Ip2)

]
.
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Except YY∗ all the matrices in this last expression are diagonal and we may there-
fore commute them in the trace.

Let 〈·, ·〉H and 〈·, ·〉H′ be two inner products in the space of square matrices of
size p2, respectively, defined by

〈A,B〉H := tr(A∗�B)

p2 and 〈A,B〉H′ := tr(A∗D�B)

p2 .

This first inner product is related to the loss function l(·, ·) through the identity

l(θ ′, θ) = ‖C(θ ′) − C(θ)‖2
H.

Moreover, these two inner products clearly satisfy ‖C(θ ′)‖H = ‖D(θ ′)‖H′ for any
θ ′ ∈ �+. Gathering these new notation, we may upper bound (46) by

γ n,p(θm,ρ1) − γ n,p(θ̃ρ1)

≤ ‖[Ip2 − D(θm,ρ1)]2 − [Ip2 − D(θ̃ρ1)]2‖H′
(47)

× sup
θ1∈�m,θ2∈�m̂,

‖[I
p2−D(θ1)]2−[I

p2−D(θ2)]2‖H′≤1

〈[Ip2 − D(θ1)]2

− [Ip2 − D(θ2)]2, [YY∗ − Ip2]〉H′ .

The first term in this product is easily bounded as these matrices are diagonal:

‖[Ip2 − D(θm,ρ1)]2 − [Ip2 − D(θ̃ρ1)]2‖H′

= tr
[([Ip2 − D(θm,ρ1)]2 − [Ip2 − D(θ̃ρ1)]2)2 D�

p2

]1/2

(48)

= tr
[
[D(θm,ρ1) − D(θ̃ρ1)]2 D�

p2 [2Ip2 − D(θm,ρ1) − D(θ̃ρ1)]2
]1/2

≤ ϕmax[2Ip2 − D(θm,ρ1) − D(θ̃ρ1)]‖D(θm,ρ1) − D(θ̃ρ1)‖H′ .

Since θm,ρ1 and θ̃ρ1 , respectively, belong to �+
m,ρ1

and �+̂
m,ρ1

, the largest eigenval-
ues of the matrices Ip2 − C(θm,ρ1) and Ip2 − C(θ̃ρ1) are smaller than ρ1. Hence,
we get

ϕmax[2Ip2 − D(θm,ρ1) − D(θ̃ρ1)]
= ϕmax[Ip2 − C(θm,ρ1)] + ϕmax[Ip2 − C(θ̃ρ1)] ≤ 2ρ1.

Let us turn to the second term in (47). First, we embed the set of matrices over
which the supremum is taken in a ball of a vector space. For any model m′ ∈ M,
let Um′ be the space generated by the matrices D(θ ′)2 and D(θ ′) for θ ′ ∈ �m′ .
In the sequel, we note dm′2 the dimension of Um′ . The space Um,m′ is defined as
the sum of Um and Um′ whereas dm2,m′2 stands for its dimension. Finally, we note
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B H′
m2,m′2 the unit ball of Um,m′ with respect to the inner product 〈 | 〉H′ . Gathering

these notation, we get

sup
R=[I−D(θ1)]2−[I

p2−D(θ2)]2,

θ1∈�m,θ2∈�m̂ and ‖R‖H′≤1

〈R,YY∗ − Ip2〉H′ ≤ sup
R∈B H′

m2,m̂2

1

p2 tr[RD�(YY∗ − Ip2)].

Applying the classical inequality ab ≤ δa2 + δ−1b2/4 and gathering inequalities
(47) and (48) yields

γ n,p(θm,ρ1) − γ n,p(θ̃ρ1) ≤ δ−1‖C(θm,ρ1) − C(θ̃ρ1)‖2
H

(49)

+ ρ2
1δ sup

R∈B H′
m2,m̂2

1

p2 tr2[RD�(YY∗ − Ip2)].

For any model m′ ∈ M, we define the random variable Zm′ as

Zm′ := sup
R∈B H′

m2,m′2

1

p2 tr[RD�(YY∗ − Ip2)].

The variables Zm′ turn out to be suprema of Gaussian chaos of order 2. In order to
bound Zm̂, we simultaneously control the deviations of Zm′ for any model m′ ∈ M
thanks to the following lemma.

LEMMA 8.3. For any positive numbers α and ξ and any model m′ ∈ M,

P

(
Zm′ ≥

√
2ϕmax(�)

n

{√
1 + α/2

√
dm2,m′2 + ξ

})

≤ exp
{
−L2

√
dm′
(

α√
1 + α/2

∧ α2

1 + α/2

)
− L1ξ

[
α√

1 + α/2
∧ √

n

]}
.

This result is a consequence from a general concentration inequality for
suprema Gaussian chaos of order 2 stated in Proposition 8.1. Its proof is post-
poned to the technical Appendix [36]. Let us fix the positive numbers α and ξ .
Applying Lemma 8.3 to any model m′ ∈ M, the event �′

ξ defined by

�′
ξ =

{
Zm̂ ≤

√
2ϕmax(�)

n

[√
1 + α/2

√
dm2,m̂2 + ξ

]}
satisfies

P(�′c
ξ ) ≤ exp

{
−L1ξ

[
α√

1 + α/2
∧ √

n

]}

× ∑
m′∈M

exp
{
−L2

√
dm′
(

α√
1 + α/2

∧ α2

1 + α/2

)}
.
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From inequality (49), it follows that

γ n,p(θm,ρ1) − γ n,p(θ̃ρ1)

≤ δ−1‖C(θm,ρ1) − C(θ̃ρ1)‖2
H

+ 2δρ2
1ϕmax(�)

np2

{√
1 + α/2

√
dm2,m̂2 + ξ

}2
,

conditionally to �′
ξ . By the triangle inequality,

‖C(θm,ρ1) − C(θ̃ρ1)‖H ≤ ‖C(θm,ρ1) − C(θ)‖H + ‖C(θ̃ρ1) − C(θ)‖H.

We recall that the loss function l(θ ′, θ) equals ‖C(θ ′) − C(θ)‖2
H. We apply twice

the inequality (a + b)2 ≤ (1 + β)a2 + (1 + β−1)b2. Setting the first β to
√

δ − 1,
it follows that

γ n,p(θm,ρ1) − γ n,p(θ̃ρ1)

≤ 1√
δ
l(θ̃ρ1, θ) +

√
δ√

δ − 1
l(θm,ρ1, θ)

+ 2δρ2
1ϕmax(�)

np2 [dm2,m̂2(1 + β)(1 + α/2) + ξ2(1 + β−1)].

By the definition of Um,m̂, its dimension dm2,m̂2 is bounded by dm2 + dm̂2 . Choos-
ing β = δ − 1 yields

γ n,p(θm,ρ1) − γ n,p(θ̃ρ1)

≤ 1√
δ
l(θ̃ρ1, θ) +

√
δ√

δ − 1
l(θm,ρ1, θ)

(50)

+ 2δ2ρ2
1ϕmax(�)

np2 [dm2(1 + α/2) + dm̂2(1 + α/2)]

+ 8ξ2ϕmax(�)δ2

np2(δ − 1)
.

To conclude, we need to compare the dimension dm′2 of the space Um′ with dm′ .

LEMMA 8.4. For any model m ∈ M, it holds that

dm2 ≤ Ldm,

where L is a numerical constant between 4 and 5.48.
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The proof is postponed to the technical Appendix [36]. Defining the universal
constant K0 := 2L, we derive from (50) that

γ n,p(θm,ρ1) − γ n,p(θ̃ρ1)

≤ 1√
δ
l(θ̃ρ1, θ) +

√
δ√

δ − 1
l(θm,ρ1, θ)

+ K0δ
2ρ2

1ϕmax(�)

np2

[
dm(1 + α/2) + dm̂(1 + α/2) + ξ2

δ − 1

]
with probability larger than P(�′

ξ ). The isotropic case is analogous if we replace

dm by d iso
m . �

8.3. Proofs of the minimax results. Let us first prove a minimax lower bound
on hypercubes Cm(θ ′, r). We recall that these hypercubes are introduced in Defin-
ition 6.1.

LEMMA 8.5. Let m be a model in M1 that satisfies dm ≤ √
np, and let θ ′ be

a matrix in �m ∩ B1(0p,1). Then, for any positive number r such that (1−‖θ ′‖1 −
2rdm) is positive,

inf
θ̂

sup
θ∈Co[Cm(θ ′,r)]

Eθ [l(θ̂ , θ)] ≥ Lσ 2
(
r ∧ 1 − ‖θ ′‖1√

np2

)2

dm,

where Co[Cm(θ ′, r)] denotes the convex hull of Cm(θ ′, r). Similarly, let m be a
model in M1 such d iso

m ≤ √
np, and let θ ′ be a matrix in �iso

m ∩ B1(0p,1). Then,
for any positive number r such that (1 − ‖θ ′‖1 − 8rd iso

m ) is positive,

inf
θ̂

sup
θ∈Co[C iso

m (θ ′,r)]
Eθ [l(θ̂ , θ)] ≥ Lσ 2

(
r ∧ 1 − ‖θ ′‖1√

np2

)2

d iso
m .

PROOF OF PROPOSITION 6.2. The first result derives from Lemma 8.5 ap-
plied to the hypercube Cm(0p, (np2)−1/2). We prove the second result using the
same lemma with Cm[θ ′, (1 − ‖θ‖1)/(

√
np)]. �

PROOF OF LEMMA 8.5. This lower bound is based on an application of Fano’s
approach. See [38] for a review of this method and comparisons with Le Cam’s and
Assouad’s lemma. The proof follows three main steps: first, we upper bound the
Kullback–Leibler entropy between distributions corresponding to θ1 and θ2 in the
hypercube. Second, we find a set of points in the hypercube well separated with
respect to the Hamming distance. Finally, we conclude by applying Birgé’s version
of Fano’s lemma. More details can be found in the technical Appendix [36]. �
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PROOF OF PROPOSITION 6.6. First, observe that the set E (a) ∩ B1(0p,1/2)

is included in E (a) ∩ B1(0p,1) ∩ U (2). We then derive minimax lower bounds on
E (a) ∩ B1(0p,1/2) from the lower bounds on hypercubes.

Let mi be a model in M1 such that dm is smaller than
√

np. Let us look for
positive numbers r such that the hypercube [Cmi

(0p, r)] is included in the set
E (a) ∩ B1(0p,1/2).

LEMMA 8.6. Let m be a model in M1 and r be a positive number smaller
than 1/(4dm). For any θ ∈ Co[Cm(0p, r)],

varθ
(
X[0,0]

)≤ σ 2(1 + 16dmr2).

The proof is postponed to the technical Appendix [36]. If we choose

r ≤ ai

16σ
√

dmi

,

then 2rdmi
is smaller than 1/8 by assumption (Ha). Applying Lemma 8.6,

we then derive that Varθ (X[0,0]) ≤ σ 2 + a2
i . Hence, we get the upper bound∑i

j=1[Var(X[0,0]|Xmj−1) − Var(X[0,0]|Xmj
)] ≤ a2

i and it follows that

Card(M1)∑
j=1

Var(X[0,0]|Xmk−1) − Var(X[0,0]|Xmj
)

a2
j

≤ 1,

since the sequence (aj )1≤j≤Card(M1) is nonincreasing. Consequently, Co[Cm(0p ,
r)] is a subset of E (a) ∩ B1(0p,1/2). By Lemma 8.5, we get

inf
θ̂

sup
θ∈E(a)∩B1(0p,1/2)

Eθ [l(θ̂ , θ)] ≥ Lσ 2
(

a2
i

16σ 2 ∧ dmi

np2

)
(51)

≥ L

(
a2
i ∧ σ 2dmi

np2

)
.

Considering all models m ∈ M1 such that dm ≤ √
np yields

inf
θ̂

sup
θ∈E(a)∩B1(0p,1/2)

Eθ [l(θ̂ , θ)] ≥ L sup
i≤Card(M1),dmi

≤√
np

(
a2
i ∧ σ 2dmi

np2

)
.(52)

If the maximal dimension dmCard(M1)
is smaller than

√
np, the proof is complete.

In the opposite case, we need to show that the supremum (40) over all models
m ∈ M1 is achieved at some model m of dimension less than

√
np.

LEMMA 8.7. For any integer 1 ≤ i ≤ Card(M1) − 1, the ratio dmi+1/dmi
is

less than 2.
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The proof of Lemma 8.7 is postponed to the technical Appendix [36]. Let i′
be the largest integer such that dmi′ ≤ √

np. Since i′ is smaller than Card(M1),
we know from Lemma 8.7 that

√
np/2 ≤ dmi′ ≤ √

np. By assumption (Ha), a2
i′ is

smaller than σ 2/dmi′ . Gathering these bounds yields

a2
i′ ≤

σ 2

dmi′
≤ 4dmi′ σ

2

np2 .

Since the sequence (ai)1≤i≤Card(M1) is nonincreasing, the supremum (40) over
all models in M1 is either achieved for some i ≤ i′ or is smaller than 4(a2

i′ ∧
σ 2dmi′ /(np

2)). �

PROOF OF COROLLARY 6.3. Observe that Co[Cm(0p,1/(4dm)] is included
in �m ∩ B1(0p,1/2). This last set is, itself, included in �+

m,ρ1
∩ U (ρ2). Applying

Lemma 8.5, we get the following minimax lower bound:

inf
θ̂

sup
θ∈�+

m,ρ1∩U (ρ2)

E[l(θ̂ , θ)] ≥ Lσ 2 dm

np2

since the dimension dm is smaller than np2. Applying Theorem 3.1, we derive that

sup
θ∈�+

m,ρ1∩U (ρ2)

E[l(θ̃ρ1, θ)] ≤ L(K)σ 2ρ2
1ρ2

dm

np2

+ L2(K)
ρ2

1

np2 sup
θ∈�+

m,ρ1∩U (ρ2)

ϕmax(�)

≤ L(K,ρ1, ρ2)σ
2 dm

np2 .

We conclude by combining the two different bounds. �

PROOF OF PROPOSITION 6.7. This result derives from the upper bound of the
risk of θ̃ρ1 stated in Theorem 3.1 and the minimax lower bound stated in Proposi-
tion 6.6. For details, we refer to the technical Appendix [36]. �

8.4. Proofs of the asymptotic risk bounds.

PROOF OF PROPOSITION 4.4. This result is closely related to Proposi-
tion 4.11 in [17]. In fact, we extend his proof to stationary fields on a torus. In
the sequel, we shall only consider nonisotropic GMRFs, the isotropic case being
similar. Let us fix a model m in the collection M1 and let us assume (H1).

We define the dm × p2 matrix χv
m as

(χv
m)∗ := ([C(�ik,jk

)Xv], k = 1, . . . , dm

)
.
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For any (i, j) ∈ {1, . . . , p}2, the [(i − 1)p + j ]th row of χv
m corresponds to the

list of covariates used when performing the regression of X[i,j ] with respect to its
neighbors in the model m. Contrary to the previous proofs, we need to express the
n × p2 matrix Xv in terms of a vector. This is why we define the vector XV of size
np2 as

XV
[p2(j−1)+p(i1−1)+i2] := Xj

[i1,i2]

for any (i1, i2) ∈ {1, . . . , p}2 and any j ≤ n. Similarly, let χV
m be the dm × np2

matrix defined as

χV
m[k,p2(j−1)+p(i1−1)+i2] := χ

j
m[p(i1−1)+i2]

for any (i1, i2) ∈ {1, . . . , p}2 and any j ≤ n.
We are not able to work out directly the asymptotic risk of θ̂m,ρ1 . This is why

we introduce a new estimator θ̌m whose asymptotic distribution is easier to derive.
Afterward, we shall prove that θ̌m and θ̂m,ρ1 have the same asymptotic distribution.
Let us, respectively, define the estimators ǎm in R

dm and θ̌m as

ǎm := ((χV
m)∗χV

m)−1χV
mXV,

(53)

θ̌m :=
dm∑
k=1

ǎm[k]�ik,jk
,

where we recall that (�i1,j1, . . . ,�idm,jdm
) is a basis of �m. Obviously, θ̌m is a

conditional least squares estimator since it minimizes the expression (16) of γn,p(·)
over the whole space �m. Consequently, θ̌m coincides with θ̂m,ρ1 if θ̌m belongs to
�+

m,ρ1
.

For the second result, we assume that assumption (H2) holds. Applying Corol-
lary 4.2, we know that for any (k, l) ∈ �, X[k,l] decomposes as

X[k,l] = ∑
(i,j)∈m

θm,ρ1[i,j ]X[k+i,l+j ] + εm[k,l],(54)

where εm[k,l] is independent from {X[k+i,l+j ], (i, j) ∈ m}. For the first result, the
same decomposition holds since θ is assumed to belong to �+

m,ρ1
, and θm,ρ1 , there-

fore, equals θ .
Let am ∈ R

dm be the unique vector such that θm,ρ1 =∑dm

k=1 am[k]�ik,jk
. Then,

the previous decomposition becomes

Xv = a∗
mχv

m + εv
m.

Gathering this last identity with (53) yields

ǎm − am =
(

1

np2 (χV
m)∗χV

m

)−1( 1

np2 χV
mεV

m

)
,
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where the vector εV
m of size np2 corresponds to the n observations of the vec-

tor εv
m. When n goes to the infinity, 1/(np2)(χV

m)∗χV
m converges almost surely

to the covariance matrix V by the law of large numbers. By definition, the vari-
able εm[i,j ] is independent from the [(i − 1)p + j ]th row of χv

m[i,j ]. It follows

that Eθ (χ
V
mεV) = 0. Applying again the law of large numbers we conclude that

ǎm converges almost surely toward am and that θ̌m converges almost surely to-
ward θm,ρ1 . Additionally, the central limit theorem states that the random vec-
tor 1/(

√
np)χV

mεV converges in distribution toward a zero mean Gaussian vec-
tor whose covariance matrix equals 1/p2 Varθ (χv

mεv
m). By decomposition (54),

εv
m = (I − C(θm,ρ1))X

v while the kth row of χv
m equals [C(�ik,jk

)Xv]∗. Thus
for any 1 ≤ k, l ≤ dm,

1

p2 Varθ (χ
v
mεv

m)[k,l] = 1

p2 covθ

[
(Xv)∗C(�ik,jk

)[I − C(θm,ρ1)]Xv,

(Xv)∗C(�il,jl
)[I − C(θm,ρ1)]Xv].

As the covariance matrix of Xv is σ 2(I − C(θ))−1, we obtain, by standard
Gaussian properties,

1

p2 Varθ (χ
v
mεv

m)[k,l]

= 2σ 4

p2 covθ

[[I − C(θ)]−1C(�ik,jk
)[I − C(θm,ρ1)]

× [I − C(θ)]−1C(�il,jl
)[I − C(θm,ρ1)]

]
.

By Lemma A.1, all these matrices are diagonalizable in the same basis and, there-
fore, commute with each other. We conclude that 1

p2 Varθ (χv
mεv

m) = 2σ 4W , and
√

np(ǎm − am) → N (0,V −1WV −1).

As θ̂m,ρ1 belongs to �+
m,ρ1

, there exists a unique vector âm ∈ R
dm such that

θ̂m,ρ1 =∑dm

k=1 âm[k]�ik,jk
. The matrix θm,ρ1 belongs to the open set �+

m,ρ1
for the

two cases of the propositions. Indeed, θm,ρ1 equals θ in the first situation. In the
second situation, this is due to the fact that θ satisfies (H2) and to Lemma 4.1.

Since θ̌m converges almost surely to θm,ρ1 , the matrix θ̌m belongs to m with
probability going to one when n goes to infinity. If follows that the estimators ǎm

and âm coincide with probability going to one. By Slutsky’s lemma, we obtain that√
np(âm − am) → N (0,V −1WV −1).

Let us express the risk of θ̂m,ρ1 with respect to the distribution of âm:

l(θ̂m,ρ1, θm,ρ1) = Eθ

[
dm∑
k=1

(
âm[k] − am[k]

)
tr(�ik,jk

X)

]2

= tr[V (âm − am)∗(âm − am)].



1400 N. VERZELEN

By Portmanteau’s lemma, np2l(θ̂m,ρ1, θm,ρ1) converges in distribution toward a
random variable whose expectation is tr(WV −1). In order to conclude, it remains
to prove that the sequence [np2l(θ̂m,ρ1, θ)]n≥1 is asymptotically uniformly inte-
grable.

Let us consider a model selection procedure with the collection M = {m} and a
penalty term satisfying the assumptions of Theorem 3.1. Arguing as in the proof of
this theorem, we derive from identity (44) the following property. For any ξ > 0,
with probability larger than 1 − L1 exp[−L2ξ ],

np2l(θ̂m,ρ1, θm,ρ1) ≤ L3dmϕmax(�) + L4ξ
2ϕmax(�).

This clearly implies that the sequence [np2l(θ̂m,ρ1, θm,ρ1)]n≥1 is asymptotically
uniformly integrable and the first part of the result follows.

For the first result of the proposition, we have stated that θ equals �m. As a
consequence,

lim
n→+∞ Eθ [l(θ̂m,ρ1, θ)] = 2σ 4 tr[WV −1].

Also, the term W[k,l] here equals tr[C(�ik,jk
)C(�il,jl

)]. This last quantity is zero
if k �= l and equals ‖C(�ik,jk

)‖2
F if k = l. �

PROOF OF PROPOSITION 4.7. As θ belongs to �+ ∩ B1(0p, η), the largest
eigenvalue of � is smaller than σ 2/(1 − η). Applying Theorem 3.1, we get

Eθ [l(θ̃ρ1, θ)] ≤ L(K) inf
m∈M

[
l(θm,ρ1, θ) + K

σ 2

np2(1 − η)

]

≤ L(K,η) inf
m∈M

[
l(θm,ρ1, θ) + K

σ 2

np2 (1 − η)3
]
.

Gathering this bound with the result of Corollary 4.6 enables us to conclude. �

APPENDIX

LEMMA A.1. There exists an orthogonal matrix P which simultaneously di-
agonalizes every p2 × p2 symmetric block circulant matrices with p × p blocks.
Conversely, if θ is a square matrix of size p which satisfies (3), then the matrix
D(θ) = PC(θ)P ∗ is diagonal and satisfies

D(θ)[(i−1)p+j,(i−1)p+j ] =
p∑

k=1

p∑
l=1

θ[k,l] cos
(
2π(ki/p + lj/p)

)
(55)

for any 1 ≤ i, j ≤ p.

This lemma is proved in [29], Section 2.6.2 when is P a unitary matrix. A slight
modification of their proof allows to show that P is orthogonal in our case. The
difference comes from the fact that contrary to Rue and Held we also assume that
C(θ) is symmetric.
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This lemma states that all symmetric block circulant matrices are simultane-
ously diagonalizable. Moreover, expression (55) explicitly provides the eigenval-
ues of the C(θ) as the two-dimensional discrete Fourier transform of the p × p

matrix θ .
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