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OPTIMAL PROPERTIES OF CENTROID-BASED CLASSIFIERS
FOR VERY HIGH-DIMENSIONAL DATA

BY PETER HALL AND TUNG PHAM

University of Melbourne

We show that scale-adjusted versions of the centroid-based classifier en-
joys optimal properties when used to discriminate between two very high-
dimensional populations where the principal differences are in location. The
scale adjustment removes the tendency of scale differences to confound dif-
ferences in means. Certain other distance-based methods, for example, those
founded on nearest-neighbor distance, do not have optimal performance in
the sense that we propose. Our results permit varying degrees of sparsity and
signal strength to be treated, and require only mild conditions on dependence
of vector components. Additionally, we permit the marginal distributions of
vector components to vary extensively. In addition to providing theory we ex-
plore numerical properties of a centroid-based classifier, and show that these
features reflect theoretical accounts of performance.

1. Introduction.

1.1. Motivation and summary. Suppose we observe samples X and Y , both
consisting of p-vectors, drawn by sampling randomly from respective populations
�X and �Y . In this paper we establish optimality properties for classifiers based
on the centroid method in cases where p is large and sample sizes are, generally,
much smaller. For the applications we have in mind, sample sizes can be quite
small indeed; for example, in genomic problems p is typically in the thousands
or tens of thousands, but training sample sizes may be only in the teens, or even
less. It is shown that in cases such as this, a scale-adjusted version of the classifier
is able to discriminate in an optimal way between populations that differ in terms
of location. Scale adjustment removes the tendency for scale to confound location
differences when using distance-based classifiers, and permits the method to enjoy
high levels of performance when location differences are relatively small.

In order to outline our main results, let us suppose that location differences are
present in a proportion q of the p components; that both training sample sizes are
at least as large as 2, and are of similar magnitude, ν say and that the components
of the data vectors are not too strongly correlated, in particular that the maximum
of the sum of absolute values of covariances, against any particular component,
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is bounded. Then a good classifier can correctly distinguish between the popula-
tions that correspond to the training samples, provided that the size of the location
differences is a sufficiently large constant multiple of (νpq2)−1/4. Moreover, in
minimax terms this size of distance is the minimum possible for accurate discrim-
ination.

These results hold for large values of the dimension, p, and in particular they
are valid in cases where dimension is of larger order than the training-sample sizes.
However, the results can fail if sample sizes are of a larger order than p, for ex-
ample, if p is held fixed while samples increase. Therefore, our results specifically
address the case where dimension is high.

In our lower-bound analysis we impose the condition that q exceeds a con-
stant multiple of (ν/p)1/2, thereby preventing sparsity, indexed by q , from being
too low. This assumption implies that (νpq2)−1/4 is bounded above by a constant
multiple of ν−1/2, and entails boundedness of the location differences. However,
our work does not require ν, denoting the order of magnitude of training-sample
size, to diverge; ν can be held fixed, although it can be chosen to diverge if desired.
Therefore our results encompass cases where the location differences are bounded
away from zero as p increases, as well as instances where the differences converge
to zero.

1.2. Interpretation. First we note that results of the type discussed above hold
only in the very high-dimensional cases that are the subject of our work, and not
in more conventional settings. To indicate why, let us simplify matters by taking
q = 1. In this setting it is readily shown that if p is held fixed, but ν is permitted to
increase, then simple distance-based classifiers can detect location differences that
are of order ν−1/2 in size. However, fixing p and varying ν in the convergence-
rate formula (νpq2)−1/4 = (νp)−1/4 would suggest, incorrectly, that the best rate
is only ν−1/4. Therefore the formula is not applicable to cases where dimension is
much smaller than sample size. More specifically, the fact that the critical quan-
tity (νpq2)−1/4 involves the exponent −1

4 , rather than −1
2 which arises in more

conventional settings, underscores the challenge of undertaking classification us-
ing small samples of high-dimensional data, rather than large samples of low-
dimensional data.

Among classification problems that are relatively difficult to solve are those
where the location differences that distinguish the two populations are so irregu-
lar as to resemble stochastic processes. In such cases, classifiers can readily con-
fuse location differences with additive random noise. Therefore, when establishing
lower bounds we interpret location differences as random variables that have the
same distribution (after rescaling) as the noise. Our upper-bound results also per-
mit this treatment.

1.3. Comparison with other classifiers. Other classifiers, for example, based
on nonparametric function estimation or k-nearest neighbor methods, are compet-
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itive under suitable conditions. Several classifiers can be interpreted, either explic-
itly or implicitly, as empirical approximations to the Bayes classifier. For example,
Stone (1977) discusses empirical classifiers based on function approximations, and
Cover (1968) and Devroye and Wagner (1982) address k-nearest-neighbor meth-
ods. Using the latter approach, and in low-dimensional settings, if k is chosen to
diverge appropriately as sample size increases then the classifier can achieve the
same first-order asymptotic performance as the Bayes method. This is achieved
through the classifier implicitly estimating the unknown densities, fX and fY , say,
of the two populations, and using them in a manner which is first-order equivalent
to the Bayes rule, that is, assigning a new data value, Z, to �X if fX(Z) > fY (Z)

and assigning Z to �Y otherwise. The empirical approaches suggested by Stone
(1977) and Hall and Kang (2005) do this more explicitly. If p increases sufficiently
slowly as the training sample sizes diverge then empirical classifiers such as these
can strongly outperform the centroid-based method.

However, both explicit and implicit estimation of fX and fY are ineffective
when the dimension is of the same order as, or of larger than, the sample sizes.
There, methods such as the centroid-based classifier and the support vector ma-
chine come into their own. Both these methods exhibit the optimal performance
expressed by Theorems 1 and 2. In the case of the support vector machine we need
somewhat more restrictive conditions than those that we impose in Section 3, and
in particular which require the training sample sizes to diverge no more quickly
than p1/10. A proof in that case is given in the unpublished Ph.D. thesis of the
second author.

1.4. Related work. The literature on statistical classification is particularly ex-
tensive, and we shall provide here only a brief pointer to relatively recent litera-
ture. Hastie, Tibshirani and Friedman (2001) give a benchmark survey of statistical
learning, and Dudoit, Fridlyand and Speed (2002) provide an authoritative com-
parison of the performance of statistical classifiers. Dabney (2005), Dabney and
Storey (2005, 2007), Tibshirani et al. (2002) and Wang and Zhu (2007) discuss the
application of centroid-based classifiers to genomic data. Many other contributions
are written from the viewpoint of engineering, computer science and other fields,
rather than statistics, and address applications in areas ranging from image analysis
[e.g., Cootes et al. (1993)] and forestry [e.g., Franco-Lopez, Ek and Bauer (2001)]
to speech recognition [e.g., Bilmes and Kirchhoff (2004)] and chemometrics [e.g.,
Schoonover, Marx and Zhang (2003)]. They include work on the development
of transformation methods for improving classifier performance [e.g., Sinden and
Wilfong (1992), Simard, Lecun and Denker (1993) and Wakahara, Kimura and
Tomono (2001)]. Chan and Hall (2009) provide background to scale adjustment.
Nearest-neighbor methods are discussed by Dasarathy (1990) and Shakhnarovich,
Darrell and Indyk (2005). Van der Walt and Barnard (2006) give a recent account
of classifier performance. Duda, Hart and Stork (2001) provide a book-length treat-
ment of classifiers in the context of pattern recognition.
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2. Scale adjustment.

2.1. Scale-adjusted centroid-based classifier. A standard centroid-based clas-
sifier can be defined as follows. Let X = {X1, . . . ,Xm} and Y = {Y1, . . . , Yn} de-
note random samples of p-vectors from populations �X and �Y , respectively, and
write X̄ = m−1 ∑

i Xi and Ȳ = m−1 ∑
j Yj for the respective sample means. Put

T (Z) = ‖Z − Ȳ‖2 − ‖Z − X̄‖2.(2.1)

Given a new data vector Z from one of the two populations, classify Z as coming
from πX if T (Z) > 0, and assign Z to �Y if T (Z) ≤ 0.

This classifier is used frequently to distinguish between two populations on the
basis of location differences. In that setting it enjoys good performance if the train-
ing sample sizes m and n are reasonably large, but in other cases its effectiveness
can be hampered by excessive scale differences. A simple adjustment removes this
difficulty. Specifically, define

τ̂ 2
X = 1

2m(m − 1)

m∑
i1=1

m∑
i2=1

p∑
k=1

(Xi1k − Xi2k)
2,

τ̂ 2
Y = 1

2n(n − 1)

n∑
i1=1

n∑
i2=1

p∑
k=1

(Yi1k − Yi2k)
2,

denoting unbiased estimators of

τ 2
X =

p∑
k=1

E(Xik − EXik)
2, τ 2

Y =
p∑

k=1

E(Yik − EYik)
2,

respectively. The scale-adjusted form of T (Z), whether defined by (2.1) or (2.2),
is

Tsa(Z) = T (Z) + m−1τ̂ 2
X − n−1τ̂ 2

Y .(2.2)

Scale adjustments of other distance-based classifiers are also effective, but in gen-
eral the adjustments differ from that given in (2.2).

From some viewpoints the correction at (2.2) provides an adjustment of bias,
rather than scale. However, if we were to refer to it as a bias adjustment then it
might be interpreted as a means of diminishing the effects of differences between
the locations of populations �X and �Y . To the contrary, it removes the effects
of scale in order that location differences might be made more pronounced, rather
than diminished.

The quantity Tsa(Z) is an unbiased estimator of the signed sum of squares of
distances among means

E{Tsa(Z) | Z} = s(Z)

p∑
k=1

(EXik − EYik)
2,
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where s(Z) = 1 if Z is from �X , and s(Z) = −1 if Z comes from �Y . Therefore,
unlike T (Z), the expected value of which is given by

E{T (Z) | Z} = s(Z)

p∑
k=1

(EXik − EYik)
2 + n−1τ 2

Y − m−1τ 2
X

in the centroid method approach, Tsa(Z) focuses sharply on component-wise dif-
ferences among means.

If it should happen that m−1τ 2
X = n−1τ 2

Y , for example, if m = n and the popula-
tions have identical average scales, then scale adjustment is not necessary. In this
context our results for the classifier based on Tsa(Z), in particular result (3.4) in
Section 3.2, hold also for the standard classifier based on T (Z).

2.2. Scale adjustment in other contexts. It can be seen from the definition of
a centroid-based classifier that it endeavors to focus on differences in location,
rather than in scale. It shares this feature with most other distance-based classifiers,
for example, the support vector machine and distance-weighted discrimination.
However, for all these methods, differences in scale can confound differences in
location to such an extent that the classifier can finish up assigning Z to whichever
population has least variation, regardless of whether Z comes from �X or �Y .

One of the worst offenders in this regard is the standard nearest-neighbor
method. If the populations �X and �Y have component-wise average variances
equal to σ 2

X and σ 2
Y , respectively, and component-wise average squared location

differences equal μ2, then the nearest-neighbor classifier gives asymptotically cor-
rect discrimination, as p → ∞, if and only if

μ2 > |σ 2
X − σ 2

Y |.(2.3)

If μ2 < |σ 2
X − σ 2

Y | then, with probability converging to 1 as p → ∞, the nearest-
neighbor method assigns Z to whichever of �X and �Y has least component-
wise average variance, regardless of whether Z came from �X or �Y . In contrast
to (2.3), the support vector machine and centroid-based classifiers require only

μ2 > |σ 2
Xm−1 − σ 2

Y n−1|,(2.4)

where m and n denote the training-sample sizes for �X and �Y , respectively.
[These results hold in cases where p is very large relative to m and n, and under
conditions discussed by Hall, Marron and Neeman (2005).] From (2.4) we see that,
for support vector machine and centroid-based classifiers, the effects of increasing
training-sample size can quickly reduce the impact of scale differences. However,
in view of (2.3) this opportunity does not arise in the case of standard nearest-
neighbor methods. In some problems the sample size issue is becoming less serious
over time, as more data accumulate. However in other settings, for example, in the
new uses of microarrays, the issue of small sample size can still be very important.
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Of course, if we felt that that (2.3) or (2.4) correctly captured the ways in which
location and scale worked together to jointly characterise populations �X and �Y ,
then we would not introduce the scale adjustment suggested in Section 2.1. How-
ever, in practice one often feels that the differences between populations that are
of interest are primarily those of location, not scale. For example, this tends to be
the case with genomic data.

The measures of performance discussed above address relatively subtle proper-
ties, where the “signal” that gives rise to location differences is at least bounded,
if not small. By way of contrast, some related work on classifier performance [see,
e.g., Hall, Pittelkow and Ghosh (2007)] addresses instances where the signal, when
it is present, is unboundedly large, and in fact diverges to infinity as p increases.
In such cases a scale adjustment is not necessary since the effect of uncorrected
scale is of smaller order than the impact of the signal.

An alternative approach to scale adjustment is to empirically correct each com-
ponent for scale before incorporating it in the classifier, in the manner of a t-sta-
tistic. If the scales of different components are genuinely different, for example,
with some referring to weight and the others to distance, then standardisation is
essential. Fortunately, in many of the applications to which classifiers are put the
components have identical scales. For instance, in applications to genomic data the
j th component of a data vector Xi or Yi typically represents the extent to which
the j th gene is differentially expressed, or “switched on,” and is on the same scale
for each gene.

In problems where scale standardizations is necessary, for example, to accom-
modate heteroscedasticity among vector components, small sample sizes can lead
to problems when dividing by standard deviation estimators. These difficulties can
be alleviated by using a ridge parameter or a related approach to regularisation, for
example, the band-matrix inversion method of Bickel and Levina (2008).

3. Upper bound to classifier performance.

3.1. Model for data. We use the following data model:

Xik = δakIk + Mik, Yjk = δbkJk + Njk and Zk = δckKk + Qk where
(a) �Mi = (Mi1,Mi2, . . .), �Nj = (Nj1,Nj2, . . .) and �Q = (Q1,Q2, . . .)

are infinite sequences of random variables with finite, zero means,
(b) �M1, �M2, . . . are independent and identically distributed, �N1, �N2, . . . are
independent and identically distributed and the �Mi’s, the �Nj ’s and �Q are
independent, (c) a1, a2, . . . and b1, b2, . . . are sequences of constants and
I1, I2, . . . and J1, J2, . . . are sequences of zeros and ones, (d) δ > 0 is a
deterministic function of m, n and p, (e) min(m,n) ≥ 2 and (f) either
(ck,Kk) = (ak, Ik) for all k, or (ck,Kk) = (bk, Jk) for all k.

(3.1)

In particular, we make no assumptions about the relationships among the noise
distributions for the X and Y populations. For example, we do not ask that the
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distributions of �M1, �N1 and �Q be related in any sense. Condition (e) is needed so
that we can estimate the scale of the data; variability generally cannot be accessed
empirically if either m or n equals 1. However, (e) is unnecessary if m−1τ 2

X =
n−1τ 2

Y and we use the classifier based on T (Z), rather than on Tsa(Z). Condition
(f) asserts that the pattern of the component means, δckKk , for the new datum Z is
identical to that for either the X or the Y data. In particular, we describe differences
between the two populations only in terms of location differences.

It might be thought that in the latter respect, the nonadjusted classifier based on
T (Z) enjoys potential advantages since it is influenced by differences in scale as
well as differences in location. However, the nonadjusted classifier can actually be
seriously misled by scale differences. See, for example, Chan and Hall (2009).

3.2. Main results. Define ν = min(m,n). We assume that, for all k ≥ 1, fourth
moments of M1k and N2k exist, and second moments of Qk exist; and, more specif-
ically, that the constants

D1 = sup
p≥1

max

[
sup
k1≥1

∞∑
k2=1

|cov(M1k1,M1k2)|,
(3.2)

sup
k1≥1

∞∑
k2=1

|cov(N1k1,N1k2)|, sup
k1≥1

∞∑
k2=1

|cov(Qk1,Qk2)|
]
,

D2 = sup
p≥1

max

{
sup
k1≥1

∣∣∣∣∣
∞∑

k2=1

cov(M2
1k1

,M2
1k2

)

∣∣∣∣∣, sup
k1≥1

∣∣∣∣∣
∞∑

k2=1

cov(N2
1k1

,N2
1k2

)

∣∣∣∣∣
}

(3.3)

are finite. Empirical evidence indicates that correlations among gene expression
levels are often quite low, for example, in the range 0.08 to 0.01 at distances of
between two and 10 base pairs, respectively [Mansilla et al. (2004), Messer and
Arndt (2006)]. More generally, decay can occur at either an exponential or a rea-
sonably fast polynomial rate [Almirantis and Provata (1999)].

This condition amounts to an assumption about the strength of dependence
among the components of data vectors. To illustrate the implications of the
condition we note that if the processes {M11, . . . ,M1p}, {N11, . . . ,N1p} and
{Q1, . . . ,Qp} are all stationary and Gaussian, all with zero means and the same
autocovariance function γ (j) = cov(Qk,Qk+j ), then finiteness of D1 and D2 is
equivalent to convergence of the series

∑
j |γ (j)|. This is a mild assumption; the

covariance can decay as slowly as j−1−η, for any η > 0, and Theorem 1 will hold.
Define dk = akIk − bkJk , d = (d1, . . . , dp) and ‖d‖2 = ∑

k d2
k . Let T (Z) and

Tsa(Z) be as at (2.1) and (2.2). In particular, T (Z) is the centroid-method classifier.
A proof of the following theorem is given in a longer version of this paper [Hall
and Pham (2009)].
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THEOREM 1. Assume the model at (3.1), and in particular suppose that (a)–
(f) there hold. Then there exists a constant B > 0, depending only on D1 and D2
at (3.2) and (3.3), such that

E{Tsa(Z) − δ2s(Z)‖d‖2}2 ≤ B(ν−1p + δ2‖d‖2).(3.4)

Under the same assumptions, except that condition (e) min(m,n) ≥ 2 can now be
dropped, we have instead of (3.4),

E
{
T (Z) − δ2s(Z)‖d‖2 − 1

2(m−1τ 2
X − n−1τ 2

Y )
}2 ≤ B(ν−1p + δ2‖d‖2).(3.5)

3.3. Implications for probability of correct classification. Assume for simplic-
ity that Ik = Jk for each k. (The latter condition implies that the “signal” is present
at the same locations in the X and Y populations.) Suppose too that

W1pq ≤ ‖d‖2 ≤ W2pq, m + n ≤ W2 min(m,n) = W2ν,(3.6)

where 0 < W1 < W2 < ∞ are constants, and q ∈ (0,1] is an “index of sparsity.”
For example, if Ik 	= 0 for just pq values of k, and if the sum of (ak − bk)

2/pq

over these indices is bounded away from zero and infinity, then the first part of
(3.6) holds and q denotes the proportion of components, in either the X or Y

populations where the signals have an opportunity to be nonzero. Of course, we
permit q to vary with p as the latter increases.

We also assume that ν ≤ Cp where C > 0 is a positive constant. Therefore,
the number of dimensions is at least as large as a constant multiple of sample
size. Without this condition, the results that we shall describe below are generally
false. For example, they fail if p is held fixed as ν varies. In that setting it is
readily shown that a classifier can detect alternatives distant ν−1/2, rather than
ν−1/4, apart; the latter result would follow from the results given below if we
were to take p and q fixed and permit ν to increase. These differences point to
the intrinsic difficulty of undertaking classification using high-dimensional data in
small samples, as distinct from low-dimensional data in large samples.

Take δ = c(νpq2)−1/4 where c > 0 denotes a fixed constant. Let M = M(C,

D1,D2,W1,W2) denote the set of all models prescribed by the constraint
ν ≤ Cp [where it is assumed that (3.2), (3.3) and (3.6) hold for the con-
stants D1,D2,W1,W2] and by conditions (a)–(f) in (3.1) [where we take δ =
c(νpq2)−1/4, for c > 0 fixed]. Then the following result holds [see Hall and Pham
(2009) for a proof]:

COROLLARY 1. If (3.4) and (3.6) hold then

lim
c→∞ lim sup

p→∞
sup

model∈M
{P(the classifier Tsa assigns Z to �X|Z ∈ �Y )

(3.7)
+ P(the classifier Tsa assigns Z to �Y |Z ∈ �X)} = 0.
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That is, if the signals are distributed with sparsity q and are of size approximately
c(νpq2)−1/4, then the probability that the classifier based on Tsa makes the incor-
rect decision can be rendered arbitrarily close to 0 for all sufficiently large p and
uniformly over all models in the class M by taking c sufficiently large.

Results such as (3.4), (3.5) and (3.7) all have analogues in settings where the
“constants” ak and bk are interpreted as random variables. See, for example, (4.5)
in Section 4.

Generally speaking, (3.7) fails if the scale adjustment suggested in Section 2.1
is not incorporated, unless ν is at least as large as a constant multiple of p. In-
deed, it can be shown that if |m−1τ 2

X − n−1τ 2
Y | is larger than a sufficiently large

constant multiple of δ2‖d‖2 (and this condition is often satisfied if ν < const. p),
then the probability of misclassification can be bounded away from zero as p di-
verges. These results point to the desirability of including the scale adjustment
when defining the classifier.

4. Lower bound to classifier performance.

4.1. Data model for lower bound. Assume we observe

Xik = δAkIk + Mik, Yjk = δBkJk + Njk, Zk = δCkKk + Qk,(4.1)

where (i) 1 ≤ i ≤ m and 1 ≤ j ≤ n; (ii) the random variables Ak , Bk , Mik , Njk

and Qk are normal N(0,1); (iii) these variables, and Ik and Jk , are totally inde-
pendent for 1 ≤ i ≤ m, 1 ≤ j ≤ n and 1 ≤ k ≤ p; (iv) Ik and Jk are identically
distributed, with P(Ik = 0) = 1 − q and P(Ik = 1) = q , (v) δ > 0 and 0 < q ≤ 1
and (vi) either (Ck,Kk) = (Ak, Ik) for all k, or (Ck,Kk) = (Bk, Jk) for all k. It is
desired to distinguish between the two cases in (vi) using only the data at (4.1).
For example, determining that (Ck,Kk) ≡ (Ak, Ik) corresponds to classifying Zk

as coming from the X population. We permit m, n and q to depend on p, which
we take to diverge to infinity.

By permitting q to converge to zero as p diverges we can ensure a degree of
sparsity in the signals. However, we do not insist that q becomes small as p in-
creases; for example, our assumptions permit q to be held fixed, at 1, for all p.

Provided the likelihood-ratio statistic is asymptotically normally distributed,
that quantity provides asymptotically optimal discrimination between the cases
(Ck,Kk) ≡ (Ak, Ik) and (Ck,Kk) ≡ (Bk, Jk) in (4.1). A necessary condition for
asymptotic normality is

max(m + 1, n + 1)δ2 ≤ C,(4.2)

where C > 0 is arbitrary but fixed. We shall make this assumption.
To indicate the implications of (4.2) we note that when this condition holds,

the bias and error-about-the-mean contributions to the likelihood-ratio statistic
are of sizes ω ≡ mpq2δ4, and ω1/2, respectively. Therefore, if ω is small then
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the bias, which reveals the difference between the cases (Ck,Kk) ≡ (Ak, Ik) and
(Ck,Kk) ≡ (Bk, Jk), is submerged in noise, and it is impossible, even when using
the likelihood-ratio method, to distinguish effectively between the cases. On the
other hand, if ω is large, then the cases can be distinguished with high probability.
It is in the intermediate setting, where ω is not far from 1, that classification is
marginal; see Theorem 2, below. In such instances, if it should be the case that
m/(pq2) diverges along a subsequence, and if δ = c(mpq2)−1/4 as in Theorem 1,
then mδ2 must also diverge along that subsequence, contradicting (4.2). Therefore
the context of our work implies that m/(pq2) is bounded, which in turn entails a
lower bound to sparsity; for a constant C > 0,

C(m/p)1/2 ≤ q ≤ 1.(4.3)

4.2. Optimal convergence rates for the model at (4.1). Write PX and PY for
probability measure under (4.1) in the respective cases Ck ≡ Ak and Ck ≡ Bk . Let
χ̂ denote a measurable function of the data Xik (for 1 ≤ i ≤ m), Yjk (for 1 ≤ j ≤ n)
and Zk , all for 1 ≤ k ≤ p. Let χ̂ , a random quantity, be a measurable function of
the data Xik , Yjk and Zk , for 1 ≤ i ≤ m, 1 ≤ j ≤ n and 1 ≤ k ≤ p, and taking only
the values X and Y . In particular, χ̂ can be interpreted as a classifier that ascribes
Z to either �X or �Y . Write C for the set of all such classifiers.

The theorem below asserts that, unless δ is a relatively large constant multiple of
(mpq2)−1/4, no classifier can effectively distinguish between the cases (Ck,Kk) ≡
(Ak, Ik) and (Ck,Kk) ≡ (Bk, Jk). Together with Theorem 1 it shows that the scale-
adjusted classifier introduced in Section 2.1 has an asymptotically optimal ability
to distinguish between the two populations.

Take δ in (4.1) to be given by δ = c(mpq2)−1/4 where c > 0 is fixed.

THEOREM 2. Assume the model in Section 4.1, and in particular suppose that
(i)–(vi) there hold. Suppose too that, as p diverges, the positive integers m and n,
and q ∈ (0,1], are such that (4.3) holds for a constant C > 0, and the ratio m/n

is bounded away from zero and infinity. Then, for all sufficiently small c > 0,

lim inf
n→∞ inf

χ̂∈C
{PX(χ̂ = B) + PY (χ̂ = A)} > 0.(4.4)

The assumption that the “signals,” represented by the terms δAk and δBk

in (4.1), are random, gives them an irregular character and makes classification
relatively challenging. If we take Ak and Bk to be fixed constants, not depend-
ing on k, then the classification problem is significantly simpler, and successful
classification is possible for values of δ that are an order of magnitude smaller
than those discussed in Theorem 2. In the model introduced at (3.1) we effectively
conditioned on Ak and Bk , treating them as constants ak and bk . This is a minor
alteration, however. In particular, (3.4) continues to hold if we give ak and bk the
distributions of random variables, for example, as in point (ii) immediately be-
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low (4.1), and if we take expectations on both sides of (3.4). Arguing in this way
the following analogue of (3.7) can be derived under the assumptions of Theo-
rem 2.

THEOREM 3. Assume the conditions of Theorem 2, and in particular that δ in
(4.1) is defined by δ = c(mpq2)−1/4. Then

lim
c→∞ lim inf

p→∞ min[PX{Tsa(Z) > 0},PY {Tsa(Z) < 0}] = 1.(4.5)

Together, (4.4) and (4.5) establish optimality of the centroid-based classifier.

5. Numerical properties. An extensive simulation study is summarised by
Hall and Pham (2009). It treats both moving-average and GARCH models Fan and
Yao (2003) for the data vectors �M , �N and �Q, and provides numerical evidence of
theoretical properties reported in Sections 3 and 4. For example, it shows, as argued
in theoretical terms in Corollary 1, that if the value of δ, in the model at (3.1), is
chosen so that a given, fixed percentage of classifications is correct, then δ changes
with m in proportion to m1/4 if p (the dimension) and q (the level of sparsity) are
kept fixed.

Below we report the results of sampling experiments performed using the KDD
2008 dataset. The data are available at http://www.kddcup2008.com and contain
information derived from X-ray images of breast cancer patients. Two supplemen-
tary files are also provided, Features.txt and Info.txt. The Features file
contains information about 102,294 suspicious regions, each described by p = 117
features. The Info file provides additional information about each region in the
Features file. The latter file gives 11 columns describing 11 characteristics of each
region. For example, the first column contains labels that indicate whether the cor-
responding region was malignant or benign. To simplify the classification problem
we used only information about this label (i.e., malignant or benign) of each re-
gion, and ignored other information in the Info file; we used the label information
only to create the samples and to assess classifier performance. Our dataset there-
fore contained 623 data vectors corresponding to malignant regions, and 101,671
vectors from benign regions (623 + 101,671 = 102,294).

We used the KDD data to compare five methods: scale-adjusted versions of the
nearest neighbor; (NN) support vector machine (SVM) and centroid-based classi-
fiers; the scaled variance (SV) classifier for which the analogue of Tsa was

Tsv(Z) = (Z − Ȳ )T �̂−1
Y (Z − Ȳ ) − (Z − X̄)T �̂−1

X (Z − X̄)(5.1)

and the naive Bayes classifier. Definitions of the two first-mentioned classifiers are
given by Chan and Hall (2009). The naive Bayes classifier was constructed under
the assumption that all data were normally distributed and employed a ridge para-
meter. See the last paragraph of of this section for details of the ridging method. In
constructing the SV classifier we computed �̂X and �̂Y , in (5.1), using the train-
ing data from �X and �Y , respectively, and employing the band-matrix approach

http://www.kddcup2008.com
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studied by Bickel and Levina (2008) with a single band on either side of the main
diagonal. Using a single band was appropriate for the small training-sample sizes
(3, 5, 8, 15 and 20) encountered with the breast-cancer data.

Training and test datasets were generated and used to assess the five classifiers,
as follows. Throughout we took m = n. We randomly selected m data vectors from
the 623 that represented malignant regions; we similarly chose n from the 101,671
that represented benign regions; we constructed the classifier from these data, and
we applied it repeatedly to the remaining 623 − m data from malignant regions
and to a randomly chosen subset of 623 − n data from the remaining benign data.
(Trialling the classifier against all the remaining benign data, i.e., the 101,671 −
n benign data not used to construct the classifier, was too time consuming, so
we reduced the number to 623 − n, matching that for the malignant data.) This
operation was repeated 2000 times, and the error rates averaged to produce the
figures discussed below. Note that this procedure gave the two populations prior
probabilities of 1

2 each, rather than the very disparate values of 623/102,294 =
0.006 and 101,671/102,294 = 0.994 that would otherwise have prevailed.

Next we summarise the main results. When the common value of m and n was
between 15 and 20 the classifiers gave remarkably consistent results over all the
settings we treated. In particular, when applied to data from the malignant region
the success rates of each of the five classifiers (centroid, SVM, NN, SV and naive
Bayes) was in the range 71% to 74%. The ranked order of the classifiers varied
from one situation to another, but the centroid-based classifier was almost invari-
ably ranked first. On the other hand (but still for m and n between 15 and 20),
when applied to data from the benign region the five classifiers always separated
into two clusters on the basis of performance. The centroid and the SV and naive
Bayes methods were in the highest-ranked cluster with the centroid method invari-
ably outperforming the naive Bayes approach and the SV method performing close
to the centroid method, each having between 72% and 83% success rate. Both of
the other two classifiers performed noticeably worse with between 51% and 58%
success. Among the latter two methods, either could outperform the other when
applied to data from the benign region.

At the extreme of relatively low sample size, and in particular when the common
sample size was between 3 and 8, the performance of all classifiers deteriorated
and the patterns noted above largely disappeared. For m and n between 5 and 8,
and in applications to data from benign regions, the centroid, SV and naive Bayes
techniques maintained their superiority over the other two, with the centroid-based
method almost invariably the winner. However, in the case of smaller sample sizes
the naive Bayes approach had worst performance of all, in both the malignant and
benign cases. Here, m and n were far too low for the assumption of normality, on
which the naive Bayes method is based, to be even approximately valid. In the case
of data from malignant regions the support vector machine also gave good results,
being the second best performer behind the centroid method.
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Next we give a little more detail in specific cases, starting with the case where
m = 20. When applied to classify data from malignant regions, the following rank-
ing of classifiers in decreasing order of performance was found: centroid-based
method, NN, naive Bayes, SV and SVM. When applied to classify data from be-
nign regions, we found the following rank order: centroid, SV, naive Bayes, SVM
and NN. The reasonably good performance of the naive Bayes classifier here was
due partly to the fact that when m = 20, validity of the assumption of normality
was aided by the central limit theorem. In the case of the SV method the larger
sample size helped when estimating the covariance matrix. The situation changed
markedly when sample sizes were reduced to m = 5. There the SV and Bayes
methods had significantly more difficulty estimating variance and covariance, to
such an extent that using a ridge was essential to obtaining even mediocre perfor-
mance. When m = 10 the Bayes classifier was inferior to each of the other four
methods when the data were from malignant regions, and it ranked third, behind
the centroid and SV methods, in the case of data from benign regions.

We also explored in more detail the effect of using a ridge parameter to con-
struct the naive Bayes classifier. The ridge was added to conventional estimators
of variance, and we sought values of the ridge in the interval [0.01,1] that max-
imised classifier success rate, averaged over the malignant and benign cases and
for the given choice of m. (To put the choice of interval into context we mention
that the component-wise average empirical variances of the datasets, for benign
and malignant regions, respectively, were 1.00 and 1.21.) Our numerical experi-
ments showed that, when m = 3 and the ridge was chosen optimally, the average
success rate of the naive Bayes classifier increased from about 50% to 68%. How-
ever, when m = 5 the average success rate of the naive Bayes classifier increased
by only 6%, and the amount of increase declined steadily as m increased; it was
only 2% when m = 20. Of course, these results are the best possible ones when the
ridge is chosen deterministically. In practice the ridge has to be selected empiri-
cally, and, especially when m is small (e.g., m = 3 or 5), empirical choice of ridge
can actually lead to a deterioration in classification performance, since it adds extra
noise to the classifier.

6. Proof of Theorem 2.

6.1. Likelihood when (Ck,Kk) ≡ (Ak, Ik). Let φ denote the standard normal
density. The joint density of Xik (for 1 ≤ i ≤ m), Yjk (for 1 ≤ j ≤ n) and Zk , for
fixed k, equals

E

[{
m∏

i=1

φ(xik − δAkIk)

}{
n∏

j=1

φ(yjk − δBkJk)

}
φ(zk − δCkKk)

]
(6.1)

=
{

m∏
i=1

φ(xik)

}{
n∏

j=1

φ(yjk)

}
φ(zk)E(Lk),
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where

Lk = exp

{
−1

2
δ2(mA2

kI
2
k + nB2

k J 2
k + C2

kK2
k )

+ δ

(
AkIk

m∑
i=1

xik + BkJk

n∑
j=1

yjk + CkKkzk

)}
.

Put Xk = {x1k, . . . , xmk}, Yk = {y1k, . . . , ynk}, Sk = ∑
i xik and Tk = ∑

j yjk .
[Here we keep the data fixed, and so denote them by lower case letters, but from
(6.4) down we shall give the data the joint distribution determined by (4.1), and
from that point we shall use upper case letters.] If (Ck,Kk) = (Ak, Ik), then

E(Lk | Xk, Yk, zk)

= E
[
exp

{−1
2δ2(m + 1)A2

kI
2
k + δAkIk(Sk + zk)

} | Xk, Yk, zk

]
(6.2)

× E
{
exp

(−1
2δ2nB2

k J 2
k + δBkJkTk

) | Xk, Yk, zk

}
.

For r, s > 0 and real t ,

E

{
exp

(
−1

2
r2sN2 + rtN

)}
= exp

(
1

2

r2t2

r2s + 1

)
(r2s + 1)−1/2.

Hence, by (6.2),

ψ1(Xk, Yk, zk)

≡ E(Lk | Xk, Yk, zk)
(6.3)

=
[
1 − q + q{(m + 1)δ2 + 1}−1/2 exp

{
1

2

δ2

(m + 1)δ2 + 1
(Sk + zk)

2
}]

×
{

1 − q + q(nδ2 + 1)−1/2 exp
(

1

2

δ2

nδ2 + 1
T 2

k

)}
.

Combining this result with (6.1) we conclude that the likelihood of (Xk, Yk,Zk),
under the assumption that (Ck,Kk) = (Ak, Ik) is{

m∏
i=1

φ(Xik)

}{
n∏

j=1

φ(Yjk)

}
φ(Zk)ψ1(Xk, Yk,Zk).(6.4)

6.2. Likelihood ratio. It follows from (6.4) that the ratio of the likelihoods of
(Xk, Yk,Zk), for (Ck,Kk) = (Ak, Ik) versus (Ck,Kk) = (Bk, Jk), is

ρk(Xk, Yk,Zk) = ψ1(Xk, Yk,Zk)

ψ2(Xk, Yk,Zk)
,(6.5)
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where, by symmetry from (6.3),

ψ2(Xk, Yk,Zk)

=
[
1 − q + q{(n + 1)δ2 + 1}−1/2 exp

{
1

2

δ2

(n + 1)δ2 + 1
(Tk + Zk)

2
}]

(6.6)

×
{

1 − q + q(mδ2 + 1)−1/2 exp
(

1

2

δ2

mδ2 + 1
S2

k

)}
.

The likelihood ratio for the full dataset, {(Xk, Yk,Zk) : 1 ≤ k ≤ p}, is given by

ρ =
p∏

k=1

ρk(Xk, Yk,Zk).(6.7)

6.3. Properties of ρ when (Ck,Kk) ≡ (Ak,Kk). Assume that (Ck,Kk) =
(Ak, Ik) for all k. In this case, writing N for a normal N(0,1) random variable,
and interpreting Sk , Tk and Zk as random, we have the following:

E

[
exp

{
1

2

δ2

(m + 1)δ2 + 1
(Sk + Zk)

2
}]

= (1 − q)E

[
exp

{
1

2

(m + 1)δ2

(m + 1)δ2 + 1
N2

}]

+ qE

(
exp

[
1

2

{m + 1 + (m + 1)2δ2}δ2

(m + 1)δ2 + 1
N2

])
;

E

[
exp

{
1

2

δ2

(n + 1)δ2 + 1
(Tk + Zk)

2
}]

= (1 − q)2E

[
exp

{
1

2

(n + 1)δ2

(n + 1)δ2 + 1
N2

}]

+ q2E

(
exp

[
1

2

{n + 1 + (n2 + 1)δ2}δ2

(n + 1)δ2 + 1
N2

])

+ q(1 − q)

(
E

[
exp

{
1

2

(n + 1 + n2δ2)δ2

(n + 1)δ2 + 1
N2

}]

+ E

[
exp

{
1

2

(n + 1 + δ2)δ2

(n + 1)δ2 + 1
N2

}])
;

E

{
exp

(
1

2

δ2

mδ2 + 1
S2

k

)}

= (1 − q)E

{
exp

(
1

2

mδ2

mδ2 + 1
N2

)}
+ qE

[
exp

{
1

2

(m + m2δ2)δ2

mδ2 + 1
N2

}]
;
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E

{
exp

(
1

2

δ2

nδ2 + 1
T 2

k

)}

= (1 − q)E

{
exp

(
1

2

nδ2

nδ2 + 1
N2

)}
+ qE

[
exp

{
1

2

(n + n2δ2)δ2

nδ2 + 1
N2

}]
.

Note too that, for c < 1, E{exp(1
2cN2)} = (1 − c)−1/2. Therefore,

E

[
exp

{
1

2

δ2

(m + 1)δ2 + 1
(Sk + Zk)

2
}]

= {(m + 1)δ2 + 1}1/2[1 − q + q{1 − (m + 1)2δ4}−1/2],

E

[
exp

{
1

2

δ2

(n + 1)δ2 + 1
(Tk + Zk)

2
}]

= {(n + 1)δ2 + 1}1/2(
(1 − q)2 + q2{1 − (n2 + 1)δ4}−1/2

+ q(1 − q){(1 − δ4)−1/2 + (1 − n2δ4)−1/2}),
E

[
exp

(
1

2

δ2

mδ2 + 1
S2

k

)]
= (mδ2 + 1)1/2{1 − q + q(1 − m2δ4)−1/2},

E

[
exp

(
1

2

δ2

nδ2 + 1
T 2

k

)]
= (nδ2 + 1)1/2{1 − q + q(1 − n2δ4)−1/2}.

From these results, (6.3) and (6.6) we see that, if we define

�S,k = (mδ2 + 1)−1/2(1 − E) exp
(

1

2

δ2

mδ2 + 1
S2

k

)
,

�T,k = (nδ2 + 1)−1/2(1 − E) exp
(

1

2

δ2

nδ2 + 1
T 2

k

)
,

�SZ,k = {(m + 1)δ2 + 1}−1/2(1 − E) exp
{

1

2

δ2

(m + 1)δ2 + 1
(Sk + Zk)

2
}
,

�T Z,k = {(n + 1)δ2 + 1}−1/2(1 − E) exp
{

1

2

δ2

(n + 1)δ2 + 1
(Tk + Zk)

2
}
,

μS =
[
(mδ2 + 1)−1/2E

{
exp

(
1

2

δ2

mδ2 + 1
S2

k

)}
− 1

]
q−1

= (1 − m2δ4)−1/2 − 1,

μT =
[
(nδ2 + 1)−1/2E

{
exp

(
1

2

δ2

nδ2 + 1
T 2

k

)}
− 1

]
q−1

= (1 − n2δ4)−1/2 − 1,



CLASSIFICATION 1087

μSZ =
(
{(m + 1)δ2 + 1}−1/2E

[
exp

{
1

2

δ2

(m + 1)δ2 + 1
(Sk + Zk)

2
}]

− 1
)
q−1

= {1 − (m + 1)2δ4}−1/2 − 1,

μT Z =
(
{(n + 1)δ2 + 1}−1/2E

[
exp

{
1

2

δ2

(n + 1)δ2 + 1
(Tk + Zk)

2
}]

− 1
)
q−1

= (1 − δ4)−1/2 + (1 − n2δ4)−1/2 − 2

+ q[1 + {1 − (n2 + 1)δ4}−1/2 − (1 − δ4)−1/2 − (1 − n2δ4)−1/2],
we have,

ψ1(Xk, Yk,Zk) = (1 + q2μSZ + q�SZ,k)(1 + q2μT + q�T ),

ψ2(Xk, Yk,Zk) = (1 + q2μT Z + q�SZ,k)(1 + q2μS + q�S).

Hence, by (6.5) and (6.7),

ρ =
p∏

k=1

(1 + q2μSZ + q�SZ,k)(1 + q2μT + q�T )

(1 + q2μT Z + q�T Z,k)(1 + q2μS + q�S)
.

6.4. Expansion of likelihood ratio. Throughout this section we impose the
condition, given in Theorem 2, that δ = c(mpq2)−1/4. The quantities μS , μT ,
μSZ , μT Z , var(�S), var(�T ), var(�SZ) and var(�T Z), and their counterparts in
the case where (Ck,Kk) ≡ (Ak,Kk), are all well defined and finite if and only if,
for some d ∈ (0, 1

2),

max(m + 1, n + 1)δ2 ≤ d.(6.8)

This inequality follows from (4.3) and the assumption δ = c(mpq2)−1/4, provided
c > 0 is sufficiently small. In this setting we can write

ρ = ρbiasρerror,(6.9)

where

ρbias =
{
(1 + q2μSZ)(1 + q2μT )

(1 + q2μT Z)(1 + q2μS)

}p

,

(6.10)

ρerror =
p∏

k=1

(1 + q�SZ,k/(1 + q2μSZ))(1 + q�T,k/(1 + q2μT ))

(1 + q�T Z,k/(1 + q2μT Z))(1 + q�S,k/(1 + q2μS))

denote, respectively, the dominant bias term, and the dominant error-about-the-
mean term in an expansion of the likelihood ratio ρ. We consider two cases:

(i) The ratio m/n is bounded away from zero and infinity as n → ∞.
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(a) If mδ2 → 0, then

1 + μSZ = {1 − (m + 1)2δ4}−1/2

= (1 − m2δ4)−1/2
{

1 − (2m + 1)δ4

1 − m2δ4

}−1/2

= (1 − m2δ4)−1/2
{

1 + 1

2
(2m + 1)δ4 + O(m3δ8)

}
= 1 + μS + 1

2
(2m + 1)δ4 + O(m3δ8),

(6.11)

μT Z = μT +
(

1 + 1

2
δ4

)
− 1 + O(δ8)

+ q

[
1 −

(
1 + 1

2
δ4

)

+ (1 − n2δ4)−1/2
{(

1 − δ4

1 − n2δ4

)−1/2

− 1
}]

= μT + 1

2
δ4 + O(n2δ8),

whence

1 + q2μSZ

1 + q2μS

= 1 +
(
m + 1

2

)
q2δ4 + O(m3δ8),

1 + q2μT

1 + q2μT Z

= 1 − 1

2
q2δ4 + O(q2n2δ4),

(6.12)

ρbias =
(

1 + q2μSZ

1 + q2μS

1 + q2μT

1 + q2μT Z

)p

= exp{mpq2δ4 + o(mpq2δ4)}.
To treat ρerror, note that

{(m + 1)δ2 + 1}−1/2 = (mδ2 + 1)−1/2{1 + O(δ4)},

exp
{

1

2

δ2

(m + 1)δ2 + 1
(Sk + Zk)

2
}

= exp
{

1

2

δ2

mδ2 + 1
(Sk + Zk)

2
}

× (1 + mδ4Rk),

where, here and below, R1,R2, . . . is a generic sequence of independent and iden-
tically distributed random variables, depending on δ but for which, for each r ≥ 1,
absolute moments of order r are uniformly bounded provided δ is sufficiently
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small. Therefore, recalling the genericity of the notation Rk ,

{(m + 1)δ2 + 1}−1/2 exp
{

1

2

δ2

(m + 1)δ2 + 1
(Sk + Zk)

2
}

= (mδ2 + 1)−1/2 exp
{

1

2

δ2

mδ2 + 1
(Sk + Zk)

2
}
(1 + mδ4Rk)

= (mδ2 + 1)−1/2 exp
(

1

2

δ2

mδ2 + 1
S2

k

)

×
{

1 + 1

2

δ2

mδ2 + 1
(2SkZk + Z2

k ) + mδ4Rk

}
.

Hence,

�SZ,k = �S,k + (1 − E)(mδ2 + 1)−1/2 exp
(

1

2

δ2

mδ2 + 1
S2

k

)

×
{

1

2

δ2

mδ2 + 1
(2SkZk + Z2

k )

}
+ (1 − E)mδ4Rk,

and from (6.11), μSZ = μS + O(mδ4). Therefore,

1 + q
�SZ,k

1 + q2μSZ

= 1 + q
�S,k

1 + q2μS

+ q(1 − E)(mδ2 + 1)−1/2 exp
(

1

2

δ2

mδ2 + 1
S2

k

)

×
{

1

2

δ2

mδ2 + 1
(2SkZk + Z2

k )

}
+ (1 − E)mqδ4Rk,

whence, since �S,k = (1 − E)mδ2Rk ,

1 + q�SZ,k/(1 + q2μSZ)

1 + q�S,k/(1 + q2μS)
= 1 + Uk + (1 − E)mqδ4Rk,(6.13)

where

Uk = q(1 − E)(mδ2 + 1)−1/2 exp
(

1

2

δ2

mδ2 + 1
S2

k

)

×
{

1

2

δ2

mδ2 + 1
(2SkZk + Z2

k )

}
.

Analogously,

1 + q�T Z,k/(1 + q2μT Z)

1 + q�T,k/(1 + q2μT )
= 1 + Vk + (1 − E)nqδ4Rk,(6.14)
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where

Vk = 1 + q(1 − E)(nδ2 + 1)−1/2 exp
(

1

2

δ2

nδ2 + 1
T 2

k

)

×
{

1

2

δ2

nδ2 + 1
(2TkZk + Z2

k )

}
.

Since the assumption that mδ2 is bounded entails p1/2mqδ4 = o(m1/2p1/2qδ2),
then (6.10), (6.13) and (6.14) imply that

ρerror =
p∏

k=1

(1 + q�SZ,k/(1 + q2μSZ))(1 + q�T,k/(1 + q2μT ))

(1 + q�T Z,k/(1 + q2μT Z))(1 + q�S,k/(1 + q2μS))

= {1 + Op(p1/2mqδ4)}
p∏

k=1

{(1 + Uk)/(1 + Vk)}(6.15)

= exp

{ p∑
k=1

(Uk − Vk) − 1

2

p∑
k=1

(U2
k − V 2

k ) + op(1)

}
.

Now, W = ∑
k(Uk − Vk) is asymptotically normal N{0, (m + n)pq2δ4}, and∑

k(U
2
k − V 2

k ) = (m − n)pq2δ4 + op(1). These properties and (6.15) imply that

ρerror = exp
{
W − 1

2(m − n)pq2δ4 + op(1)
}
.(6.16)

Combining (6.9), (6.12) and (6.16) we deduce that

ρ = exp
[
N{(m + n)pq2δ4}1/2 + 1

2(m + n)pq2δ4 + op(1)
]
,(6.17)

where N is asymptotically normal N(0,1). Therefore, if χ̂ is taken to be the
likelihood-ratio classifier then for all values of c that are sufficiently small to en-
sure that (6.8) holds for some d < 1

2 , then

lim inf
n→∞ {PX(χ̂ = B) + PY (χ̂ = A)} > 0.(6.18)

This establishes Theorem 2 in the case where mδ2 → 0.
(b) If �1 ≡ mδ2 and �2 ≡ nδ2 → converge to finite, nonzero constants, both of

them strictly less than 1, then

1 + μSZ = {1 − (m + 1)2δ4}−1/2

= (1 − �2
1)

−1/2
{

1 − (2m + 1)δ4

1 − �2
1

}−1/2

= 1 + μS + (1 − �2
1)

−3/2
(
m + 1

2

)
δ4 + O(m2δ8),
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μT Z = μT +
(

1 + 1

2
δ4

)
− 1 + O(δ8)

+ q

[
1 −

(
1 + 1

2
δ4

)
+ (1 − n2δ4)−1/2

{(
1 − δ4

1 − n2δ4

)−1/2

− 1
}]

= μT + 1

2
δ4[1 + q{(1 − �2

2)
−3/2 − 1}] + O(δ8),

whence

1 + q2μSZ

1 + q2μS

= 1 + q2δ4 (1 − �2
1)

−3/2(m + 1/2)

1 + q2{(1 − �2
1)

−1/2 − 1}
+ O(q2m2δ8),

1 + q2μT

1 + q2μT Z

= 1 − 1

2
q2δ4 1 + q{(1 − �2

2)
−3/2 − 1}

1 + q2{(1 − �2
2)

−1/2 − 1} + O(q2δ8),

ρbias =
{

1 + q2μSZ

1 + q2μT Z

1 + q2μT

1 + q2μS

}p

= exp{L1mpq2δ4 + o(1)},
where

Lj = (1 − �2
j )

−3/2

1 + q2{(1 − �2
j )

−1/2 − 1} .

Compare (6.12). A similar argument can be used to derive an analogue of (6.15)
in this setting, giving, via (6.9), the following analogue of (6.17):

ρ = exp
[
N{(L1m + L2n)pq2δ4}1/2 + 1

2(L1m + L2n)pq2δ4 + op(1)
]
,

where N is asymptotically normal N(0,1). Result (6.18) follows as before.
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