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EMPIRICAL RISK MINIMIZATION IN INVERSE PROBLEMS1

BY JUSSI KLEMELÄ AND ENNO MAMMEN

University of Oulu and University of Mannheim

We study estimation of a multivariate function f : Rd → R when the
observations are available from the function Af , where A is a known linear
operator. Both the Gaussian white noise model and density estimation are
studied. We define an L2-empirical risk functional which is used to define a
δ-net minimizer and a dense empirical risk minimizer. Upper bounds for the
mean integrated squared error of the estimators are given. The upper bounds
show how the difficulty of the estimation depends on the operator through
the norm of the adjoint of the inverse of the operator and on the underlying
function class through the entropy of the class. Corresponding lower bounds
are also derived. As examples, we consider convolution operators and the
Radon transform. In these examples, the estimators achieve the optimal rates
of convergence. Furthermore, a new type of oracle inequality is given for
inverse problems in additive models.

1. Introduction. We consider estimation of a function f : Rd → R when
a linear transform Af of the function is observed under stochastic noise. We
consider both the Gaussian white noise model and density estimation with i.i.d.
observations. We study two estimators: a δ-net estimator which minimizes the
L2-empirical risk over a minimal δ-net of a function class and a dense empirical
risk minimizer which minimizes the empirical risk over the whole function class
without restricting the minimization over a δ-net. We call this estimator a “dense
minimizer” because it is defined as a minimizer over a possibly uncountable func-
tion class. The δ-net estimator is more universal: it may also be applied for non-
smooth functions and for severely ill-posed operators. On the other hand, the dense
empirical minimizer is expected to work only for relatively smooth cases (the en-
tropy integral has to converge). However, because the minimization in the calcula-
tion of this estimator is not restricted to a δ-net, we have available a larger toolbox
of algorithms for finding (an approximation of) the minimizer of the empirical risk.

Let (Y, Y, ν) be a Borel space and let A :L2(Rd) → L2(Y) be a linear operator,
where L2(Rd) is the space of square integrable functions f : Rd → R (with respect
to the Lebesgue measure) and L2(Y) is the space of square integrable functions
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g : Y → R (with respect to measure ν). In the density estimation model, we have
i.i.d. observations

Y1, . . . , Yn ∈ Y(1)

with common density function Af : Y → R, where f : Rd → R is a density func-
tion which we want to estimate. In the Gaussian white noise model, the observation
is a realization of the process

dYn(y) = (Af )(y) dy + n−1/2 dW(y), y ∈ Y,(2)

where W(y) is the Brownian process on Y, that is, for h1, h2 ∈ L2(Y), the random
vector (

∫
Y h1 dW,

∫
Y h2 dW) is a two-dimensional Gaussian random vector with

zero mean, marginal variances ‖h1‖2
2,‖h2‖2

2 and covariance
∫

Y h1h2 dν. (In our
examples, Y is either the Euclidean space or the product of the real half-line with
the unit sphere so that the existence of the Brownian process is guaranteed.) We
want to estimate the signal function f : Rd → R. The Gaussian white noise model
is very useful for presenting the basic mathematical ideas in a transparent way.
For the δ-net estimator, the treatment is almost identical for the Gaussian white
noise model and for the density estimation, but when we consider the dense em-
pirical risk minimization, then, in the density estimation model, we need to use
bracketing numbers and empirical entropies with bracketing, instead of the usual
L2-entropies. Our results for the Gaussian white noise model can also serve as a
first step for obtaining analogous results for inverse problems in regression or in
other statistical models.

The L2-empirical risk is defined by

γn(g) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−2
∫

Y
(Qg)dYn + ‖g‖2

2, Gaussian white noise,

−2n−1
n∑

i=1

(Qg)(Yi) + ‖g‖2
2, density estimation,

(3)

where Q is the adjoint of the inverse of A:∫
Rd

(A−1h)g =
∫

Y
h(Qg)dν(4)

for h ∈ L2(Y), g ∈ L2(Rd). The operator Q = (A−1)∗ has the domain L2(Rd),
similarly as A. Minimizing ‖f̂ − f ‖2

2 with respect to estimators f̂ is equivalent to
minimizing ‖f̂ − f ‖2

2 − ‖f ‖2
2 and we have, in the Gaussian white noise model,

‖f̂ − f ‖2
2 − ‖f ‖2

2 = −2
∫

Rd
f f̂ + ‖f̂ ‖2

2

= −2
∫

Y
(Af )(Qf̂ ) dν + ‖f̂ ‖2

2(5)

≈ −2
∫

Y
(Qf̂ ) dYn + ‖f̂ ‖2

2 = γn(f̂ ).
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The usual least squares estimator is defined as a minimizer of the criterion

‖Af̂ − Af ‖2
2 − ‖Af ‖2

2 ≈ −2
∫

Y
(Ag)dYn + ‖Ag‖2

2
def= γ̃n(g);(6)

see, for example, O’Sullivan (1986). In density estimation, the log-likelihood em-
pirical risk has been more common than the L2-empirical risk and in the setting of
inverse problems, the log-likelihood is defined as γ̄n(g) = −n−1 ∑n

i=1 log(Ag) ×
(Yi), analogously to (6). These alternative definitions of the empirical risk do not
seem to lead to such an elegant theory as does the empirical risk in (3). The empir-
ical risk in (3) has been used in deconvolution problems for projection estimators
by Comte, Taupin and Rozenholc (2006).

We give upper bounds for the mean integrated squared error (MISE) of the esti-
mators. The upper bounds characterize how the rates of convergence depend on the
entropy of the underlying function class F and on smoothness properties of the op-
erator A. Previously, such characterizations have been given (up to our knowledge)
in inverse problems only for the case of estimating real-valued linear functionals L.
In these cases, the rates of convergence are determined by the modulus of continu-
ity of the functional ω(ε) = sup{L(f ) :f ∈ F ,‖Af ‖2 ≤ ε}; see Donoho and Low
(1992). For the case of estimating the whole function with a global loss function,
the rates of convergence depend on the size of the underlying function class in
terms of the entropy and capacity; see Cencov (1972), Le Cam (1973), Ibragimov
and Hasminskii (1980, 1981), Birgé (1983), Hasminskii and Ibragimov (1990),
Yang and Barron (1999), Ibragimov (2004). δ-net estimators were considered by,
for example, van der Laan, Dudoit and van der Vaart (2004). These papers consider
direct statistical problems. We show that for inverse statistical problems, the rate
of convergence depends on the operator through the operator norm �(Q, Fδ) of Q,
over a minimal δ-net Fδ ; see (8) for the definition of �(Q, Fδ). More precisely, the
convergence rate ψn of the δ-net estimator is the solution to the equation

nψ2
n = �2(Q, Fψn) log(#Fψn),

where #Fψn is the cardinality of a minimal δ-net. For direct problems, when
A is the identity operator, �(Q, Fδ) � 1. (We write an � bn to mean that 0 <

lim infn→∞ an/bn ≤ lim supn→∞ an/bn < ∞.) As examples of operators A, we
consider the convolution operator and the Radon transform. For these operators,
the estimators achieve the minimax rates of convergence over Sobolev classes.

The general framework for empirical risk minimization and the use of the em-
pirical process machinery, including entropy bounds, for deriving optimal bounds
seems to be new. Convolution and Radon transforms are discussed for illustrative
purposes. These examples show that our results lead to optimal rates of conver-
gence. As a new application, we introduce the estimation of additive models in
inverse problems. A new type of oracle inequality is presented, which also gives
the optimal rates of convergence in “anisotropic” inverse problems. For an ex-
tended version of this paper that also contains additional material, see Klemelä
and Mammen (2009).
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The paper is organized as follows. Section 2 gives an upper bound for the MISE
of the δ-net estimator. Section 3 gives a lower bound for the MISE of any estimator.
Section 4 gives an upper bound for the MISE of the dense empirical risk minimizer.
Section 5 proves that the δ-net estimator achieves the optimal rate of convergence
in the ellipsoidal framework and discusses this result for the case where A is a
convolution operator or the Radon transform. Furthermore, it contains an oracle
inequality for additive models. Section 6 contains the proofs of the main results.

2. δ-net minimizer. Let F be a set of densities or signal functions f : Rd →
R. Let Fδ be a finite δ-net of F in the L2-metric, where δ > 0. That is, for each
f ∈ F , there is a φ ∈ Fδ such that ‖f − φ‖2 ≤ δ. Define the estimator f̂ by

f̂ = arg min
φ∈Fδ

γn(φ),

where γn(φ) is defined in (3). Typically, we would like to choose a δ-net of mini-
mal cardinality. We assume that F is bounded in the L2-metric:

sup
g∈F

‖g‖2 ≤ B2,(7)

where 0 < B2 < ∞.
Theorem 1 gives a bound for the mean integrated squared error of the estimator.

We may identify the first term in the bound as a bias term and the second term as
a variance term. The variance term depends on the operator norm of Q over the
δ-net Fδ . We define this operator norm as

�(Q, Fδ) = max
φ,φ′∈Fδ,φ �=φ′

‖Q(φ − φ′)‖2

‖φ − φ′‖2
, δ > 0,(8)

where Q is defined by (4). In the case of density estimation, we need the addi-
tional assumptions that �(Q, Fδ) ≥ 1 and that AF and QF are bounded in the
L∞ metric:

�(Q, Fδ) ≥ 1, sup
f ∈F

‖Af ‖∞ ≤ B∞, sup
f ∈F

‖Qf ‖∞ ≤ B ′∞,(9)

where 0 < B∞,B ′∞ < ∞.

THEOREM 1. For the density estimation, we assume that (9) is satisfied. For
f ∈ F , we have that

E‖f̂ − f ‖2
2 ≤ C1δ

2 + C2
�2(Q, Fδ) · (loge(#Fδ) + 1)

n
,

where

C1 = (1 − 2ξ)−1(1 + 2ξ),(10)

C2 = (1 − 2ξ)−1ξCτ ,(11)

Cτ > 0(12)
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and ξ is such that⎧⎪⎨
⎪⎩

C−1
τ

(
4B ′∞/3 +

√
2[8(B ′∞)2/9 + CτB∞]) ≤ ξ < 1/2,

density estimation,√
2/Cτ ≤ ξ < 1/2, white noise.

(13)

A proof of Theorem 1 is given in Section 6.2.

REMARK 1. Theorem 1 shows that the δ-net estimator achieves the rate of
convergence ψn when ψn is the solution of the equation

ψ2
n � n−1�2(Q, Fψn) log(#Fψn).(14)

We calculate the rate under the assumptions that log(#Fδ) and �(Q, Fδ) increase
polynomially as δ decreases: we assume that one can find a δ-net whose cardinality
satisfies

log(#Fδ) = Cδ−b

for some constants b,C > 0 and we assume that

�(Q, Fδ) = C′δ−a

for some a,C′ > 0 (in the direct case a = 0 and C′ = 1). Then (14) can be written
as ψ2

n � n−1ψ−2a−b
n and the rate of the δ-net estimator is

ψn � n−1/[2(a+1)+b].(15)

Let F be a set of s-smooth, d-dimensional functions such that b = d/s. Then the
rate is ψn � n−s/[2(a+1)s+d], which, for the direct case a = 0, gives the classical
rate ψn � n−s/(2s+d).

3. A lower bound for MISE. Theorem 2 gives a lower bound for the mean
integrated squared error of any estimator when estimating densities or signal func-
tions f : Rd → R in the function class F . Theorem 2 also holds for nonlinear
operators.

THEOREM 2. Let A be a possibly nonlinear operator. Assume that for each
sufficiently small δ > 0, we find a finite set Dδ ⊂ F for which

min{‖f − g‖2 :f,g ∈ Dδ, f �= g} ≥ C0δ(16)

and {
max{‖f − g‖2 :f,g ∈ Dδ} ≤ C1δ, white noise,
max{DK(f,g) :f,g ∈ Dδ} ≤ C1δ, density estimation,

(17)
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where D2
K(f,g) = ∫

loge(f/g)f is the Kullback–Leibler distance and C0, C1 are
positive constants. Let

�K(A, Dδ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1√
2

max
f,g∈Dδ,f �=g

‖A(f − g)‖2

‖f − g‖2
, white noise,

max
f,g∈Dδ,f �=g

DK(Af,Ag)

‖f − g‖2
, density estimation.

Let ψn be such that

loge(#Dψn) � nψ2
n�2

K(A, Dψn),(18)

where an � bn means that lim infn→∞ an/bn > 0. Assume that

lim
n→∞nψ2

n�2
K(A, Dψn) = ∞.(19)

Then

lim inf
n→∞ψ−2

n inf
f̂

sup
f ∈F

E‖f − f̂ ‖2
2 > 0,

where the infimum is taken over all estimators. That is, ψn is a lower bound for the
minimax rate of convergence.

A proof of Theorem 2 is given in Section 6.3.

REMARK 2. Theorem 2 shows that one can get a lower bound ψn for the rate
of convergence by solving the equation

ψ2
n�2

K(A, Dψn) � n−1 loge(#Dψn).(20)

The upper bound in Theorem 1 depends on the operator norm of Q, defined in (8),
whereas the lower bound depends on the operator norm of A. Note, also, that the
operator norm �(Q, Fψn) is on the other side of the equation in (14) compared to
the operator norm �K(A, Dψn) in the equation (20).

REMARK 3. In the density estimation case, one can easily check assumptions
(17) and (19) if one assumes that the functions in ADδ are bounded and bounded
away from 0. Then

C′ · ‖A(f − g)‖2 ≤ DK(Af,Ag) ≤ C · ‖A(f − g)‖2(21)

and (17) and (19) follow by the corresponding conditions with Hilbert norms in-
stead of Kullback–Leibler distances.
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4. Dense minimizer. The dense minimizer minimizes the empirical risk over
the whole function class F . In contrast to the δ-net estimator, the minimization
is not restricted to a δ-net. We call this estimator a “dense minimizer” because it
is defined as a minimizer over a possibly uncountable function class. The δ-net
estimator is more widely applicable: it may also be applied to estimate nonsmooth
functions and it may be applied when the operator is severely ill-posed. The dense
minimizer may only be applied for relatively smooth cases (the entropy integral has
to converge). Because it works without a restriction to a δ-net, we have available a
larger toolbox of numerical algorithms that can be applied.

For a collection F of functions f : Rd → R, the dense minimizer f̂ is defined
as a minimizer of the empirical risk over F , up to εn > 0:

γn(f̂ ) ≤ inf
g∈F

γn(g) + εn,

where γn(φ) is defined in (3). For clarity, we present separate theorems for the
Gaussian white noise model and for the density estimation model. In both models,
we make the assumption that the functions in F are bounded in the L2-metric as
in (7).

4.1. Gaussian white noise. Let Fδ , δ > 0, be a δ-net of F , with respect to the
L2-norm. Define

�(Q, Fδ) = max
{‖Q(f − g)‖2

‖f − g‖2
:f ∈ Fδ, g ∈ F2δ, f �= g

}
, δ > 0,(22)

where Q is the adjoint of the inverse of A, defined by (4). Define the entropy
integral

G(δ)
def=

∫ δ

0
�(Q, Fu)

√
loge(#Fu) du, δ ∈ (0,B2],(23)

where B2 is the L2-bound defined by (7).

THEOREM 3. Assume that:

1. the entropy integral in (23) converges;
2. G(δ)/δ2 is decreasing on the interval (0,B2];
3. �(Q, Fδ) = cδ−a , where 0 ≤ a < 1 and c > 0;
4. limδ→0 G(δ)δa−1 = ∞;
5. δ �→ �(Q, Fδ)

√
loge(#Fδ) is decreasing on (0,B2].

Let ψn be such that

ψ2
n ≥ Cn−1/2G(ψn),(24)

where C is a positive constant, and assume that limn→∞ nψ
2(1+a)
n = ∞. Then, for

f ∈ F ,

E‖f̂ − f ‖2
2 ≤ C′(ψ2

n + εn)

for a positive constant C′, for sufficiently large n.
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A proof of Theorem 3 is given in Section 6.4.

REMARK 4. Assumption 5 is a technical assumption which is used to replace
a Riemann sum by an entropy integral. We prefer to write the assumptions in terms
of the entropy integral in order to make them more readable.

REMARK 5. We may write �(Q, Fδ) in a simpler way when there exist mini-
mal δ-nets Fδ which are nested: F2δ ⊂ Fδ . We may then define, alternatively,

�(Q, Fδ) = max
f,g∈Fδ,f �=g

‖Q(f − g)‖2

‖f − g‖2
.

REMARK 6. Theorems 3 and 4 show that the rate of convergence of the dense
minimizer is the solution of the equation

ψ2
n = n−1/2G(ψn).(25)

To get the optimal rate, the net Fδ is chosen so that its cardinality is minimal. In
the polynomial case, one can find a δ-net whose cardinality satisfies

log(#Fδ) = Cδ−b

for some constants b,C > 0 and the operator norm satisfies

�(Q, Fδ) = C′δ−a

for some a,C′ > 0. (In the direct case, a = 0 and C′ = 1.) Thus, the entropy inte-
gral G(δ) is finite when

∫ δ
0 u−a−b/2 du < ∞, which holds when

a + b/2 < 1.(26)

Then (25) leads to ψ2
n � n−1/2ψ

−a−b/2+1
n and the rate of the dense minimization

estimator is

ψn � n−1/[2(a+1)+b].(27)

This is the same rate as the rate of the δ-net estimator given in (15). We have the
following example. Let F be a set of s-smooth, d-dimensional functions such that
b = d/s. Condition (26) may then be written as a condition for the smoothness
index s: s > d/[2(1 − a)]. When the problem is direct, then a = 0 and we have the
classical condition s > d/2. The rate is ψn � n−s/[2(a+1)s+d], which gives, for the
direct case a = 0, the classical rate ψn � n−s/(2s+d).
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4.2. Density estimation. A δ-bracketing net of F with respect to the L2-norm
is a set Fδ = {(gL

j , gU
j ) : j = 1, . . . ,Nδ} of pairs of functions such that:

1. ‖gL
j − gU

j ‖2 ≤ δ, j = 1, . . . ,Nδ ;

2. for each g ∈ F , there exists j = j (g) ∈ {1, . . . ,Nδ} such that gL
j ≤ g ≤ gU

j .

Let us define F L
δ = {gL

j : j = 1, . . . ,Nδ} and F U
δ = {gU

j : j = 1, . . . ,Nδ}. Further,
define

�den(Q, Fδ) = max{�(Q, F L
δ , F U

δ ), �(Q, F L
δ , F L

2δ)},(28)

where

�(Q, F L
δ , F U

δ ) = max
{‖Q(gU − gL)‖2

‖gU − gL‖2
:gL ∈ F L

δ , gU ∈ F U
δ

}

and

�(Q, F L
δ , F L

2δ) = max
{‖Q(f − g)‖2

‖f − g‖2
:f ∈ F L

δ , g ∈ F L
2δ, f �= g

}

for δ > 0. Define the entropy integral

G(δ)
def=

∫ δ

0
�den(Q, Fu)

√
loge(#Fu) du, δ ∈ (0,B2],(29)

where B2 = supf ∈F ‖f ‖2.

THEOREM 4. We make assumptions 1–5 of Theorem 3 [with operator
norm �den(Q, Fδ) in place of �(Q, Fδ)] and, in addition, we assume that
supf ∈F ‖Af ‖∞ < ∞, supg∈F L

B2
∪F U

B2
‖Qg‖∞ < ∞ and that the operator Q pre-

serves positivity (g ≥ 0 implies that Qg ≥ 0). Let ψn be such that

ψ2
n ≥ Cn−1/2G(ψn)(30)

for a positive constant C and assume that limn→∞ nψ
2(1+a)
n = ∞. Then, for

f ∈ F ,

E‖f̂ − f ‖2
2 ≤ C′(ψ2

n + εn)

for a positive constant C′, for sufficiently large n.

A proof of Theorem 4 is given in Section 6.5. An analogous discussion of opti-
mal rates as in Remark 6 for the Gaussian white noise model also applies for dense
density estimators.

5. Examples of function spaces. In Section 5.1, we consider ellipsoidal func-
tion spaces and in Section 5.2 we consider additive models and their generaliza-
tions.
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5.1. Ellipsoidal function spaces. Since we are in the L2-setting, it is natural to
work in the sequence space; we define the function classes as ellipsoids. We shall
apply singular value decompositions of the operators and wavelet-vaguelette sys-
tems in the calculation of the rates of convergence. In Section 5.1.1, we calculate
the operator norms in the framework of singular value decompositions. In Sec-
tion 5.1.2, we calculate the operator norms in the wavelet-vaguelettte framework.
Section 5.1.3 derives the rate of convergence of the δ-net estimator for the case of
a convolution operator and the Radon transform, and the lower bound for the rate
of convergence of any estimator.

5.1.1. Singular value decomposition. We assume that the underlying function
space F consists of d-variate functions that are linear combinations of orthonor-
mal basis functions φj with multi-index j = (j1, . . . , jd) ∈ {0,1, . . .}d . Define the
ellipsoid and the corresponding collection of functions by

� =
{
θ :

∞∑
j1=0,...,jd=0

a2
j θ

2
j ≤ L2

}
, F =

{ ∞∑
j1=0,...,jd=0

θjφj : θ ∈ �

}
.(31)

δ-net and δ-packing set for polynomial ellipsoids. We assume that there exist
positive constants C1,C2 such that for all j ∈ {0,1, . . .}d ,

C1 · |j |s ≤ aj ≤ C2 · |j |s,(32)

where |j | = j1 + · · · + jd . In Klemelä and Mammen (2009), we construct a δ-net
�δ and a δ-packing set �∗

δ using the techniques of Kolmogorov and Tikhomirov
(1961); see also Birman and Solomyak (1967). Since the construction is in the
sequence space, we define the δ-net and δ-packing set of F by

Fδ =
{ ∞∑

j1=0,...,jd=0

θjφj : θ ∈ �δ

}
, Dδ =

{ ∞∑
j1=0,...,jd=0

θjφj : θ ∈ �∗
δ

}
.(33)

The set �δ is such that for θ ∈ �δ ,

θj = 0 when j /∈ {1, . . . ,M}d,

where

M � δ−1/s .(34)

The set �∗
δ is such that for all θ ∈ �∗

δ ,

θj = θ∗
j when j /∈ {M∗, . . . ,M}d,(35)

where θ∗ is a fixed sequence with
∑∞|j |≥0 a2

j θ
∗
j

2 = L∗ < L and where M∗ =
[M/2]. Furthermore, it holds that

log(#�δ) ≤ Cδ−d/s, log(#�∗
δ ) ≥ C ′δ−d/s .(36)
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Operator norms. We calculate the operator norms �(Q, Fδ) and �K(A,

Dδ) in the ellipsoidal framework, where Fδ and Dδ are defined in (33). We ap-
ply the singular value decomposition of A. We assume that the domain of A is
a separable Hilbert space H with inner product 〈·, ·〉. The underlying function
space F satisfies F ⊂ H . We denote by A∗ the adjoint of A. We assume that A∗A
is a compact operator on H with eigenvalues (b2

j ), bj > 0, j ∈ {0,1, . . .}d , with
an orthonormal system of eigenfunctions φj . We assume that there exist positive
constants q and C1,C2 such that for all j ∈ {0,1, . . .}d ,

C1 · |j |−q ≤ bj ≤ C2 · |j |−q .(37)

Let g,g′ be elements of Fδ or of Dδ , respectively. Write

g − g′ =
∞∑

j1=1,...,jd=1

(θj − θ ′
j )φj .

1. The functions Qφj are orthogonal and ‖Qφj‖2 = b−1
j . Indeed, Q = (A−1)∗

and thus

〈Qφj ,Qφl〉 = 〈φj ,A
−1(A−1)∗φl〉 = b−2

l 〈φj ,φl〉,
where we have used the fact that

A−1(A−1)∗φl = A−1(A∗)−1φl = (A∗A)−1φl = b−2
l φl.

Thus, for g,g′ ∈ Fδ ,

‖Q(g − g′)‖2
2 =

∥∥∥∥∥
M∑

j1=0,...,jd=0

(θj − θ ′
j )

2Qφj

∥∥∥∥∥
2

2

=
M∑

j1=0,...,jd=0

(θj − θ ′
j )

2b−2
j(38)

≤ CM2q
M∑

j1=0,...,jd=0

(θj − θ ′
j )

2,

where we have used (37) to infer that when j ∈ {0, . . . ,M}d ,

b−2
j ≤ C−2

1 · |j |2q ≤ C−2
1 · (dM)2q .

On the other hand, ‖g − g′‖2 = ∑M
j1=0,...,jd=0(θj − θ ′

j )
2. This gives the upper

bound for the operator norm

�(Q, Fδ) ≤ CMq ≤ C′δ−q/s(39)

by the definition of M in (34).
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2. The functions Aφj are orthogonal and ‖Aφj‖2 = bj . Indeed,

〈Aφj ,Aφl〉 = 〈φj ,A
∗Aφl〉 = b2

l 〈φj ,φl〉.
Thus, for g,g′ ∈ Dδ ,

‖A(g − g′)‖2
2 =

M∑
j1=M∗,...,jd=M∗

(θj − θ ′
j )

2b2
j .(40)

This, together with calculations similar to those in (38), implies that

C′δq/s ≤ �K(A, Dδ) ≤ Cδq/s.(41)

5.1.2. Wavelet-vaguelette decomposition. We assume that the underlying
function space F consists of d-variate functions which are linear combinations
of orthonormal wavelet functions (φjk), where j ∈ {0,1, . . .} and k ∈ {0, . . . ,2j −
1}d . The l2-body and the corresponding class of functions can now be defined as

� =
{
θ :

∑
j

22sj
∑
k

|θjk|2 ≤ L2
}
, F =

{∑
j

∑
k

θjkφjk : θ ∈ �

}
,

where s > 0. We have already constructed a δ-net and δ-packing set for the l2-
bodies in (33). Now, this is done such that for θ ∈ �δ ,

θjk = 0 when j ≥ J + 1,

where

2J � δ−1/s(42)

and such that for θ ∈ �∗
δ ,

θjk = θ∗
jk when j ≤ J ∗ or j ≥ J + 1,

where θ∗ is a fixed sequence with
∑∞

j=0
∑

k a2
j θ

∗2
jk = L∗ < L, and J ∗ = J − 1.

Operator norms. We can apply the wavelet-vaguelette decomposition, as de-
fined in Donoho (1995), to calculate the operator norms �(Q, Fδ) and �K(A, Dδ).
We have available the following three sets of functions: (φjk)jk is an orthogonal
wavelet basis and (ujk)jk and (vjk)jk are near-orthogonal sets:∥∥∥∥∥

∑
jk

ajkujk

∥∥∥∥∥
2

� ‖(ajk)‖l2,

∥∥∥∥∥
∑
jk

ajkvjk

∥∥∥∥∥
2

� ‖(ajk)‖l2,

where a � b means that there exist positive constants C,C′ such that Cb ≤ a ≤
C′b. The following quasi-singular relations hold:

Aφjk = κjvjk, A∗ujk = κjφjk,

where κj are quasi-singular values. We assume that there exist positive constants
q and C1,C2 such that for all j ∈ {0,1, . . .},

C1 · 2−qj ≤ κj ≤ C2 · 2−qj .(43)
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1. Let g,g′ ∈ Fδ . Write

g − g′ =
J∑

j=0

∑
k

(θjk − θ ′
jk)φjk.

Since Q = (A−1)∗, it holds that QA∗ = (AA−1)∗ = I . Thus,

〈Qφjk,Qφj ′k′ 〉 = κ−1
j κ−1

j ′ 〈QA∗ujk,QA∗uj ′k′ 〉
= κ−1

j κ−1
j ′ 〈ujk, uj ′k′ 〉.

This gives that

‖Q(g − g′)‖2
2 =

∥∥∥∥∥
J∑

j=0

∑
k

(θjk − θ ′
jk)Qφjk

∥∥∥∥∥
2

2
(44)

�
J∑

j=0

κ−2
j

∑
k

(θjk − θ ′
jk)

2 ≤ C22qJ
J∑

j=0

∑
k

(θjk − θ ′
jk)

2,

where we have used (43) to infer that for j ∈ {0, . . . , J }, it holds that

κ−2
j ≤ C−2

1 · 22qj ≤ C−2
1 · 22qJ .

On the other hand, ‖g − g′‖2
2 = ∑J

j=0
∑

k(θjk − θ ′
jk)

2. This gives the upper
bound for the operator norm

�(Q, Fδ) ≤ C2qJ ≤ C′δ−q/s

by the definition of J in (42).
2. We have 〈Aφjk,Aφj ′k′ 〉 = κjκj ′ 〈vjk, vj ′k′ 〉 and (vjk) is a near-orthogonal set.

Thus, similarly as in (44), we get

C′δq/s ≤ �K(A, Dδ) ≤ Cδq/s.

5.1.3. Rates of convergence. We derive the rates of convergence for the δ-net
estimator when the operator is a convolution operator or the Radon transform. It
is also shown that the lower bounds have the same order as the upper bounds. We
will do this for the Gaussian white noise model.

Convolution. Let A be a convolution operator: Af = a ∗ f , where a : Rd → R is
a known function and where a ∗f (x) = ∫

Rd a(x − y)f (y) dy is the convolution of
a and f . For j ∈ {0,1, . . .}d , k ∈ Kj = {k ∈ {0,1}d :ki = 0, when ji = 0}, denote

φjk(x) =
d∏

i=1

√
2[(1 − ki) cos(2πjixi) + ki sin(2πjixi)], x ∈ [0,1]d .
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The cardinality of Kj is 2d−α(j), where α(j) = #{ji : ji = 0}. The collection (φjk),
(j, k) ∈ {0,1, . . .}d × Kj , is a basis for 1-periodic functions on L2([0,1]d). When
the convolution kernel a is a 1-periodic function in L2([0,1]d), then we can write

a(x) =
∞∑

j1=0,...,jd=0

∑
k∈Kj

bjkφjk(x).

The functions φjk are the singular functions of the operator A and the values bjk

are the corresponding singular values. We assume that the underlying function
space is equal to

F =
{ ∞∑

j1=0,...,jd=0

∑
k∈Kj

θjkφjk(x) : (θjk) ∈ �

}
,(45)

where

� =
{
θ :

∞∑
j1=0,...,jd=0

∑
k∈Kj

a2
jkθ

2
jk ≤ L2

}
.(46)

We give the rate of convergence of the δ-net estimator and show that the estimator
achieves the optimal rate of convergence. Optimal rates of convergence has been
previously obtained for the convolution problem in various settings, in Ermakov
(1989), Donoho and Low (1992), Koo (1993), Korostelev and Tsybakov (1993).

COROLLARY 1. Let F be the function class as defined in (45). We assume
that the coefficients of the ellipsoid (46) satisfy

C0|j |s ≤ ajk ≤ C1|j |s

for some s > 0 and C0,C1 > 0. We assume that the convolution filter a is 1-peri-
odic function in L2([0,1]d) and that the Fourier coefficients of filter a satisfy

C2|j |−q ≤ bjk ≤ C3|j |−q

for some q ≥ 0, C2,C3 > 0. Then

lim sup
n→∞

n2s/(2s+2q+d) sup
f ∈F

Ef ‖f̂ − f ‖2
2 < ∞,

where f̂ is the δ-net estimator. Also,

lim inf
n→∞n2s/(2s+2q+d) inf

ĝ
sup
f ∈F

Ef ‖ĝ − f ‖2
2 > 0,

where the infimum is taken over any estimators ĝ.
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PROOF. For the upper bound, we apply Theorem 1. Let Fδ be the δ-net of F as
constructed in (33). We have shown in (39) that �(Q, Fδ) ≤ Cδ−a , where a = q/s.
We have stated in (36) that the cardinality of the δ-net satisfies log(#Fδ) ≤ Cδ−b,
where b = d/s. Thus, we may apply (15) to get the rate ψn = n−1/(2(a+1)+b) =
n−s/(2s+2q+d). This shows the upper bound.

For the lower bound, we apply Theorem 2. Assumption (16) holds because Dδ

in (33) is a δ-packing set. Assumption (17) holds by the construction; see Klemelä
and Mammen (2009). Assumptions (18) and (19) follow from (36) and (41). Thus
the lower bound is proved. �

Two-dimensional Radon transform. We consider reconstructing a two-dimensi-
onal function f from observations of its integrals over lines, that is, from its Radon
transform. We suppose that f ∈ L1(D) ∩ L2(D), where D = {x ∈ R2 :‖x‖ ≤ 1}
is the unit disk in R2. We parametrize the lines by the length u ∈ [0,1] of the
perpendicular from the origin to the line and by the orientation φ ∈ [0,2π) of this
perpendicular. A common way to define the two-dimensional Radon transform is

Af (u,φ) = π

2
√

1 − u2

∫ √
1−u2

√
1−u2

f (u cosφ − t sinφ,u sinφ + t cosφ)dt,(47)

where (u,φ) ∈ Y = [0,1] × [0,2π ]. Now, the Radon transform is π times the av-
erage of f over the line segment that intersects D. We consider Rf as the element
of L2(Y, ν), where ν is the measure defined by dν(u,φ) = 2π−1

√
1 − u2 dudφ.

The singular value decomposition of the Radon transform can be found in Deans
(1983). Let

φ̃jk(r, θ) = π−1/2(j + k + 1)1/2Z
|j−k|
j+k (r)ei(j−k)θ ,

(r, θ) ∈ D = [0,1] × [0,2π),

where Zb
a denotes the Zernike polynomial of degree a and order b. Functions φ̃jk ,

j, k = 0,1, . . . , (j, k) �= (0,0), constitute an orthonormal complex-valued basis
for L2(D). The corresponding orthonormal functions in L2(Y, ν) are

ψ̃jk(u,φ) = π−1/2Uj+k(u)ei(j−k)φ, (u,φ) ∈ Y = [0,1] × [0,2π),

where Um(cos θ) = sin((m + 1)θ)/ sin θ are the Chebyshev polynomials of the
second kind. We have

Aφ̃jk = bjkψ̃jk,

where the singular values are

bjk = π−1(j + k + 1)−1/2.(48)

The complex basis identifies the equivalent real orthonormal basis as follows:

φjk =
⎧⎪⎨
⎪⎩

√
2 Re(φ̃jk), if j > k,

φ̃jk, if j = k,√
2 Im(φ̃jk), if j < k.
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We assume that the underlying function space is equal to

F =
{ ∞∑

j1=0,j2=0,(j1,j2) �=(0,0)

θj1j2φj1j2(x) : (θj1j2) ∈ �

}
,(49)

where

� =
{
θ :

∞∑
j1=0,j2=0,(j1,j2) �=(0,0)

a2
j1j2

θ2
j1j2

≤ L2

}
.(50)

We give the rate of convergence of the δ-net estimator and show that the estimator
achieves the optimal rate of convergence. Optimal rates of convergence have previ-
ously been obtained in Johnstone and Silverman (1990), Korostelev and Tsybakov
(1991), Donoho and Low (1992), Korostelev and Tsybakov (1993).

COROLLARY 2. Let F be the function class as defined in (49). We assume
that the coefficients of the ellipsoid (50) satisfy

C0|j |s ≤ ajk ≤ C1|j |s

for some s > 0 and C0,C1 > 0. Then, for d = 2,

lim sup
n→∞

n2s/(2s+2d−1) sup
f ∈F

Ef ‖f̂ − f ‖2
2 < ∞,

where f̂ is the δ-net estimator. Also,

lim inf
n→∞n2s/(2s+2d−1) inf

ĝ
sup
f ∈F

Ef ‖ĝ − f ‖2
2 > 0,

where the infimum is taken over any estimator ĝ.

PROOF. For the upper bound, we apply Theorem 1. Let Fδ be the δ-net of F
as constructed in (33). We have shown in (39) that

�(Q, Fδ) ≤ Cδ−a,

where a = q/s and q = 1/2 [so that a = (d − 1)/(2s)] since the singular values
are given in (48). We have stated in (36) that the cardinality of the δ-net satisfies

log(#Fδ) ≤ Cδ−b,

where b = d/s. Thus, we can apply (15) to get the rate

ψn = n−s/(2s+2d−1).

The upper bound is proved. For the lower bound, we apply Theorem 2 similarly as
in the proof of Corollary 1. �



498 J. KLEMELÄ AND E. MAMMEN

5.2. Additive models. In this section, we will show that our approach can
be used to prove oracle results for additive models. In additive models, the
unknown function f : Rd → R is assumed to have an additive decomposition
f (x) = f1(x1) + · · · + fd(xd) with unknown additive components fj : R → R,
j = 1, . . . , d . We compare this model with theoretical oracle models where only
one component function fr is unknown, the other functions fj (j �= r) being
known. We will show below that the function f can be estimated with the same
rate of convergence as in the oracle model that has the slowest rate of conver-
gence. In particular, if the rate of convergence is the same in all oracle models,
then the rate in the additive model remains the same. This is a well-known fact for
classical additive regression models; see, for example, Stone (1985). It efficiently
avoids the curse of dimensionality, in contrast to the full-dimensional nonparamet-
ric model. Furthermore, it is practically important because it allows a flexible and
nicely interpretable model for regression with high-dimensional covariates; see,
for example, Hastie and Tibshirani (1990) for a discussion of the additive and re-
lated models. Thus, our result will generalize the oracle result for additive models
of Stone (1985) to inverse problems. For a theoretical discussion, we will first use
a slightly more general framework. We will later return to additive models.

5.2.1. Abstract setting. We assume that the function class F is a subset of
the direct sum of spaces F1, . . . , Fp . All spaces contain functions from Rd → R.
At this stage, we do not assume that functions in Fj (j = 1, . . . , p) depend only
on the argument xj . Examples of this more general set-up are sums of smooth
functions and indicator functions of convex sets or of sets with smooth boundary.
We assume that a finite δ-net Fδ of F is a subset of the direct sum F1,δ ⊕ · · · ⊕
Fp,δ , where Fj,δ are finite subsets of Fj . We denote the number of elements of
Fj,δ by exp(λj ). Furthermore, we write ρj = ρ(Q, Fj,δ). We make the following,
essential, geometrical assumption:

‖f1 + · · · + fp‖2
2 ≥ c

p∑
j=1

‖fj‖2
2(51)

for a positive constant c > 0. For the δ-net minimizer f̂ over the δ-net Fδ , we
get the following result in the white noise model. (An additive model for density
estimation would not make much sense.)

THEOREM 5. We make assumption (51). In the white noise model, the follow-
ing bound holds for the δ-net minimizer f̂ , for f ∈ F ,

E(‖f̂ − f ‖2
2) ≤ 3δ2 + 32c−1n−1

[ p∑
j=1

ρ2
j λj +

( p∑
j=1

ρj

)2]
.

A proof of Theorem 5 is given in Section 6.6.
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5.2.2. Application to additive models. We now apply Theorem 5 in or-
der to discuss additive models f (x) = f1(x1) + · · · + fd(xd). In L2(Rd), we
have ‖f1 + · · · + fd‖2

2 = ∑d
j=1 ‖fj‖2

2 if the functions fj are normed such that∫
fj (xj ) dxj = 0. Thus, (51) holds trivially. Assumption (51) also holds in other

L2-spaces with dominating measure differing from the Lebesgue measure. A dis-
cussion of condition (51) for these classes can be found in, for example, Mammen,
Linton and Nielsen (1999); also, see Bickel et al. (1993). Such L2-spaces natu-
rally arise in additive regression models. For a white noise model, they arise if one
assumes an additive model for transformed covariables. We assume that for the
models Fj , one can find δj -nets Fj,δj

such that choosing δj = ψn,j with

ψ2
n,j � n−1ρ2(Q, Fj,ψn,j

) log(#Fj,ψn,j
)

gives a rate-optimal δ-net minimizer in the model Fj . Now, Fδ = F1,δ1 ⊕ · · · ⊕
Fd,δd

is a δ-net of F with δ = ∑d
j=1 δj . From Theorem 5, we get that the δ-net

minimizer f̂ over the net Fδ achieves the rate O(ψn) with ψn = max1≤j≤d ψn,j .
This is just the type of result we called an oracle result at the beginning of this
section.

In general, the oracle result does not follow from Theorem 1. The application
of Theorem 1 leads to an assumption of the type

n−1 max
1≤j≤d

ρ2(Q, Fj,ψn,j
) × max

1≤j≤d
log(#Fj,ψn,j

) = O(ψ2
n),

whereas Theorem 5 only requires that

n−1 max
1≤j≤d

[ρ2(Q, Fj,ψn,j
) log(#Fj,ψn,j

)] = O(ψ2
n).

This can make a big difference. First, the entropy numbers of the additive classes
Fj may differ. Furthermore, the operator Q may act quite differently on the
spaces Fj .

5.2.3. Ellipsoidal spaces and convolution. As an example, we now assume
that the underlying function space is F = F1 ⊕ · · · ⊕ Fd , where

Fk =
{ ∞∑

j=0

θkjφkj : θk· ∈ �sk,Lk

}

for basis functions φkj : [0,1] → R and the ellipsoids are defined by

�sk,Lk
=

{
θk· :

∞∑
j=0

a2
kj θ

2
kj ≤ L2

k

}
, k = 1, . . . , d,(52)

where we assume that there exist positive constants C1,C2 such that for all j ∈
{0,1, . . .},

C1 · j sk ≤ akj ≤ C2 · j sk .(53)
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Let A be a convolution operator: Af = a ∗ f , where a : Rd → R is a known func-
tion. Then

Af = A1f1 + · · · + Adfd,

where f (x) = f1(x1) + · · · + fd(xd) and

Akfk(xk) =
∫
[0,1]d

fk(xk − yk)ak(yk) dyk,

where ak(yk) = ∫
[0,1]d a(y)

∏d
l=1,l �=k dyl is the kth marginal function of a. We can

decompose Q accordingly:

Qg = Q1g1 + · · · + Qdgd.

Operators Aj and Qj are restrictions of A and Q to Fj . We apply the singular
value decomposition for Ak . Let

φkj (t) = √
2 cos(2πjt), t ∈ [0,1],

where j = 1,2, . . . and φ0(t) = I[0,1](t). The collection (φkj ), j = 0,1, . . . , is a
basis for 1-periodic functions on L2([0,1]). When ak are 1-periodic functions in
L2([0,1]), we can write

ak(xk) =
∞∑

j=0

bkjφkj (xk).

The functions φkj are the singular functions of the operator Ak and the values bkj

are the corresponding singular values. We give the rate of convergence of the δ-net
estimator and show that the estimator achieves the optimal rate of convergence.

COROLLARY 3. Let F = F1 ⊕ · · · ⊕ Fd . We assume that the coefficients of
the ellipsoid satisfy (53). We assume that ak are 1-periodic functions in L2([0,1])
and that the Fourier coefficients of ak satisfy

C2j
−qk ≤ bkj ≤ C3j

−qk

for some qk ≥ 0, C2,C3 > 0. Then, in the white noise model,

lim sup
n→∞

na sup
f ∈F

Ef ‖f̂ − f ‖2
2 < ∞,

where f̂ is the δ-net estimator and

a = min
k=1,...,d

2sk

2sk + 2qk + 1
.

Also,

lim inf
n→∞na inf

ĝ
sup
f ∈F

Ef ‖ĝ − f ‖2
2 > 0,

where the infimum is taken over any estimators ĝ in the white noise model.
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PROOF. For the upper bound, we apply Theorem 5. As in Section 5.1.1, we
can find δ-nets Fk,δ for Fk whose cardinality is bounded by log(#Fk,δ) ≤ Cδ−1/sk

and �(Qk, Fk,δ) ≤ Cδ−qk/sk . The upper bound of Theorem 5 gives as the rate the
maximum of the component rates n−2sk/(2sk+2qk+1). For the lower bound, we apply
the lower bound of Corollary 1 in the case d = 1 and the fact that one cannot do
better in the additive model than in the model that has only one component. �

6. Proofs.

6.1. A preliminary lemma. We prove that the theoretical error of a minimiza-
tion estimator may be bounded by the optimal theoretical error and an additional
stochastic term.

LEMMA 1. Let C ⊂ L2(Rd). Let f̂ ∈ C be such that

γn(f̂ ) ≤ inf
g∈C

γn(g) + ε,(54)

where ε ≥ 0. Then, for each f 0 ∈ C ,

‖f̂ − f ‖2
2 ≤ ‖f 0 − f ‖2

2 + ε + 2νn[Q(f̂ − f 0)],
where f is the true density or the true signal function and νn(g) is the centered
empirical operator:

νn(g) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫
g dYn −

∫
Y

g(Af ), white noise model,

n−1
n∑

i=1

g(Yi) −
∫

Y
g(Af ), density estimation,

(55)

where g : Rd → R.

PROOF. We have, for g = f̂ , g = f 0,

‖g − f ‖2
2 − γn(g)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

‖f ‖2
2 − 2

∫
Rd

fg + 2
∫

(Qg)dYn, white noise model,

‖f ‖2
2 − 2

∫
Rd

fg + 2n−1
n∑

i=1

(Qg)(Yi), density estimation.

We have
∫

Rd fg = ∫
Y(Af )(Qg). Thus,

‖f̂ − f ‖2
2 − γn(f̂ ) + γn(f

0) − ‖f 0 − f ‖2
2 = 2νn[Q(f̂ − f 0)].(56)

Thus,

‖f̂ − f ‖2
2 − ‖f 0 − f ‖2

2 = ‖f̂ − f ‖2
2 − γn(f̂ ) + γn(f̂ ) − ‖f 0 − f ‖2

2

≤ ‖f̂ − f ‖2
2 − γn(f̂ ) + γn(f

0) + ε − ‖f 0 − f ‖2
2(57)

= 2νn[Q(f̂ − f 0)] + ε.(58)
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In (57), we applied (54) and in (58), we applied (56). �

6.2. Proof of Theorem 1. Let f ∈ F be the true density. Let φ0 ∈ Fδ . Define
ζ = C1‖φ0 − f ‖2

2 + C2n
−1�2(Q, Fδ) loge(#Fδ), where C1 is defined in (10) and

C2 is defined in (11). We have that

E‖f̂ − f ‖2
2

=
∫ ∞

0
P(‖f̂ − f ‖2

2 > t)dt ≤ ζ +
∫ ∞
ζ

P (‖f̂ − f ‖2
2 > t)dt(59)

= ζ + C2n
−1�2(Q, Fδ)

∫ ∞
0

P
(‖f̂ − f ‖2

2 > C2n
−1�2(Q, Fδ)t + ζ

)
dt.

Define τn = Cτn
−1�2(Q, Fδ)(loge(#Fδ) + t), where Cτ is defined in (12). Then

P
(‖f̂ − f ‖2

2 > C2n
−1�2(Q, Fδ)t + ζ

)
= P(‖f̂ − f ‖2

2 > C1‖φ0 − f ‖2
2 + C2C

−1
τ τn)

= P
(
(1 − 2ξ)−1‖f̂ − f ‖2

2(60)

> 2ξ(1 − 2ξ)−1‖f̂ − f ‖2
2 + C1‖φ0 − f ‖2

2 + C2C
−1
τ τn

)
= P

(‖f̂ − f ‖2
2 > 2ξ‖f̂ − f ‖2

2 + (1 + 2ξ)‖φ0 − f ‖2
2 + ξτn

)
.

We have, by Lemma 1, that ‖f̂ −f ‖2
2 ≤ ‖φ0 −f ‖2

2 +2νn[Q(f̂ −φ0)]. This implies
that

P
(‖f̂ − f ‖2

2 > C2n
−1�2(Q, Fδ)t + ζ

)
= P

(
νn[Q(f̂ − φ0)] > ξ‖f̂ − f ‖2

2 + ξ‖φ0 − f ‖2
2 + ξτn/2

)
= P

(
νn[Q(f̂ − φ0)] > w(f̂ )ξ

)
(61)

≤ P

(
max

φ∈Fδ,φ �=φ0

νn[Q(φ − φ0)]
w(φ)

> ξ

)

def= Pmax,

where w(φ) = ‖φ − f ‖2
2 + ‖φ0 − f ‖2

2 + τn/2. We will prove that

Pmax ≤ exp(−t).(62)

Together with (59) and (61), this proves the theorem.

Proof of (62). Define

G =
{
Q(φ − φ0)

w(φ)
:φ ∈ Fδ, φ �= φ0

}
.
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We have that

Pmax ≤ ∑
g∈G

P
(
νn(g) > ξ

)
.(63)

Also, w(φ) ≥ 1
2(‖φ − φ0‖2

2 + τn) ≥ ‖φ − φ0‖2τ
1/2
n and thus

v0
def= max

g∈G
‖g‖2

2 ≤ 1

τn

max
φ∈Fδ,φ �=φ0

‖Q(φ − φ0)‖2
2

‖φ − φ0‖2
2

= �2(Q, Fδ)

τn

.(64)

Gaussian white noise. When W ∼ N(0, σ 2), we have P(W > ξ) ≤ 2−1 ×
exp{−ξ2/(2σ 2)} for ξ > 0; see, for example, Dudley (1999), Proposition 2.2.1.
We have that νn(g) ∼ N(0, n−1‖g‖2

2). Thus,

P
(
νn(g) > ξ

) ≤ 2−1 exp
{
−nξ2

2v0

}
≤ 2−1 exp

{
− nτnξ

2

2�2(Q, Fδ)

}
.

Defining Cξ
def= ξ2Cτ/2, we get that

Pmax ≤ #Fδ · exp
{
− nτnξ

2

2�2(Q, Fδ)

}
= #Fδ · exp{−Cξ [loge(#Fδ) + t]}

≤ exp(−t)

since Cξ ≥ 1, by the choice of ξ .

Density estimation. Define v = supg∈G Varf (g(Y1)) and b = supg∈G ‖g‖∞.
We have that

v ≤ ‖Af ‖∞v0 ≤ B∞
�2(Q, Fδ)

τn

(65)

by (64). Also, w(φ) ≥ τn/2 and thus, because of �(Q, Fδ) ≥ 1, we have that

b ≤ 2B ′∞
2

τn

≤ 4B ′∞
�2(Q, Fδ)

τn

.(66)

By applying Bernstein’s inequality, we get, with (65) and (66), that

P
(
νn(g) > ξ

) ≤ exp
{ −nξ2

2(v + ξb/3)

}

≤ exp
{ −nξ2τn

2�2(Q, Fδ)(B∞ + 4B ′∞ξ/3)

}
.

Continuing from (63),

Pmax ≤ #Fδ · exp
{ −nξ2τn

2�2(Q, Fδ)(B∞ + 4B ′∞ξ/3)

}

= #Fδ · exp{−Cξ [loge(#Fδ) + t]} ≤ exp(−t),
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where

Cξ
def= ξ2Cτ

2(B∞ + 4B ′∞ξ/3)

and Cξ ≥ 1, by the choice of ξ . We have proven (62) and thus the theorem.

6.3. Proof of Theorem 2. To prove Theorem 2, we follow the approach of
Hasminskii and Ibragimov (1990) and use Theorem 6 in Tsybakov (1998), which
gives us the following lemma. For a proof, see Klemelä and Mammen (2009).

LEMMA 2. Let D ⊂ F be a finite set for which

min{‖f − g‖2 :f,g ∈ D, f �= g} ≥ δ,(67)

where δ > 0. Assume that for some f0 ∈ D and for all f ∈ D \ {f0},

P
(n)
Af

(dP
(n)
Af0

dP
(n)
Af

≤ τ

)
≤ α,(68)

for some 0 < α < 1, τ > 0. Here, P
(n)
Af is the product measure corresponding to

the density Af in the density estimation model, and in the Gaussian white noise
model, P

(n)
Af is the measure of the process Yn in (2). It then holds that

inf
f̂

sup
f ∈F

EAf ‖f − f̂ ‖2
2 ≥ δ2

4
(1 − α)

τ(Nδ − 1)

1 + τ(Nδ − 1)
,

where Nδ = #D ≥ 2. Here, the infimum is taken over all estimators (either in the
density estimation model or in the Gaussian white noise model).

PROOF OF THEOREM 2. For f,f0 ∈ Dψn , f �= f0,

P
(n)
Af

(dP
(n)
Af0

dP
(n)
Af

≤ τ

)

≤ (log τ−1)−1D2
K

(
P

(n)
Af ,P

(n)
Af0

)
(69)

=
⎧⎨
⎩

(log τ−1)−1nD2
K(Af,Af0), density estimation,

(log τ−1)−1 n

2
‖Af − Af0‖2

2, Gaussian white noise,
(70)

where, in (69), we applied Markov’s inequality and for the Gaussian white noise
model, in (70), we applied the fact that under P

(n)
Af ,

dP
(n)
Af

dP
(n)
Af0

= exp{n1/2σZ + nσ 2/2},
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where Z ∼ N(0,1) and σ = ‖Af − Af0‖2. When we choose

τ = τn = exp{−α−1n[C1�K(A, Dψn)ψn]2}
for 0 < α < 1, we get, by applying assumption (17), that

P
(n)
Af

(dP
(n)
Af0

dP
(n)
Af

≤ τ

)
≤ (log τ−1)−1n�2

K(A, Dψn)‖f − f0‖2
2

(71)
≤ (log τ−1)−1n[�K(A, Dψn)C1ψn]2 = α.

By applying Lemma 2, assumption (16) and (71), we get the lower bound

inf
f̂

sup
f ∈Dψn

‖f − f̂ ‖2
2 ≥ (C0ψn)

2

4
(1 − α)

τn(Nψn − 1)

1 + τn(Nψn − 1)
,(72)

where Nψn = #Dψn . Let n be so large that loge Nψn ≥ C2
2n�2

K(A, Dψn)ψ
2
n , where

C2 > C1. This is possible by (18). Then

τnNψn = exp{loge Nψn − α−1n[C1�K(A, Dψn)ψn]2}
≥ exp{n�2

K(A, Dψn)ψ
2
n [C2

2 − α−1C2
1 ]} → ∞

as n → ∞, where we apply (19) and choose α so that C2
2 − α−1C2

1 > 0, that
is, (C1/C2)

2 < α < 1. Then limn→∞ τn(Nψn − 1)/[1 + τn(Nψn − 1)] = 1 and the
theorem follows from (72). �

6.4. Proof of Theorem 3. Let ζ = C1εn+C2ψ
2
n , where C1 = (1−2ξ)−1, C2 =

1 − 2ξ , 0 < ξ ≤ (3 − √
5)/4. We have that

E‖f̂ − f ‖2
2 =

∫ ∞
0

P(‖f̂ − f ‖2
2 > t)dt

(73)
≤ ζ + C2ψ

2
n

∫ ∞
0

P(‖f̂ − f ‖2
2 > C2ψ

2
nt + ζ ) dt.

With τn = Cτψ
2
n(1 + t), Cτ = ξ−1(1 − 2ξ)2, this implies that

P(‖f̂ − f ‖2
2 > C2ψ

2
nt + ζ ) = P(‖f̂ − f ‖2

2 > 2ξ‖f̂ − f ‖2
2 + ξτn + εn).(74)

We have, by Lemma 1, choosing f 0 = f , that ‖f̂ − f ‖2
2 ≤ 2νn[Q(f̂ − f )] + εn.

This implies that

P(‖f̂ − f ‖2
2 > C2ψ

2
nt + ζ ) ≤ P

(
sup
g∈F

νn[Q(g − f )]
w(g)

> ξ

)
def= Psup,(75)

where w(g) = ‖g − f ‖2
2 + τn/2. We will prove that

Psup ≤ exp(−t · loge 2).(76)

Together with (73) and (75), this implies the theorem.
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Proof of (76). We use the peeling device; see, for example, van de Geer (2000),
page 69. For j ≥ 0, let a0 = τn/2, aj = 22j a0, bj = 22aj and define the following
sets of functions: Gj = {g ∈ F :aj ≤ w(g) < bj }, Fj = {g ∈ F :‖g − f ‖2

2 < bj }.
We have that

F = {g ∈ F :w(g) ≥ a0} =
∞⋃

j=0

Gj .

Thus,

Psup ≤
∞∑

j=0

P

(
sup
g∈Gj

νn[Q(g − f )]
w(g)

> ξ

)
(77)

≤
∞∑

j=0

P
(

sup
g∈Fj

νn[Q(g − f )] > ξaj

)
.

By assumption 4 of Theorem 3, G̃(ψn) = 24
√

2G(ψn), where G̃ is defined in
(81) for sufficiently large n. Thus, by the choice of C = ξ−14 · 24

√
2 in (24),

ψ2
n ≥ n−1/2ξ−14G̃(ψn). By the choice of ξ , we have that Cτ ≥ 2 and thus

a0 = Cτψ
2
n(1 + t)/2 ≥ ψ2

n . Since G(δ)/δ2 is decreasing, by assumption 2 of The-

orem 3, G̃(δ)/δ2 is also decreasing and ξn1/2/4 ≥ G̃(ψn)/ψ
2
n ≥ G̃(a

1/2
0 )/a0 ≥

G̃(b
1/2
j )/bj , that is,

ξaj = ξbj /4 ≥ n−1/2G̃(b
1/2
j ).(78)

We now apply Lemma 3 stated below, with (78), to get

P
(

sup
g∈Fj

νn[Q(g − f )] > ξaj

)
≤ exp

{
−n(ξaj )

2C′

c2b1−a
j

}
(79)

≤ exp
{−C′′(j + 1)nψ2(1+a)

n (1 + t)1+a},(80)

where C′′ = C′c−2ξ222(a−1)(Cτ /2)1+a . Here, we have used the facts that a2
j /

b1−a
j = 22(a−1)[22jCτψ

2
n(1 + t)/2]1+a and 22j (a+1) ≥ j + 1. When 0 ≤ b ≤ 1/2,

we have
∑∞

j=0 bj+1 ≤ 2b. When nψ
2(1+a)
n ≥ (loge 2)/C′′, we have exp{−C′′n ×

ψ
2(1+a)
n (1 + t)1+a} ≤ 1/2. Now, we combine (77) and (80) to get the upper bound

2 exp
{−C′′nψ2(1+a)

n (1 + t)1+a} ≤ exp{−t loge 2}.
We have proven (76). For the proof of Theorem 3, it remains to prove Lemma 3
below. Lemma 3 gives an exponential tail bound for the Gaussian white noise
model.

LEMMA 3. Let νn be the centered empirical operator of a Gaussian white
noise process. Operator νn is defined in (55). Let G ⊂ L2(Rd) be such that
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supg∈G ‖g‖2 ≤ R and denote by Gδ a δ-net of G , δ > 0. Assume that δ �→
�(Q, Gδ)

√
loge(#Gδ) is decreasing on (0,R], where �(Q, Gδ) is defined in (22)

and assume that the entropy integral G(R) defined in (23) is finite. Assume that
�(Q, Gδ) = cδ−a , where 0 ≤ a < 1 and c > 0. Then, for all

ξ ≥ n−1/2G̃(R), G̃(R) = max
{
24

√
2G(R), cR1−a

√
loge 2/C′}(81)

with C′ = 12−2(C′′)−2 and C′′ = (1 − a)−3/2�(3/2)(loge 2)−3/2, we have

P
(
sup
g∈G

νn(Qg) ≥ ξ
)

≤ exp
{
− nξ2C′

c2R2−2a

}
.

A proof of Lemma 3 is given in the technical report Klemelä and Mammen
(2009). The main argument makes use of the chaining technique. An analogous
lemma in the direct case is, for example, Lemma 3.2 in van de Geer (2000).

6.5. Proof of Theorem 4. The proof is similar to the proof of Theorem 3 up to
step (79). At this step, we apply Lemma 4 stated below to get

P
(

sup
g∈Fj

νn[Q(g − f )] > ξaj

)

≤ exp
{
−n(ξaj )

2C′

c2b1−a
j

}
+ 2#GB2 exp

{
− 1

12

n(ξaj )
2

B∞c2b1−a
j + 2ξajB ′∞/9

}
.

The first term in the right-hand side is handled similarly as in the proof of Theo-
rem 3. For the second term in the right-hand side, we have, for sufficiently large n,

exp
{
− 1

12

n(ξaj )
2

B∞c2b1−a
j + 2ξajB ′∞/9

}
= exp

{−nψ2(1+a)
n 22j (1 + t)1+aC′′}

since a−a
j = (22j a0)

−a ≤ a−a
0 and a−a

0 ≥ 1 for sufficiently large n, and we let

C′ = ξ2C1+a
τ /[21+a12(B∞c2 + 2ξB ′∞/9)]. The proof is completed similarly to

the proof of Theorem 3.
We have used Lemma 4, which gives an exponential bound for the tail proba-

bility in the case of density estimation.

LEMMA 4. Let Y1, . . . , Yn ∈ Rd be i.i.d. with density Af and let the cen-
tered empirical process νn be defined as in (55). Assume that ‖Af ‖∞ ≤ B∞. Let
G ⊂ L2(Rd) be such that supg∈G ‖g‖2 ≤ R. Denote by Gδ a δ-bracketing net of G ,
δ > 0. Let GL

δ = {gL : (gL, gU) ∈ Gδ} and GU
δ = {gU : (gL, gU) ∈ Gδ}. Assume that

supg∈GL
R∪GU

R
‖Qg‖∞ ≤ B ′∞. Assume that δ �→ �den(Q, Gδ)

√
loge(#Gδ) is decreas-

ing on (0,R], where �den(Q, Gδ) is defined in (28) and assume that the entropy
integral G(R) defined in (29) is finite. Assume that �den(Q, Gδ) = cδ−a , where
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0 ≤ a < 1 and c > 0. Put G̃(R) = B
1/2∞ (92 + 96 · 2−2a)1/2 max{24

√
2G(R),4 ×

(loge(2))−1(1 − a)−3/2�(3/2)cR1−a}. Then, for all ξ ≥ n−1/2G̃(R), we have

P
(
sup
g∈G

νn(Qg) ≥ ξ
)

≤ 4 exp
{
− nξ2C′

B∞c2R2−2a

}

+ 2#GR exp
{
− 1

12

nξ2

B∞c2R2(1−a) + 2ξB ′∞/9

}
,

where νn is the centered empirical process defined in (55).

A proof of Lemma 4 is given in the technical report Klemelä and Mammen
(2009). The proof uses the chaining technique with truncation. The proof follows
the techniques developed in Bass (1985), Ossiander (1987), Birgé and Massart
(1993), Proposition 3 and van de Geer (2000), Theorem 8.13.

6.6. Proof of Theorem 5. We proceed similarly as in the proof of Theorem 1.
Choose fδ ∈ Fδ such that ‖f −fδ‖2 ≤ δ, where f is the underlying function in F .
Choose ξ < 1/2 and put ζ = ζ1 + ζ2 with ζ1 = (1 − 2ξ)−1(1 + 2ξ)‖f − fδ‖2

2,
ζ2 = κn−1 ∑p

j=1 ρ2
j λj and κ = 4c−1ξ−1(1 − 2ξ)−1. We have that

E(‖f̂ − f ‖2
2) ≤ ζ +

∫ ∞
0

P(‖f̂ − f ‖2
2 > t + ζ ) dt.(82)

For the integrand of the second term, we have that

P(‖f̂ − f ‖2
2 > t + ζ )

= P
(‖f̂ − f ‖2

2 > 2ξ‖f̂ − f ‖2
2 + (1 − 2ξ)t + (1 − 2ξ)ζ

)
.

We now use Lemma 1. This gives

‖f̂ − f ‖2
2 ≤ ‖f − fδ‖2

2 + 2νn

(
Q(f̂ − fδ)

)
.

Together with the last equalities this gives

P(‖f̂ − f ‖2
2 > t + ζ )

≤ P
(‖f − fδ‖2

2 + 2νn

(
Q(f̂ − fδ)

)
> 2ξ‖f̂ − f ‖2

2 + (1 − 2ξ)(t + ζ )
)

≤ P
(
νn

(
Q(f̂ − fδ)

)
> 2−1ξ‖f̂ − fδ‖2

2 + 2−1(1 − 2ξ)(t + ζ2)
)
.

Now, put wj = ρj/
∑p

l=1 ρl and decompose fδ = fδ,1 + · · · + fδ,p and f̂ = f̂1 +
· · · + f̂p with fδ,j , f̂j ∈ Fj,δ . Using assumption (51), we get, with βj = 2−1(1 −
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2ξ)(wj t + κn−1ρ2
j λj ), that

P(‖f̂ − f ‖2
2 > t + ζ )

≤ P

( p∑
j=1

νn

(
Q(f̂j − fδ,j )

)
> 2−1ξc

p∑
j=1

‖f̂j − fδ,j‖2
2 +

p∑
j=1

βj

)

≤
p∑

j=1

∑
gj∈Fj,δ

P
(
νn

(
Q(gj − fδ,j )

)
> 2−1ξc‖gj − fδ,j‖2

2 + βj

)
.

We now use P(νn(h) > ξ) ≤ 2−1 exp(−nξ2/[2‖h‖2
2]); compare this to the proof

of Theorem 1. This gives

P(‖f̂ − f ‖2
2 > t + ζ )

≤
p∑

j=1

∑
gj∈Fj,δ

2−1 exp
[
−n(2−1ξc‖gj − fδ,j‖2

2 + βj )
2

2‖Q(gj − fδ,j )‖2

]

=
p∑

j=1

2−1 exp[−nξc4−1(1 − 2ξ)wjρ
−2
j t].

By plugging this into (82), we get

E(‖f̂ − f ‖2
2) ≤ ζ +

p∑
j=1

∫ ∞
0

exp[−nξc4−1(1 − 2ξ)wjρ
−2
j t]dt

≤ ζ + n−14[ξc(1 − 2ξ)]−1

( p∑
j=1

ρj

)2

.

Choosing ξ = 4−1 gives the statement of Theorem 5.

Acknowledgments. We would like to thank the referees for suggesting im-
provements and pointing out errors.
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