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RATES OF CONVERGENCE FOR THE POSTERIOR
DISTRIBUTIONS OF MIXTURES OF BETAS AND ADAPTIVE

NONPARAMETRIC ESTIMATION OF THE DENSITY

BY JUDITH ROUSSEAU1

Université Paris Dauphine and CREST

In this paper, we investigate the asymptotic properties of nonparametric
Bayesian mixtures of Betas for estimating a smooth density on [0,1]. We
consider a parametrization of Beta distributions in terms of mean and scale
parameters and construct a mixture of these Betas in the mean parameter,
while putting a prior on this scaling parameter. We prove that such Bayesian
nonparametric models have good frequentist asymptotic properties. We de-
termine the posterior rate of concentration around the true density and prove
that it is the minimax rate of concentration when the true density belongs
to a Hölder class with regularity β, for all positive β, leading to a minimax
adaptive estimating procedure of the density. We also believe that the approx-
imating results obtained on these mixtures of Beta densities can be of interest
in a frequentist framework.

1. Introduction. In this paper, we study the asymptotic behaviour of poste-
rior components. There is a vast literature on mixture models because of their rich
structure which allows for different uses; for instance, they are well known to be
adapted to the modelling of heterogeneous populations as is used, for example, in
cluster analysis (for a good review on mixture models see [10] or [11] for vari-
ous aspects of Bayesian mixture models). They are also useful in nonparametric
density estimation, in particular, they can be considered to capture small variations
around a specific parametric model, as typically occurs in robust estimation or in
a goodness of fit test of a parametric family or of a specific distribution (see, e.g.,
[12, 13]). The approach considered here is density estimation, but it has applica-
tions in many other aspects of mixture models, such has clustering, classification
and goodness of fit testing, since in all of these cases, understanding the behaviour
of the posterior distribution is crucial. Nonparametric prior distributions based on
mixture models are often considered in practice and Dirichlet mixture priors are
particularly popular. Dirichlet mixtures have been introduced by [2, 9] and have
been widely used ever since, but their asymptotic properties are not well known
apart from a few cases such as Gaussian mixtures, triangular mixtures and Bern-
stein polynomials. The papers [4, 5] and [15] study the concentration rate of the
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posterior distribution under Dirichlet mixtures of Gaussian priors, and Ghosal [3]
considers the Bernstein polynomial’s case, that is, the mixture of Beta distribution
with fixed parameters. The paper [13] considers mixtures of triangular distribu-
tions, with a prior on the mixing distribution which is not necessarily a Dirichlet
process. In all of those cases, the authors mainly consider the concentration rate of
the posterior around the true density, when the latter have some known regularity
conditions, or when it is a continuous mixture.

Posterior distributions associated with Bernstein polynomials are known to be
suboptimal in terms of minimax rates of convergence when the true density is
Hölder. An improvement is obtained in [8] based on a modification of Bernstein
polynomials leading to the minimax rate of convergence in the classes of Hölder
densities with regularity β when β ≤ 1. In this paper, we consider another class of
mixtures of Beta models which is richer and, therefore, allows for better asymp-
totic results.

Beta densities are often represented as

g(x|a, b) = xa−1(1 − x)b−1

B(a, b)
, B(a, b) = �(a)�(b)

�(a + b)
.(1.1)

Here we consider a different parametrization of the Beta distribution writing a =
α/(1 − ε) and b = α/ε, so that ε ∈ (0,1) is the mean of the Beta distribution, and
α > 0 is a scale parameter. To approximate smooth densities on [0,1], we consider
a location mixture of Beta densities in the form,

gα,P (x) =
k∑

j=1

pjgα,εj
(x), gα,εj

(x) = g
(
x|α/(1 − εj ), α/εj

)
,(1.2)

where the mixing density is given by

P(ε) =
k∑

j=1

pjδεj
(ε).(1.3)

The parameters of this mixture model are then k ∈ N∗, and for each k, (α,p1, . . . ,

pk, ε1, . . . , εk). The prior probability on the set of densities can, therefore, be ex-
pressed as

dπ(f ) = p(k)πk(ε1, . . . , εk,p1, . . . , pk|α)dπk,α(α), if f = gα,P ,

or dπ(f ) = dπ(P |α)dπ2(α), in the case of a Dirichlet mixture.
Determining the concentration rate of the posterior distribution around the true

density corresponds to determining a sequence τn converging to 0 such that if

Bτn = {f ∈ F , d(f, f0) < τn}(1.4)

for some distance or pseudo-distance d(·, ·) on the set of densities, and if Xn =
(X1, . . . ,Xn) where the Xi’s are independent and identically distributed from a
distribution having a density f0 with respect to Lebesgue measure, then

P π [Bτn |Xn] → 1, in probability.(1.5)
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The difficulty with mixture models comes from the fact that it is often quite
hard to obtain precise approximating properties for these models. The papers [14,
18] give general descriptions of the Kullback–Leibler support of priors based on
mixture models. These results are key in obtaining the consistency of the poste-
rior distribution, but cannot be applied to obtain rates of concentration. In these
papers, they use the Kernel structure of mixture models. Among such mixture
models, location-scale kernels are widely considered. mixtures of Betas are not
location-scale kernels. However, when α gets large, gα,ε concentrates around ε, so
that locally, these Beta densities behave like Gaussian densities. This behavior is
described in Section 3. Using these ideas, we study the approximation of a density
f by a continuous mixture in the form

gα,f (x) =
∫ 1

0
f (ε)gα,ε(x) dε,(1.6)

where f is a probability density on (0,1). When α becomes large, gα,ε(x) behaves
locally like a location scale kernel so that gα,f becomes close to f . Similarly
to the Gaussian case, this approximation is good only if f has a regularity less
than 2. However, by shifting slightly the mixing density, it is possible to improve
the approximation so that continuous mixtures of Betas are good approximations
of any smooth density (see Section 3.1). As in the case of Gaussian mixtures (see
[4, 15]), we approximate the continuous mixture by a discrete mixture. In [5],
the authors derive a posterior rate of concentration of the posterior distribution
around the true density when the true density is twice continuously differentiable.
In particular, they obtain the minimax rate n−2/5, up to a logn term under the L1
risk.

In this paper, we show that the minimax rate can be obtained (up to a logn

term) for any β > 0 by choosing carefully the rate at which α increases with n and
considering a prior on α leads to an adaptive minimax rate of concentration of the
posterior. This result has much theoretical and practical interest.

1.1. Notation. Throughout the paper, X1, . . . ,Xn are independent and iden-
tically distributed as P0, having density f0, with respect to Lebesgue measure.
We assume that Xi ∈ [0,1]. We consider the following three distances (or pseudo-
distances) on the set of densities on [0,1]: the L1 distance: ‖f −g‖1 = ∫ 1

0 |f (x)−
g(x)|dx, the Kullback–Leibler divergence: KL(f, g) = ∫ 1

0 f (x) log(f (x)/

g(x)) dx, for any densities f,g on [0,1] and for any k > 1 Vk(f, g) = ∫ 1
0 f (x) ×

|log(f (x)/g(x))|k dx. We also denote by ‖g‖∞ the supremum norm of the func-
tion g.

H(L,β) denotes the class of Hölder functions with regularity function β: let r

be the largest integer smaller than β , and denote by f (r) its r th derivative.

H(L,β) = {
f : [0,1] → R; ∣∣f (r)(x) − f (r)(y)

∣∣ ≤ L|x − y|β−r}.
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We denote by Sk the simplex, Sk = {y ∈ [0,1]k;∑k
i=1 yi = 1}.

We denote by P π [·|Xn], the posterior distribution given the observations Xn =
(X1, . . . ,Xn), and Eπ [·|Xn], the expectation with respect to this posterior distri-
bution. Similarly En

0 and P n
0 represent the expectation and the probability with

respect to the true density f ⊗n
0 and En

f and P n
f the expectation and probability

with respect to the distribution f ⊗n.

1.2. Assumptions. Throughout the paper, we assume that the true density f0
is positive on the open interval (0,1) and satisfies:

ASSUMPTION A0. If f0 ∈ H(β,L), there exist integers 0 ≤ k0, k1 < β such
that

f (k0)(0) > 0, f (k1)(1) < 0;
k0 and k1 denote the first integers such that the corresponding derivatives calcu-
lated at 0 and 1, respectively, are nonzero.

This assumption is quite mild and ensures that f0(x) does not go too quickly
to 0 when x goes to 0 or 1 so that we can control the Kullback–Leibler divergence
between f0 and mixtures of Betas.

1.3. Organization of the paper. The paper is organized as follows. In Sec-
tion 2, we give the two main theorems on the concentration rates of the posterior
distributions under specific types of priors. In Section 3, we present some results
describing the approximating properties of mixtures of Betas. We believe that these
results are interesting outside the Bayesian framework, since they could also be ap-
plied to obtain convergence rates for maximum likelihood estimators. This section
is divided into two parts. First we describe how continuous mixtures can approach
smooth densities (Section 3.1), then we approach continuous mixtures by discrete
mixtures (Section 3.2). Finally, Section 4 is dedicated to the proofs of Theorems
2.1 and 2.2.

2. Posterior concentration rates. In this section, we give the two main re-
sults on the concentration rates of the posterior distribution around the true density.
We first consider the case of a varying number of components, which we call the
adaptive prior and then we consider a Dirichlet mixture also leading to an adaptive
rate of concentration on a more restrictive class of densities. In both cases, a diffuse
prior on α is considered. Finally, a nonadaptive rate is obtained by considering a
deterministic sequence αn increasing to infinity. We consider a concentration rate
in terms of the L1 distance, however, the results can be applied to the Hellinger
distance as well. We first describe the adpative prior.
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Adaptive prior: let f = gα,P and P = ∑k
i=1 piδεi

the mixing distribution then

dπ(f ) = p(k) dπk,2(p1, . . . , pk)

k∏
j=1

πe(εj )πα(α)dα dε1 · · ·dεk.

For all k > 0, dπk,2 has a positive density πk,2 with respect to Lebesgue measure
on the simplex Sk , which is bounded from below by a term in the form ck

1. Con-
ditionally on k, the εj ’s, j = 1, . . . , k, are independent and identically distributed
with density πe which satisfies

a1ε
T (1 − ε)T ≥ πe(ε) ≥ a2ε

T (1 − ε)T ∀ε ∈ (0,1),

for some a1, a2 > 0, and T ≥ 1. We consider the following conditions on the prior
πα :πα is bounded and for all b1 > 0, there exist c1, c2, c3,A > 0 such that for all
u large enough,

πα(c1u < α < c2u) ≥ Ce−b1u
1/2

,

πα(c3u < α) ≤ Ce−b1u
1/2

,

πα(α < e−uA) ≤ Ce−b1u.

Let L(k) be either equal to 1 for all k or L(k) = log(k). The distribution on k

satisfies the following condition: there exist a1, a2 > 0 such that for all K large
enough,

e−a1KL(K) ≤ p[k = K] ≤ e−a2KL(K).

Note that if
√

α follows a Gamma distribution with parameters (a, b) with
a ≥ 1, then the conditions on πα are satisfied. We have the following theorem:

THEOREM 2.1. Consider an adaptive prior, as described above, then the pos-
terior distribution satisfies, for all β > 0 and f0 ∈ H(β,L) satisfying Assump-
tion A0,

P π [Bc
τn

|Xn] = oP (1)

with

τn = τ0n
−β/(2β+1)(logn)5β/(4β+2), if L(k) = log(k),

τn = τ0n
−β/(2β+1)(logn)5β/(4β+2)+1/2, if L(k) = 1.

The prior does not depend on β so that the procedure is adaptive and optimal
up to a logn term, since for each β > 0 the rate n−β/(2β+1) is the minimax rate of
convergence in the class H(β,L).

Dirichlet mixtures form an alternative to the above prior, which is often con-
sidered in practice, since they lead to efficient algorithms and have interesting
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properties for classification models, for instance. We now present the asymptotic
concentration rate of the posterior based on the following Dirichlet mixtures of
Beta densities.

Dirichlet prior: the mixing distribution P follows a Dirichlet process D(ν) as-
sociated with a finite measure whose density with respect to Lebesgue measure is
denoted ν and is positive on the open interval (0,1). Assume also that ν is bounded
and satisfies

ν(ξ) ≥ ν0ξ
T1(1 − ξ)T1 .

The prior on α, πα has support [nt ,+∞), for some 0 < t < 1 and satisfies, for all
b1 > 0, there exist c1, c2, c3,C > 0 such that for all αn satisfying αnn

−t → +∞
πα(c1αn < α < c2αn) ≥ Ce−b1

√
αn,

πα(c3αn < α) ≤ Ce−b1
√

αn.

Note that if
√

α
d= nt +�(a, b), with a, b > 0, then the above condition is satisfied.

THEOREM 2.2. Consider a Dirichlet prior then the posterior distribution sat-
isfies: for all f0 ∈ H(β,L) with β > 0, and satisfying Assumption A0,

P π [Bc
τn

|Xn] = oP (1)

with

τn = τ0n
−β/(2β+1)(logn)5β/(2β+1), if β ≤ 1/t − 1/2,

τn = τ0n
−1/2+t/4(logn)(6β+1/2)/(2β+1), if β > 1/t − 1/2.

Hence the Dirichlet prior implies a minimax adaptive rate of concentration on
the densities with regularity β < 1/t − 1/2. By choosing t small, this class of
functions is quite large, with small loss in the rates of convergence.

We could have considered α = αn deterministic and increasing with n, which
would have implied the following nonadaptive posterior rate, depending on αn.

COROLLARY 2.1. Consider a prior belonging either to the class of adaptive
priors or to the class of Dirichlet prior, as described above, apart from the fact that
α = αn = o(n) is deterministic. Then if f0 ∈ H(β,L), and satisfies Assumption A0,

P π [Bc
τn

|Xn] = oP (1)

with τn = τ0(logαn)
[
α

−β/2
n ∨ (√

αn logαn/n
)1/2]

.

In particular, if αn = n2/(2β+1)(logn)−3/(2β+1), we obtain the minimax rate
(up to a logn) term τn = τ0n

−β/(2β+1)(logn)5β/(4β+2). Note that deterministic se-
quences αn lead to nonadaptive concentration rates.
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These results imply that for any β > 0, the optimal rate, in the minimax sense,
is obtained. Hence the above mixtures of Betas form a richer class of models than
the Bernstein polynomials or the mixtures of triangular distributions who lead, at
best, to the minimax rates for β ≤ 2. It is to be noted, however, that Bernstein
polynomials and mixtures of triangular densities have other interesting properties
and are particularly easy to simulate.

Corollary 2.1 sheds light on the impact of αn as a scale parameter. It can thus
be compared to the scale parameter σn which appears in Dirichlet mixtures of
Gaussian distributions. Interestingly, van der Vaart and van Zanten [16, 17] also
study the impact of scaling factors in nonparametric priors constructed as scaled
Gaussian processes, and as in our case, considering a random scaling factor allows
for adaptive, minimax concentration rates.

In Section 3, we see that the key factor leading to such a rate is the possi-
bility of approximating any f0 ∈ H(L,β) by a continuous mixture in the form
gαn,f with an error of order α

−β
n , for some density f close to f0 but not neces-

sarily equal to f0. An interesting feature leading to this approximating property
is that gαn,ε acts locally as a Gaussian kernel around ε. However, the interest in
the Bayesian procedure, compared to a classical frequentist kernel nonparametric
method, comes from the fact that we do not necessarily need to approach f0 by
gαn,f0 , which would have constrained us to β ≤ 2. Indeed, if necessary, we can
consider a slight modification f of f0 such that gαn,f approximates f0 with an

error of order α
−β
n for all β . This is described in the following section.

3. Approximation of a smooth density by continuous and discrete mixtures.
A Beta mixture, as defined by (1.6) behaves locally like a Gaussian mixture, how-
ever, its behaviour seems to be richer since the variance adapts to the value of x (see
Lemma 3.1). In this section, we obtain a way to approximate any Hölder density f

by a sequence of continuous and discrete mixtures. We begin with approximating
the density by a sequence of continuous mixtures, and then we approximate the
continuous mixtures by discrete mixtures.

3.1. Continuous mixtures. We consider a continuous mixture gα,f as defined
in (1.6). This mixture is based on the parametrization of a beta density in terms
of mean ε and scale α. The idea in this section is that when α becomes large,
the above mixture converges to f , if f is continuous. We first give a result where
the approximation is controlled in terms of the supremum norm, which has an
intrinsic interest. We also give a bound on the approximation error for Kullback–
Leibler-types of divergence, which is the required result to control the posterior
concentration rate.
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THEOREM 3.1. Assume that f0 ∈ H(β,L) and satisfies Assumption A0, with
β > 0. Then there exists a probability density f1 such that

f1(x) = f0(x)

(
1 +


β�−1∑
j=2

wj(x)

αj/2

)
, if β > 2;

f1(x) = f0(x), if β ≤ 2,

where the wj ’s are combinations of polynomial functions of x and of terms in the

form f
(l)
0 (x)xl(1 − x)l/f0(x), l ≤ j , and

‖gα,f1 − f0‖∞ ≤ Cα−β/2,(3.1)

and for all p > 0,

KL(f0, gα,f1) ≤ Cα−β,

∫
f0

∣∣∣∣log
(

f0

gα,f1

)∣∣∣∣
p

≤ Cα−β.(3.2)

Note that if we do not allow f1 to be different from f0, we do not achieve the rate
α−β to be true for values of β greater than 2. We believe that the trick of allowing
f1 to be different from f0 could be used in a more general context of Bayesian
mixture distributions (or Bayesian kernel approaches as defined in [18]), inducing
a greater flexibility of Bayesian kernel methods with respect to frequentist kernel
methods.

A Beta density with parameters (α/ε,α/(1 − ε)) can be expressed as

gα,ε(x) = xα/(1−ε)−1(1 − x)α/ε−1 �(α/(ε(1 − ε)))

�(α/ε)�(α/(1 − ε))
.

From this, we have the following three approximations that will be used throughout
the proofs of Theorems 2.1, 2.2, 3.1 and 3.2. Let

K(ε, x) = ε log(ε/x) + (1 − ε) log
(
(1 − ε)/(1 − x)

)
,(3.3)

this is the Kullback–Leibler divergence between the Bernoulli ε and the Bernoulli
x distributions. Then:

LEMMA 3.1.

gα,ε(x) =
√

α√
2πx(1 − x)

e−αK(ε,x)/(ε(1−ε))

(3.4)

×
[

1 +
k∑

j=1

bj (ε)

αj
+ O

(
α−(k+1))]
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for any k > 0 and α large enough where the bj (ε) are polynomial functions. For
all k > 0, k1 ≥ 3, we also have,

gα,ε(x) =
√

α√
2πx(1 − x)

× exp
{
− α(x − ε)2

2x2(1 − x)2
(3.5)

×
[
1 + (x − ε)

x(1 − x)

(
C(x) + Qk1

(
x − ε

x(1 − x)

))]
+ R1

}

×
[

1 +
k∑

j=1

bj (ε)

αj
+ O

(
α−(k+1))],

where R1 ≤ αC|x − ε|k1−2(xε(1 − xε))
−k1+2,

Qk1

(
x − ε

x(1 − x)

)
=

k1−3∑
l=0

Cl(x)(x − ε)l

(x(1 − x))l

and the functions C(x),Cl(x), l ≤ k1, are polynomial where xε ∈ (x, ε) and C

is a positive constant. Moreover when α|x − ε|3 ≤ C0x
3(1 − x)3 for any positive

constant C0, if k2 ≥ 0, and if k1 ≥ 3 ∨ 3k2, there exists C1 > 0 such that

gα,ε(x) =
√

αe−α(x−ε)2/(2x2(1−x)2)

√
2πx(1 − x)

×
(

k2∑
j=0

αj (x − ε)3j

j !(x(1 − x))3j

[
C(x) + Qk1

(
x − ε

x(1 − x)

)]j

+ R

)
(3.6)

×
[

1 +
k∑

j=1

bj (ε)

αj
+ O

(
α−(k+1))],

where |R| ≤ C1α
k2+1|x − ε|3(k2+1)(xε(1 − xε))

−3(k2+1).

Note that the term O(α−(k+1)) appearing in (3.4), (3.5) and (3.6) is uniform in
x and ε.

PROOF OF LEMMA 3.1. The proof of (3.4) follows from the expression of the
Beta densities in the form,

gα,ε(x) = �(α/(ε(1 − ε)))εα/(1−ε)(1 − ε)α/ε

�(α/ε)�(α/(1 − ε))

e−αK(ε,x)/(ε(1−ε))

x(1 − x)
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and from a Taylor expansion of �(y) for y close to infinity where we obtain that

�(α/(ε(1 − ε)))

�(α/ε)�(α/(1 − ε))

=
√

α√
2π

exp
(
−α

[
log(ε)

1 − ε
+ log(1 − ε)

ε

])(
1 +

∞∑
j=1

bj

εj (1 − ε)j

αj

)

×
(

1 +
∞∑

j=1

bj

εj

αj

)−1(
1 +

∞∑
j=1

bj

(1 − ε)j

αj

)−1

,

where the bj ’s are the coefficient appearing in the expansion of the Gamma func-
tion near infinity (see, e.g., [1]). Putting the three remaining terms together results
in: for all k > 0,(

1 +
∞∑

j=1

bj

εj (1 − ε)j

αj

)(
1 +

∞∑
j=1

bj

εj

αj

)−1(
1 +

∞∑
j=1

bj

(1 − ε)j

αj

)−1

= 1 +
k∑

j=1

bj (ε)

αj
+ O

(
α−(k+1)),

where the bj (ε)’s are polynomial functions with degree less than 2j . This im-
plies (3.4). To obtain (3.5) we make a Taylor expansion of (3.4) as a function of ε

around x.

K(ε, x)

ε(1 − ε)
= (ε − x)2

2x2(1 − x)2 +
k1∑

j=3

Cj(x)
(x − ε)j

xj (1 − x)j
+ R1,

where R1 ≤ R|x − ε|k1+1/(xε(1 − xε))
k1+1 for some xε ∈ (x, ε), leading to (3.5).

A Taylor expansion of ey around 0 combined with the above approximation of y

leads to (3.6). �

To prove (3.1), we control the difference between the uniform density on [0,1]
and the corresponding Beta mixture gα = ∫ 1

0 gα,ε dε. This is given in the following
lemma.

LEMMA 3.2. For all α > 0 large enough, for all k2 ≥ 1 and k1 ≥ 3(k2 − 1)

define

I (x) =
k2∑

j=1

C(x)jμ3j

αj/2 +
k2k1∑
l=2

Bl(x)

αl/2 μj = E[N (0,1)j ],

then ∥∥∥∥gα(x) − 1 − I (x)

α

∥∥∥∥∞
≤ Cα−(k2+1)/2(logα)3(k2+1)/2,
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where the Bl(x)’s are polynomial functions of x.

The proof of Lemma 3.2 is given in Appendix A. We now prove Theorem 3.1.

PROOF OF THEOREM 3.1. Throughout the proof, C denotes a generic positive
constant. Let f ∈ H(β,L) and denote r = �β�. Then ∀ε ∈ (0,1),∣∣∣∣∣f (ε) −

r∑
j=0

f (j)(x)

j ! (ε − x)j

∣∣∣∣∣ ≤ L|x − ε|β.(3.7)

The construction of f1 is iterative. Let δx = δ0x(1 − x)
√

logα/α. We bound∫ 1

0
|x − ε|βgα,ε(x) dε ≤

∣∣∣∣
∫ x−δx

0
gα,ε(x) dε +

∫ 1

x+δx

gα,ε(x) dε

∣∣∣∣
+

∫ x+δx

x−δx

|x − ε|βgα,ε(x) dε.

Equation (A.6) implies that for all H > 0, if δ0 is large enough, the first term of the
right-hand side of the above inequality is O(α−H). We treat the second term using
the same calculations as in the case of I3 in Appendix A, so that for all k > 0,∫ x+δx

x−δx

|x − ε|βgα,ε(x) dε

≤ Cα−β/2xβ(1 − x)βE[|N (0,1)|β ] + O(α−k/2).

Therefore,∫ 1

0
|x − ε|βgα,ε(x) dε = O

(
α−β/2xβ(1 − x)β

) + O(α−H) ∀H > 0,

uniformly in x. Then for all H > 0,

[gα,f − f ](x) =
r∑

j=1

f (j)(x)

j !
∫ 1

0
(ε − x)jgα,ε(x) dε + f (x)

(
gα(x) − 1

)

+ O
(
α−β/2xβ(1 − x)β

) + O(α−H)

=
r∑

j=1

f (j)(x)

j !
∫ 1

0
(ε − x)jgα,ε(x) dε + f (x)

I (x)

α

+ O
(
α−β/2xβ(1 − xβ) + α−H )

,

uniformly in x, for all H > 0. Using the same calculations as in the compu-
tation of I3 in the proof Lemma 3.2, we obtain for all j ≥ 1, to the order
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O(α−(k+j+1)/2xj (1 − x)j + α−H)∫ 1

0
(ε − x)jgα,ε(x) dε

=
√

α√
2πx(1 − x)

∫ x+δx

x−δx

e−α(x−ε)2/(2x2(1−x)2)

×
(
(x − ε)j +

k∑
l=1

αl(x − ε)3l+j

j !(x(1 − x))3l

[
C(x) + Qk1

(
x − ε

x(1 − x)

)]l
)

dε

= μjα
−j/2xj (1 − x)j +

k∑
l=1

Dl(x)xj (1 − x)j

α(j+l)/2 ,

so that we can write,∫ 1

0
(ε − x)jgα,ε(x) dε

= xj (1 − x)j

αj/2 μj,α(x) + O
(
α−(k+j+1)/2xj (1 − x)j + α−H )

,

where μj,α(x) is a polynomial function of x with the leading term being equal
to μj . We can thus write, to the order O(α−β/2xβ(1 − xβ) + α−H)

[gα,f − f ](x) =
r∑

j=1

f (j)(x)xj (1 − x)jμj,α(x)

j !αj/2 + f (x)
I (x)

α
.(3.8)

Hence if β ≤ 2, since μ1 = 0,

|gα,f − f |(x) ≤ ‖I‖∞f (x)

α
+ O

(
α−β/2xβ(1 − xβ)

) + O(α−H)

(3.9)
= O(α−β/2)

as soon as H > β/2, leading to (3.1) with f1 = f . If β > 2, we construct a proba-
bility density f1 satisfying

(gα,f1 − f )(x) = O
(
α−β/2xβ(1 − x)β

) + O(α−H).

Equation (3.8) implies that f1 needs satisfy, to the order O(α−H),
r∑

j=1

f
(j)
1 (x)xj (1 − x)jμj,α(x)

j !αj/2 + f1(x)

(
1 + I (x)

α

)

= f (x) + O
(
α−β/2xβ(1 − xβ)

)
.

To prove that such a probability density exists we construct it iteratively. Let 2 <

β ≤ 3, then set

h1(x) = f (x)

(
1 − I (x)

α

)
− x(1 − x)f ′(x)C(x)μ4

α
− x2(1 − x)2f ′′(x)μ2

2α
.
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Note that if f ∈ H(L,β), then inff > 0 implies h1 > 0 for α large enough and if
f (0) = 0 [f (1) = 0] when x is close to 0 (resp. 1), if

lim inf
x

f (x)

xj (1 − x)j |f (j)(x)| > 0, j = 1,2,

h1 ≥ 0 for α large enough on [0,1]. Assumption A0 implies the above relation
between f and f (j) since

h1(x) = xk0f (k0)(x̄1)

k0!
(

1 − I (x)

α

)
− xk0(1 − x)f (k0)(x̄2)C(x)μ4

α(k0 − 1)!
(3.10)

− xk0(1 − x)2f (k0)(x̄3)μ2

2α(k0 − 2)!
with x̄1, x̄2, x̄3 ∈ (0, x). Since f (k0)(0) > 0, h1(x) is equivalent to f (x) for α large
enough and x close to zero, and h1(x) > 0 for all x ∈ (0,1). Let c1 = ∫ 1

0 h1(x) dx.
Since

∫ 1
0 [gα,f − f ](x) dx = 0,

c1 = 1 + O
(
α−(3/2∧β/2))

and we can divide h1 by its normalizing constant and obtain the same result as
before, so that h1 can be chosen to be a probability density on [0,1].

From this we obtain when β > 2,

(gα,h1 − f )(x) =
∫ 1

0

(
r−2∑
j=1

h
(j)
1 (x)

j ! (ε − x)j

)
gα,ε(x) dε + h1(x)

I (x)

α

+
r∑

j=r−1

(
f (x) − I (x)

α

)(j)
∫ 1

0 (ε − x)jgα,ε(x) dε

j !
+ O

(
α−β/2xβ(1 − x)β

)
= w(x)f (x)

α2 + O
(
α−2∧β/2xβ(1 − x)β

) + O(α−H ) ∀H > 0,

where w(x) is a combination of polynomial functions of x and of functions in
the form xj (1 − x)jf (j)(x), with j < 3, if β ≤ 4. If β ≤ 4, then we set f1 = h1
(renormalized), else we reiterate. We thus obtain that if rβ is the largest integer
(strictly) smaller than β/2,

f1(x) = f (x)

(
1 +

�rβ�∑
j=1

wj(x)

αj

)
,

where wj(x) is a combination of polynomial functions and of terms in the form
f (l)(x)xl(1 − x)l/f (x), l ≤ 2j . Assumption A0 implies that f1 can be chosen to
be a density when α is large enough and satisfies

‖gα,f1 − f ‖∞ ≤ Cα−β/2,
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which implies (3.1).
If f is strictly positive on [0,1], then (3.2) follows directly from (3.1). We now

consider the case where f (0) = 0 [the case f (1) = 0 is treated similarly]. Under
the Assumption A0, the previous calculations lead to

(gα,f1 − f )(x) = O(f (x)α−β/2) + O(α−H) ∀H > 0.

Note also that for α large enough, f1 is increasing between 0 and δ for some
positive constant α > 0, so that if x is small enough,

gα,f1 ≥ f1(x)
√

α

2
√

2πx(1 − x)

∫ x+δx

x
e−α(x−ε)2/(2x2(1−x)2) dε

(3.11)

≥ f1(x)

4
,

so that gα,f1 ≥ f/8 on [0,1]. Therefore, since f (x) = f (k0)(0)xk0/k0! + o(xk0)

when x is close to 0, let H > β and c = c0α
−H/k0 ; for some constant c0 large

enough, we have

KL(f, gα,f1) ≤ log 2
∫ c

0
f (x) dx + α−β

∫ 1

c
f (x) dx

+
∫ 1

c
f (x)

∣∣∣∣log
(

1 − α−H

f (x)

)∣∣∣∣dx

≤ C
(
α−H(k0+1)/k0 + α−β + α−H ) = O(α−β).

Similarly, for all p > 0, if cp = c0α
−H/(pk0),∫

f (x)
∣∣log

(
f (x)/gα,f1(x)

)∣∣p dx

≤ (log 2)p
∫ cp

0
f (x) dx + α−pβ

∫ 1

cp

f (x) dx

+
∫ 1

cp

f (x)

∣∣∣∣log
(

1 − α−H

f (x)

)∣∣∣∣
p

dx

≤ C
(
α−2H(k0+1)/(pk0) + α−pβ + α−H )

= O(α−β),

if H ≥ pβ . This achieves the proof of Theorem 3.1. �

In the following section, we consider the approximation of continuous mixtures
by discrete mixtures in a way similar to [4].
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3.2. Discrete mixtures. Let P be a probability on [0,1] with cumulative distri-
bution function denoted by P(x) for all x ∈ [0,1]. We consider a mixture of Betas
similar to before but with general probability distribution P on [0,1],

gα,P (x) =
∫ 1

0
gα,ε(x) dP (ε).

Let f be a probability density with respect to Lebesgue measure on [0,1]. In this
section, we study the approximation of gα,f by gα,P where P is a discrete measure
with finite support.

The approximation of discrete mixtures by continuous ones is studied in differ-
ent contexts of location scale mixtures. See, for instance, [4] or [7], Chapter 3, for
a general result. Beta mixtures are not location scale mixtures, however, as dis-
cussed in the previous section; when α is large they behave locally like location
scale mixtures. In this section, we use this property to approximate continuous
mixtures with finite mixtures having a reasonably small number of points in their
support.

THEOREM 3.2. Let f be a probability density on [0,1], f (x) > 0 for all 0 <

x < 1, and such that there exists k1, k0 ∈ N satisfying f (x) ∼ xk0c0, if x = o(1)

and f (1−x) ∼ (1−x)k1c1, if 1−x = o(1). Then there exists a discrete probability
distribution P having at most N = N0

√
α(logα)3/2 points in its support, such that

for all p ≥ 1, for all H > 0 (depending on M0), for α large enough,∫ 1

0
gα,f

∣∣∣∣log
(

gα,f

gα,P

)∣∣∣∣
p

(x) dx ≤ Cα−H .(3.12)

We can choose the distribution P such that there exists A > 0 with pj > α−A for
all j ≤ N .

We use this inequality to obtain the following result on the true density f0.

COROLLARY 3.1. Let f0 ∈ H(L,β), β > 0, be a probability density on [0,1],
satisfying f0(x) > 0 for all 0 < x < 1, and such that there exist k1, k0 ∈ N satisfy-
ing |f (k0)(0)| > 0 and |f (k1)(1)| > 0, k0, k1 < β . Then for all p > 1, there exists
a discrete probability distribution P having at most N = N0

√
α(logα)3/2 in its

support, with N0 large enough such that

KL(f0, gα,P ) ≤ Cα−β, Vp(f0, gα,P ) ≤ Cα−β.(3.13)

PROOF. From Theorem 3.1 there exists f1 positive with f1 = f0(1+O(α−1))

and

KL(f0, gα,f1) ≤ Cα−β, gα,f1 ≥ f0/8.
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This implies that

KL(f0, gα,P ) ≤ KL(f0, gα,f1) +
∣∣∣∣
∫

f0(x) log(gα,f1/gα,P )(x) dx

∣∣∣∣
≤ Cα−β + 8

∫
gα,f1(x)

∣∣∣∣log
(

gα,f1

gα,P

)∣∣∣∣(x) dx = O(α−β).

The same calculations apply to
∫ 1

0 f0(x)|log(f0(x)/gα,P (x))|p dx ≤ Cα−β , which
achieves the proof of Corollary 3.1. �

PROOF OF THEOREM 3.2. The proof follows the same line as in [4], except
that we have to control the approximations in places where the Gaussian approx-
imation to Betas cannot be applied. Throughout this proof, C denotes a generic
positive constant. We first bound the difference between both mixtures at all x. By
symmetry, we can consider x ∈ [0,1/2]. Consider the following approximation of
the exponential: for all s ≥ 0 and all z > 0,∣∣∣∣∣e−z −

s∑
j=0

(−1)j zj

j !
∣∣∣∣∣ ≤ zs+1

(s + 1)! .(3.14)

Equation (3.5) implies that for all k > 1, k1 ≥ 3, there exist polynomial functions of
x, Dl(x), l ≤ k1, and polynomial functions of ε, bj (ε), j ≤ k, such that if |x −ε| ≤
Mδ0

√
logαx(1 − x)/

√
α, and setting

0 ≤ z = (x − ε)2α

2x2(1 − x)2

(
1 +

k1−2∑
l=1

Dl(x)(x − ε)l

xl(1 − x)l

)
≤ CM2 log(α),

gα,ε(x) =
√

αeRk1√
2πx(1 − x)

e−z

(
1 +

k∑
j=1

bj (ε)

αj
+ O

(
α−(k+1))),

where |Rk1 | ≤ αCα−k1/2+1/2(logα)k1/2. Consider ε0 = α−t0 , for some positive
constant t0 and εj = ε0(1 + M

√
logα/

√
α)j , j = 1, . . . , J , with

J =
⌊
t0 log(α) + 2 log(log(α))

log(1 + M
√

logα/
√

α)

⌋
+ 1 = O

(√
α

√
logα

)
.

Define dFj and dPj the renormalized probabilities dF and dP restricted to
[εj , εj+1) set H > 0. Consider k1−1 > 2H and k ≥ H −1/2 and x ∈ [εj−1, εj+2],
j ≥ 2, using (3.14) together with the above approximation of gα,ε , we consider the
moment matching approach of [4] (Lemma A.1) so that we can construct a dis-
crete probability dPj with at most N = 2kk1s + 1 supporting points such that for
all l ≤ 2sk1, l

′ ≤ k, ∫
εlbl′(ε) d(Fj − Pj )(ε) = 0,
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leading to ∣∣∣∣
∫ εj+1

εj

gα,ε(x)[dFj − dPj ](ε)
∣∣∣∣

≤ C

x(1 − x)

[√
αCs+1M2(s+1) logαs+1

(s + 1)! + α−H

]
(3.15)

= O(α−H)

x(1 − x)
,

if s = s0 logα with s0 ≥ C2M4 + 1 and s0 log s0 > H . Moreover, for all x ≤ εj−1,
using (3.4) and the fact that

αK(ε, x) ≥ αK(ε, εj ) ≥ M2(logα)ε(1 − ε)

3
,

when εj+1 > ε > εj , we obtain

gα,ε(x) ≤ C

x(1 − x)
e−cM2 logα

for some positive constant c > 0. A similar argument implies that if x > εj+2

gα,ε(x) ≤ C

x(1 − x)
e−cM2 logα

for some positive constant c > 0. Hence, by constructing P in the form, if εJ+2 =
1 − ε0

dP (ε) =
J∑

j=0

(
F(εj+1) − F(εj )

)
dPj (ε) + F(ε0)δ(ε0) + (

1 − F(εJ+2)
)
δ(εJ+2),

we finally obtain for all x,∣∣∣∣
∫ 1

0
gα,ε(x)[dF − dP ](ε)

∣∣∣∣ ≤ Cα−H

x(1 − x)
,(3.16)

where P has at most Nα = N0(logα)3/2√α, for some N0 > 0 related to H . We
now consider x ≤ ε0(1 − M

√
logα/α). We use the approximation (3.4).

gα,ε0(x) = C
√

α

x(1 − x)
e−αK(ε0,x)/(ε0(1−ε0))

(
1 + O(α−1)

)
.

Since, when x ≤ ε0,

K(ε0, x)

ε0(1 − ε0)
≤ (1 − ε0)

−1(
log(ε0/x)

)
,

we obtain

gα,P (x) ≥ e−α log(ε0/x) C
√

αF(ε0)

x(1 − x)
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and using the above inequalities on gα,ε(x) for x < εj−1, we have

gα,P (x) ≤ Cα−H/x(1 − x),

where H depends on M , so that

|log(gα,P (x))| ≤ Cα|log(x)|.
Since gα,f is bounded (as a consequence of the fact that gα,f − f is uniformly
bounded whenever f is continuous), and since u|log(u)|p goes to zero when u

goes to zero,∫ ε0

0
gα,f (x)

∣∣∣∣log
(

gα,f (x)

gα,P (x)

)∣∣∣∣
p

dx ≤ Cα−t0 + Cα−t0(logα)p

(3.17)
= O(α−t0(logα)p).

Note also that if α is large enough,

gα,f (x) ≥ f (x)/4,

so that gα,f (x) ≥ cxk0(1 − x)k1 for x close to 0 and for all x ∈ (ε0,1 − ε0), for all
H > 0

|gα,f (x) − gα,P (x)|
gα,f (x)

≤ C
α−H

xk0+1(1 − x)k1+1 ≤ Cα−H+t0(1+k0∨k1).

So that if H > t0(1 + k0 ∨ k1) + B/p, with B > 0,∫ 1

0
gα,f (x)

∣∣∣∣log
(

gα,f (x)

gα,P (x)

)∣∣∣∣
p

dx ≤ Cα−t0(logα)p + Cα−B = O(α−B)

as soon as t0 > B . Moreover, we can assume that there exists a fixed A such that
for all j , pj > α−A = v. Indeed, let Iv = {j ;pj ≤ v}, then consider for j /∈ Iv ,
p̃j = cpj and for j ∈ Iv , p̃j = cv where c is defined by

∑J
j=1 p̃j = 1. This implies

in particular that

|c − 1| ≤ vJ ≤ J0α
−A+1/2(logα)3/2.

Let P̃ = ∑J
j=0 p̃j δεj

(ε) then g
α,P̃

≥ cgα,P and if A − 1/2 > B ,

KL(gα,f , g
α,P̃

) ≤ Cα−B + |log c| ≤ C′α−B.

Also, ∫
|g

α,P̃
− gα,P | ≤ α−A+1/2(logα)3/2,

hence, if A is large enough, inequality (3.16) is satisfied with P̃ instead of P . Since
p0 = F1(ε0) ≥ F0(ε0)/4 and F0(ε0) ≥ α−t0k0C, by choosing A > t0k0, we obtain
that 0 /∈ Iv and

g
α,P̃

(x) ≥ gα,ε0(x)F (ε0) ∀x < ε0,
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so that (3.17) is satisfied with P̃ instead of P , which leads to: for all B > 0 there
exists a distribution P̃ , having less than N0

√
α(logα)3/2 points in its support, sat-

isfying: p̃j ≥ α−A for some A > 0 and all j and such that∫
gα,f

∣∣∣∣log
(

gα,f

g
α,P̃

)∣∣∣∣
p

(x) dx = O(α−B),

which achieves th proof of Theorem 3.2. �

Note, however, that A depends on B and so does N0. Note also that this result
could be used to obtain a rate of concentration of the posterior distribution around
the true density when the latter is a continuous mixture.

In the following sections, we give the proofs of Theorems 2.1 and 2.2.

4. Proofs of Theorems 2.1 and 2.2. To prove these theorems we use Theo-
rem 4 of [6]. In particular, let p ≥ 2, and following their notation define

B∗(f0, τ,p) = {f ;KL(f0, f ) ≤ τ 2;Vp(f0, f ) ≤ τp}.
We also denote Jn(τ ) = N(τ, Fn,‖ · ‖1), the L1 metric entropy on the set Fn, that
is, the logarithm of the minimal number of balls with radii τ needed to cover Fn

where Fn is a set of densities that will be defined in each of the proofs. The proofs
consist in obtaining a lower bound on π(B∗(f0, τn,p)) and an upper bound on
Jn(τn) when f0 belongs to H(β,L).

4.1. Proof of Theorem 2.1. Assume that f0 ∈ H(β,L) and let τn = α
−β/2
n ,

with αn an increasing sequence to infinity. We first bound from below π(B∗(f0,

τn,p)). Let α ∈ (c1αn, c2αn), 0 < c1 < c2, using Corollary 3.1 there exists a prob-
ability distribution with Nn = N0

√
α(logα)3/2 supporting points such that

KL(f0, gα,P ) ≤ Cα−β, Vp(f0, gα,P ) ≤ Cα−β,

with P of the form,

P(ε) =
kn∑

j=1

pjδεj
(ε),

εj ∈ (α−β(logα)−β−1,1 − α−β(logα)−β−1) and pj > α−A for all j = 1, . . . ,Nn

and some fixed positive constant A. Set ε0 = α−β(logα)−β−1, then ε1 > ε0. Con-
sider dP ′(ε) = ∑kn

j=1 p′
j δε′

j
(ε) with |ε′

j − εj | ≤ aα−γ1εj (1 − εj ) and |pj − p′
j | ≤

aα−γ1+1/2pj , for some positive constant γ1 > 1/2. Note that this implies that
|p′

j − pj | ≤ 2aα−γ1+1/2p′
j . Then

KL(f0, gα,P ′) ≤ Cα−β +
∫ 1

0
f0(x) log

[
gα,P (x)

gα,P ′(x)

]
dx.(4.1)
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For the purpose of symmetry, we work on x ≤ 1/2. Let Mn = M
√

logα/
√

α, when
|x − εj | ≤ Mnεj (1 − εj ), then Lemma B.1 implies that∣∣∣∣gα,εj

gα,ε′
j

(x) − 1
∣∣∣∣ = O

(
α−(γ1−1/2)

√
logα

)
,

by choosing k2 > 2γ1 − 1 and k3 > γ1 − 1/2. Set β0 > 0, then for all x > e−β0αn

and all j ′ such that |x − ε′
j | > Mnεj (1 − εj ); since εj (1 − εj ) ≥ α−t0/2 with

t0 > β , Lemma B.1 implies that if γ1 > t0 + β + 2∣∣∣∣gα,εj

gα,ε′
j

(x) − 1
∣∣∣∣ ≤ Cβ0α

−γ1+2ε−1
0 = O(α−β).

This implies that if x ∈ (e−β0α,1 − e−β0α),

gα,P (x)

gα,P ′(x)
= 1 +

∑kn

j=1(pj − p′
j )gα,εj∑kn

j=1 p′
j gα,ε′

j

+
∑kn

j=1 p′
j (gα,εj

− gα,ε′
j
)∑kn

j=1 p′
j gα,ε′

j

(4.2)
= 1 + O(α−γ1+2).

Now let x < e−β0α , then |x − εj | ≥ εj (1 − εj )/2 for all j = 0, . . . ,Nn, and there
exists c > 0 independent of β0 such that

gα,P (x) ≤ e−cα

√
α

x(1 − x)
, gα,P ′(x) ≤ e−cα

√
α

x(1 − x)
.

Note also that

gα,ε(x) ≥ C

√
α

x(1 − x)
e−αK(ε,x)/(ε(1−ε)),

where

αK(ε, x)

ε(1 − ε)
= α

(
1

1 − ε
log(ε/x) + 1

ε
log(1 − ε) + x

ε
+ o(x/ε)

)

≤ α

(
1

1 − ε
log(ε/x) + 1

ε
log(1 − ε) + x

ε

)
+ o(1).

Consider the function

h(ε) = 1

1 − ε
log(ε/x) + 1

ε
log(1 − ε) + x

ε
,

since x < |log(1 − ε)| for all ε ∈ (ε0,1 − ε0) h is increasing, and for all ε < 1/2,
h(ε) ≤ 2|log(x)| + O(1). This leads to

gα,P (x) ≥ CP([0,1/2])
√

α

x(1 − x)
e2α log(x).(4.3)
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The same inequality holds for gα,P ′ , which implies that

∫ e−β0α

0
f0(x)

∣∣∣∣log
(

gα,P (x)

gα,P ′(x)

)∣∣∣∣
p

dx ≤ Cαp+1e−β0α ∀p ≥ 1.

The same kind of inequalities are obtained for x > 1 − e−β0α . Finally we obtain∫ 1

0
f0(x)

∣∣∣∣log
(

gα,P (x)

gα,P ′(x)

)∣∣∣∣
p

dx = O(α−β).(4.4)

Note that if |p′
j − pj | ≤ α−β−A, then |p′

j − pj | ≤ α−βpj , so we need only
determine a lower bound on the prior probability of the following set under the
adaptive prior: set β0 < 1/2

Sn = {p′ ∈ SNn; |p′
j − pj | ≤ α−β−A

n , j ≤ Nn}
× {|εj − ε′

j | ≤ α−2β−1
n εj (1 − εj ), j ≤ Nn}.

The prior probability of Sn,1 = {p′ ∈ SNn; |p′
j −pj | ≤ α

−β−A
n , j ≤ Nn} is bounded

from below by a term in the form,

α−Ckn
n .

The prior probability of Sn,2 = {|εj −ε′
j | ≤ α

−2β−1
n εj (1−εj ), j ≤ Nn} is bounded

from below by a term in the form,

Nn∏
j=1

[εj (1 − εj )]T α2Nn(β+1)
n ≥ α−Nn[2(β+1)+T ]

n .

Since Nn ≤ CN0
√

αn(logαn)
3/2, for all α ∈ [c1αn, c2αn], together with the condi-

tion on αα , we obtain that there exists C1 > 0 independent of Nn such that

π(B∗(f0, τn,p)) ≥ e−NnC1 lognc ≥ e−C1N0
√

αn(logαn)5/2
.(4.5)

Set αn = α0n
2/(2β+1)(logn)−5/(2β+1), then τn ≥ τ0n

−β/(2β+1)(logn)5β/(4β+2) =
εn.

We now determine an upper bound on the entropy on some sieve of the sup-
port of the adaptive prior. Denote α0n = e−n1/(2β+1)(logn)5β/(2β+1)

and α1n = α0 ×
n2/(2β+1)(logn)5β/(2β+1), and set

Fn,a = {(P,α);k ≤ k′
n,α0n ≤ α ≤ α1n; εj > ε0,∀j}

with α0, c > 0, k′
n = k′

1n
1/(2β+1)(logn)qβ with qβ = 5β/(2β + 1) if L(k) = 1 and

qβ = (3β − 1)/(2β + 1) if L(k) = log k in the definition of the prior on k, and ε0
is defined by

ε0 = exp
{−an1/(2β+1)(logn)5β/(2β+1)}.
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Since πα is bounded, for some c > 0,

π(F c
n,a) ≤ e−cnε2

n .

To bound the entropy on Fn,a , we use Lemma C.1 with the following parametriza-
tion: Write a = α/(1 − ε), a′ = α′/(1 − ε′), b = α/ε and b′ = α′/ε′ and consider
ρ > 0 small enough, then if |a′ − a| ≤ τ1 < a and |b′ − b| ≤ τ2 < b,

gα′,ε′(x) ≤ xa−τ1−1(1 − x)b−τ2−1

B(a − τ1, b − τ2)

B(a − τ1, b − τ2)

B(a′, b′)
,

so that
B(a − τ1, b − τ2)

B(a′, b′)
≤ 1 + τn ⇒ |gα′,ε′ − gα,ε| ≤ τn.

Consider first α < 2ε ∧ (1 − ε). If

|ε − ε′| ≤ ρτnε(1 − ε), |α − α′| ≤ ρτnα,(4.6)

then using case (i) of Lemma C.1 and simple algebra, we obtain

|gα′,ε′ − gα,ε| ≤ 4ρτn.

We now consider the α, ε’s such that 2(1 − ε) < α < 2ε. If

|ε − ε′| ≤ ρ
τnε(1 − ε)

log(α/(1 − ε))
, |α − α′| ≤ αρτn

log(α/(1 − ε))
,(4.7)

then using case (ii) of Lemma C.1 and simple algebra, we obtain

|gα′,ε′ − gα,ε| ≤ 2ρ′τn

for some ρ′ > 0. Last we consider the case where α > 2ε ∨ (1 − ε). If

|ε − ε′| ≤ ρτnε
2(1 − ε)2

log(α/ε(1 − ε))
, |α − α′| ≤ ρε(1 − ε)τn

α log(α/ε(1 − ε))
,(4.8)

then case (iv) of Lemma C.1 implies

|gα′,ε′ − gα,ε| ≤ 2ρ′τn

for some ρ′ > 0. Therefore, the number of intervals in α needed to cover
(e−n1/(2β+1)(logn)5β/(2β+1) ≤ α ≤ α0n

2/(2β+1)(logn)10β/(2β+1)) is bounded by

J1 ≤ CnDε−1
1 ≤ CnDe(a+1)n1/(2β+1)(logn)5β/(2β+1)

,

where C,D are positive constants. We now consider the entropy associated with
the supporting points of P . The most restrictive relation is (4.8).

Let εn,j = ε
1/j
0 , j = 1, . . . , J with

J = an1/(2β+1)(logn)5β/(2β+1)

t logn
= ak′

n

k′
1t

,
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so that εn,J = n−t . Let P = ∑k
i=1 pigα,εi

, and Nn,j (P ) be the number of points in
the support of P belonging to (εn,j , εn,j+1).

The number of intervals following relation (4.8) needed to cover (εn,j , εn,j+1)

is bounded by

Jn,j = [log(εn,j+1) − log(εn,j )]nD1

εn,j

for some positive constant D1 independent of t . The number of intervals following
relation (4.8) needed to cover (n−t ,1/2) is bounded by Jn,J+1 = nt+1(logn)q

for some positive constant q . For simplicity’s sake we consider D1 = D2. We
index the interval (n−t ,1/2) by J + 1. Consider a configuration σ in the form
Nn,j (P ) = kj , for j = 1, . . . , J + 1 where

∑
j kj = k ≤ k′

n, and define Fn,a(σ ) =
{P ∈ Fn,a;Nn,j (P ) = kj , j = 1, . . . , J + 1}. For each configuration, the number
of balls needed to cover Fn,a(σ ) is bounded by Jn(σ ) = ∏J+1

j=1 J
kj

n,j . Moreover, the
prior probability of Fn,a(σ ) is bounded by

π(Fn,a(σ )) ≤ �(k + 1)

J+1∏
j=1

p
kj

n,j

�(kj + 1)
, pn,j ≤ c[εT +1

n,j+1 − εT +1
n,j ], j ≤ J,

for some positive consistent c > 0 and pn,J+1 ≤ 1. We obtain, since T ≥ 1 and
t > 2

�n = ∑
σ

√
π(Fn,a(σ ))

√
Jn(σ )

≤ �(k + 1)1/2
∑
σ

n(t+1)kJ+1/2

�(kJ+1 + 1)1/2

J∏
j=1

(CnD1)kj /2
ε
(T +1)kj /2
n,j+1

ε
kj /2
n,j �(kj + 1)1/2

× [log(εn,j+1) − log(εn,j )]kj /2
[
1 − εT +1

n,j

εT +1
n,j+1

]kj /2

.

Since
J∏

j=1

�(kj + 1)1/2 ≤ exp
(
k log(k + 1)

) ≤ ek log(n),

if tT > 6, we have

�n ≤ CknkD1�(k + 1)1/2
∑
σ

J∏
j=1

exp{−akj k
′
n logn[Tj − 2]/(2k′

1j (j + 1))}
�(kj + 1)1/2

≤ CknkD1�(k + 1)1/2
∑
σ

J∏
j=1

exp{−tT kj logn/3}
�(kj + 1)1/2
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≤ Cknk(D1+t/2+1/2)�(k + 1)1/2 exp
{
− tT k logn

6

}∑
σ

J∏
j=1

1

�(kj + 1)

≤ Cknk(D1+t/2+1/2)�(k + 1)−1/2 exp
{
− tT k logn

6

}
ek log(J )

≤ ek(D1−T t/6+t/2+1/2) logn.

Hence by choosing τn = τ0n
β/(2β+1)(logn)qβ+1 with τ0 large enough, the above

term multiplied by e−nτ 2
n goes to 0 with n, which achieves the proof of Theo-

rem 2.1.

4.2. Proof of Theorem 2.2. The proof for the control of the prior mass of
Kullback–Leibler neighborhoods of the true density under the Dirichlet prior fol-
lows the same line as the proof under the adaptive prior. To find a lower bound
on π(B∗(f0, τn,p)), we construct a subset of π(B∗(f0, τn,p)) whose probabil-
ity under a Dirichlet process is easy to compute. Consider α ∈ (c1αn, c2αn) and
the discrete distribution P(ε) = ∑Nn

j=0 pjδεj
(ε) with Nn = N0

√
α(logα)3/2 and

α−t0 = ε0 < ε1 < · · · < εNn = 1 − α−t0 and such that

KL(f0, gα,P ) ≤ Cα−β, Vp(f0, gα,P ) ≤ Cα−β.

The above computations [leading to (4.4)] imply that there exists D1 such that if
|ε − ε′| < α−D1 , we can replace gα,ε by gα,ε′ in the expression of gα,P without
changing the order of approximation of f0 by gα,P . Hence we can assume that the
point masses εj of the support of P satisfy |εj − εj+1| ≥ α−D1, j = 0, . . . ,Nn.
We can thus construct a partition of [ε0/2,1 − ε0/2], namely U0, . . . ,UNn , with
εj ∈ Uj and Leb(Uj ) ≥ 2−1α

−D1
n for all j = 1, . . . ,Nn where Leb denotes the

Lebesgue measure. Let ρ > 0 and P1 be any probability on [0,1] satisfying

|P1(Uj ) − pj | ≤ pjα
−ρ ∀j = 0, . . . ,Nn.(4.9)

Then P1[ε0/2, (1 − ε0/2)] ≥ 1 − α−ρ . Since

gα,P1(x) ≥ g̃n,P1 =
∫ 1−ε0/2

ε0/2
gαn,ε(x) dP1(ε)

and using (4.1), we obtain

KL(f0, gα,P1) ≤ Cα−β +
∫

f0(x) log
(
gα,P (x)/g̃n,P1(x)

)
dx.

Set ρ ≥ β , then, similarly to before, we obtain inequality (4.2) with g̃n,P1 instead
of gαn,P ′ . When x ≤ e−β0α , we use the calculations leading to (4.4) replacing
gα,P ′ with g̃n,P1 , wich finally leads to (4.4) between gα,P and g̃n,P1 . To bound∫ 1

0 f0(x)|log(
f0(x)

gα,P1 (x)
)|p dx, note first that

gα,P1(x) − g̃n,P1(x) ≤ P1[0, ε0]C√
α

(
x(1 − x)

)−1 ≤ Cα−ρ+1/2(
x(1 − x)

)−1
.
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For the purpose of symmetry, we work on [0,1/2] and we split [0,1/2] into
[0, e−β0α] [e−β0α, ε0] [ε0,1/2]. Since

gα,P (x) ≥ gα,f1 − |gα,f1 − gα,P | ≥ f0(x)

4
− Cα−H

x(1 − x)
∀H > 0,

when x ∈ (ε0,1/2), we have gα,P (x) ≥ cf0(x), since f0(x) ≥ C0x
k0 near the ori-

gin, for some positive constant c. Hence combining the above inequality with (4.2)
based on gα,P and g̃n,P1 , we obtain that

Cα−ρ+1/2

g̃n,P1(x)x(1 − x)
≤ C

α−ρ+1/2

f0(x)x(1 − x)

≤ Cα−ρ+1/2+(k0+1)t0

= O(α−β/p), if x ∈ (ε0,1/2)ρ ≥ β/p + 1/2 + (k0 + 1)t0.

Moreover, (4.2) implies, also, that for all x ∈ (e−β0αn, α
−t0
n ),

g̃n,P1 ≥ gα,P (x)/2 ≥ (x/ε0)
α C

√
αF0(ε0)

x(1 − x)
,

leading to

log
(

1 + gα,P1(x) − g̃n,P1(x)

g̃n,P1(x)

)
≤ log

(
1 + Cα−ρ+1/2ε

α−k0−1
0

xα
√

α

)

≤ Cα|log(x)| ∀x ∈ (e−β0α,α−t0).

Also, if x < e−β0α , using similar calculations to those used to derive (4.3), we
obtain

g̃n,P1 ≥ CP1([ε0,1/2])
√

α

x(1 − x)
e2α log(x)

and

log
(

1 + gα,P1(x) − g̃n,P1(x)

g̃n,P1(x)

)
≤ Cα|log(x)| ∀x < e−β0α.

Finally, we obtain∫ 1

0
f0(x)

∣∣∣∣log
(

f0(x)

gα,P1(x)

)∣∣∣∣
p

dx ≤ O(α−β) +
∫ 1

0
f0(x)

∣∣∣∣log
(

g̃n,P1(x)

gα,P1(x)

)∣∣∣∣
p

dx

≤ α−t0+p
n (logα)p + O(α−β) = O(α−β),

whenever t0 > β + p, which implies ρ > β/p + 1/2 + (β + p)(k0 + 1).
Under the Dirichlet prior, (P1(U0),P1(U1), . . . ,P1(UNn)) follows a Dirichlet

(ν(U0), ν(U1), . . . , ν(UNn)) with U0 being the complementary set of (U1 ∪ · · · ∪
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UNn). Using the fact that ν(Uj ) ≥ Cα
−T1D1
n for all j , we obtain that there exist

D2,C2 > 0 such that

π(Sn) ≥ exp{−D2Nn log(αn)} ≥ e−C2N0
√

αn(logαn)5/2
.

The above inequality can be derived, for instance, from Lemma A.2 of [4]. Setting
αn = n2/(2β+1)(logn)−5/(2β+1) implies that τn ≥ τ0n

−β/(2β+1)(logn)5β/(4β+1) =
εn.

We now bound the L1 entropy for the Dirichlet prior. To do so, we use
the approximation of any mixture of Beta densities by a finite mixture, and we
bound the entropy of a finite mixture. We cannot use the control of the entropy
for the adaptive prior, however, since it is based on the prior mass of parti-
tions of sieves Fn,a(σ ), which is not easily controlled under Dirichlet priors. Let
ε0 = exp{−a

√
αn(logαn)

5/2}, αn as above, and define

Fn = {F ;F [ε0,1 − ε0] > 1 − α−β
n , nt ≤ α ≤ αn(logαn)

5}.
Under a Dirichlet ν-process,

π((Fn)
c) ≤ αβ

n

[
ν[0, ε0]
ν[0,1] + ν[1 − ε0,1]

ν([0,1])
]

+ exp
{−b

√
αn(logαn)

5/2}
≤ Cαβ

n exp
{−a

√
αn(logαn)

5/2}
.

For all F ∈ Fn, define Fn, the renormalized restriction of F , on [ε0,1 − ε0]. Then

‖gαn,Fn − gαn,F ‖1 ≤ 2α−β
n .

We can, therefore, assume that F [ε0,1 − ε0] = 1 for all F ∈ F ′
n. Then there exists

a discrete probability

P(ε) =
Nn∑
j=1

pjδεj
(ε), εj ∈ (ε0,1 − ε0) ∀j,(4.10)

with Nn ≤ N0
√

α(logα)3/2 such that (3.16) is satisfied for F for all H (depending
on N0), and∫ ε0/3

0
|gα,F − gα,P |(x) dx ≤

∫ 1−ε0

ε0

[dF(ε) + dP (ε)]
(∫ ε0/2

0
gα,ε(x) dx

)
.

When x < ε0/3 < ε/3, using (A.5) we obtain

gα,ε(x) ≤ C
√

α

x(1 − x)

(
2x

x + ε

)αε/(2ε(1−ε))

≤ C
√

αε−α/(2(1−ε))(2x)α/(2(1−ε))−1,

which implies that∫ ε0/3

0
gα,ε(x) dx ≤ Cα−1/2(1 − ε)ε−α/(2(1−ε))

(
ε0

3

)α/(2(1−ε))

≤ Cα−1/2(1 − ε)(3/2)−α/(2(1−ε))(4.11)

= O(α−H) ∀H > 0.
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By symmetry, the same bound is obtained for the integral over (1 − ε0/2,1). Fi-
nally, for all H > 0, there exists N0 > 0 and a probability measure P defined by
(4.10) with Nn = N0

√
α(logα)3/2 such that

‖gα,F − gα,P ‖1 ≤ α−H .

Hence the entropy of Fn is bounded by the entropy of the set

F ′
n =

{
P =

k∑
j=1

pjgα,εj
;k ≤ Nn; εj ∈ (ε0,1 − ε0) ∀j ;nt ≤ α ≤ αn(logαn)

5

}
.

Let k ≤ Nn be fixed and gα,P be a Beta mixture with k components. When |ε′
j −

εj | ≤ δα−γ1−2εj (1 − εj ) for all j ≤ k and |pj − p′
j | ≤ α−γ1−1, if |x − εj | ≤

εj (1 − εj )Mα , then Lemma B.1 implies

|gα,ε′
j
− gα,εj

| ≤ gα,εj
Cα−γ1

√
logαn,

and if |x − εj | > εj (1 − εj )Mα , then |x − ε′
j | > εj (1 − εj )

Mα

2 and the convexity
of x → K(ε, x) for all ε, together with (3.4), implies

|gα,ε′
j
+ gα,εj

| ≤ C
α

x(1 − x)
e−M2 logα/12.

Combining the above inequality with (4.11) leads to∫ 1

0
|gα,εj

− gα,ε′
j
|(x) dx = O(α−γ1)(4.12)

and ∫ 1

0
|gα,P − gα,P ′ |(x) dx = O(α−β

n ),

by choosing γ1 large enough. Similarly, considering |α − α′| ≤ n−Bα, we obtain,
using (3.5),

|gα,ε(x) − gα′,ε(x)| ≤ Cgα,ε(x)n−B,

leading to ∫ 1

0
|gα,P − gα′,P ′ |(x) dx = O(α−β

n ),

by choosing B large enough. The number of balls needed to cover (nt , αn(logαn)
5)

under the above constraint is bounded by CnB logn. The number of balls with radii
δ1α

−γ1
n needed to cover the set Sk is bounded by

Ckα−kγ1
n .
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The number of balls with radii εj (1 − εj )α
−γ1−2
n δ0 needed to cover (ε0,1 − ε0)

(aα5/2+γ1
n (logαn)

5/2)k.

Finally, the metric entropy is bounded by

Jn(τn) ≤ 3knβ logαn ≤ 3k1β
√

αn(logαn)
5 ≤ Cnτ 2

n ,

which achieves the proof of Theorem 2.2.

APPENDIX A: PROOF OF LEMMA 3.2

Throughout the proof, C denotes a generic constant. Let

I0(x) = gα(x) − 1 =
∫ 1

0
gα,ε(x) dε − 1.

The aim is to approximate I0 with an expansion of terms in the form Qj(x)α−j/2

where Qj is a polynomial function. The idea is to split the integral into three
parts, I1, I2, I3 corresponding to ε < x − δx , ε > x + δx and |x − ε| < δx where
δx = δ0x(1 − x)

√
log(α)/α, for some well-chosen δ0 > 0. Note that this choice

of δx comes from the approximation of the Beta density with a Gaussian with
mean x and variance x2(1 − x)2/α. We first prove that the first two parts are very
small and the expansion is obtained from the third term. By convexity of K(ε, x)

as a function of ε, K(ε, x) ≥ K(x − δx, x) for all ε < x − δx , and K(ε, x) ≥
K(x + δx, x) for all ε > x + δx . Moreover,

K(x − δx, x) = x

(
1 − δ0(1 − x)

√
log(α)√

α

)
log

(
1 − δ0(1 − x)

√
log(α)√

α

)

+ (1 − x)

(
1 + x

δ0
√

log(α)√
α

)
log

(
1 + x

δ0
√

log(α)√
α

)

= δ2
0 log(α)x(1 − x)

2α
+ O

(
x(1 − x)

(
log(α)

α

)3/2)
,

uniformly in x. Using a similar argument on K(x + δx, x), we finally obtain, when
α is large enough,

K(x − δx, x) ≥ δ2
x

3x(1 − x)
, K(x + δx, x) ≥ δ2

x

3x(1 − x)
.(A.1)

Set

I1(x) =
∫ x−δx

0
gα,ε(x) dε.

First we consider x ≤ 1/2, then using (3.4) and the fact that if α is large enough,
the term in the square brackets in (3.4) with k = 1 is bounded by 2, uniformly in ε,
we obtain that

I1(x) ≤ 2
√

α√
2πx(1 − x)

∫ x−δx

0
e−δ2

0x(1−x) logα/(3ε(1−ε)) dε.
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Let ρ = (δ2
0x(1 − x) logα)/6 then

I1(x) ≤ 2
√

α√
2π

e−ρ/(x−δx) ≤ C
√

αe−δ2
0 logα/6.(A.2)

Now we consider x > 1/2, for which we use another type of upper bound: we
split the interval (0, x − δx) into (0, x(1 − δ)) and (x(1 − δ), x − δx) for some
well-chosen positive constant δ. For all ε < x(1 − δ), K(ε, x) ≥ K(x(1 − δ), x).
Since u log(u) goes to zero when u goes to zero, there exists δ1 > 0 such that for
all x > 1/2, and all δ1 < δ < 1,

K
(
x(1 − δ), x

) = x(1 − δ) log(1 − δ)

+ (1 − x + δx) log
(

1 + δx

1 − x

)

≥ δ2x log
(

1 + δx

1 − x

)
.

Therefore, using (3.4) and the same bound on the square brackets term in (3.4), as
in the case x ≤ 1/2, we obtain that if x > 1/2,

∫ x(1−δ)

0
gα,ε(x) dε

≤
√

α√
2πx(1 − x)

∫ x(1−δ)

0

(
1 + δ

2(1 − x)

)−αδ2/(2ε(1−ε))

dε

(A.3)

≤ C
√

α

(1 − x)

(
1 + δ

2(1 − x)

)−αδ2/2

≤ Cα−H ∀H > 0.

We now study the integral over (x(1 − δ), x − δx). We use the following lower
bound on K(ε, x): a Taylor expansion of K(ε, x) as a function of ε around x leads
to

K(ε, x) = ε log
(

ε

x

)
+ (1 − ε) log

(
1 − ε

1 − x

)

= (ε − x)2
∫ 1

0

(1 − u)

(x + u(ε − x))(1 − x − u(ε − x))
du

(A.4)

≥ (ε − x)2

2

∫ 1/2

0

1

(1 − x + u(x − ε))
du

= (x − ε)

2

(
log(1 − x/2 − ε/2) − log(1 − x)

)
.
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Let u = x − ε, and note that the function u → u/(x − u)(1 − x + u) is increasing
so that when α is large enough, uniformly in x,

gα,ε(x) ≤ 2
√

α√
2πx(1 − x)

(
1 − x + u/2

1 − x

)−αu/(2(x−u)(1−x+u))

≤ 2
√

α√
2πx(1 − x)

(
1 − x + u/2

1 − x

)−αδ/(2(1−δ)(1−x+δx))

for all u ∈ (δx, δx). Thus if α large enough and x > 1/2,∫ x−δx

x(1−δ)
gα,ε(x) dε

≤ 2
√

α√
2πx(1 − x)

∫ δx

δx

(
1 + u

2(1 − x)

)−αδ/(2(1−δ)(1−x+δx))

≤ 8
√

α√
2π

1

αδ/(2(1 − δ)(1 − x + δx)) − 1

(
1 + δx

2(1 − x)

)−αδ/(2(1−δ)(1−x+δx))

≤ C√
α

e−δδ0
√

α
√

log(α)/(2(1−δ)) = o(α−H )

for any H > 0. Finally, the above inequality, together with (A.3) for x > 1/2 and
with (A.2) for x ≤ 1/2 implies that

I1(x) = O(α−H)

for all H > 0 by choosing δ0 large enough. We now consider the integral over
(x + δx,1)

I2(x) =
∫ x(1+δ)

x+δx

gα,ε(x) dε +
∫ 1

x(1+δ)
gα,ε(x) dε.

First let x ≤ 1/2, then when ε ∈ (x + δx, x(1 + δ)) with δ small enough, we can
use (3.6) and ∫ x(1+δ)

x+δx

gα,ε(x) dε ≤ 2e−δ2
0 logα/2.

When ε ∈ (x(1 + δ),1), a Taylor expansion of K(ε, x) as a function of ε around x

leads to

K(ε, x) = (ε − x)2
∫ 1

0

(1 − u)

(x + u(ε − x))(1 − x − u(ε − x))
du

≥ (ε − x)2

2

∫ 1/2

0

1

(x + u(ε − x))
du(A.5)

= (ε − x)

2

(
log

(
(x + ε)/2

) − logx
)
.
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Thus letting u = ε − x and noting that ε(1 − ε) ≤ x + u and that u/(x + u) ≥
δ/(1 + δ) as soon as u > δx, we obtain

∫ 1

x(1+δ)
gα,ε(x) dε ≤ C

√
α

x

∫ 1−x

δx

(
2x

2x + u

)αδ/(2(1+δ))

du

≤ 2Cα−1/2
(

1 + δ

2

)−αδ/(2(1+δ))+1

.

If x > 1/2 and ε > x + δx , by symmetry, we obtain the same result as in the case
x ≤ 1/2 and ε < x − δx changing x into 1 − x. Finally, choosing δ0 large enough,
we prove that for all x ∈ [0,1],

I1(x) + I2(x) = o(α−H )(A.6)

(H depending on δ0). We now study the last term, I3(x). Using (3.6), and the fact
that when ε ∈ (x − δx, x + δx),

|R(x, ε)| ≤ R′αk2+1|x − ε|3(k2+1)(x(1 − x)
)−3(k2+1)

≤ R′α−(k2+1)/2(logα)3(k2+1)/2,

we obtain, for all k2 ≥ 1, k1 ≥ 3(k2 − 1), and considering the change of variable
u = √

α(x − ε)/(x(1 − x)),

I3(x) =
∫ x+δx

x−δx

gα,ε dε − 1

=
k2∑

j=1

μ3jC(x)j

αj/2 +
k2k1∑
j=1

μjBj (x)

αj/2 + O
(
α−(k2+1)/2(logα)3(k2+1)/2)

= I (x)

α
+ O

(
α−(k2+1)/2(logα)3(k2+1)/2)

,

choosing δ0 large enough, and since μ1 = 0 where the Bj ’s are polynomial func-
tions of x coming from Qk1 and C(x) and where the remaining term is uniform
in x. Lemma 3.2 is proved.

APPENDIX B: LEMMA B.1

LEMMA B.1. Let (δn)n, (βn)n and (ρn)n be positive sequences decreasing
to 0 and assume that αn increases to infinity. Let 1 − δn > ε, ε′ > δn and |ε − ε′| ≤
ρnε(1 − ε)/

√
αn, then for all |x − ε| ≤ Mε(1 − ε)

√
logαn/

√
αn, if ρn

√
logαn

goes to 0 as n goes to infinity, for all k2, k3 > 1,∣∣∣∣ gαn,ε(x)

gαn,ε′(x)
− 1

∣∣∣∣ ≤ C
[
ρn

√
logαn + α−k2/2

n (logαn)
k2/2 + α−k3

n

]
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for n large enough. Also, for all x ∈ (βn,1 − βn), if α
1/2
n ρn|log(βn)|δ−1

n = o(1),
for n large enough,∣∣∣∣ gαn,ε(x)

gαn,ε′(x)
− 1

∣∣∣∣ ≤ C[α1/2
n ρn|log(βn)|δ−1

n + α−k2/2
n (logαn)

−k2/2 + α−k3
n ].

PROOF. First let |x − ε| ≤ Mε(1 − ε)
√

logαn/
√

αn, since |ε − ε′| ≤ ρnε(1 −
ε)/

√
αn, we have that

|x − ε′| ≤ ε(1 − ε)α−1/2
n

[
M

√
logαn + ρn

]
≤ 2Mε(1 − ε)α−1/2

n

√
logαn

and

(x − ε′)l = (x − ε)l + (ε − ε′)
l∑

i=1

Ci
l (ε − ε′)i−1(x − ε)l−i

= (x − ε)l + O
(
α−l/2

n ρnε
l(1 − ε)l(logαn)

(l−1)/2)
.

We control gαn,ε/gαn,ε′ using approximation (3.5). Then noting that when n is
large enough, ∣∣∣∣1 + (x − ε)

x(1 − x)

(
C(x) + Qk1

(
x − ε

x(1 − x)

))∣∣∣∣ ≤ 2

and

αn|ε − ε′||x − ε| ≤ 2x2(1 − x)2ρnα
1/2
n (logαn)

1/2,

we obtain that

an =
∣∣∣∣ αn(x − ε)2

2x2(1 − x)2

[
1 + (x − ε)

x(1 − x)

(
C(x) + Qk1

(
x − ε

x(1 − x)

))]

− αn(x − ε′)2

2x2(1 − x)2

[
1 + (x − ε′)

x(1 − x)

(
C(x) + Qk1

(
x − ε′

x(1 − x)

))]∣∣∣∣
≤ C[ρ2

n + (logαn)
1/2ρn + (logαn)ρnα

−1/2
n ]

and finally,∣∣∣∣ gαn,ε

gαn,ε′
(x) − 1

∣∣∣∣ ≤ Cρn

√
logαn + O

(
α1−k2/2

n εk2(1 − ε)k2(logαn)
k2/2 + α−k3

n

)
.

Now let |x − ε| > Mε(1 − ε)
√

log(α)/
√

αn and x ∈ (βn,1 − βn), we use (3.4) to-
gether with the above calculations and the fact that the function ε → ε log(ε)/(1 −
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ε) is bounded on [0,1],
gαn,ε

gαn,ε′
(x) = exp

{
−αn

[
1

1 − ε
log

(
ε

x

)
− 1

1 − ε′ log
(

ε′

x

)

+ 1

ε
log

(
1 − ε

1 − x

)
− 1

ε′ log
(

1 − ε′

1 − x

)]}

× (
1 + O(ρnα

−1
n + α−k3

n )
)

= exp
{
−αn(ε − ε′)

[
ε̃

1 − ε̃
log(ε̃) − 1 − ε̃

ε̃
log(1 − ε̃)

− log(x)
ε̃

(1 − ε̃)
− log(1 − x)

(1 − ε̃)

ε̃

]}

× (
1 + O(ρnα

−1
n + α−k3

n )
)
,

where ε̃ ∈ (ε, ε′). Hence as soon as 1 − δn > ε, ε′ > δn and x ∈ (βn,1 − βn),∣∣∣∣log(1 − x)
(1 − ε̃)

ε̃

∣∣∣∣ ≤ |log(βn)|δ−1
n ,

∣∣∣∣log(x)
ε̃

(1 − ε̃)

∣∣∣∣ ≤ |log(βn)|δ−1
n ,

which implies that if α
1/2
n ρn|log(βn)|δ−1

n is small enough,∣∣∣∣ gαn,ε

gαn,ε′
(x) − 1

∣∣∣∣ ≤ Cα1/2
n ρn|log(βn)|δ−1

n + O(ρnα
−1
n + α−k3

n ),

which achieves the proof of Lemma B.1. �

APPENDIX C: LEMMA C.1

The following lemma allows us to control the ratio of constants of Beta densi-
ties.

LEMMA C.1. Let a, b > 0 and 0 < τ1 < a, 0 < τ2 < b, let C,ρ denote generic
positive constants. Let η̄ = a + b and τ̄ = τ1 + τ2. We then have the following
results:

(i) If a, b < 2,

log
(

�(a − τ1)�(b − τ2)

�(a + τ1)�(b + τ2)

)
+ log

(
�(η̄ + τ̄ )

�(η̄ − τ̄ )

)
≤ 2τ1

a − τ1
+ 2τ2

b − τ2
− 2(τ̄ )C.

(ii) If a < 2, b > 2, then η̄ > 2 and

log
(

�(a − τ1)�(b − τ2)

�(a + τ1)�(b + τ2)

)
+ log

(
�(η̄ + τ̄ )

�(η̄ − τ̄ )

)
≤ 2τ1

a − τ1
+ τ̄ [log(η̄ + 1) − C].

(iii) If b < 2, a > 2, then things are symmetrical to the previous case.
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(iv) If a, b > 2, i = 1,2, then

log
(

�(a − τ1)�(b − τ2)

�(a + τ1)�(b + τ2)

)
+ log

(
�(η̄ + τ̄ )

�(η̄ − τ̄ )

)
≤ 2τ̄ log(η̄ + 1).

PROOF. The proof of Lemma C.1 comes from Taylor expansions of log(�(x))

and from the use of the relation,

ψ(x) = −1

x
+ ψ(x + 1),

so that when x is small, |ψ(x)| is bounded by 1/x plus a constant, and if x is large,
ψ(x) is bounded by log(x) plus a constant. �
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