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This paper considers the efficient estimation of copula-based semipara-
metric strictly stationary Markov models. These models are characterized by
nonparametric invariant (one-dimensional marginal) distributions and para-
metric bivariate copula functions where the copulas capture temporal depen-
dence and tail dependence of the processes. The Markov processes gener-
ated via tail dependent copulas may look highly persistent and are useful for
financial and economic applications. We first show that Markov processes
generated via Clayton, Gumbel and Student’s t copulas and their survival
copulas are all geometrically ergodic. We then propose a sieve maximum
likelihood estimation (MLE) for the copula parameter, the invariant distri-
bution and the conditional quantiles. We show that the sieve MLEs of any
smooth functional is root-n consistent, asymptotically normal and efficient
and that their sieve likelihood ratio statistics are asymptotically chi-square
distributed. Monte Carlo studies indicate that, even for Markov models gen-
erated via tail dependent copulas and fat-tailed marginals, our sieve MLEs
perform very well.

1. Introduction. A copula function is a multivariate probability distribution
function with uniform marginals. A copula-based method has become one popular
tool for modeling nonlinearity, asymmetricality and tail dependence in financial
and insurance risk managements. See Embrechts, McNeil and Straumann (2002),
McNeil, Frey and Embrechts (2005), Embrechts (2009), Genest, Gendron and
Bourdeau-Brien (2008), Patton (2002, 2006, 2008) and the references therein for
reviews of various theoretical properties and financial applications of the copula
approach.

While the majority of the previous work using copulas has focused on modeling
the contemporaneous dependence between multiple univariate series, there are also
a growing number of papers using copulas to model the temporal dependence of a
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univariate nonlinear time series. Granger (2003) defines persistence (such as “long
memory” or “short memory”) for general nonlinear time series models via copu-
las. Darsow, Nguyen and Olsen (1992), de la Peña, Ibragimov and Sharakhmetov
(2006) and Ibragimov (2009) provide characterizations of a copula-based time se-
ries to be a Markov process. Joe (1997) proposes a class of parametric (strictly)
stationary Markov models based on parametric copulas and parametric invariant
(one-dimensional marginal) distributions. Chen and Fan (2006) study a class of
semiparametric stationary Markov models based on parametric copulas and non-
parametric invariant distributions.

Let {Yt } be a stationary Markov process of order one with a continuous invari-
ant (one-dimensional marginal) distribution G. Then its probabilistic properties
are completely determined by the bivariate joint distribution function of Yt−1 and
Yt , H(y1, y2) (say). By Sklar’s theorem [see McNeil, Frey and Embrechts (2005),
Nelsen (2006)], one can uniquely express H(·, ·) in terms of the invariant distrib-
ution G and the bivariate copula function C(·, ·) of Yt−1 and Yt ,

H(y1, y2) ≡ C(G(y1),G(y2)).

Thus one can always specify a stationary first-order Markov model with continu-
ous state space by directly specifying the marginal distribution of Yt and the bi-
variate copula function of Yt−1 and Yt . The advantage of the copula approach is
that one can freely choose the marginal distribution and the bivariate copula func-
tion separately; the former characterizes the marginal behavior such as the fat-tails
and/or skewness of the time series {Yt }nt=1 while the latter characterizes all the
temporal dependence properties that are invariant to any increasing transforma-
tions as well as the tail dependence properties of the time series. Although being
strictly stationary first-order Markov, a model generated via a copula (especially
a tail-dependent copula) is very flexible. This model can generate a rich array of
nonlinear time series patterns, including persistent clustering of extreme values via
tail dependent copulas evaluated at fat-tailed marginals, asymmetric dependence,
and other “look alike” behaviors present in many popular nonlinear models such as
ARCH, GARCH, stochastic volatility, near-unit root, long-memory, models with
structural breaks, Markov switching and so on. From the point of view of financial
applications, one attractive property of the copula-based Markov model is that the
implied conditional quantiles are automatically monotonic across quantiles. This
nice feature has been exploited by Chen, Koenker and Xiao (2008) and Bouyé and
Salmon (2008) in their study of copula-based nonlinear quantile autoregression
and value at risk (VaR).

In this paper, we shall focus on the class of copula-based, strictly stationary,
semiparametric first-order Markov models, in which the true copula density func-
tion has a parametric form (c(·, ·;α0)), and the true invariant distribution is of an
unknown form (G0(·)) but is absolutely continuous with respect to the Lebesgue
measure on the real line. Any model of this class is completely described by two
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unknown characteristics: the copula dependence parameter α0 and the invariant
distribution G0(·). To establish the asymptotic properties of any semiparametric
estimators of (α0,G0), one needs to know temporal dependence properties of the
copula-based Markov models. For this class of models, Chen and Fan (2006) show
that the β-mixing temporal dependence measure is purely determined by the prop-
erties of the copulas (and does not depend on the invariant distributions); and Beare
(2008) provides simple sufficient conditions for geometric β-mixing in terms of
copulas without any tail dependence [such as Gaussian, Frank and Eyraud–Farlie–
Gumbel–Morgenstern (EFGM) copulas]. Neither paper is able to verify whether
or not a Markov process generated via a tail dependent copula (such as Clay-
ton, survival Clayton, Gumbel, survival Gumbel or Student’s t) is geometric β-
mixing. Ibragimov and Lentzas (2008) demonstrate via simulation that Clayton
copula-based first-order strictly stationary Markov models could behave as “long
memory” in copula levels. In this paper, we show that Clayton, survival Clayton,
Gumbel, survival Gumbel and Student’s t copula-based Markov models are actu-
ally geometrically ergodic (hence geometric β-mixing). Therefore, according to
our theorem, although a time series plot of a Clayton copula (or survival Clay-
ton, Gumbel, survival Gumbel or other tail-dependent copula) generated Markov
model may look highly persistent and “long memory alike,” it is, in fact, weakly
dependent and “short memory.”

In this paper, we propose a sieve maximum likelihood estimation (MLE) proce-
dure for the copula parameter α0, the invariant distribution G0 and the conditional
quantiles of a copula-based semiparametric Markov model. This procedure ap-
proximates the unknown marginal density by flexible parametric families of den-
sities with increasing complexity (sieves), and then maximizes the joint likelihood
with respect to the unknown copula parameter and the sieve parameters of the ap-
proximating marginal density. We show that the sieve MLEs of any smooth func-
tionals of (α0,G0) are root-n consistent, asymptotically normal and efficient; and
that their sieve likelihood ratio statistics are asymptotically chi-square distributed.
We also present simple consistent estimators of asymptotic variances of the sieve
MLEs of smooth functionals. It is interesting to note that although the conditional
distribution of a copula-based semiparametric stationary Markov model depends
on the unknown invariant distribution, the plug-in sieve MLE estimators of the
nonlinear conditional quantiles (VaR) are still

√
n-consistent, asymptotically nor-

mal and efficient.
To the best of our knowledge, Atlason (2008) is the only other paper that also

considers the semiparametric efficient estimation of a copula parameter α0 for a
copula-based first-order strictly stationary Markov model. His work and ours were
done at the same time, but independently. While we propose the sieve likelihood
joint estimation of G0 and α0, Atlason (2008) proposes the rank likelihood estima-
tion of the copula parameter α0, and relies on a simulation method to evaluate his
rank likelihood. However, Atlason (2008) does not investigate the semiparametric
efficient estimation of the invariant distribution G0 nor the conditional quantiles.
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Previously, Chen and Fan (2006) proposed a simple two-step estimation proce-
dure in which one first estimates the invariant CDF G0(·) by a re-scaled empirical
CDF Gn of the data {Yt }nt=1, and then estimates the copula parameter α0 by max-
imizing the pseudo log-likelihood corresponding to copula density evaluated at
pseudo observations {Gn(Yt )}nt=1. Chen and Fan’s procedure can be viewed as an
extension of the one proposed by Genest, Ghoudi and Rivest (1995) for a bivariate
copula-based joint distribution model of a random sample {(Xi, Yi)}ni=1 to a uni-
variate first-order Markov model of a time series data {Yi}ni=1 (with Xi = Yi−1).
Both are semiparametric analogs of the two-step parametric procedure that is
called the “inference functions for margins” (IFM) in Joe (1997), Chapter 10. Just
as the two-step estimator of Genest, Ghoudi and Rivest (1995) is generally inef-
ficient for a bivariate random sample [see, e.g., Genest and Werker (2002)], the
two-step estimator of Chen and Fan (2006) is inefficient for a univariate Markov
model.

We present Monte Carlo studies to compare the finite sample performance of
our sieve MLE, the two-step estimator of Chen and Fan (2006), the correctly spec-
ified parametric MLE and the incorrectly specified parametric MLE for Clayton,
Gumbel, Gaussian, Frank and EFGM copula-based Markov models. Numerous
simulation studies demonstrate that the two-step estimator of Chen and Fan (2006)
is not only inefficient but also severely biased (in finite sample) when the time
series has strong tail dependence, and it leads to a biased and inefficient plug-in
estimator of conditional quantiles (or VaR). The simulation results indicate that our
sieve MLEs perform very well; when the copula-based Markov process has strong
tail dependence, the sieve MLEs have much smaller biases and smaller variances
than the two-step estimators.

The rest of this paper is organized as follows. In Section 2, we present the class
of copula-based semiparametric strictly stationary Markov models and show that
many widely used tail dependent copula-based Markov models are geometrically
β-mixing. In Section 3, we introduce the sieve MLE, and obtain its consistency and
rate of convergence. Section 4 establishes the asymptotic normality and semipara-
metric efficiency of the sieve MLE. Section 5 shows that their sieve likelihood ratio
statistics are asymptotically chi-square distributed which suggests a simple way to
construct confidence regions for the copula parameter and other smooth function-
als. In Section 6, we first briefly review some popular existing estimators. We then
conduct some simulation studies to compare the finite sample performance of our
sieve MLE and these alternative estimators. Section 7 briefly concludes. All the
proofs are relegated to the Appendix.

Finally, we wish to point out that given the characterization results of Dar-
sow, Nguyen and Olsen (1992) and Ibragimov (2009) on higher order Markov
models via copulas, we can easily extend our sieve MLE method and our results
for copula-based first-order Markov models to copula-based higher order Markov
models. For presentational clarity we do not give the details here.
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2. Copula-based Markov models. In this section, we first present the model
and then some implied temporal dependence properties.

2.1. The model. Darsow, Nguyen and Olsen (1992) provide characterization
of first-order Markov processes by bivariate copulas and one-dimensional marginal
distributions (see Nelsen [(2006), Section 6.4] for a brief review). Throughout this
paper, we assume that the true data generating process (DGP) satisfies the follow-
ing assumption:

ASSUMPTION M. (DGP): (1) {Yt : t = 1, . . . , n} is a sample of a strictly sta-
tionary first-order Markov process generated from (G0(·),C(·, ·;α0)) where G0(·)
is the true invariant distribution that is absolutely continuous with respect to the
Lebesgue measure on the real line (with its support Y , a nonempty interval of R);
C(·, ·;α0) is the true parametric copula for (Yt−1, Yt ) up to unknown value α0 and
is absolutely continuous with respect to the Lebesgue measure on [0,1]2. (2) The
true marginal density g0(·) of G0(·) is positive on its support Y ; and the true copula
density c(·, ·;α0) of C(·, ·;α0) is positive on (0,1)2.

In Assumption M(1), the assumption of absolute continuity of the bivariate cop-
ula C(·, ·;α0) rules out the Fréchet–Hoeffding upper (C(u1, u2) = min(u1, u2))
and the lower (C(u1, u2) = max(u1 + u2 − 1,0)) bounds, as well as their linear
combinations [and, say, shuffles and Min copulas discussed in Darsow, Nguyen
and Olsen (1992)].

Under Assumption M(1), the true conditional probability density function,
p0(·|Y t−1) of Yt given Y t−1 ≡ (Yt−1, . . . , Y1), is given by

p0(·|Y t−1) = h0(·|Yt−1) ≡ g0(·)c(G0(Yt−1),G0(·);α0),(2.1)

where h0(·|Yt−1) denotes the true conditional density of Yt , given Yt−1. Under As-
sumption M(1), the transformed process {Ut :Ut ≡ G0(Yt )}nt=1 is also a strictly sta-
tionary first-order Markov process with uniform marginals and C(·, ·;α0), the joint
distribution of Ut−1 and Ut . Then C2|1[·|u;α0] ≡ ∂

∂u
C(u, ·;α0) ≡ C1(u, ·;α0) is

the conditional distribution of Ut ≡ G0(Yt ), given Ut−1 = u; and C−1
2|1 [q|u;α0] is

the qth, q ∈ (0,1), conditional quantile of Ut , given Ut−1 = u.
Note that the conditional density of Yt , given Y t−1, is a function of both the

copula density c(·, ·;α0) and the marginal density g0; hence the qth, q ∈ (0,1),
the conditional quantile of Yt given Y t−1 is also a function of both the copula and
the marginal

QY
q (y) = G−1

0 (C−1
2|1 [q|G0(y);α0]).(2.2)

By definition, C−1
2|1 [q|u;α0] is increasing in q; hence the qth conditional quantile

of Yt given Y t−1, QY
q (y), is also increasing in q .
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2.2. Tail dependence, temporal dependence. All the dependence measures
that are invariant under increasing transformations can be expressed in terms of
copulas [see, e.g., McNeil, Frey and Embrechts (2005) and Nelsen (2006)]. For
example, Kendall’s tau is τ = 4

∫∫
[0,1]2 C(u1, u2) dC(u1, u2) − 1, and Spearman’s

rho is ρS = 12
∫∫

[0,1]2 C(u1, u2) du1 du2 − 3. The lower (resp. upper) tail depen-
dence coefficients λL (resp. λU ) in terms of copulas are

λL ≡ lim
u→0+ Pr(U2 ≤ u|U1 ≤ u) = lim

u→0+
C(u,u)

u
and

λU ≡ lim
u→1− Pr(U2 ≥ u|U1 ≥ u) = lim

u→1−
1 − 2u + C(u,u)

1 − u
,

provided the limits exist. [See Kortschak and Albrecher (2009) for examples of
copulas with nonexisting limits for tail dependence and their applications.]

For financial risk management, the Markov models generated via tail-dependent
copulas are much more relevant than models without tail dependence. In particular,
the following three examples have been widely used in financial applications:

EXAMPLE 2.1 (Clayton copula-based Markov model). The bivariate Clayton
copula is

C(u1, u2, α) = [u−α
1 + u−α

2 − 1]−1/α, 0 ≤ α < ∞.

Clayton copula has Kendall’s tau τ = α
2+α

, and the lower tail dependence coeffi-
cient λL = 2−1/α that is increasing in α, but no upper tail dependence. Clayton
copula becomes the independence copula CI (u1, u2) = u1u2 in the limit when
α → 0.

EXAMPLE 2.2 (Gumbel copula-based Markov model). The bivariate Gumbel
copula is

C(u1, u2;α) = exp
(−[(− lnu1)

α + (− lnu2)
α]1/α)

, 1 ≤ α < ∞.

Gumbel copula has Kendall’s tau τ = 1 − 1
α

, and the upper tail dependence coeffi-
cient λU = 2 − 21/α that is increasing in α, but no lower tail dependence. Gumbel
copula becomes the independence copula CI (u1, u2) = u1u2 in the limit when
α → 1.

EXAMPLE 2.3 (Student t copula-based Markov model). The bivariate Student
t copula is

C(u1, u2;α) = tν,ρ(t−1
ν (u1), t

−1
ν (u2)), α = (ν, ρ), |ρ| < 1, ν ∈ (1,∞],

where tν,ρ(·, ·) is the bivariate Student-t distribution with mean zero, the corre-
lation matrix having off-diagonal element ρ, and degrees of freedom ν, and tν(·)
is the CDF of a univariate Student-t distribution with mean zero, and degrees of
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freedom ν. Student t copula has Kendall’s tau τ = 2
π

arcsinρ, and symmetric tail
dependence λL = λU = 2tν+1(−√

(ν + 1)(1 − ρ)/(1 + ρ)) that is decreasing in ν.
The Student t copula becomes a Gaussian copula in the limit when ν → ∞.

2.2.1. Geometric β-mixing. For analyzing asymptotic properties of any semi-
parametric estimators of (α0,G0), it is convenient to apply empirical process re-
sults for strictly stationary geometrically ergodic (or geometric β-mixing) Markov
processes. See Appendix A for some equivalent definitions of β-mixing and er-
godicity for strictly stationary Markov processes.

REMARK 2.1. (1) Under Assumption M, the time series {Yt }nt=1 is strictly
stationary ergodic and is also β-mixing (see, e.g., Bradley [(2005), Corollary 3.6]
and Chen and Fan (2006)).

(2) Proposition 2.1 of Chen and Fan (2006) presents high-level sufficient (and
almost necessary) conditions in terms of a copula to ensure β-mixing decaying
either exponentially fast or polynomially fast. Their working-paper version points
out that their Proposition 2.1 implies the Markov models based on Gaussian and
EFGM copulas are geometric β-mixing. However, they do not verify whether any
other copulas satisfy the conditions of their Proposition 2.1.

(3) Beare [(2008), Theorem 3.1 and Remark 3.5] shows that all Markov models
generated via symmetric absolute continuous copulas with positive and square in-
tegrable copula densities are geometric β-mixing. In Remark 3.7, he points out that
many commonly used bivariate copulas without tail dependence, such as Gaussian,
EFGM, Frank, Gamma, binomial and hypergeometric copulas, satisfy the condi-
tions of his Theorem 3.1.

(4) Beare [(2008), Theorem 3.2] shows that all bivariate absolute continuous
copulas with square integrable densities do not have any tail dependence. Although
he shows that a Markov model based on Student’s t copula is rho mixing and hence
is geometrically strong mixing, Beare (2008) does not verify whether a Markov
model generated via any tail dependent copula (such as Clayton, Gumbel or Stu-
dent’s t copula) is geometrically β-mixing.

Ibragimov and Lentzas (2008) demonstrate via simulation that Clayton copula
generated first-order strictly stationary Markov models behave as “long memory”
processes in copula levels when the Clayton copula parameter α is big. The time
series plots (see Figure 1) of such Markov processes appear to be “long mem-
ory alike.” (See Section 6.2 on how to simulate copula-based first-order stationary
Markov time series. The clusterings of extremes in Figure 1 are due to tail depen-
dence properties of Clayton and Gumbel copulas.) Nevertheless, our next theorem
shows that they are in fact geometrically ergodic and hence they are “short mem-
ory” processes.
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FIG. 1. Markov time series: tail dependence index = 0.9548, Student t3 marginal distribution.

THEOREM 2.1 (Geometric ergodicity). Under Assumption M, the Markov
time series {Yt }nt=1 generated via Clayton copula with 0 < α < ∞, Gumbel copula
with 1 ≤ α < ∞, Student’s t copula with |ρ| < 1 and 2 ≤ ν < ∞, are all geomet-
rically ergodic (and hence geometrically β-mixing).

REMARK 2.2. If {Ut }nt=1 is a CU(·, ·) copula generated strictly stationary
first-order Markov model with uniform marginals, then {Vt ≡ 1 − Ut }nt=1 is also a
copula-based strictly stationary first-order Markov model with uniform marginals
and bivariate copula function

CV (v1, v2) ≡ Pr(Vt−1 ≤ v1,Vt ≤ v2) = Pr(Ut−1 ≥ 1 − v1,Ut ≥ 1 − v2)

= v1 + v2 − 1 + CU(1 − v1,1 − v2) ≡ Cs
U(v1, v2)

which is the survival copula of Cs
U(u1, u2) [see Nelsen (2006)]. Therefore, a cop-

ula CU(·, ·) generated strictly stationary first-order Markov process is geometri-
cally ergodic or β-mixing with certain decay speed βj = o(1) if and only if its
survival copula Cs

U(·, ·) generated Markov process is geometrically ergodic or β-
mixing with the same decay speed βj = o(1).
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By Theorem 2.1 and Remark 2.2, we immediately see that survival Clayton
and survival Gumbel generated first-order stationary Markov processes are also
geometrically ergodic.

3. Sieve MLE, consistency with rate. Under Assumption M, we see that the
true conditional density p0(·|Y t−1) of Yt given Y t−1 ≡ (Yt−1, . . . , Y1) is given by
(2.1). Let

p(·|Y t−1) = h(·|Yt−1;α,g) ≡ g(·)c(G(Yt−1),G(·);α)

denote any candidate conditional density of Yt given Y t−1. Let Zt = (Yt−1, Yt ),
and denote


(α, g,Zt) ≡ logp(Yt |Y t−1) = log{h(Yt |Yt−1;α,g)}
≡ logg(Yt ) + log c(G(Yt−1),G(Yt );α)

≡ logg(Yt ) + log c

(∫
1(y ≤ Yt−1)g(y) dy,

∫
1(y ≤ Yt )g(y) dy;α

)
as the log-likelihood associated with the conditional density p(Yt |Y t−1). Here 1(·)
stands for the indicator function. Then the joint log-likelihood function of the data
{Yt }nt=1 is given by

Ln(α,g) ≡ 1

n

n∑
t=2


(α, g,Zt) + 1

n
logg(Y1).

The approximate sieve MLE γ̂n ≡ (α̂n, ĝn) is defined as

Ln(α̂n, ĝn) ≥ max
α∈A,g∈Gn

Ln(α, g) − Op(δ2
n),(3.1)

where δn is a positive sequence such that δn = o(1), and Gn denotes the sieve
space [i.e., a sequence of finite dimensional parameter spaces that become dense
(as n → ∞) in the entire parameter space G for g0].

There exist many sieves for approximating a univariate probability density func-
tion. In this paper, we will focus on using linear sieves to directly approximate
either a square root density:

Gn =
{
gKn ∈ G :gKn(y) =

[
Kn∑
k=1

akAk(y)

]2

,

∫
gKn(y) dy = 1

}
,

(3.2)

Kn → ∞,
Kn

n
→ 0;

or a log density:

Gn =
{
gKn ∈ G :gKn(y) = exp

{
Kn∑
k=1

akAk(y)

}
,

∫
gKn(y) dy = 1

}
,

(3.3)

Kn → ∞,
Kn

n
→ 0,
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where {Ak(·) :k ≥ 1} consists of known basis functions, and {ak :k ≥ 1} is the
collection of unknown sieve coefficients.

Suppose the support Y (of the true g0) is either a compact interval (say [0,1])
or the whole real line R. Let r > 0 be a real-valued number, and [r] ≥ 0 be the
largest integer such that [r] < r . A real-valued function g on Y is said to be r-
smooth if it is [r] times continuously differentiable on Y , and its [r]th derivative
satisfies a Hölder condition with exponent r − [r] ∈ (0,1] (i.e., there is a positive
number K such that |D[r]g(y) − D[r]g(y′)| ≤ K|y − y′|r−[r] for all y, y′ ∈ Y .
Here D[r] stands for the differential operator). We denote 
r(Y) as the class of all
real-valued functions on Y which are r-smooth; it is called a Hölder space.

Let the true marginal density function g0 satisfy either
√

g0 ∈ 
r(Y) or logg0 ∈

r(Y). Then any function in 
r(Y) can be approximated by some appropriate
sieve spaces. For example, if Y is a bounded interval and r > 1/2, it can be ap-
proximated by the spline sieve Spl(s,Kn) with s > [r], the polynomial sieve, the
trigonometric sieve, the cosine series and so on. When the support of Y is un-
bounded, thin-tailed density can be approximated by a Hermite polynomial sieve,
while a polynomial fat-tailed density can be approximated by a spline wavelet
sieve. See Chen (2007) for detailed descriptions of various sieve spaces Gn. In our
simulation study, we choose the sieve number in terms of Kn using a modified AIC,
although one could also use cross-validation [see, e.g., Fan and Yao (2003), Gao
(2007), Li and Racine (2007)] and other computationally more intensive model se-
lection methods [see, e.g., Shen, Huang and Ye (2004)] to choose the sieve number
in terms of Kn. See Chen, Fan and Tsyrennikov (2006) for further discussions.

3.1. Consistency. In the following, we denote Qn(α,g) ≡ n−1
n

E0[
(α, g,

Z2)] + 1
n
E0[logg(Y1)] where E0 is the expectation under the true DGP (i.e., As-

sumption M). Denote γ ≡ (α, g) and γ0 ≡ (α0, g0) ∈ � ≡ A × G .

ASSUMPTION 3.1. (1) α0 ∈ A, where A is a compact set of Rd with a non-
empty interior, c(u1, u2;α) > 0 for all (u1, u2) ∈ (0,1)2, α ∈ A; (2) g0 ∈ G ,
either G = {g = f 2 > 0 :f ∈ 
r(Y),

∫
g(y) dy = 1} and Gn given in (3.2), or

G = {g = exp(f ) > 0 :f ∈ 
r(Y),
∫

g(y) dy = 1} and Gn given in (3.3), r > 1/2;
(3) Qn(α0, g0) > −∞, there is the metric ‖γ ‖c ≡ √

α′α +‖g‖c on � ≡ A × G and
a positive measurable function η(·) such that for all ε > 0 and for all k ≥ 1,

Qn(α0, g0) − sup
α∈A,g∈Gk :‖γ0−γ ‖c≥ε

Qn(α,g) ≥ η(ε) > 0;

(4) the sieve spaces Gn are compact under the metric ‖g‖c; (5) there is �nγ0 ∈
�n ≡ A × Gn such that ‖�nγ0 − γ0‖c = o(1); and |Qn(�nγ0) − Qn(γ0)| = o(1).

For the norm ‖γ ‖c ≡ √
α′α + ‖g‖c on � ≡ A × G , one can use either a sup

norm ‖g‖∞ (or a weighted sup norm) or even a lower order Hölder norm ‖g‖

r′

for r ′ ∈ [0, r) (or its weighted version).
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ASSUMPTION 3.2. (1) E0[supγ∈�n
|
(γ,Zt)|] is bounded; (2) there is a finite

constant κ > 0 and a measurable function M(·) with E0[M(Zt)] ≤ const. < ∞,
such that for all δ > 0,

sup
{γ,γ1∈�n:‖γ−γ1‖c≤δ}

|
(γ,Zt) − 
(γ1,Zt )| ≤ δκM(Zt) a.s.-Zt.

We note that under Assumption 3.1(1), (4), Assumption 3.2(1) is implied by
Assumption 3.2(2).

PROPOSITION 3.1. Under Assumptions M, 3.1 and 3.2, δn = o(1), Kn → ∞
and Kn

n
→ 0, we have

‖γ̂n − γ0‖c = op(1).

3.2. Convergence rate. Given the consistency result Proposition 3.1, ϕn :=
inf{h > 0 : Pr(‖γ̂n − γ0‖c > h) ≤ h}, the Levy distance between ‖γ̂n − γ0‖c and
0 converges to 0. Let N = {γ ∈ � :‖γ − γ0‖c ≤ ϕn} be the new parameter space,
and the corresponding shrinking neighborhood in the sieve space, denoted as Nn =
N ∩ �n, be the new sieve parameter space. Denote Var0 as the variance under the
true DGP (i.e., Assumption M).

ASSUMPTION 3.3. (1) There are metric ‖γ ‖s ≡ √
α′α +‖g‖s on N such that

‖γ ‖s ≤ ‖γ ‖c, and a constant J0 > 0 such that for all ε > 0 and for all n ≥ 1,

Qn(α0, g0) − sup
γ∈Nn:‖γ0−γ ‖s≥ε

Qn(α,g) ≥ J0ε
2 > 0.

(2) sup{γ∈Nn:‖γ0−γ ‖s≤ε} Var0(
(γ,Zt) − 
(γ0,Zt )) ≤ const. × ε2 for all small
ε > 0.

Assumption 3.3 suggests that a natural choice of ‖γ ‖s could be (Qn(γ0) −
Qn(γ ))1/2.

ASSUMPTION 3.4. (1) {Yt }nt=1 is geometrically ergodic (hence geometrically
β-mixing); (2) there is a constant κ ∈ (0,2) and a measurable function M(·) with
E0[M(Zt)

2 log(1 + M(Zt))] ≤ const. < ∞, such that for any δ > 0,

sup
{γ∈Nn:‖γ0−γ ‖s≤δ}

|
(γ,Zt) − 
(γ0,Zt )| ≤ δκM(Zt) a.s.-Zt .

Although we do not need any β-mixing decay rates to establish consistency in
Proposition 3.1, we need some β-mixing decay rates for rate of convergence.3

3It is common to assume some β-mixing or strong mixing decay rates in semi/nonparametric
estimation and testing [see, e.g., Robinson (1983), Andrews (1994), Fan and Yao (2003), Gao (2007),
Li and Racine (2007)].
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Given the results in Section 2.2.1, Assumption 3.4(1) is typically satisfied by
copula-based Markov models. Note that in Assumption 3.4(2), the moment re-
striction on the envelop function M(Zt) is weaker than the one (E0[M(Zt)

ς ] ≤
const. < ∞ for some ζ > 2) imposed in Chen and Shen (1998). This is because
Chen and Shen (1998) only assume β-mixing with polynomial decay speed while
our Assumption 3.4(1) assumes geometric β-mixing. It is well known that there
are trade-offs between speed of mixing decay rate and finiteness of moments
[see, e.g., Doukhan, Massart and Rio (1995) and Nze and Doukhan (2004)]. As-
sumption 3.4(2) is a very weak regularity condition and is satisfied whenever
supη∈[0,1],γ∈Nn:‖γ0−γ ‖s≤δ |d
(γ0+η[γ−γ0],Zt )

dη
| ≤ δκM(Zt) with M(Zt) having a fi-

nite slightly higher than a second moment, which is satisfied by all the copula-
based Markov models that satisfy the regularity conditions in Chen and Fan (2006)
for semiparametric two-step estimators.

The next proposition is a direct application of Theorem 1 of Chen and Shen
(1998), hence we omit its proof.

PROPOSITION 3.2. Under Assumptions M, 3.1–3.4, we have

‖γ̂n − γ0‖s = Op(δn), δn = max

{√
Kn

n
,‖γ0 − �nγ0‖s

}
= o(1).

4. Normality and efficiency of sieve MLE of smooth functionals. Let
ρ : A × G → R be a smooth functional and ρ(γ̂n) be the plug-in sieve MLE of
ρ(γ0). In this section, we extend the results of Chen, Fan and Tsyrennikov (2006)
on root-n normality and efficiency of their sieve MLE for copula-based multi-
variate joint distribution model using i.i.d. data to our scalar strictly stationary
first-order Markov setting.

4.1.
√

n-asymptotic normality of ρ(γ̂n). Recall that δn is the speed of con-
vergence of ‖γ̂n − γ0‖s to zero in probability, let N0 = {γ ∈ N :‖γ0 − γ ‖s ≤
δn log δ−1

n } and N0n = {γ ∈ Nn :‖γ0 − γ ‖s ≤ δn log δ−1
n }, then γ̂n ∈ N0n with

probability approaching one. Also denote (U1,U2) = (G0(Y1),G0(Y2)), u =
(u1, u2) ∈ [0,1]2 and c(G0(Yt−1),G0(Yt );α0) = c(U ;α0) = c(γ0,Zt ) (with the
danger of slightly abusing notation).

ASSUMPTION 4.1. α0 ∈ int(A).

ASSUMPTION 4.2. The second-order partial derivatives ∂2 log c(u;α)
∂αα′ ,

∂2 log c(u;α)
∂uj ∂α

, ∂2 log c(u;α)
∂uj ∂uk

for k, j = 1,2, are all well defined and continuous in
γ ∈ N0.
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Denote V as the linear span of � − {γ0}. Under Assumption 4.2, for any
v = (vα, vg)

′ ∈ V, we see that 
(γ0 + ηv,Z) is continuously differentiable in
η ∈ [0,1]. For any γ ∈ N0, define the first-order directional derivative of 
(γ,Zt)

at the direction v ∈ V as

∂
(γ,Zt)

∂γ ′ [v] ≡ d
(γ + ηv,Zt)

dη

∣∣∣∣
η=0

= ∂ log c(γ,Zt)

∂α′ [vα] + vg(Yt )

g(Yt )

+
2∑

j=1

∂ log c(γ,Zt)

∂uj

∫
1{y ≤ Yt−2+j }vg(y) dy,

and the second-order directional derivative as

∂2
(γ,Zt)

∂γ ∂γ ′ [v, ṽ] ≡ d

dη̃

{
∂
(γ + η̃ṽ,Zt )

∂γ ′ [v]
}∣∣∣∣

η̃=0

= d2
(γ + ηv + η̃ṽ,Zt )

dη̃ dη

∣∣∣∣
η=0

∣∣∣∣
η̃=0

.

ASSUMPTION 4.3. (1) 0 < E0[( ∂
(γ0,Zt )
∂γ ′ [v])2] < ∞ for v �= 0, v ∈ V;

(2)
∫

supη∈Sv
|dh(y|Yt−1;γ0+ηv)

dη
|dy < ∞ and

∫
supη∈Sv

|d2h(y|Yt−1;γ0+ηv)

dη2 |dy <

∞ almost surely, for Sv = {η ∈ [0,1] :γ0 + ηv ∈ N0}, v �= 0, v ∈ V.

Assumption 4.3(2) is a condition that is assumed even for parametric Markov
models similar to those in Joe [(1997), Chapter 10] and Billingsley (1961b).

LEMMA 4.1. Under Assumptions M, 3.1(1), (2), 4.1, 4.2 and 4.3, we have,
for any v ∈ V, (1) E0((

∂
(γ0,Zt )
∂γ ′ [v])( ∂
(γ0,Zs)

∂γ ′ [ṽ])) = 0 for ṽ ∈ V and all s < t .

(2) { ∂
(γ0,Zt )
∂γ ′ [v]}nt=1 is a martingale difference sequence with respect to the filtra-

tion Ft−1 = σ(Y1; . . . ;Yt−1). (3) E0((
∂
(γ0,Zt )

∂γ ′ [v])2) = −E0(
∂2
(γ0,Zt )

∂γ ∂γ ′ [v, v]).

Lemma 4.1 suggests that we can define the Fisher inner product on the space V
as

〈v, ṽ〉 ≡ E0

[(
∂
(γ0,Zt )

∂γ ′ [v]
)(

∂
(γ0,Zt )

∂γ ′ [ṽ]
)]

and the Fisher norm for v ∈ V as ‖v‖2 ≡ 〈v, v〉. Let V be the closed linear span of
V under the Fisher norm. Then (V,‖ · ‖) is a Hilbert space.
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The asymptotic properties of ρ(γ̂n) depend on the smoothness of the functional
ρ and the rate of convergence of γ̂n. For any v ∈ V, we denote

dρ(γ0 + ηv)

dη

∣∣∣∣
η=0

≡ ∂ρ(γ0)

∂γ ′ [v],

whenever the limit is well defined.

ASSUMPTION 4.4. (1) For any v ∈ V, ρ(γ0 + ηv) is continuously differen-
tiable in η ∈ [0,1] near η = 0, and∥∥∥∥∂ρ(γ0)

∂γ ′
∥∥∥∥ ≡ sup

v∈V:‖v‖>0

| ∂ρ(γ0)
∂γ ′ [v]|
‖v‖ < ∞;

(2) there exist constants c > 0, ω > 0, and a small ε > 0 such that∣∣∣∣ρ(γ0 + v) − ρ(γ0) − ∂ρ(γ0)

∂γ ′ [v]
∣∣∣∣ ≤ c‖v‖ω for any v ∈ V with ‖v‖ < ε.

Under this assumption, by the Riesz representation theorem, there exists a v∗ ∈
V such that

∂ρ(γ0)

∂γ ′ [v] ≡ 〈v∗, v〉 for all v ∈ V(4.1)

and

‖v∗‖2 =
∥∥∥∥∂ρ(γ0)

∂γ ′
∥∥∥∥2

= sup
v∈V:‖v‖>0

| ∂ρ(γ0)
∂γ ′ [v]|2
‖v‖2 < ∞.

ASSUMPTION 4.5. (1) ‖γ̂n − γ0‖ = Op(δn) for a decreasing sequence δn

satisfying (δn)
ω = o(n−1/2); (2) there exists �nv

∗ ∈ �n − {γ0} such that δn ×
‖�nv

∗ − v∗‖ = o(n−1/2).

ASSUMPTION 4.6. For all γ̃ ∈ N0n with ‖γ̃ − γ0‖ = O(δn) and all v =
(vα, vg)

′ ∈ V with ‖v‖ = O(δn) we have

E0

(
∂2
(γ̃ ,Zt )

∂γ ∂γ ′ [v, v] − ∂2
(γ0,Zt )

∂γ ∂γ ′ [v, v]
)

= o(n−1).

For parametric likelihood models, Assumption 4.6 is automatically satisfied
as long as the second-order derivatives of the log-likelihood are continuous in
a shrinking neighborhood of the true parameter value. For sieve MLEs, As-
sumption 4.6 is satisfied provided that the third-order directional derivatives
d3
(γ0+η[γ−γ0],Zt )

dη3 exist for η ∈ [0,1], γ ∈ N0n with ‖γ − γ0‖ = O(δn), and the
sieve MLE convergence rate δn is not too slow. For example, under Assump-
tion 3.1(2) with polynomial, Fourier series, spline or wavelet sieves, we have a
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sieve MLE convergence rate of δn = n−r/(2r+1) [see, e.g., Shen (1997) for i.i.d.
data, and Chen and Shen (1998) for β-mixing time series data], and hence As-
sumption 4.6 is satisfied if r > 1.

ASSUMPTION 4.7. { ∂
(γ,Zt )
∂γ ′ [�nv

∗] :γ ∈ N0,‖γ −γ0‖ = O(δn)} is a Donsker
class.

Under Assumption 3.4(1), Assumption 4.7 is satisfied by applying the results
of Doukhan, Massart and Rio (1995) on Donsker theorems for strictly stationary
β-mixing processes.

THEOREM 4.1 (Normality). Suppose that Assumptions M, 3.1–3.4 and 4.1–
4.7 hold. Then

√
n(ρ(γ̂n) − ρ(γ0)) ⇒ N(0,‖ ∂ρ(γ0)

∂γ ′ ‖2).

4.2. Semiparametric efficiency of ρ(γ̂n). We follow the approach of Wong
(1992) to establish semiparametric efficiency. Related work can be found in Shen
(1997), Bickel et al. (1993) and Bickel and Kwon (2001) and the references
therein. Recall that a probability family {Pγ :γ ∈ �} for the sample {Yt }nt=1 is
locally asymptotically normal (LAN) at γ0, if (1) for any v in the linear span of
� − {γ0}, γ0 + ηn−1/2v ∈ � for all small η ≥ 0, and (2)

dPγ0+n−1/2v

dPγ0

(Y1, . . . , Yn) = exp
{
n

[
Ln

(
γ0 + 1√

n
v

)
− Ln(γ0)

]}

= exp
{
�n(v) − 1

2
‖v‖2 + Rn(γ0, v)

}
,

where �n(v) is linear in v, �n(v)
d−→ N (0,‖v‖2) and plimn→∞Rn(γ0, v) = 0

(both limits are under the true probability measure Pγ0 ). To avoid the “super-
efficiency” phenomenon, certain regularity conditions on the estimates are re-
quired. In estimating a smooth functional in the infinite-dimensional case, Wong
[(1992), page 58] defines the class of pathwise regular estimates. An estimate
Tn(Y1, . . . , Yn) of ρ(γ0) is pathwise regular if for any real number η > 0 and any
v in the linear span of � − {γ0}, we have

lim sup
n→∞

Pγn,η

(
Tn < ρ(γn,η)

) ≤ lim inf
n→∞ Pγn,−η

(
Tn < ρ(γn,−η)

)
,

where γn,η = γ0 + ηn−1/2v [see Wong (1992) and Shen (1997) for details].

THEOREM 4.2 (Efficiency). Under conditions in Theorem 4.1, we have LAN,
and the plug-in sieve MLE ρ(γ̂n) which achieves the efficiency lower bound for
pathwise regular estimates.
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4.3.
√

n normality and efficiency of sieve MLE of copula parameter. We take
ρ(γ ) = λ′α for any arbitrarily fixed λ ∈ Rd with 0 < |λ| < ∞. It satisfies Assump-
tion 4.4(2) with ∂ρ(γ0)

∂γ ′ [v] = λ′vα and ω = ∞. Assumption 4.4(1) is equivalent to

finding a Riesz representer v∗ ∈ V satisfying (4.2) and (4.3),

λ′(α − α0) = 〈γ − γ0, v
∗〉 for any γ − γ ∗ ∈ V(4.2)

and ∥∥∥∥∂ρ(γ0)

∂γ ′
∥∥∥∥2

= ‖v∗‖2 = 〈v∗, v∗〉 = sup
v �=0,v∈V

|λ′vα|2
‖v‖2 < ∞.(4.3)

Let us change the variables before making statements on (4.3). Denote

L0
2([0,1]) ≡

{
e : [0,1] → R :

∫ 1

0
e(v) dv = 0,

∫ 1

0
[e(v)]2 dv < ∞

}
.

By changing variables, for any vg ∈ Vg , there is a unique function bg ∈
L0

2([0,1]) with bg(u) = vg(G
−1
0 (u))/g0(G

−1
0 (u)), and vice versa. So we can ex-

press ∂
(γ0,Zt )
∂γ ′ [v] as

∂
(γ0,Zt )

∂γ ′ [v] = ∂
(γ0,Ut ,Ut−1)

∂γ ′ [(v′
α, bg)

′]

= ∂ log c(Ut−1,Ut ;α0)

∂α′ [vα] + bg(Ut )

+
2∑

j=1

∂ log c(Ut−1,Ut ;α0)

∂uj

∫ Ut−2+j

0
bg(u) du

and

‖v‖2 = E0

[(
∂
(γ0,Ut ,Ut−1)

∂γ ′ [(v′
α, bg)

′]
)2]

= E0

[(
∂ log c(Ut−1,Ut ;α0)

∂α′ [vα] + bg(Ut )

+
2∑

j=1

∂ log c(Ut−1,Ut ;α0)

∂uj

∫ Ut−2+j

0
bg(u) du

)2]
.

Define

B =
{
b = (v′

α, bg)
′ ∈ (A − α0) × L0

2([0,1]) :‖b‖2

≡ E0

[(
∂
(γ0,Ut ,Ut−1)

∂γ ′ [b]
)2]

< ∞
}
.
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Then there is a one-to-one onto mapping between the two Hilbert spaces (B,‖ · ‖)
and (V,‖ · ‖). So the Riesz representer v∗ = (v∗′

α , v∗
g)′ ∈ V is uniquely determined

by b∗ = (v∗′
α , b∗

g)
′ ∈ B (and vice versa) via the relation v∗

g(y) = b∗
g(G0(y))g0(y)

for all y ∈ Y . Notice that

sup
v �=0,v∈V

|λ′vα|2
‖v‖2

= sup
b �=0,b∈B

|λ′vα|2
/(

E0

[(
∂ log c(Ut−1,Ut ;α0)

∂α′ [vα] + bg(Ut )

+
2∑

j=1

∂ log c(Ut−1,Ut ;α0)

∂uj

×
∫ Ut−2+j

0
bg(u) du

)2])

= λ′I∗(α0)
−1λ = λ′(E0[Sα0 S ′

α0
])−1λ,

where Sα0 is the efficient score function for α0,

S ′
α0

= ∂ log c(α0,Ut ,Ut−1)

∂α′ − e∗(Ut )

(4.4)

−
2∑

j=1

∂ log c(α0,Ut ,Ut−1)

∂uj

∫ Ut−2+j

0
e∗(u) du

and e∗ = (e∗
1, . . . , e

∗
d) ∈ (L0

2([0,1]))d solves the following infinite-dimensional op-
timization problems for k = 1, . . . , d ,

inf
ek∈L0

2([0,1])
E0

{(
∂ log c(Ut−1,Ut ;α0)

∂αk

− ek(Ut )

−
2∑

j=1

∂ log c(Ut−1,Ut ;α0)

∂uj

∫ Ut−2+j

0
ek(u) du

)2}
.

Therefore, b∗ = (v∗′
α , b∗

g)
′ with v∗

α = I∗(α0)
−1λ and b∗

g(u) = −e∗(u) × v∗
α , and

v∗ = [Id,−e∗(G0(·))g0(·)] × I∗(α0)
−1λ. Hence (4.3) is satisfied if and only if

I∗(α0) = E0[Sα0 S ′
α0

] is nonsingular, which in turn is satisfied under the following
assumption:

ASSUMPTION 4.4′ . (1)
∫ ∂c(u;α0)

∂uj
du−j = ∂

∂uj

∫
c(u;α0) du−j = 0 for (j,

−j) = (1,2) with j �= −j ; (2) �ideal ≡ E0(
∂ log c(Ut−1,Ut ;α0)

∂α
{ ∂ log c(Ut−1,Ut ;α0)

∂α
}′)
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is finite and positive definite; (3)
∫ ∂2c(u;α0)

∂uj ∂α
du−j = ∂2

∂uj ∂α

∫
c(u;α0) du−j = 0

for (j,−j) = (1,2) with j �= −j ; (4) there exists a constant K such that
maxj=1,2 sup0<uj<1 E[(uj (1 − uj )

∂ log c(U1,U2;α0)
∂uj

)2|Uj = uj ] ≤ K .

Assumption 4.4′ is a sufficient condition to ensure that the copula parameter can
be estimated at a root-n parametric rate. It is imposed in Bickel et al. (1993) and
Chen, Fan and Tsyrennikov (2006) for semiparametric bivariate copula models.
Bickel et al. (1993) has shown that many popular copula functions such as Clayton,
Gaussian, Gumbel, Frank and others all satisfy this assumption. We can now apply
Theorems 4.1 and 4.2 to obtain the following result:

PROPOSITION 4.1. Suppose that Assumptions M, 3.1–3.4, 4.1–4.3, 4.4 and
4.5–4.7 hold. Then

√
n(α̂n −α0) ⇒ N(0, I∗(α0)

−1), and α̂n is semiparametrically
efficient.

In general, there is no closed-form solution of I∗(α0). Nevertheless, it can be
consistently estimated by a sieve least squares method using its characterization in
(4.4). Let Ût = Ĝn(Yt ) for t = 1, . . . , n. Let Bn be some sieve space such as

Bn =
{
e(u) =

Knα∑
k=1

ak

√
2 cos(kπu),u ∈ [0,1],

Knα∑
k=1

a2
k < ∞

}
,(4.5)

where Knα → ∞, (Knα)d/n → 0. For k = 1, . . . , d , we compute êk as the solution
to

min
ek∈Bn

1

n − 1

n∑
t=2

(
∂ log c(Ût−1, Ût ; α̂)

∂αk

− ek(Ût )

−
2∑

j=1

∂ log c(Ût−1, Ût ; α̂)

∂uj

∫ Ût−2+j

0
ek(u) du

)2

.

Denote ê = (̂e1, . . . , êd) and

Î∗ = 1

n − 1

n∑
t=2

{(
∂ log c(Ût−1, Ût ; α̂)

∂α′ − ê(Ût )

−
2∑

j=1

∂ log c(Ût−1, Ût ; α̂)

∂uj

∫ Ût−2+j

0
ê(u) du

)′

×
(

∂ log c(Ût−1, Ût ; α̂)

∂α′ − ê(Ût )

−
2∑

j=1

∂ log c(Ût−1, Ût ; α̂)

∂uj

∫ Ût−2+j

0
ê(u) du

)}
.
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Following the proof of Theorem 5.1 in Ai and Chen (2003) we immediately
obtain the following:

PROPOSITION 4.2. Under all of the assumptions of Proposition 4.1, Î∗ =
I∗(α0) + op(1).

4.4. Sieve MLE of the marginal distribution. Let us consider the estimation of
ρ(γ0) = G0(y) for some fixed y ∈ Y by the plug-in sieve MLE, ρ(γ̂n) = Ĝn(y) =∫

1(x ≤ y)ĝn(x) dx, where ĝn is the sieve MLE for g0.
Clearly, ∂ρ(γ0)

∂γ ′ [v] = ∫
Y 1(x ≤ y)vg(x) dx for any v = (v′

α, vg)
′ ∈ V. It is easy to

see that ω = ∞ in Assumption 4.4, and∥∥∥∥∂ρ(γ0)

∂γ ′
∥∥∥∥2

= sup
v∈V:‖v‖>0

| ∫Y 1(x ≤ y)vg(x) dx|2
‖v‖2 < ∞.

Hence the representer v∗ ∈ V should satisfy (4.6) and (4.7),

〈v∗, v〉 = ∂ρ(γ0)

∂γ ′ [v] = E0(1(Yt ≤ y)
vg(Yt )

g0(Yt )
) for all v ∈ V,(4.6)

∥∥∥∥∂ρ(γ0)

∂γ ′
∥∥∥∥2

= ‖v∗‖2 = ‖b∗‖2 = sup
b∈B:‖b‖>0

|E0[1(Ut ≤ G0(y))bg(Ut )]|2
‖b‖2 .(4.7)

PROPOSITION 4.3. Let v∗ ∈ V solve (4.6) and (4.7). Suppose that Assump-
tions M, 3.1–3.4, 4.1–4.3 and 4.5–4.7 hold. Then for any fixed y ∈ Y ,

√
n(Ĝn(y)−

G0(y)) ⇒ N(0,‖v∗‖2). Moreover, Ĝn is semiparametrically efficient.

Again, there are currently no closed-form expressions for the asymptotic vari-
ance ‖v∗‖2. Nevertheless, it can also be consistently estimated by the sieve
method. Let

σ̂ 2
G ≡ max

vα �=0,bg∈Bn

∣∣∣∣∣1

n

n∑
t=1

1{Ût ≤ Ĝn(y)}bg(Ût )

∣∣∣∣∣
2

/(
1

n − 1

n∑
t=2

[
∂ log c(Ût−1, Ût ; α̂)

∂α′ vα + bg(Ût )

+
2∑

j=1

∂ log c(Ût−1, Ût ; α̂)

∂uj

∫ Ût−2+j

0
bg(u) du

]2)
,

where Ût = Ĝn(Yt ), and Bn is given in (4.5).

PROPOSITION 4.4. Under all the assumptions of Proposition 4.3, we have,
for any fixed y ∈ Y , σ̂ 2

G = ‖v∗‖2 + op(1).
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4.5. Plug-in estimates of conditional quantiles. Under Assumption M, the qth
conditional quantile of Yt given Yt−1 = y is given by QY

q (y) = G−1
0 (C−1

2|1 [q|G0(y);
α0]). Its plug-in sieve MLE estimate is given by

Q̂Y
q (y) = Ĝ−1

n (C−1
2|1 [q|Ĝn(y); α̂n]).

Let ρ(γ0) = QY
q (y), then by some calculation, for any v = (vα, vg)

′ ∈ V,

∂ρ(γ0)

∂γ ′ [v] =
(−C11

∫
1(x ≤ y)vg(x) dx − C1αvα

c(Ut−1,C
−1
1 (Ut−1, q;α0), α0)

−
∫

1
(
x ≤ QY

q (y)
)
vg(x) dx

)/
g0(Q

Y
q (y))

where C11 = ∂2C(Ut−1,C
−1
1 (Ut−1,q;α0),α0)

∂u2
1

and C1α = ∂2C(Ut−1,C
−1
1 (Ut−1,q;α0),α0)

∂u1∂α
.

We can see ω = 2 in Assumption 4.4, as long as g0(Q
Y
q (y)) �= 0 and

c(Ut−1,C
−1
1 (Ut−1, q;α0), α0) �= 0, which are satisfied under Assumption M(2).

Thus we have∥∥∥∥∂ρ(γ0)

∂γ ′
∥∥∥∥2

= sup
v∈V:‖v‖>0

∣∣∣∣{g0(Q
Y
q (y))}−1

×
[−C11

∫
1(x ≤ y)vg(x) dx − C1αvα

c(Ut−1,C
−1
1 (Ut−1, q;α0), α0)

−
∫

1
(
x ≤ QY

q (y)
)
vg(x) dx

]∣∣∣∣2/
‖v‖2 < ∞.

Hence the Riesz representer v∗ ∈ V should satisfy: 〈v∗, v〉 = ∂ρ(γ0)
∂γ ′ [v] for all v ∈

V, and ‖v∗‖2 = ‖ ∂ρ(γ0)
∂γ ′ ‖2. Applying Theorems 4.1 and 4.2 we immediately obtain

the following:

PROPOSITION 4.5. Let v∗ ∈ V be the Riesz representer for QY
q (y). Suppose

that Assumptions M, 3.1–3.4, 4.1–4.3 and 4.5–4.7 hold. Then for a fixed y ∈ Y ,√
n(Q̂Y

q (y)−QY
q (y)) ⇒ N(0,‖v∗‖2). Moreover, Q̂Y

q (y) is semiparametrically ef-
ficient.

5. Sieve likelihood ratio inference for smooth functionals. In this section,
we are interested in the sieve likelihood ratio inference for smooth functional
ρ(γ ) = (ρ1(γ ), . . . , ρk(γ ))′ :� → Rk ,

H0 :ρ(γ0) = 0,

where ρ is a vector of known functionals. [For instance, ρ(γ ) = α − α0 ∈ Rd or
ρ(γ ) = G(y)−G0(y) ∈ R for fixed y.] Without loss of generality, we assume that
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∂ρ1(γ0)
∂γ ′ , . . . ,

∂ρk(γ0)
∂γ ′ are linearly independent. Otherwise a linear transformation can

be conducted for the hypothesis.
Suppose that ρi satisfies Assumption 4.4 for i = 1, . . . , k. Then by the Riesz

representation theorem, there exists a v∗
i ∈ V such that

∂ρi(γ0)

∂γ ′ [v] ≡ 〈v∗
i , v〉 for all v ∈ V.

Denote v∗ = (v∗
1 , . . . , v∗

k )′. By the Gram–Schmidt orthogonalization, without loss
of generality, we assume 〈v∗

i , v∗
j 〉 = 0 for any i �= j .

Shen and Shi (2005) provide a theory on the sieve likelihood ratio inference for
i.i.d. data. We now extend their result to strictly stationary Markov time series data.
Denote

γ̂n = arg max
α∈A,g∈Gn

Ln(α, g); γ n = arg max
α∈A,g∈Gn,ρ(γ )=0

Ln(α,g).

THEOREM 5.1. Suppose that Assumptions M, 3.1–3.4, 4.1–4.3 and 4.5–4.7
hold, also that Assumption 4.4 holds with ρi , i = 1, . . . , k, and Assumption 4.5(2)
holds with v∗

i , i = 1, . . . , k. Then

2n
(
Ln(γ̂n) − Ln(γ n)

) →d X 2
(k),

where X 2
(k) stands for the chi-square distribution with k degrees of freedom, and

∂ρ1(γ0)
∂γ ′ , . . . ,

∂ρk(γ0)
∂γ ′ are assumed to be linearly independent.

We can apply Theorem 5.1 to construct confidence regions of any smooth
functionals. For example, we can compute confidence region for sieve MLE of
the copula parameter α. Define g̃n(α) = arg maxg∈Gn Ln(α, g). By Theorem 5.1,
2n(Ln(α̂n, g̃n(α̂n)) − Ln(α0, g̃n(α0))) →d X 2

(d) where (α̂n, g̃n(α̂n)) = γ̂n is the

original sieve MLE.4

6. Monte Carlo comparison of several estimators. In this section, we ad-
dress the finite sample performance of sieve MLE by comparing it to several exist-
ing popular estimators: the two-step semiparametric estimator proposed in Chen
and Fan (2006), the ideal (or infeasible) MLE, the correctly specified parametric
MLE and the misspecified parametric MLE.

6.1. Existing estimators. For comparison, we briefly review several existing
estimators that have been used in applied work.

4If we only care about estimation and inference of copula parameter α, we could also extend the
results of Murphy and van der Vaart (2000) on profile likelihood ratio to our copula-based semipara-
metric Markov models.
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6.1.1. Two-step semiparametric estimator. Chen and Fan (2006) propose the
following two-step semiparametric procedure:

Step 1. Estimate the unknown true marginal distribution G0(y) by the empirical
distribution function n+1

n
Gn(y) where Gn(y) ≡ 1

n+1
∑n

t=1 1{Yt ≤ y}.
Step 2. Estimate the copula dependence parameter α0 by

α̂2sp
n ≡ arg max

α∈A

1

n

n∑
t=2

log c(Gn(Yt−1),Gn(Yt );α).

Assuming that the process {Yt }nt=1 is β-mixing with a certain decay rate, under
Assumption M and some other mild regularity conditions, Chen and Fan (2006)
show that

√
n(α̂2sp

n − α0) →d N(0, σ 2
2sp), with σ 2

2sp ≡ B−1
0 �2spB−1

0 ,

where B0 ≡ −E0(
∂2 log c(Ut−1,Ut ;α0)

∂α ∂α′ ) = �ideal (under Assumption 4.4′), and

�2sp ≡ lim
n→∞ Var0

{
1√
n

n∑
t=2

[
∂ log c(Ut−1,Ut ;α0)

∂α
+ W1(Ut−1) + W2(Ut )

]}
< ∞,

W1(Ut−1) ≡
∫ 1

0

∫ 1

0
[1{Ut−1 ≤ v1} − v1]∂

2 log c(v1, v2;α0)

∂α ∂u1
c(v1, v2;α0) dv1 dv2,

W2(Ut ) ≡
∫ 1

0

∫ 1

0
[1{Ut ≤ v2} − v2]∂

2 log c(v1, v2;α0)

∂α ∂u2
c(v1, v2;α0) dv1 dv2.

EXAMPLE 6.1 (Two-step semiparametric estimator of Gaussian copula para-
meter). The bivariate Gaussian copula is C(u1, u2;α) = �α(�−1(u1),�

−1(u2))

for |α| < 1 where �α is the bivariate standard normal distribution with correlation
α, and � is the scalar standard normal distribution. Chen and Fan (2006) show that

√
n(α̂2sp

n − α0) →d N(0,1 − α2
0).

Klaassen and Wellner (1997) establish that the semiparametric efficient variance
bound for estimating a Gaussian copula parameter α is 1−α2

0; hence α̂
2sp
n is semi-

parametrically efficient for a Gaussian copula. However, as pointed out by Genest
and Werker (2002), the Gaussian copula and the independence copula are the only
two copulas for which the two-step semiparametric estimator is efficient for α0.
Moreover, the empirical CDF estimator is still inefficient for G0(·), even in this
Gaussian copula-based Markov model.

6.1.2. Possibly misspecified parametric MLE. Denote G(y, θ)[g(y, θ)] as the
marginal distribution (marginal density) whose functional form is known up to
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the unknown finite-dimensional parameter θ . Then the observed joint parametric
log-likelihood for {Yt }nt=1 is

Ln(α, θ) = 1

n

n∑
t=1

logg(Yt , θ) + 1

n

n∑
t=2

log c(G(Yt−1, θ),G(Yt , θ);α),

and the parametric MLE is (α̂
p
n , θ̂

p
n ) = arg max(α,θ)∈A×� Ln(α, θ)where A × � is

the parameter space. Under Assumption M and some other mild regularity condi-
tions, we have √

n
(
(α̂p

n , θ̂p
n ) − (α∗, θ∗)

) →d N(0,B−1∗p �∗pB−1∗p ),

where B∗p ≡ −E0(
∂2
(α∗,θ∗,Zt )
∂(α,θ) ∂(α,θ)′ ) is nonsingular and �∗p ≡ limn→∞ Var{ 1√

n
×∑n

t=2
∂
(α∗,θ∗,Zt )

∂(α,θ)
}.

6.1.3. Efficiency of correctly specified parametric MLE. Asymptotic proper-
ties for correctly specified MLEs for Markov processes have been discussed in Sec-
tion 10.4 of Joe (1997) and Billingsley (1961b). Under Assumption M and the cor-
rect specification of marginal G(Yt , θ

∗) = G0(Yt ), we have α∗ = α0, B∗p = �∗p =
�0p ≡ E0(

∂
(α0,θ
∗,Zt )

∂(α,θ)
{ ∂
(α0,θ

∗,Zt )
∂(α,θ)

}′), and (α̂
p
n , θ̂

p
n ) is

√
n-efficient for (α0, θ

∗)
with asymptotic variance �−1

0p . Moreover,
√

n(α̂
p
n −α0) →d N(0, I∗p(α0)

−1) with

I∗p(α0) ≡ min
b

E0

((
∂ log c(Ut−1,Ut ;α0)

∂α
− ∂
(α0, θ

∗,Zt )

∂θ
b
)

×
(

∂ log c(Ut−1,Ut ;α0)

∂α
− ∂
(α0, θ

∗,Zt )

∂θ
b
)′)

.

6.1.4. Ideal (or infeasible) MLE. We denote α̂Ideal
n as the ideal (or infeasi-

ble) MLE of the copula parameter α0 when the marginal G0(·) is assumed to
be completely known. Let α̂Ideal

n = arg maxα∈A
1
n

∑n
t=2 log c(Ut−1,Ut ;α). Sup-

pose that Assumption M holds with a completely known G(·, θ) = G0(·). Then

B0 ≡ −E0(
∂2 log c(Ut−1,Ut ;α0)

∂α ∂α′ ) = �ideal is finite and nonsingular and α̂Ideal
n is effi-

cient, thus √
n(α̂Ideal

n − α0) →d N(0,�−1
ideal).

REMARK 6.1. Since I∗(α0) ≤ I∗p(α0) ≤ �ideal, we have I∗(α0)
−1 ≥

I∗p(α0)
−1 ≥ �−1

ideal. Also, Proposition 4.1 immediately implies that σ 2
2sp ≥

I∗(α0)
−1.

EXAMPLE 6.1′ (The ideal MLE of a Gaussian copula parameter). For the
Gaussian copula in Example 6.1, it is easy to verify that

�ideal = B0 = −E0

(
∂2 log c(Ut−1,Ut ;α0)

∂α ∂α

)
= 1 + α2

0

(1 − α2
0)2

< ∞ if α2
0 �= 1.
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Consequently,
√

n(α̂Ideal
n −α0) →d N(0,�−1

ideal) with �−1
ideal = (1−α2

0)× 1−α2
0

1+α2
0
. We

note that the asymptotic variance Avar(α̂Ideal
n ) = �−1

ideal ≤ 1−α2
0 = Avar(α̂2sp

n ), and

Avar(α̂Ideal
n ) = Avar(α̂2sp

n ) if and only if α0 = 0 (i.e., independent copula). Also
Avar(α̂Ideal

n ) is decreasing in |α0|.

EXAMPLE 2.1′ (The ideal MLE of a Clayton copula parameter). For the Clay-
ton copula in Example 2.1, after some tedious calculation, we have

�ideal = B0 = 1

α(1 + α)
+ 1

α(1 + α)2(1 + 2α)
+ (1 + α)(1 + 2α)

α5 × Int(α)

where Int(α) = ∫ ∞
1

∫ ∞
1

xy(logx−logy)2−x(logx)2−y(logy)2

(x+y−1)4+1/α dx dy which is a small
number bounded in [−1,1]. Therefore, �ideal ∈ (0,∞), provided that α0 > 0.
Hence

√
n(α̂Ideal

n − α0) →d N(0,�−1
ideal) where the asymptotic variance �−1

ideal is
increasing in α0 and is O(α2

0).

EXAMPLE 2.1′ (The ideal MLE of EFGM copula parameter). For the EFGM
copula with C(u1, u2;α) = u1u2(1 + α(1 − u1)(1 − u2)), α ∈ [−1,1], the copula
density function is

c(u1, u2;α) = ∂2

∂u1 ∂u2
C(u1, u2;α) = 1 + α − 2α(u1 + u2) + 4αu1u2.

Let Li2(z) = ∑∞
k=1 zk/k2, |z| ≤ 1, be the polylogarithm function with order 2.

Then

�ideal = −E0

(
∂2 log c(Ut−1,Ut ;α0)

∂α ∂α

)

=
∫ 1

0

∫ 1

0

(1 − 2u1 − 2u2 + 4u1u2)
2

1 + α − 2α(u1 + u2) + 4αu1u2
du1 du2

=
∞∑

k=1

α2k−2

(1 + 2k)2 = Li2(|α|) − Li2(α
2)/4 − |α|

|α|3 .

6.2. Simulations. One can simulate a strictly stationary first-order Markov
process {Yt }nt=1 from a specified bivariate copula C(u1, u2;α0) with given invari-
ant CDF G0 as follows:

Step 1. Generate an i.i.d. sequence of uniform random variables {Vt }nt=1.
Step 2. Set U1 = V1 and Ut = C−1

2|1 [Vt |Ut−1, α0].
Step 3. Set Yt = G−1

0 (Ut ) for t = 1, . . . , n.
In our simulation study, we consider several first-order Markov models gen-

erated via different classes of copulas (Clayton, Gumbel, Frank, Gaussian and
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EFGM), with either Student t3 or t5 marginal distribution. Thus the true marginal

distribution is G0 = tν with density g0(y) = �(0.5(ν+1))√
νπ�(ν/2)

(1 + y2

ν
)−0.5(ν+1) with de-

grees of freedom ν = 3 or 5. For each specified copula C(u1, u2;α0), we generate
a long time series, but we delete the first 2000 observations and keep the last 1000
observations as our simulated data sample data {Yt } (i.e., a simulated sample size
n = 1000).

For all the copula-based Markov models and for each simulated sample, we
compute five estimators of α0: sieve MLEs, ideal (or infeasible) MLEs, two-step
estimators, correctly specified parametric MLEs (when the functional form of g

is correctly specified) and misspecified parametric MLEs (when the functional
form of g is misspecified). Sieve MLEs are computed by maximizing the joint
log-likelihood Ln(α,g) in (3.1) using either a polynomial sieve or a polynomial
spline sieve to approximate the log-marginal density (logg). The selection of K ,
the number of the sieve terms, is based on the so-called small sample AIC of Burn-
ham and Anderson (2002), K̂ = arg maxK{Ln(γ̂n(K)) − K/(n − K − 1)}, where
γ̂n(K) is the sieve MLE of γ0 = (α0, g0) using K as the sieve number of terms.

We compare the estimates of the copula parameter, and the estimates of 1/3
and 2/3 of the marginal quantiles in terms of Monte Carlo means, biases, vari-
ances, mean squared errors and confidence regions based on 1000 Monte Carlo
simulation runs.

Brief summary of MC results. In the longer version posted on arXiv [Chen,
Wu and Yi (2009)], we report all the simulation findings in detail. Here we only
report a few Monte Carlo results for Clayton and Gumbel copula-based Markov
models in Appendix B, and give a brief summary of the overall patterns. (1) Sieve
MLEs of copula parameters always perform better than the two-step estimator
in terms of bias and MSE, except for Gaussian copulas and EFGM copulas. For
Gaussian copulas, we already explained (in Example 6.1) that both the sieve
MLE and the two-step estimators are semiparametrically efficient for the cop-
ula parameter with unknown marginal distributions. For EFGM copulas, the dis-
tance between the EFGM copula function and the independent copula function is
αu1u2(1 − u1)(1 − u2) ≤ 0.0625α for α ∈ [−1,1]. Therefore, the EFGM copula
is very close to the independent copula; hence the performance of the sieve MLE,
the two-step, the correctly specified parametric MLE and the ideal MLE for copula
parameters are all very close to one another; (2) For all the copula-based Markov
models with some dependence in terms of Kendall’s τ �= 0, including Gaussian
and EFGM copula-based Markov models, sieve MLEs of marginal distributions
always perform better than the empirical CDFs in terms of bias and MSE; (3) For
Markov models generated via strong tail dependent copulas, both the two-step-
based estimators of copula parameters and the empirical CDF estimator of the
marginal distribution perform very poorly, both having big biases and big MSEs;
(4) Sieve MLEs perform very well even for copulas with strong tail dependence

http://arxiv.org
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and fat-tailed marginal density t3; (5) Extreme conditional quantiles estimated via
sieve MLEs are much more precise than those estimated via two-step estimators;
(6) Misspecified parametric MLEs could lead to inconsistent estimation of copula
parameters (in addition to inconsistent estimation of marginal density parameters).
In summary we recommend sieve MLEs to estimate copula-based Markov models
and their implied conditional quantiles (VaRs).

7. Conclusions. In this paper, we first show that several widely used tail de-
pendent copula-generated Markov models are in fact geometrically ergodic (hence
geometrically β-mixing), although their time series plots may look highly per-
sistent and “long memory alike.” We then propose sieve MLEs for the class of
first-order strictly stationary copula-based semiparametric Markov models that are
characterized by the parametric copula parameter α0 and the unknown invariant
density g0(·). We show that the sieve MLEs of any smooth functional of (α0, g0)

is root-n consistent, asymptotically normal and efficient, and that their sieve like-
lihood ratio statistics are asymptotically chi-square distributed. We propose either
consistent plug-in estimation of the asymptotic variance or inverting the sieve like-
lihood ratio statistics to construct confidence regions for the sieve MLEs. Monte
Carlo studies indicate that, even for semiparametric Markov models generated via
tail dependent copulas with fat-tailed marginal distributions, the sieve MLEs of
the copula parameter, the marginal CDFs and the conditional quantiles all perform
very well in finite samples.

In this paper, we assume that the parametric copula function is correctly speci-
fied. We could test this assumption by performing a sieve likelihood ratio test [see
e.g., Fan and Jiang (2007) for a review about generalized likelihood ratio tests].
Alternatively, we could also consider a joint sieve ML estimation of nonparamet-
ric copulas and nonparametric marginals. Recently, Chen, Peng and Zhao (2009)
provided an empirical likelihood estimation of nonparametric copulas using a bi-
variate random sample; their method could be extended to our time series setting.

APPENDIX A: MATHEMATICAL PROOFS

We first recall some equivalent definitions of β-mixing and ergodicity for
strictly stationary Markov processes. Then we present the drift criterion for geo-
metric ergodicity of Markov chains.

DEFINITION A.1. (1) [Davydov (1973)] For a strictly stationary Markov
process {Yt }∞t=1, the β-mixing coefficients are given by

βt =
∫

sup
0≤φ≤1

∣∣E[φ(Yt+1)|Y1 = y] − E[φ(Yt+1)]
∣∣dG0(y).

The process {Yt } is β-mixing if limt→∞ βt = 0; and it is geometric β-mixing if
βt ≤ γ exp(−δt) for some δ, γ > 0.
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(2) [Chan and Tong (2001)] A strictly stationary Markov process {Yt } is (Harris)
ergodic if

lim
t→∞ sup

0≤φ≤1

∣∣E[φ(Yt+1)|Y1 = y] − E[φ(Yt+1)]
∣∣ = 0 for almost all y;

and it is geometrically ergodic if there existsa measurable function W with∫
W(y)dG0(y) < ∞ and a constant κ ∈ [0,1) such that for all t ≥ 1,

sup
0≤φ≤1

∣∣E[φ(Yt+1)|Y1 = y] − E[φ(Yt+1)]
∣∣ ≤ κtW(y).(A.1)

DEFINITION A.2. Let {Yt } be an irreducible Markov chain with a transition
measure P n(y;A) = P(Yt+n ∈ A|Yt = y), n ≥ 1. A nonnull set S is called small
if there exists a positive integer n, a constant b > 0 and a probability measure ν(·)
such that P n(y;A) ≥ bν(A) for all y ∈ S and all measurable set As.

THEOREM A.1 [Theorem B.1.4 in Chan and Tong (2001)]. Let {Yt } be an
irreducible and aperiodic Markov chain. Suppose there exists a small set S, a
nonnegative measurable function L which is bounded away from 0 and ∞ on S,
and constants r > 1, γ > 0,K > 0 such that

rE[L(Yt+1)|Yt = y] ≤ L(y) − γ for all y /∈ S,(A.2)

and, let S′ be the complement of S,∫
S′

L(w)P (y, dw) < K for all y ∈ S.(A.3)

Then {Yt } is geometrically ergodic and (A.1) holds. Here L is called the Lyapunov
function.

PROOF OF THEOREM 2.1. We establish the results by applying Theorem A.1
or applying Proposition 2.1(i) of Chen and Fan (2006).

(1) For a Clayton copula, let {Yt }nt=1 be a stationary Markov process of order
1 generated from a bivariate Clayton copula and a marginal CDF G0(·). Then
the transformed process {Ut ≡ G0(Yt )}nt=1 has uniform marginals and a Clayton
copula joint distribution of (Ut−1,Ut ). When α = 0, the Clayton copula becomes
the independence copula; hence the process {Ut ≡ G0(Yt )}nt=1 is i.i.d. and trivially
geometrically ergodic.

Let α > 0. Recall that C2|1[w|u;α] = ∂
∂u

C(u,w;α) = (u−α + w−α −
1)−1−1/αu−1−α and that C−1

2|1 [q|u;α0] = [(q−α/(1+α) − 1)u−α + 1]−1/α is the qth

conditional quantile of Ut given Ut−1 = u. Denote Xt ≡ U−α
t . Let {Vt }nt=1 be a

sequence of i.i.d. uniform(0,1) random variables such that Vt is independent of
Ut−1. Let q = Vt in the above conditional quantile expression of Ut given Ut−1,
then we obtain the following nonlinear AR(1) model from the Clayton copula:

Xt = (
V

−α/(1+α)
t − 1

)
Xt−1 + 1 with X

−1/α
t ≡ Ut ∼ uniform(0,1).
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Note that the state space of {Xt } is (1,∞). Since E0[(V −α/(1+α)
t − 1)1/α] = 1,

we can let p ∈ (0,1/α), and L(x) = xp > 1 be the Lyapunov function. Then by
Hölder’s inequality, ρ ≡ E0[L(V

−α/(1+α)
t − 1)] < 1. Let r = ρ−1/2 > 1 and

x0 = max
{
x ≥ 1 : rE0

[∣∣x(
V

−α/(1+α)
t − 1

) + 1
∣∣p] ≥ xp − 1

}
.

Such x0 always exists since

lim
x→∞

rE0[|x(V
−α/(1+α)
t − 1) + 1|p]

xp − 1
= rρ = ρ1/2 < 1.

Let set S = [1, x0]. Clearly, L is bounded away from 0 and ∞ on S. We now show
that S is a small set. Let f (·|x) be the conditional density function of X1 given
X0 = x. Then

f (y|x) = (1 + α)x1+1/α

α(y − 1 + x)2+1/α
≥ 1 + α

α(y − 1 + x0)2+1/α

if x ∈ S. Choose the probability measure ν on (1,∞) as ν(dy) = f (y|x0) dy. Then

Pr(X1 ∈ A|X0 = x) ≥ x
−1−1/α
0 ν(A) for all x ∈ S and A ∈ B.

Hence S is a small set; see Definition A.2. Notice that, by the definition of x0,

rE0[L(X1)|X0 = x] ≤ L(x) − 1 for all x > x0,

E0[L(X1)|X0 = x] < ∞ for all x ∈ S = [1, x0].
Thus all of the conditions in Theorem A.1 are satisfied; hence {Xt }nt=1 is geomet-
rically ergodic, and geometric β-mixing.

(2) For the Gumbel copula, let {Yt }nt=1 be a stationary Markov process of order
1 generated from a bivariate Gumbel copula and a marginal CDF G0(·). Then the
transformed process {Ut ≡ G0(Yt )}nt=1 has uniform marginals and (Ut−1,Ut ) has
the Gumbel copula joint distribution (see Example 2.2). When α = 1, the Gumbel
copula becomes the independence copula; hence the process {Ut ≡ G0(Yt )}nt=1 is
i.i.d. and trivially geometrically ergodic.

Let α > 1. Let Xt = (− logUt)
α . Then Ut = F(Xt), with F(x) = exp{−x1/α}.

Let f (x) = α−1x1/α−1 exp{−x1/α}. Then for Xt we have

Pr(Xt+1 ≥ x2|Xt = x1) = f (x1 + x2)

f (x1)
, x1, x2 > 0.

Hence

E0(Xt+1|Xt = x1) =
∫ ∞

0
Pr(Xt+1 ≥ x2|Xt = x1) dx2 =

∫ ∞
0

f (x1 + x2)

f (x1)
dx2

= F(x1)

f (x1)
= αx

1−(1/α)
1 .
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Note that as x1 → 0,

E0
(
X

−1/(2α)
t+1 |Xt = x1

) =
∫ ∞

0
x

−1/(2α)
2

−f ′(x1 + x2)

f (x1)
dx2

= x
1−1/(2α)
1

∫ ∞
0

u−1/(2α) −f ′(x1 + x1u)

f (x1)
du

∼ x
−1/(2α)
1 (1 − 1/α)

∫ 1

0
t−1/(2α)(1 − t)−1/(2α) dt

where the last relation is due to

lim
x1→0

−f ′(x1 + x1u)

f (x1)
× x1 = (1 − 1/α)(1 + u)1/α−2.

Observe that, as α > 1,

κα ≡ (1 − 1/α)

∫ 1

0
t−1/(2α)(1 − t)−1/(2α) dt

= (1 − 1/α) × B
(
1 − 1/(2α),1 − 1/(2α)

)
< 1,

where B(·, ·) is the beta function.
Let L(x) = x−1/(2α)+x be the Lyapunov function. Let r = infx>0 L(x)/2. Then

lim
x→∞

E0(L(Xt+1)|Xt = x)

L(x) − r
= 0

and

lim
x→0

E0(L(Xt+1)|Xt = x)

L(x) − r
= κα < 1.

Let S = [1/λ,λ] with sufficiently large λ > 0. Then S is a small set. So all con-
ditions in Theorem A.1 are satisfied; hence {Xt }nt=1 is geometrically ergodic and
geometrically β-mixing.

(3) For Student’s t copula, let {Yt }nt=1 be a stationary Markov process of or-
der 1 generated from a bivariate t-copula and a marginal CDF G0(·). Then the
transformed process {Ut ≡ G0(Yt )}nt=1 satisfies the following:

t−1
ν (Ut ) = ρt−1

ν (Ut−1) + et

√
ν + (t−1

ν (Ut−1))2

ν + 1
(1 − ρ2),

where et ∼ tν+1, and is independent of Ut−1 ≡ (Ut−1, . . . ,U1) [see, e.g., Chen,
Koenker and Xiao (2008)]. Let Xt ≡ t−1

ν (Ut ). Then

Xt = ρXt−1 + σ(Xt−1)et , σ (Xt−1) =
√

ν + (Xt−1)2

ν + 1
(1 − ρ2),
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where et ∼ tν+1, and is independent of Xt−1 ≡ (Xt−1, . . . ,X1). Let L(x) =
|x| + 1 ≥ 1 be the Lyapunov function. Then E0{L(Xt)} = √

ν
�( ν−1

2 )√
π�(ν/2)

+ 1 < ∞
provided that ν > 1. Then

E0
(
L(Xt)|Xt−1 = x

) = E0
(|ρXt−1 + σ(Xt−1)et | | Xt−1 = x

) + 1

= E0
(|ρx + σ(x)et |) + 1

<

√
E0

(|ρx + σ(x)et |2) + 1

=
√(

ρ2x2 + σ 2(x)E0[e2
t ]

) + 1,

where the strict inequality is due to et ∼ tν+1 and for fixed x,

0 < Var
(|ρx + σ(x)et |2) = E

(|ρx + σ(x)et |2) − [
E0

(|ρx + σ(x)et |)]2
.

Since σ 2(x) = (1 − ρ2)(ν + x2)/(ν + 1), we have

lim|x|→∞
E0(L(Xt)|Xt−1 = x)

L(x)

= lim|x|→∞
E0(|ρx + σ(x)et |) + 1

|x| + 1

< lim|x|→∞

√
(ρ2x2 + σ 2(x)E0[e2

t ]) + 1

|x| + 1

=
√

ρ2 + 1 − ρ2

ν + 1
E0[e2

t ] ≤
√

ρ2 + 1 − ρ2

2 + 1
E[t2

3 ] = 1,

where the last inequality is due to E0[e2
t ]/(ν + 1) decreasing in ν ∈ [2,∞], and

the last equality is due to E[t2
3 ] = 3. Then we can choose a small set S = [−x0, x0]

with sufficiently large x0 > 0. Clearly the density of et is bounded from above
and below on a compact set. Hence, all conditions in Theorem A.1 or in Propo-
sition 2.1(i) of Chen and Fan (2006) are satisfied, and {Xt }nt=1 is geometrically
ergodic (hence geometrically β-mixing). �

PROOF OF PROPOSITION 3.1. Since most of the conditions of consistency
in Theorem 3.1 of Chen (2007) are already assumed in our Assumptions M, 3.1
and 3.2, it suffices to verify Condition 3.5 (uniform convergence over sieves) of
Chen (2007). Assumption M implies that {Yt }nt=1 is stationary ergodic. This and
Assumption 3.2 implies that Glivenko–Cantelli theorem for a stationary ergodic
processes is applicable, and hence supγ∈�n

|Ln(γ ) − E{Ln(γ )}| = op(1). The re-
sult now follows from Theorem 3.1 of Chen (2007). �
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PROOF OF LEMMA 4.1. For (1), recall that Zt = (Yt−1, Yt ), under Assump-
tions M, 3.1(1), (2), 4.1 and 4.2, we have, for all s < t ,

E0

((
∂
(γ0,Zt )

∂γ ′ [v]
)(

∂
(γ0,Zs)

∂γ ′ [ṽ]
))

= E0

(
E0

((
∂
(γ0,Zt )

∂γ ′ [v]
)(

∂
(γ0,Zs)

∂γ ′ [ṽ]
)∣∣∣Y1, . . . , Yt−1

))

= E0

((
∂
(γ0,Zs)

∂γ ′ [ṽ]
)
E0

(
∂
(γ0,Zt )

∂γ ′ [v]
∣∣∣Yt−1

))
.

Recall that the true conditional density function is p0(Yt |Y t−1) = g0(Yt ) ×
c(G0(Yt−1),G0(Yt );α0) = h(Yt |Yt−1;γ0). We have

E0

(
∂
(γ0,Zt )

∂γ ′ [v]
∣∣∣Yt−1

)

=
∫ ∂h(yt |Yt−1;γ0)

∂γ ′

h(yt |Yt−1;γ0)
[v]h(yt |Yt−1;γ0) dyt

=
∫

∂h(yt |Yt−1;γ0)

∂γ ′ [v]dyt

= d(
∫

h(yt |Yt−1;γ0 + ηv)dyt )

dη

∣∣∣∣
η=0

= d(1)

dη

∣∣∣∣
η=0

= 0,

where the order of differentiation and integration can be reversed due to Assump-
tion 4.3.

For (2), the above equality also implies that { ∂
(γ0,Zt )
∂γ ′ [v]}nt=1 is a martingale

difference sequence with respect to the filtration Ft−1 = σ(Y1; . . . ;Yt−1).
For (3), Since

∫
h(y|Yt−1;γ0 +ηv)dy ≡ 1, by differentiating this equation with

respect to η twice and evaluating it at η = 0, we get E0((
∂
(γ0,Zt )

∂γ ′ [v])2|Yt−1) =
−E0(

∂2
(γ0,Zt )
∂γ ∂γ ′ [v, v]|Yt−1) where the interchange of differentiation and integration

is guaranteed by Assumption 4.3. �

PROOF OF THEOREM 4.1. Let εn be any positive sequence satisfying εn =
o(n−1/2). Denote r[γ, γ0,Zt ] ≡ 
(γ,Zt) − 
(γ0,Zt ) − ∂
(γ0,Zt )

∂γ ′ [γ − γ0] and

μn(g(Zt)) = n−1 ∑n
t=2[g(Zt) − E0g(Zt)]. In the proof we let g(·) be 
(γ, ·),

r[γ, γ0, ·] or ∂
(γ0,·)
∂γ ′ [v∗]. Then by the definition of the sieve MLE γ̂n (with abuse

of notation, we denote it as γ̂ in the following),

0 ≤ 1

n

n∑
t=2

[
(γ̂ ,Zt ) − 
(γ̂ ± εn�nv
∗,Zt )]

= μn

(

(γ̂ ,Zt ) − 
(γ̂ ± εn�nv

∗,Zt )
)
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+ E0
(

(γ̂ ,Zt ) − 
(γ̂ ± εn�nv

∗,Zt )
) + op(n−1)

= ∓εn

1

n

n∑
t=2

∂
(γ0,Zt )

∂γ ′ [�nv
∗] + μn(r[γ̂ , γ0,Zt ] − r[γ̂ ± εn�nv

∗, γ0,Zt ])

+ E0(r[γ̂ , γ0,Zt ] − r[γ̂ ± εn�nv
∗, γ0,Zt ]) + o(n−1).

CLAIM 1. 1
n

∑n
t=2

∂
(γ0,Zt )
∂γ ′ [�nv

∗ − v∗] = op(n−1/2). This claim is true due
to Chebyshev’s inequality, serially uncorrelated (Lemma 4.1) and identically dis-
tributed data, and ‖�nv

∗ − v∗‖ = o(1).

CLAIM 2. μn(r[γ̂ , γ0,Zt ] − r[γ̂ ± εn�nv
∗, γ0,Zt ]) = εn × op(n−1/2). This

claim holds since

μn(r[γ̂ , γ0,Zt ] − r[γ̂ ± εn�nv
∗, γ0,Zt ])

= μn

(

(γ̂ ,Zt ) − 
(γ̂ ± εn�nv

∗,Zt ) ± εn

∂
(γ0,Zt )

∂γ ′ [�nv
∗]

)

= ∓εnμn

(
∂
(γ̃ ,Zt )

∂γ ′ [�nv
∗] − ∂
(γ0,Zt )

∂γ ′ [�nv
∗]

)
= εn × op(n−1/2),

where γ̃ ∈ �n lies between γ̂ and γ̂ ± εn�nv
∗, and the last equality is implied by

Assumption 4.7.

CLAIM 3. E0(r[γ̂ , γ0,Zt ] − r[γ̂ ± εn�nv
∗, γ0,Zt ]) = ±εn〈γ̂ − γ0, v

∗〉 +
εnop(n−1/2) + op(n−1).

Note that

E0(r[γ, γ0,Zt ]) = E0

(

(γ,Zt) − 
(γ0,Zt ) − ∂
(γ0,Zt )

∂γ ′ [γ − γ0]
)

= 1

2
E0

(
∂2
(γ̃ ,Zt )

∂γ ∂γ ′ [γ − γ0, γ − γ0]

− ∂2
(γ0,Zt )

∂γ ∂γ ′ [γ − γ0, γ − γ0]
)

+ 1

2
E0

(
∂2
(γ0,Zt )

∂γ ∂γ ′ [γ − γ0, γ − γ0]
)

+ εn × op(n−1/2)

= 1

2
E0

(
∂2
(γ0,Zt )

∂γ ∂γ ′ [γ − γ0, γ − γ0]
)

+ εn × op(n−1/2) + op(n−1),
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where γ̃ ∈ �n is located between γ and γ0, and the last equality is due to Assump-
tion 4.6. By Lemma 4.1(3), we have

‖γ − γ0‖2

≡ E0

[(
∂
(γ0,Zt )

∂γ ′ [γ − γ0]
)2]

= −E0

(
∂2
(γ0,Zt )

∂γ ∂γ ′ [γ − γ0, γ − γ0]
)
.

Therefore,
E0(r[γ̂ , γ0,Zt ] − r[γ̂ ± εn�nv

∗, γ0,Zt ])

= −‖γ̂ − γ0‖2 − ‖γ̂ ± εn�nv
∗ − γ0‖2

2
+ op(εnn

−1/2) + op(n−1)

= ±εn〈γ̂ − γ0,�nv
∗〉 + 1

2
‖εn�nv

∗‖2 + op(εnn
−1/2) + op(n−1)

= ±εn × 〈γ̂ − γ0, v
∗〉 + εn × op(n−1/2) + op(n−1).

In summary, Claims 1, 2 and 3 imply that

0 ≤ 1

n

n∑
t=2

[
(γ̂ ,Zt ) − 
(γ̂ ± εn�nv
∗,Zt )]

= ∓εn

1

n

n∑
t=2

∂
(γ0,Zt )

∂γ ′ [v∗] ± εn × 〈γ̂ − γ0, v
∗〉 + εn × op(n−1/2) + op(n−1)

= ∓εnμn

(
∂
(γ0,Zt )

∂γ ′ [v∗]
)

± εn × 〈γ̂ − γ0, v
∗〉 + εn × op(n−1/2) + op(n−1).

Thus we obtain√
n〈γ̂ − γ0, v

∗〉 = √
nμn

(
∂
(γ0,Zt )

∂γ ′ [v∗]
)

+ op(1) ⇒ N(0,‖v∗‖2),

where the asymptotic normality is guaranteed by Billingsley’s (1961a) ergodic
stationary martingale difference CLT, and the asymptotic variance being equal to
‖v∗‖2 ≡ ‖ ∂ρ(γ0)

∂γ ′ ‖2 is implied by Lemma 4.1(1) and the definition of the Fisher
norm ‖ · ‖. �

PROOF OF THEOREM 4.2. Given our normality results in Theorem 4.1, for
our model we can take �n(v) = 1√

n

∑n
t=2

∂l(γ0,Zt )
∂γ ′ [v], which is linear in v and con-

verges in distribution to N(0,‖v‖2), and 1
2n

∑n
t=2(

∂l(γ0,Zt )
∂γ ′ [v])2 = 1

2‖v‖2 + op(1),
and hence LAN holds. Notice that the proof in Wong (1992) allows for time series
data, and following his proof, under LAN, we obtain that ρ(γ̂n) achieves the semi-
parametric efficiency bound. Alternatively, we can conclude that ρ(γ̂n) is semi-
parametrically efficient by applying the result of Bickel and Kwon (2001) which
allows for strictly stationary semiparametric Markov models. �

PROOF OF PROPOSITION 4.1. Thanks to Lemma 4.1, we can directly extend
the results in Bickel et al. (1993) for bivariate copula models with i.i.d. data to
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our copula-based first-order Markov time series setting. So the semiparametric
efficiency bound for α0 is I∗(α0) = E0{Sα0 S ′

α0
}, where Sα0 is the efficient score

function for α0, which is defined as the ordinary score function for α0 minus its
population least squares orthogonal projection onto the closed linear span (clsp)
of the score functions for the nuisance parameters g0. And α0 is

√
n-efficiently

estimable if and only if E0{Sα0 S ′
α0

} is nonsingular [see e.g. Bickel et al. (1993)].
Hence (4.3) is clearly a necessary condition for

√
n-normality and efficiency of α̂n

for α0. Under Assumptions 4.2, 4.3 and 4.4′, Propositions 4.7.4 and 4.7.6 of Bickel
et al. [(1993), pages 165–168] for bivariate copula models apply. Therefore, with
Sα0 defined in (4.4), we have that I∗(α0) = E0{Sα0 S ′

α0
} is finite, positive-definite.

This implies that Assumption 4.4 is satisfied with ρ(γ ) = λ′α and ω = ∞ and
‖v∗‖2 = ‖ ∂ρ(γ0)

∂γ ′ ‖2 = λ′I∗(α0)
−1λ < ∞. By Theorem 4.1, for any λ ∈ Rd, λ �= 0,

we have
√

n(λ′α̂n − λ′α0) ⇒ N (0, λ′I∗(α0)
−1λ). This implies Proposition 4.1.

�

PROOF OF THEOREM 5.1. The proof basically follows from that of Shen and
Shi (2005), except for our definition of joint log-likelihood, our definition of Fisher
norm ‖ · ‖, and our application of Billingsley’s CLT for ergodic stationary martin-
gale difference processes. These modifications are the same as those in our proof
of Theorem 4.1. A detailed proof is omitted due to the length of the paper but is
available upon request. �

APPENDIX B: TABLES AND FIGURES

Different estimators: Sieve = Sieve MLE; Ideal = Ideal MLE; 2step = Chen–
Fan; Para = correctly specified parametric MLE; Mis-N = parametric MLE using
misspecified normal distribution as marginal; Mis-EV = parametric MLE using
misspecified extreme value distribution as marginal.

Results are all based on 1000 MC replications of estimates using n = 1000 time
series simulation. Bias2

103 , Var103 and MSE103 are the true values of Bias2, Var and
MSE multiplied by 1000 respectively. τ = Kendall’s τ , λ =lower tail dependence
index.

TABLE 1
Clayton copula, true marginal G = t3: estimation of α

Sieve Ideal 2step Para Mis-N Mis-EV

α = 2 Mean 1.969 2.002 1.912 1.989 2.400 2.957
τ (0.500) Bias −0.031 0.002 −0.088 −0.011 0.400 0.957
λ(0.707) Var 0.019 0.007 0.101 0.012 0.103 0.056

MSE 0.020 0.007 0.109 0.012 0.264 0.971
αMC

(2.5,97.5)
(1.70, 2.25) (1.83, 2.17) (1.36, 2.60) (1.76, 2.19) (1.99, 3.28) (2.57, 3.36)
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TABLE 1
(Continued)

Sieve Ideal 2step Para Mis-N Mis-EV

α = 5 Mean 4.849 5.003 4.359 4.979 5.859 5.923
τ (0.714) Bias −0.151 0.003 −0.642 −0.021 0.859 0.923
λ(0.871) Var 0.093 0.026 1.247 0.041 0.189 0.338

MSE 0.116 0.026 1.658 0.042 0.927 1.190
αMC

(2.5,97.5)
(4.25, 5.48) (4.69, 5.32) (2.67, 7.12) (4.58, 5.35) (5.36, 6.95) (4.89, 6.62)

α = 10 Mean 9.687 10.00 7.115 9.967 11.42 11.57
τ (0.833) Bias −0.313 0.004 −2.886 −0.033 1.425 1.570
λ(0.933) Var 0.351 0.085 4.852 0.129 0.577 1.194

MSE 0.449 0.085 13.18 0.130 2.607 3.659
αMC

(2.5,97.5)
(8.68, 10.87) (9.43, 10.6) (3.87, 12.5) (9.26, 10.6) (10.33, 12.9) (9.68, 12.9)

α = 12 Mean 11.62 12.01 7.896 11.98 13.67 13.82
τ (0.857) Bias −0.382 0.012 −4.104 −0.016 1.668 1.816
λ(0.944) Var 0.541 0.119 5.656 0.222 0.770 1.917

MSE 0.687 0.120 22.50 0.222 3.552 5.214
αMC

(2.5,97.5)
(10.5, 13.3) (11.3, 12.7) (4.35, 13.6) (11.0, 12.9) (12.3, 15.7) (11.4, 15.4)

TABLE 2
Gumbel copula, true marginal G = t3: estimation of α

Sieve Ideal 2step Para Mis-N Mis-EV

α = 2 Mean 2.002 1.999 1.982 1.992 2.377 1.864
τ (0.5) Bias 0.002 −0.001 −0.018 −0.008 0.377 −0.136

Var 0.007 0.002 0.013 0.005 0.153 0.026
MSE 0.007 0.002 0.014 0.005 0.295 0.045

αMC
(2.5,97.5)

(1.85, 2.18) (1.91, 2.10) (1.78, 2.23) (1.85, 2.14) (1.99, 3.55) (1.60, 2.22)

α = 3.5 Mean 3.486 3.498 3.352 3.481 3.906 3.629
τ (0.714) Bias −0.014 −0.002 −0.148 −0.019 0.406 0.129

Var 0.064 0.008 0.130 0.021 0.269 0.315
MSE 0.064 0.008 0.152 0.021 0.434 0.331

αMC
(2.5,97.5)

(3.06, 4.07) (3.34, 3.68) (2.76, 4.20) (3.21, 3.87) (3.21, 5.38) (2.73, 4.83)

α = 6 Mean 5.797 5.998 5.253 5.971 6.359 6.8805
τ (0.833) Bias −0.203 −0.002 −0.747 −0.029 0.359 0.881

Var 0.320 0.023 0.676 0.071 0.396 2.328
MSE 0.362 0.023 1.235 0.072 0.525 3.103

αMC
(2.5,97.5)

(4.67, 6.95) (5.72, 6.31) (3.92, 7.17) (5.47, 6.67 ) (5.20, 7.48) (4.32, 9.78)

α = 7 Mean 6.667 6.997 5.873 6.971 7.357 8.257
τ (0.857) Bias −0.333 −0.003 −1.127 −0.029 0.357 1.257

Var 0.456 0.032 0.968 0.106 0.506 3.859
MSE 0.566 0.032 2.238 0.107 0.633 5.438

αMC
(2.5,97.5)

(5.34, 8.12) (6.67, 7.37) (4.23, 8.20) (6.34, 7.79) (6.01, 8.58) (4.96, 12.24)
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TABLE 3
Clayton copula, true marginal G = t3: estimation of G. Reported Bias2, Var and MSE are the true

ones multiplied by 1000

Sieve 2step Para Mis-N Mis-EV

Q1/3 Q2/3 Q1/3 Q2/3 Q1/3 Q2/3 Q1/3 Q2/3 Q1/3 Q2/3

α = 2 Mean 0.325 0.673 0.333 0.666 0.333 0.667 0.347 0.557 0.382 0.614
τ (0.500) Bias2

103 0.026 0.007 0.011 0.013 0.009 0.009 0.282 12.84 2.710 3.145
λ(0.707) Var103 0.054 0.049 1.430 0.801 0.002 0.002 1.921 5.651 0.755 0.947

MSE103 0.080 0.056 1.441 0.814 0.011 0.011 2.203 18.49 3.465 4.092

α = 5 Mean 0.322 0.671 0.332 0.667 0.333 0.667 0.331 0.537 0.342 0.579
τ (0.714) Bias2

103 0.072 0.002 0.003 0.011 0.009 0.009 0.001 17.65 0.134 8.276
λ(0.871) Var103 0.081 0.085 6.474 2.969 0.002 0.002 1.401 5.697 2.234 5.346

MSE103 0.153 0.087 6.478 2.980 0.011 0.011 1.403 23.35 2.369 13.62

α = 10 Mean 0.319 0.664 0.331 0.666 0.333 0.667 0.364 0.584 0.371 0.624
τ (0.833) Bias2

103 0.128 0.042 0.001 0.013 0.009 0.009 1.132 7.452 1.642 2.123
λ(0.933) Var103 0.109 0.137 22.28 9.800 0.003 0.003 0.711 3.410 2.103 4.192

MSE103 0.236 0.178 22.29 9.813 0.012 0.012 1.843 10.86 3.744 6.315

α = 12 Mean 0.318 0.661 0.331 0.665 0.333 0.667 0.374 0.598 0.375 0.633
τ (0.857) Bias2

103 0.154 0.079 0.001 0.023 0.010 0.010 1.903 5.242 2.052 1.351
λ(0.944) Var103 0.127 0.141 28.83 12.08 0.003 0.003 0.950 2.662 2.494 4.934

MSE103 0.281 0.220 28.83 12.10 0.013 0.013 2.853 7.904 4.547 6.286

TABLE 4
Gumbel copula, true marginal G = t3: estimation of G

Sieve 2step Para Mis-N Mis-EV

Q1/3 Q2/3 Q1/3 Q2/3 Q1/3 Q2/3 Q1/3 Q2/3 Q1/3 Q2/3

α = 2 Mean 0.328 0.673 0.333 0.666 0.333 0.667 0.401 0.613 0.519 0.737
τ (0.500) Bias2

103 0.004 0.011 0.007 0.018 0.009 0.009 5.069 3.239 35.53 4.456
Var103 0.059 0.063 0.755 1.025 0.003 0.003 2.389 3.111 10.44 7.202

MSE103 0.063 0.074 0.762 1.043 0.012 0.012 7.457 6.350 45.98 11.66

α = 3.5 Mean 0.328 0.675 0.332 0.665 0.333 0.667 0.524 0.719 0.565 0.746
τ (0.714) Bias2

103 0.004 0.025 0.005 0.030 0.009 0.009 37.55 2.386 55.42 5.762
Var103 0.139 0.147 2.353 3.482 0.004 0.004 18.71 9.238 28.40 18.12

MSE103 0.143 0.171 2.358 3.511 0.013 0.013 56.26 11.62 83.82 23.88

α = 6 Mean 0.325 0.681 0.330 0.664 0.333 0.667 0.501 0.700 0.497 0.676
τ (0.833) Bias2

103 0.025 0.120 0.000 0.036 0.009 0.009 29.17 0.899 27.97 0.037
Var103 0.273 0.255 6.840 10.37 0.005 0.005 40.49 20.60 40.98 29.81

MSE103 0.298 0.375 6.840 10.41 0.014 0.014 69.66 21.50 68.96 29.84

α = 7 Mean 0.324 0.684 0.329 0.665 0.333 0.667 0.477 0.679 0.476 0.655
τ (0.857) Bias2

103 0.041 0.182 0.000 0.029 0.009 0.009 21.46 0.076 21.35 0.227
Var103 0.314 0.275 9.362 13.79 0.006 0.006 49.51 26.89 45.82 33.93

MSE103 0.355 0.457 9.362 13.82 0.016 0.016 70.97 26.96 67.16 34.16
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TABLE 5
Clayton copula, true marginal G = t3: estimation of 0.01 conditional quantile

Sieve Ideal 2step Para Mis-N Mis-EV

α = 5 IntBias2
103 36.26 0.000 150.0 0.172 900.7 704.8

τ (0.714) IntVar103 32.15 5.450 985.3 10.18 463.7 313.4
λ(0.871) IntMSE103 68.41 5.450 1135 10.35 1364 1018

α = 10 IntBias2
103 7.712 0.000 527.3 0.040 815.3 427.4

τ (0.833) IntVar103 19.36 2.475 855.3 3.716 361.7 202.7
λ(0.933) IntMSE103 27.07 2.475 1383 3.756 1177 630.1

α = 12 IntBias2
103 2.851 0.000 367.7 0.004 181.1 175.9

τ (0.857) IntVar103 6.236 1.068 590.9 1.578 59.44 46.12
λ(0.944) IntMSE103 9.086 1.069 958.7 1.582 240.5 222.0

For each α, evaluation is based on the common support of 1000 MC simulated data. Reported inte-

grated Bias2, integrated Var and the integrated MSE are the true ones multiplied by 1000.

FIG. 2. Clayton copula (true α = 10, marginal G = t5, t3): estimation of 0.01 conditional quantile.
Evaluation is based on the common support of 1000 MC simulated data.
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