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CONDITIONAL PREDICTIVE INFERENCE
POST MODEL SELECTION

BY HANNES LEEB

Yale University

We give a finite-sample analysis of predictive inference procedures after
model selection in regression with random design. The analysis is focused
on a statistically challenging scenario where the number of potentially im-
portant explanatory variables can be infinite, where no regularity conditions
are imposed on unknown parameters, where the number of explanatory vari-
ables in a “good” model can be of the same order as sample size and where
the number of candidate models can be of larger order than sample size. The
performance of inference procedures is evaluated conditional on the train-
ing sample. Under weak conditions on only the number of candidate models
and on their complexity, and uniformly over all data-generating processes un-
der consideration, we show that a certain prediction interval is approximately
valid and short with high probability in finite samples, in the sense that its
actual coverage probability is close to the nominal one and in the sense that
its length is close to the length of an infeasible interval that is constructed
by actually knowing the “best” candidate model. Similar results are shown to
hold for predictive inference procedures other than prediction intervals like,
for example, tests of whether a future response will lie above or below a given
threshold.

1. Introduction.

1.1. Motivation and summary. This paper is about inference on future obser-
vations based on a model that has been selected on the basis of the data and then
fitted to the same data. We focus, in particular, on situations where the number
of candidate models is large and where the number of explanatory variables in a
“good” model can be large as well, in relation to sample size. Such a situation is
faced, for example, by Stenbakken and Souders [31] who predict the performance
of analog/digital converters from partial measurements by selecting 64 explanatory
variables (measurements) from a total of 8192 based on a sample of size 88; fur-
ther examples include [1, 8, 12, 30, 33–35] and [37]. Note that, in these studies, the
model that is selected, on the basis of the data, is often quite complex in relation to
sample size, in the sense that the number of explanatory variables in the selected
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model and the sample size are of the same order of magnitude. Also note that the
total number of candidate models in these studies exceeds sample size by several
orders of magnitude. In such situations, inferential tools that assess the predictors’
accuracy like, for example, the mean-squared error of the predictor, or prediction
intervals, are needed.

We consider a Gaussian regression model with random design, where the num-
ber of explanatory variables can be infinite, and where no regularity conditions
are imposed on the unknown parameters. We use a variant of generalized cross-
validation to evaluate the performance of candidate models for prediction out-of-
sample,1 to select a “good” model and to conduct predictive inference based on
the selected model. The performance of the resulting model selector and the qual-
ity of predictive inference procedures are evaluated conditional on the training
sample. We describe the performance of these methods by explicit finite-sample
performance bounds. For example, we show that the proposed prediction interval
is approximately valid and short, with high probability, even in statistically chal-
lenging situations where the number of explanatory variables in a “good” model
is of the same order as sample size, and where the total number of candidate mod-
els is of a larger order than sample size. Here, approximately valid means that
the prediction interval’s actual coverage probability is close to the nominal one,
and approximately short means that its length is close to the length of a certain
infeasible “prediction interval” that is based on actually knowing the “best” can-
didate model. Our results hold uniformly over all data-generating processes under
consideration.

1.2. Our results in broader context. In the literature, results on predictive in-
ference after model selection are scarce.2 The finite-sample distribution of a linear
predictor based on the selected model can be computed explicitly in sufficiently
simple settings (see Leeb [18] and [19]). However, these results only allow for
rather restricted collections of candidate models; moreover, as the number of can-
didate models increases, the resulting formulae get increasingly complicated and
computationally infeasible. From the perspective of traditional large-sample analy-
ses, on the other hand, predictive inference after model selection is typically rather
trivial. Consider, for example, a parametric linear model where the response is
a linear function of a finite number of explanatory variables and a random dis-
turbance. Under standard assumptions, every sensible model selection procedure

1Here, prediction “out-of-sample” means prediction of new responses given hitherto unobserved
explanatory variables, whereas “in-sample” prediction means prediction of new responses for the
same explanatory variables as observed in the training data.

2This is in spite of the fact that predictive inference by itself is a rather well researched field (see,
e.g., [3] and [9] for a frequentist and a Bayesian approach, respectively, as well as the references
given there).
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typically leads to a post model selection estimator that is consistent, even uni-
formly consistent (see, e.g., Propositions A.9 and B.1 in [22]). In large samples,
the random disturbance is therefore the dominant source of error when predicting
a new response. Thus, as far as prediction is concerned, all sensible model selec-
tion procedures perform alike in parametric settings in the large-sample limit. The
same is true in nonparametric settings for appropriately chosen estimators of the
true regression function, provided that the regression function is a priori restricted
to a sufficiently regular family like, say, a Besov body or a collection thereof, as it
is often considered in nonparametric function estimation. In situations where the
true regression parameter or function can be estimated consistently or uniformly
consistently, research is typically focused on finding estimators with good con-
vergence rates, or on finding confidence sets for the true regression parameter or
function that are valid and small.

In this paper, we consider predictive inference after model selection in a situ-
ation that is difficult to analyze by exact finite-sample results or by large-sample
limit theory. In particular, we focus on the statistically challenging scenario where
the number of explanatory variables in a “good” model can be of the same order
as sample size, and where the number of candidate models can be of larger order
than sample size. This situation is typically too complex for an exact finite-sample
analysis. Also, this situation is such that large-sample limit approximations cannot
be guaranteed to be accurate in most cases. We do not rule out the case where: (i) a
very simple model fits well and (ii) the number of candidate models is small, in
relation to sample size. However, our results are most interesting in the case where
one of these two conditions is not met.

There are, however, a couple of results, in both parametric and nonparametric
settings, that indicate that inference after model selection is a hard problem that
is subject to certain insurmountable obstructions. Most of these results consider
inference on the regression parameter itself, on components thereof or on the mean
of a future response.

Consider, first, a parametric linear model, with Gaussian errors and fixed de-
sign (under standard assumptions), and a linear predictor that is constructed based
on the outcome of a data-driven model selection step. It is well known that the
distribution of such a linear predictor, properly scaled and centered, typically de-
pends on unknown parameters in a nontrivial way and can be highly nonnormal,
regardless of sample size (see [21, 27]).3 Moreover, Leeb and Pötscher [23, 24]
showed that the distribution of such a linear predictor cannot be estimated in a
uniformly consistent fashion, except in degenerate and trivial cases. Concerning

3This fact is at odds with a result of Shen, Huang and Ye [29], which claims that the limit dis-
tribution of a post model selection estimator in a parametric setting is normal with mean zero and
estimable variance/covariance matrix (see Theorems 3 and 4 in that paper). Inspection of that paper
reveals that the proof of Theorem 3 is in error as it stands, and that said theorem does not hold as
claimed. Private communication with the authors has confirmed this.
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confidence intervals for the mean of a future response, the results of Joshi [15]
entail in the known-variance case that the standard interval based on fitting the
overall model is admissible and uniquely minimax with respect to a loss func-
tion that measures both coverage probability and interval size (in the class of all
randomized Lebesgue measurable confidence sets and up to trivial equivalences).
(See also [17] for further references and results on confidence intervals post model
selection.)

In nonparametric function estimation, there are well-known limits to the adap-
tivity of honest L2 confidence balls for the true regression function. Here, “hon-
est” means that the confidence ball guarantees coverage probability over the whole
function space under consideration, and “adaptivity” means that smoother regres-
sion functions (i.e., functions that belong to restricted submodels) are covered by
smaller balls. In essence, larger function spaces limit the amount of adaptivity pos-
sible. This was first discovered by Li [25] and was further analyzed in [2, 4, 6, 7,
10, 14, 16] and [28]. Moreover, Baraud [2] also shows that honest and short confi-
dence balls are feasible only if the error variance is assumed to lie in some bounded
subset of (0,∞), and that loose variance bounds close to zero or infinity lead to
large confidence balls. If an honest confidence band (i.e., an L∞ confidence ball)
is desired, then the limits to adaptivity are even more pronounced (see [11]).

In the setting of this paper, where the goal is prediction out-of-sample, we
demonstrate that prediction intervals post model selection can be simultaneously
valid and short in an approximate sense and with high probability, irrespective of
unknown parameters. The proposed prediction interval has the following two prop-
erties, except on an event whose probability is bounded by the expression in (1),
which follows: (i) Its actual coverage probability is close to the nominal cover-
age probability. (ii) Its length is close to the length of a certain infeasible shortest
possible interval that is constructed from actually knowing the “best” candidate
model. These statements hold uniformly over all data-generating processes under
consideration.

On a technical level, this paper is related to Breiman and Freedman [5] in two
regards: First, the model considered in this paper contains the model considered
in [5] as a special case [see the discussion following (2)], and, second, our results
rely on a corresponding extension of Theorem 1.3 of [5] (see Proposition 2.1 and
the attending discussion). The results derived here, however, differ considerably
from those of [5] in terms of scope and content. We allow for families of candi-
date models of essentially arbitrary size and structure, while [5] is focused on up
to n/2 models that are nested (where n denotes sample size). Moreover, we give
finite-sample results that hold uniformly over all data-generating processes under
consideration, while the main result in [5] is a pointwise large-sample limit re-
sult that requires that the true regression parameter has infinitely many nonzero
components.
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1.3. Outline of the paper. As the data-generating process, we consider a
Gaussian linear model with random design that is described in Section 2, where
the number of potentially important explanatory variables can be infinite. We as-
sume that the error and also the explanatory variables are jointly Gaussian, like
Breiman and Freedman [5]. Assuming the data to be Gaussian allows us to derive
explicit finite-sample performance bounds by relatively elementary means and to
clearly showcase the mechanisms underlying our results. Simulation results in [20]
strongly suggest that the assumption of Gaussianity is not essential, and unpub-
lished preliminary results, which rely on random matrix theory, point in the same
direction. The unknown parameters in this setting are the sequence of regression
coefficients as well as the means and the variance/covariance structure of the ex-
planatory variables and of the error term. No additional regularity conditions are
imposed on the unknown parameters.

We consider a scenario where the model is selected and fitted to the data once
and is then used repeatedly for prediction and for predictive inference. For per-
formance measures, like the mean-squared error of a predictor or the coverage
probability or length of a prediction interval, we therefore adopt a conditional per-
spective and treat the training sample as fixed and the future response and its cor-
responding explanatory variables as random.4

Given a sample of size n and a collection M of candidate models, a preliminary
first goal is to evaluate models m ∈ M based on their performance for prediction
out-of-sample, and to select a model that performs well for this purpose; this is the
subject of Section 3. Our second and main goal is to conduct inference on future
observations based on the selected model like, for example, prediction intervals;
this goal is studied in Section 4.

To achieve both goals outlined in the preceding paragraph, we consider a model
selector and predictive inference procedures post model selection that are based on
a variant of generalized cross-validation (and that are described in detail later). We
show that the proposed prediction interval is approximately valid and short, except
on an event whose probability is bounded by

C1 exp[log #M − C2(n − |M|)],(1)

uniformly over all data-generating processes under consideration. Here, #M is the
number of candidate models, |M| is the number of explanatory variables in the
most complex candidate model and C1 and C2 are explicit positive constants. The
bound in (1) decreases exponentially fast in n− |M| and increases only linearly in
#M. This allows for very large classes of potentially complex candidate models. If
the upper bound in (1) is small, the proposed prediction interval is approximately
valid and its length is close to that of a certain infeasible “prediction interval” that

4This deviates from conventional linear model theory, where, usually, the training sample is consid-
ered random and where, often, the explanatory variables that are used for prediction are considered
as fixed. Regarding prediction intervals, our approach may be compared to the average coverage
probability introduced by Wahba [36] and further analyzed in [26].
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is based on actually knowing the “best” candidate model, with high probability
(see Propositions 4.3 and 4.4 on page 2852 for details). Furthermore, we show that
the following statements hold, except on an event whose probability is bounded
by (1) (with different values of the constants C1 and C2): (i) The performance
of the selected model is close to the performance of the “best” candidate model;
(ii) the estimated performance of the selected model is close to its actual perfor-
mance; and (iii) in general, the proposed procedures for predictive inference post
model selection are approximately valid. In a simulation example, we use a train-
ing sample of 2000 observations to perform a greedy search through a pool of over
1015 candidate models (see Section 5).

2. Basic assumptions and quantities of interest. For the data-generating
process, consider a response y that is related to a collection of explanatory vari-
ables (xj )j≥1 by

y =
∞∑

j=1

xjβj + u.(2)

Assume that the model includes an intercept (i.e., x1 = 1) and that the xj ’s for
j > 1 and u are jointly nondegenerate Gaussian with unknown means and vari-
ance/covariance structure, such that the sum converges in L2.5 No additional reg-
ularity conditions will be imposed on the data-generating process throughout the
paper. Breiman and Freedman [5] consider a special case of (2), where the mean
of the explanatory variables is known (and equal to zero), and where no intercept
is included (i.e., β1 = 0).

The minimal requirement, that the right-hand side of (2) converges in squared
mean, restricts the possible values of β = (βj )j≥1 in a way that depends on the
moments of the explanatory variables. For example, if the xj ’s, j > 1, are inde-
pendent and identically distributed with mean zero and variance, say, one, then
β can be any sequence of coefficients in l2. This shows that (2) covers a large
class of data-generating processes; further examples are outlined in Remark 6.1.
Of course, (2) also covers parametric models with only finitely many explanatory
variables (i.e., the case where βj = 0 from some index onward). Moreover, the
requirement of nondegeneracy can be relaxed as outlined in Remark 6.2.

Consider a sample of size n from (2). The sample will be denoted by (Y,X) with
Y denoting the n-vector Y = (y(1), . . . , y(n))′ and X denoting the n × ∞ “matrix”
or net X = (x(1), . . . , x(n))′, where (y(i), x(i)) are independent and identically dis-
tributed (i.i.d.) copies of (y, x) as in (2).

5Hence, the distribution of any finite subset of {xj : j > 1} ∪ {u} is a nondegenerate Gaussian
with unknown mean-vector and variance/covariance matrix. It is often also assumed that the xj ’s
are uncorrelated with u and that u has mean zero. This assumption is not needed here. In essence,
u plays the role of as an unobserved explanatory variable.
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The training sample will be used to fit finite-dimensional submodels of (2) that
restrict some coefficients of β to zero, where the intercept β1 is always left unre-
stricted. Each such submodel is described by a 0–1 sequence m = (mj )j≥1, where
mj = 0 if the j th coefficient of β is restricted to zero and mj = 1, otherwise. The
number of unrestricted regression coefficients (i.e.,

∑
j≥1 mj ) is denoted by |m|.

We assume that |m| < n − 1 throughout the paper.
Consider a finite collection of candidate models that will be denoted by M

(which, of course, may depend on sample size n). Assume that each model m ∈ M
satisfies

m1 = 1 and |m| < n − 1(3)

as before.6 We write |M| for the number of parameters in the most complex model
in M; that is,

|M| = max
m∈M

|m|,
and we write #M for the number of candidate models in M.

For later use, let σ 2(m) denote the variance of y conditional on those explana-
tory variables that are included in the model m; that is,

σ 2(m) = Var[y|xj :mj = 1, j ≥ 1]
for each m ∈ M. Note that this conditional variance does not depend on the xj ’s
because y and (xj )j≥1 are jointly Gaussian. Also note that 0 < Var[u] ≤ σ 2(m) ≤
Var[y] for each data-generating process as in (2); in particular, σ 2(m) is always
positive.

The least-squares method will be used to fit models to the training sample.7 The
restricted least-squares estimator corresponding to a model m ∈ M is denoted by
β̂(m) = (β̂j (m))j≥1 and is defined as follows: For j satisfying mj = 0, β̂j (m)

equals zero; the |m| remaining components of β̂(m) are obtained by regressing Y

on the observed values of those regressors that are included in the model m (on
the probability zero event where the resulting n × |m| regressor matrix is rank
deficient, we use the Moore–Penrose inverse, say, in the least-squares formula).
The usual variance estimator based on model m will be denoted by σ̂ 2(m) and is
given by σ̂ 2(m) = (n−|m|)−1 RSS(m) with RSS(m) denoting the residual sum of

6In practice, the choice of candidate models M to consider at sample size n is often guided by
prior knowledge or suspicions about the structure of the underlying parameters. For example, if it is
assumed or suspected that the coefficients of β are sparse in an appropriate sense, one might consider
appropriately sparse candidate models a well; such a case is discussed in the simulation example in
Section 5. Another example is the case where the coefficients of β are assumed or suspected to taper
off at a certain rate.

7While it is tempting to also consider penalized least-squares or more general shrinkage estimators,
particularly for complex candidate models, our current methods cannot handle these estimators.
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squares obtained by fitting model m to the training sample [note that σ̂ 2(m) > 0,
almost surely].

The performance of a model will be evaluated in terms of the conditional mean-
squared error of the linear predictor obtained from fitting the model to the training
sample. Let (y(f ), x(f )) be a new copy of (y, x) as in (2), independent of the
sample (Y,X). Based on a model m ∈ M and the sample (Y,X), the usual least-
squares predictor of y(f ) will be denoted by ŷ(f )(m) and is given by

ŷ(f )(m) =
∞∑

j=1

x
(f )
j β̂j (m).

Note that all but |m| coefficients of the restricted least-squares estimator β̂(m) are
zero. The conditional mean-squared error of the predictor is now defined as

ρ2(m) = E
[(

ŷ(f )(m) − y(f ))2|Y,X
]
.

Note that ρ2(m) depends on the training sample and, hence, is a random vari-
able, and that ρ2(m) also depends on the unknown parameters in (2). In particular,
ρ2(m) is unknown. We will also consider the corresponding unconditional mean-
squared error of the predictor (i.e., E[ρ2(m)]) and the positive square root ρ(m)

of ρ2(m).
If the predictor ŷ(f )(m) is to be used for inferences about a new response

y(f ), the distribution of the prediction error ŷ(f )(m) − y(f ) is of particular in-
terest. Conditional on the training sample, the distribution of the prediction error
ŷ(f )(m) − y(f ) will be denoted by L(m). Clearly, L(m) is a Gaussian, and we
write ν(m) for the mean of that distribution and δ(m) for its standard deviation. In
other words,

ŷ(f )(m) − y(f )|Y,X ∼ N(ν(m), δ2(m)) ≡ L(m).

Note that ν(m) is also the conditional bias of the predictor ŷ(f )(m), conditional
on the training sample. As before, also note that the distribution of these quantities
depends on the unknown parameters in (2), so that ν(m) and δ2(m) are unknown.
Of course, we have ρ2(m) = ν2(m) + δ2(m).

In terms of the conditional mean-squared error of prediction, the best candidate
model is a minimizer of ρ2(m) over m ∈ M. We write mρ for such a minimizer;
that is,

mρ = arg min
m∈M

ρ2(m)

(on the event of multiple minimizers, mρ is taken as a measurable selection from
the set of minimizers). In Section 4, we will also consider the candidate model
for which the conditional distribution of the prediction error [i.e., L(m)] is most
concentrated. That model [i.e., a measurable minimizer of δ2(m) over m ∈ M] is
denoted by mδ .
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For deriving and analyzing estimators for the quantities of interest δ2(m), ν2(m)

and ρ2(m) and for understanding the mechanisms underlying our main findings,
the following result will be instrumental.

PROPOSITION 2.1. For each fixed model m ∈ M, the conditional variance
of the prediction error ŷ(f )(m) − y(f ) given (Y,X) [i.e., δ2(m)] has the same
distribution as σ 2(m) multiplied by the sum of one and the ratio of two independent
chi-square random variables with |m| − 1 and n − |m| + 1 degrees of freedom,
respectively:

δ2(m) ∼ σ 2(m)

(
1 + χ2|m|−1

χ2
n−|m|+1

)
.

The conditional bias of ŷ(f )(m) given (Y,X) has mean zero (i.e., E[ν(m)] = 0).
Moreover, the squared conditional bias ν2(m) has the same distribution as
δ2(m)/n multiplied by an independent chi-square random variable with one de-
gree of freedom:

ν2(m) ∼ χ2
1

n
σ 2(m)

(
1 + χ2|m|−1

χ2
n−|m|+1

)
.

Finally, the usual variance estimator in model m is distributed as σ̂ 2(m) ∼
σ 2(m)χ2

n−|m|/(n − |m|) [in case |m| = 1, the expression χ2|m|−1 in the preceding

two displays is to be interpreted as constant equal to zero, so that δ2(m) = σ 2(m)

and ν2(m) ∼ (χ2
1 /n)σ 2(m) in this case].

Proposition 2.1 extends Theorem 1.3 of Breiman and Freedman [5], which de-
scribes the distribution of δ2(m) in the case where the regressors in (2) all have
mean zero and where models do not contain an intercept. For a slightly different
conditioning sigma-field, the distribution of the corresponding conditional mean-
squared error of the predictor is also derived by Thompson [32].

Proposition 2.1 shows that the squared conditional bias ν2(m) is of smaller or-
der, by a factor of 1/n and in probability, than the conditional variance δ2(m).
A little reflection shows that this is no surprise, for example, in the case where the
fitted model is correct (i.e., in the case where m contains all nonzero coefficients
of β). By Proposition 2.1, the same is true regardless of how well the fitted model
describes the true one. Of course, ν2(m) can be substantial because of either overfit
or underfit, say. But, irrespective of that, the conditional variance δ2(m) is the dom-
inating factor in ρ2(m) = ν2(m) + δ2(m), in probability. Another feature revealed
by Proposition 2.1 is that the distributions of ν2(m) and δ2(m) depend on the un-
known parameters in (2) only through σ 2(m), and that σ 2(m) can be estimated
from the training sample with good accuracy, provided only that n − |m| is large.
For later use, we can also read-off the expected values of δ2(m), ν2(m) and ρ2(m)
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from Proposition 2.1. Because the mean of 1/χ2
n−|m|+1 equals 1/(n − |m| − 1) for

n − |m| − 1 > 0, the mean of δ2(m) equals σ 2(m)(n − 2)/(n − |m| − 1) and the
mean of ν2(m) is n−1σ 2(m)(n − 2)/(n − |m| − 1). From this, we also see that
the mean of ρ2(m), that is, the (unconditional) mean-squared error of the predictor
ŷ(f )(m), is given by

E[ρ2(m)] = σ 2(m)
n − 2

n − 1 − |m|
(

1 + 1

n

)
.

This formula for E[ρ2(m)] is also derived in [13] and [32] by different means. Fi-
nally, Proposition 2.1 suggests that δ2(m)/E[δ2(m)] is close to one provided only
that n − |m| is sufficiently large, and that the same is true for ρ2(m)/E[ρ2(m)].
Formalizing this idea and using variations of Chernoff’s method will lead to the
main results of this paper, Theorems 3.1 and 4.1, which follow.

3. Evaluating and selecting models. The performance of model m, as mea-
sured by the conditional mean-squared error of the predictor ŷ(f )(m) [i.e., as mea-
sured by ρ2(m)] depends on unknown parameters and, hence, cannot be used di-
rectly for model selection. We now consider several estimators for ρ2(m). In view
of Proposition 2.1 and the ensuing formula for E[ρ2(m)], we see that an unbiased
estimator for E[ρ2(m)] is given by

ρ̌2(m) = σ̂ 2(m)
n − 2

n − 1 − |m|
(

1 + 1

n

)

(see also [13, 32]). Of course, this estimator is also unbiased for ρ2(m). The esti-
mator ρ̌2(m) is closely related to two well-known model selectors, namely gener-
alized cross-validation and the Sp criterion, whose objective functions are defined
by

GCV(m) = σ̂ 2(m)
n

n − |m| and Sp(m) = σ̂ 2(m)
n − 2

n − 1 − |m| ,

respectively. For fixed sample size n, choosing a model m that minimizes ρ̌2(m)

is equivalent to choosing a model that minimizes Sp(m). Moreover, for most prac-
tical purposes, the difference between ρ̌2(m), Sp(m) and GCV(m) will be negli-
gible. Because of technical reasons, we consider another estimator that is closely
related to the three discussed so far. That estimator will be denoted by ρ̂2(m) and
is given by

ρ̂2(m) = σ̂ 2(m)
n

n + 1 − |m| .

Again, note that the difference between ρ̂2(m), ρ̌2(m), GCV(m) and Sp(m) will
be negligible for most practical purposes. The relation between GCV(m) or Sp(m)

and other well-known model selection criteria in our setting is discussed in detail
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in Section 3.3 of [20]. The next result describes the performance of ρ̂2(m) as an
estimator for the conditional mean-squared error of the predictor [i.e., as an esti-
mator for ρ2(m)] in finite samples.8

THEOREM 3.1. Fix a candidate model m ∈ M. For each ε > 0, we have

P

(∣∣∣∣log
ρ̂2(m)

ρ2(m)

∣∣∣∣ > ε

)
≤ 6 exp

[
−n − |m|

8

ε2

ε + 8

]
.(4)

The relation in the preceding display holds uniformly over the set of all data-
generating processes as in (2).

Theorem 3.1 shows that the estimated performance of model m is close to its
true performance, in the sense that the ratio ρ̂2(m)/ρ2(m) is close to one with high
probability, provided only that n − |m| is large enough, independently of the un-
known parameters. The theorem places no restriction on sample size n and on the
candidate model m [except for (3) that is maintained throughout the paper]. How-
ever, the result is most interesting in the case where the sample size is relatively
small compared to the number of parameters in the model, in the sense that |m|/n

is not close to zero. In that case, other model selectors like, say, AIC, AICc, FPE or
BIC, give a distorted picture of the model’s performance, and the model selected
by one of these model selection criteria can be anything from mildly suboptimal to
completely unreasonable, depending on unknown parameters. These phenomena
are discussed at length in Section 3.3 of [20] for the special case where the re-
gressors in (2) are centered to have mean zero and where candidate models do not
include an intercept. That discussion also applies to the setting that is considered
here, mutatis mutandis.

Because the upper bound in (4) decreases exponentially fast in n − |m|, Theo-
rem 3.1 can be used together with Bonferroni’s inequality to describe the perfor-
mance of ρ̂2(m) when this estimator is used to evaluate the performance of several
candidate models. For the collection M of candidate models introduced at the end
of Section 2, recall that model mρ minimizes ρ2(m) over m ∈ M. The truly best
model mρ is of course infeasible, but Theorem 3.1 suggests that ρ̂2(m) can be
taken as a proxy for ρ2(m). Define the empirically best model m̂ as a (measurable)
minimizer of ρ̂2(m) over M; that is,

m̂ = arg min
m∈M

ρ̂2(m).

For the next result, recall that |M| denotes the number of parameters in the most
complex candidate model and that #M denotes the total number of candidate mod-
els.

8In Theorem 3.1, the expression | log ρ̂2(m)/ρ2(m)| is, of course, well defined in case ρ̂2(m) > 0

or, equivalently, in case σ̂ 2(m) > 0, which is an almost sure event. In case ρ̂2(m) = 0,
| log ρ̂2(m)/ρ2(m)| is to be interpreted as ∞. The same convention is also used, mutatis mutandis,
in the results that follow.
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COROLLARY 3.2. For each ε > 0 and uniformly over all data-generating
processes as in (2), we have

P

(
log

ρ2(m̂)

ρ2(mρ)
> ε

)
≤ 6 exp

[
log #M − n − |M|

16

ε2

ε + 16

]
(5)

and

P

(∣∣∣∣log
ρ̂2(m̂)

ρ2(m̂)

∣∣∣∣ > ε

)
≤ 6 exp

[
log #M − n − |M|

8

ε2

ε + 8

]
.(6)

The first inequality of Corollary 3.2 relates the performance of the empirically
best model (i.e., m̂) to that of the actually best candidate model (i.e., mρ ) in terms
of the relative performance ρ2(m̂)/ρ2(mρ); if the upper bound in (5) is small, the
performance of m̂ is close to that of mρ with high probability. In that case, one
can select a “good” model on the basis of the data with high probability. More-
over, the second inequality shows that the performance of the selected model can
be estimated accurately, in terms of the relative error | log ρ̂2(m̂)/ρ2(m̂)|, with
high probability, provided that the upper bound in (6) is small. It should be noted
that the upper bounds in (5) and (6) do not depend on unknown parameters but
only on sample size, on the number of candidate models, and on the number of
parameters in the most complex candidate model (i.e., on n, #M and |M|). In
particular, these upper bounds are small if the degrees of freedom in the most
complex candidate model (i.e., n − |M|) is sufficiently large compared to log #M.
This allows for very large classes of potentially very complex candidate models
[see also Remark 6.3 for a discussion of the role of the constants #M and |M|
in the upper bounds (5), (6), and in the results that follow]. Finally, we note that
we actually establish a slightly stronger result during the proof of Corollary 3.2,
namely that the result continues to hold with the left-hand side of (6) replaced by
P(maxm∈M | log ρ̂2(m)/ρ2(m)| > ε). In other words, if the upper bound in (6) is
small, then ρ̂2(m)/ρ2(m) is close to one for each m ∈ M with high probability.
In that case, ρ̂2(·) can be used to approximate the predictive performance not only
of m̂ but also of other model selection procedures that differ from m̂ (see [20] for
some examples and further discussion).

The results presented so far are concerned with relative errors like, for example,
log ρ̂2(m)/ρ2(m). Theorem 3.1 also entails similar results for absolute errors like,
for example, ρ̂2(m) − ρ2(m), that parallel results in [20] and are omitted here for
the sake of brevity.

4. Predictive inference based on the selected model. To use the predictor
ŷ(f )(m) for inferences about the unseen future response y(f ), like prediction inter-
vals for example, the distribution of the prediction error [i.e., of ŷ(f )(m) − y(f )]
is an object of particular interest. Recall that we write L(m) for the conditional
distribution of this prediction error given the training sample. For a fixed candi-
date model m and fixed training sample, L(m), of course, depends on unknown
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parameters and, hence, needs to be estimated; in particular, we need to estimate
the conditional bias and the conditional variance of the predictor. Proposition 2.1
shows that (unconditionally) unbiased estimators of ν(m) and of δ2(m) are given
by zero and by

δ̌2(m) = σ̂ 2(m)
n − 2

n − 1 − |m| ,

respectively (i.e., E[ν(m)] = E[δ̌2(m) − δ2(m)] = 0). This suggests that the
distribution in question [i.e., L(m) ≡ N(ν(m), δ2(m))] might be estimated by
N(0, δ̌2(m)). For technical reasons, we consider a slightly different estimator. In
particular, we estimate δ2(m) by

δ̂2(m) = σ̂ 2(m)
n

n + 1 − |m|
[which coincides with the estimator ρ̂2(m) discussed in Section 3], and we esti-
mate the conditional distribution of the prediction error [i.e., L(m)] by

L̂(m) ≡ N(0, δ̂2(m)).

The next result describes the finite-sample performance of L̂(m) as an estimator
for L(m) in terms of the total variation distance.

THEOREM 4.1. Fix a candidate model m ∈ M. For the conditional distribu-
tion of the prediction error of the predictor ŷ(f )(m), conditional on the training
sample, and for its estimated version [i.e., for L(m) and for L̂(m)] we have

P

(
‖L̂(m) − L(m)‖TV >

1√
n

+ ε

)
≤ 7 exp

[
−n − |m|

2

ε2

ε + 2

]
(7)

for each ε with 0 < ε ≤ log(2). The upper bound in the preceding display holds
uniformly over the set of all data-generating processes as in (2).

REMARK 4.1. Because the total variation distance of two probability mea-
sures is at most 1, the condition that ε is at most log(2) ≈ 0.69 maintained by
Theorem 4.1 is rather innocuous. Inspection of the proof of Theorem 4.1 shows
that one can obtain a slightly improved upper bound that also holds for all ε > 0.
The downside of this is that the improved upper bound is much more complicated
and less revealing.

By Theorem 4.1, the estimated distribution L̂(m) is close to the true distribution
L(m) in total variation with high probability, provided only that n − |m| is large
enough, independently of the unknown parameters. While the theorem places no
restrictions on sample size and on the candidate model m [except for (3)], the re-
sult is most interesting in the case where the candidate model is relatively complex
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in the sense that |m|/n is not close to zero (see the discussion following Theo-
rem 3.1).

The impact of Theorem 4.1 for inference after model selection is immediate
in view of Bonferroni’s inequality. For the following results, consider the collec-
tion M of candidate models introduced in Section 2. Recall that #M and |M|
denote the total number of candidate models and the number of parameters in the
most complex candidate model, respectively; moreover, recall that mρ denotes the
best candidate model and m̂ denotes the empirically best candidate model [in the
sense that they minimize ρ2(m) and ρ̂2(m), respectively, over m ∈ M].

COROLLARY 4.2. For ε satisfying 0 < ε ≤ log(2), and uniformly over all
data-generating processes as in (2), we have

P

(
‖L̂(m̂) − L(m̂)‖TV >

1√
n

+ ε

)
≤ 7 exp

[
log #M − n − |M|

2

ε2

ε + 2

]
.

During the proof, we actually derive a slightly stronger version of Corollary 4.2.
The result continues to hold if the left-hand side in the preceding inequality is re-
placed by P(maxm∈M ‖L̂(m) − L(m)‖TV > 1/

√
n + ε). This can be used, say, to

conduct inference based on the model selected by another model selection proce-
dure that differs from m̂.

For the rest of this section, we illustrate the use of our results to construct
symmetric prediction intervals centered at ŷ(f )(m̂) that are approximately valid
and short. Similar results can be obtained for one-sided prediction intervals or
for testing whether, say, the future response lies above (or below) a prespecified
value. Conditional on the training sample, the prediction error ŷ(f )(m̂) − y(f ) is
distributed as L(m) ≡ N(ν(m̂), δ2(m̂)). Hence, a “prediction interval” for y(f )

with conditional coverage probability 1 − α is given by [ŷ(f )(m̂) − ν(m̂) −
qαδ(m̂), ŷ(f )(m̂) − ν(m̂) + qαδ(m̂)], and we write this “prediction interval” in-
formally as

ŷ(f )(m̂) − ν(m̂) ± qαδ(m̂);
here, qα is the 1 − α/2 quantile of the standard normal distribution. Note that
this construction is infeasible, because it depends on unknown parameters through
ν(m̂) and δ(m̂). Corollary 4.2 suggests that a feasible prediction interval can be
obtained by replacing the true distribution L(m̂) by the approximating distribu-
tion L̂(m̂) and constructing a prediction interval with nominal coverage probabil-
ity 1 − α using L̂(m̂). This amounts to replacing ν(m̂) and δ(m̂) by zero and by
δ̂(m̂), respectively, in the preceding display. The resulting prediction interval will
be denoted by I(m̂) and is given by

I(m̂) : ŷ(f )(m̂) ± qαδ̂(m̂).(8)

In view of Corollary 4.2, we get the following result.
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PROPOSITION 4.3. Fix ε satisfying 0 < ε ≤ log(2). Conditional on the train-
ing sample, the coverage probability of the prediction interval I(m̂) is within
1/

√
n + ε of the nominal level, that is,

∣∣(1 − α) − P
(
y(f ) ∈ I(m̂)|Y,X

)∣∣ ≤ 1√
n

+ ε,

except on an event whose probability is not larger than

7 exp
[
log #M − n − |M|

2

ε2

ε + 2

]
,

uniformly over all data-generating processes as in (2).

The (infeasible) valid prediction interval based on the selected model m̂ dis-
cussed prior to Proposition 4.3 has width 2qαδ(m̂), and the width of the feasible
interval I(m̂) is 2qαδ̂(m̂). From the perspective of interval width, the “best” model
is mδ , that is, the model minimizing δ2(m) over m ∈ M (see the discussion at the
end of Section 2), and the corresponding exact shortest “prediction interval” is

ŷ(f )(mδ) − ν(mδ) ± qαδ(mδ).(9)

Again, this construction is infeasible because mδ and also ν(mδ) and δ(mδ) depend
on unknown parameters. The following result compares the feasible interval I(m̂)

based on the selected model with the infeasible shortest possible interval (9) in
terms of width, by comparing δ̂(m̂) and δ(mδ).

PROPOSITION 4.4. For each ε > 0 and uniformly over all data-generating
processes as in (2), we have

P

(∣∣∣∣log
δ̂(m̂)

δ(mδ)

∣∣∣∣ > ε

)
≤ 4 exp

[
log #M − n − |M|

2

ε2

ε + 2

]
.

If the upper bound in Proposition 4.4 is small, the length of the feasible pre-
diction interval I(m̂) is close to the length of the (infeasible) shortest prediction
interval (9) with high probability. Together with Proposition 4.3, this result estab-
lishes that the interval I(m̂) is approximately valid and short with high probability,
provided only n−|M| is large enough compared to log #M (i.e., provided only that
the degrees of freedom in the most complex candidate model is large compared to
the logarithm of the number of candidate models).

5. Simulation example. We now present an example where we search for a
“sparse” model in a pool of more than 1015 candidate models using a training
sample of 2000 observations. We demonstrate that a good candidate model can
be identified, that the performance of the selected model can be estimated with
reasonable accuracy and that a prediction interval post model selection obtains
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an actual coverage probability reasonably close to its nominal one. The example
is meant for demonstration only and should not be mistaken for an exhaustive
simulation study (see also [20] for related simulations also covering non-Gaussian
scenarios).

Consider a situation where we have available a training sample of 2000 in-
dependent observations of the response y and of 1000 explanatory variables xj ,
j = 1, . . . ,1000, from (2), and where we suspect that the corresponding first
1000 coefficients of β are “sparse” in the sense that most of them are very small
or zero while a few groups of adjacent coefficients are large. To come up with a
collection of candidate models that can pick out the suspected groups of “impor-
tant” coefficients while not being too large (in the sense that log #M  n − |M|),
we divide the first 1000 coefficients of β into 50 blocks of length 20 each, and
we consider all candidate models that include or exclude a block at a time (plus
the intercept that is always included). This gives 250 or a little over 1015 candidate
models.9 With an exhaustive search over this model space being infeasible, we re-
sort to the obvious greedy general-to-specific strategy. We fit the “overall” model
containing all 50 blocks, and eliminate that block whose elimination leads to the
smallest increase in the residual sum of squares. This results in a model containing
49 blocks, and now we proceed inductively until all blocks have been eliminated
and only the intercept remains.10 This results in a data-driven rearrangement of
the blocks and, thus, of the whole parameter vector β . The selected model here is
the minimizer of ρ̂2(·) among the models visited by the greedy search and will be
denoted by m̂g throughout this section.

The suspicion that β is sparse, which motivated our choice of candidate models,
may or may not be correct in practice. For the true value of the parameter β , we
therefore consider two scenarios. In the first, the coefficients of β are indeed sparse,
and, in the second, they are not (i.e., a “sparse” and a “nonsparse” case). The first
1000 coefficients of β in both the sparse and the nonsparse case are displayed in
Figure 1; the remaining coefficients of β are set to zero. The first 1000 coefficients
of β were obtained from realizations of ARCH-processes with different parame-
ters for the sparse and for the nonsparse case.11 In both cases, the coefficients
of β were also scaled so that the “signal-to-noise” ratio is five in the sense that
(Var(y) − Var(u))/Var(u) = 5. If the signal-to-noise ratio is too small, only very
parsimonious models perform well; a large signal-to-noise ratio has the opposite

9We have also experimented with larger (smaller) block-sizes that lead to correspondingly smaller

(larger) classes of candidate models. Larger block-sizes give better accuracy of ρ̂2(·) as an estimator
for ρ2(·) and better coverage properties of prediction intervals post model selection; smaller block-
sizes have the opposite effect.

10The study of alternative and potentially superior strategies of searching through model space is
beyond the scope of this paper.

11In additional experiments, with several other choices for β , we obtained results consistent with
those presented here.
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FIG. 1. The first 1000 coefficients of β in the sparse case (left panel) and in the nonsparse case
(right panel).

effect. We chose a signal-to-noise ratio between these two extremes. The remain-
ing parameters in (2) were chosen as follows. We chose u independent of the xj ’s
with mean 0 and variance 1, the variance/covariance structure of the explanatory
variables was chosen so that Cov(xj , xk) = 2−|j−k| for j, k ∈ {2, . . . ,1000} (recall
that x1 = 1 is the intercept), and we took independent realizations of a standard
normal for the means of the xj ’s scaled so

∑1000
j=2 E(xj )βj = √

2.12

For one set of training data [i.e., for 2000 observations from (2) with the pa-
rameters just described] the results in both the sparse and the nonsparse case are
visualized in Figure 2. The data-driven rearrangement of β obtained by the greedy
search is shown at the bottom of each panel next to the axis labeled Beta. The
block of 20 coefficients to the far right was eliminated first, the block next to it
was eliminated next, et cetera, until only the intercept remained. Note that this cor-
responds to a data-driven sequence of 51 nested models of increasing complexity,
from the model containing only the intercept up to the overall model containing
all 1000 explanatory variables; the horizontal axis can be thought of as indexing
these 51 nested models. The performance of each of the 51 models obtained by
the greedy search is shown by the graph in the middle of each panel, next to the
axis labeled Mean-Squared Error. The black line shows the value of ρ̂2(·)
for each of the models (estimated performance), while the gray line shows the true
value of ρ2(·) (actual performance). For better readability, points are joined by
lines. The selected model is indicated by a vertical dashed line. Note that the con-
ditional mean-squared error of any predictor is bounded from below by Var(u),

12Our choice for the variance/covariance structure of the xj ’s is ad-hoc. Repeating the simulations

with Cov(xj , xk) = r |j−k| for other values of r between 0 and 0.9, we obtained basically identical
results. The same applies, mutatis mutandis, to the choice of the E(xj )’s and to the scaling of the
means.
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FIG. 2. Results from one simulation run for the sparse case (left panel) and the nonsparse case
(right panel). The graphics are described in the main text.

which equals 1 here. Therefore, models m with ρ2(m) close to 1 perform well.
Finally, for each of the 51 models obtained through the greedy search, the cov-
erage probability of a prediction interval based on that model is shown at the top
of each panel, next to the axis labeled Coverage Probability. For each
such model m, we computed the prediction interval I(m) introduced in (8) with
1 − α = 0.95. The black line shows the true conditional coverage probability of
these intervals, conditional on the training sample. Again, points are joined by
lines. The gray horizontal line at 0.95 is for reference. Note that models with small
ρ̂2(m) also correspond to short prediction intervals, because the width of I(m) is
governed by δ̂(m) ≡ ρ̂(m). The conditional coverage probability of the prediction
interval based on the selected model is indicated by the vertical dashed line. Be-
cause coverage probabilities are computed conditional on the training sample, they
can be both above and below the nominal value of 0.95. Because the 51 models
shown in each panel of Figure 2 were obtained through a greedy search through
model space, ρ̂2(·) tends to under-estimate ρ2(·) for these models, resulting in
prediction intervals that tend to be too short and whose conditional coverage prob-
abilities tend to fall below 0.95.

In the sparse case (left panel), the chosen class of candidate models is satisfac-
tory in the sense that it contains a relatively parsimonious candidate model that
performs well. The selected model m̂g contains 100 explanatory variables [and
coincides with the model minimizing the actual performance ρ2(·) among the
51 candidates identified by the greedy search]. The selected model’s estimated per-
formance of ρ̂2(m̂g) = 1.110 is close to its actual performance of ρ2(m̂g) = 1.124
(which in turn is close to the lower bound 1). The conditional coverage probability
of the prediction interval based on the selected model is 0.948. In the nonsparse
case (right panel), the class of candidate models is unsatisfactory in the sense that it
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does not contain a simple model that performs well. Among the 51 models identi-
fied by the greedy search, the model with 940 explanatory variables performs best
[minimizer of ρ2(·)], while the model m̂g selected by minimizing ρ̂2(·) contains
900 coefficients. The actual performance of the selected model is ρ2(m̂g) = 1.929,
while its estimated performance is ρ̂2(m̂g) = 1.924. The selected model improves
little over the overall model containing all 1000 explanatory variables, in terms
of actual performance as well as in terms of estimated performance. The condi-
tional coverage probability of the prediction interval based on the selected model
is 0.949. Overall, the minimum of the coverage probabilities over the 51 models
found by the greedy search (i.e., the minimum of the curve next to the axis la-
beled Coverage Probability) is 0.935 in the sparse case and 0.938 in the
nonsparse case, respectively.

The experiment whose results are shown in Figure 2 was repeated a total of
100 times. The results of these repetitions are so similar to those shown in Figure 2
that we do not present them here in detail. Over the 100 repetitions and for the
conditional coverage probability corresponding to the selected model, we obtained
a median of 0.949 and a minimum of 0.936 in the sparse case, and a median of
0.942 and a minimum of 0.924 in the nonsparse case. Also, over 100 repetitions
and for the minimum of the coverage probabilities corresponding to the 51 models
identified by the greedy search, we obtained a median of 0.931 and a minimum of
0.919 in the sparse case and a median of 0.934 and a minimum of also 0.918 in the
nonsparse case.

6. Remarks and extensions.

REMARK 6.1 [Examples of data-generating processes as in (2)]. The distribu-
tion of the random variables in (2) is, of course, characterized by their first and sec-
ond moments. Assume, for simplicity, that the xj ’s are uncorrelated with u and that
u has mean zero. Write β for the sequence of regression coefficients β = (βj )j≥1,
write σ 2 for the variance of u and denote the sequence of means and the vari-
ance/covariance net of the xj+1’s, j ≥ 1, by γ = (γj )j≥1 and � = (�j,k)

∞
j,k=1 (re-

call that x1 denotes the intercept, i.e., x1 = 1). That is, the mean and the variance
of xj+1 are γj and �j,j , respectively, and the covariance of xj+1 and xk+1 is �j,k ,
1 ≤ j < k. Then, the (joint) distribution of y, xj , j ≥ 1 and u in (2) is character-
ized by (β, γ,�,σ). Write � for the collection of all quadruples ξ = (β, γ,�,σ)

such that the series in (2) converges in L2, and such that the joint distribution of
the xj ’s for j > 1 and of u is nondegenerate. The following examples illustrate
that � is quite rich and includes subsets that are noncompact (with respect to the
appropriate canonical topology):

(i) Assume that the xj ’s for j > 1 are uncorrelated with common variance
equal to unity, and write I for the corresponding variance/covariance net (i.e., Ij,k
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equals one if j = k and zero otherwise). Then, � contains all quadruples ξ of the
form ξ = (β, γ, I, σ ) satisfying β ∈ l2, γ ∈ l2, and σ > 0.

(ii) Let ς = (ςj )j≥1 be an arbitrary sequence of positive numbers. Assume
that the xj ’s are uncorrelated as in (i) before but now with Var(xj ) = ς2

j , and
write diag(ς2) for the corresponding variance/covariance net. Then, � contains all
quadruples ξ of the form ξ = (β, γ,diag(ς2), σ ) for which βγ ∈ l1 and βς ∈ l2
(where the products are understood component-wise) and σ > 0.

(iii) Fix p satisfying 1 ≤ p ≤ ∞, and let q be such that, either 1 < p < ∞ and
1/p + 1/q = 1, or p = 1 and q = ∞, or p = ∞ and q = 1. Let S : lp → lq be a
continuous linear operator satisfying 〈α,Sβ〉 = 〈Sα,β〉 for each α and β in lp , and
satisfying 〈α,Sα〉 > 0 whenever α ∈ lp is nonzero. Here, 〈·, ·〉 denotes the usual
product of sequences (i.e., the sum of component-wise products). The operator S

defines a variance/covariance net �(S) by �(S)j,k = 〈ej , Sek〉, where el denotes a
sequence with a 1 in the lth position and zeroes otherwise (l ≥ 1). Then, � contains
all quadruples ξ of the form ξ = (β, γ,�(S), σ ) satisfying β ∈ lp , γ ∈ lq , S as
before, and σ > 0.

REMARK 6.2 (Reduced-rank models). We have required that the joint dis-
tribution of the xj ’s for j > 1 in (2) is nondegenerate (and Gaussian). For our
purpose, this guarantees that the n × |m| matrix of those regressors in the training
sample that are included in a model m ∈ M is nondegenerate with probability one.
We now discuss the case where this requirement is not met. Assume, for a can-
didate model m ∈ M, that some of the explanatory variables xj that are included
in the model m are perfectly correlated with each other. In that case, there is a
submodel m′ of m (i.e., a model m′ satisfying m′

j ≤ mj for each j ), such that the
explanatory variables included in model m′ are not perfectly correlated with each
other, and such that the least-squares predictors based on model m and m′ coincide
[i.e., ŷ(f )(m) = ŷ(f )(m′)], almost surely. Here, the restricted least-squares estima-
tor β̂(m) needs to be computed using a generalized inverse in the least-squares for-
mula, because the sample regressor matrix corresponding to model m is of reduced
rank, almost surely. Hence, we also have ρ2(m) = ρ2(m′) and L(m) ≡ L(m′) a.s.
Now, repeat this replacement process for each candidate model in M (i.e., replace
each reduced-rank model by an appropriate full-rank submodel and leave the full-
rank models unchanged). This results in a new collection of candidate models,
which we denote by M′. Inspection of the proofs reveals that all the results in
Sections 2, 3 and 4 continue to hold with M′ replacing M.

REMARK 6.3 (Note on constants). Several performance bounds that are re-
ported in this paper depend on the constants #M and |M| (see Corollaries 3.2
and 4.2, as well as Propositions 4.3 and 4.4). These bounds are conservative be-
cause they hold uniformly over a large class of data-generating processes and for
each class M of candidate models that satisfies (3). In particular, the results also
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cover the case where all candidate models are equally complex and where all fit
equally well. In view of this, it is not surprising to find the constants #M and |M|
in the upper bounds. If additional regularity conditions are imposed on the regres-
sion parameter, and if the family of candidate models M is chosen in accordance to
these regularity conditions (e.g., sparse candidate models in case a sparsity condi-
tion is imposed on the true regression parameter), it is likely that the upper bounds
can be improved. Also, the fact that the upper bounds all increase linearly with the
number of candidate models (i.e., with #M) originates in the use of Bonferroni’s
inequality, which could leave room for improvement. These issues, however, are
beyond the scope of this paper.

REMARK 6.4 (Asymptotic rates). The results in Sections 3 and 4 allow us to
read off the rates at which quantities like log ρ̂2(m)/ρ2(m) or log ρ̂2(m̂)/ρ2(mρ),
for example, converge to zero, in probability, in appropriate asymptotic settings.
Under rather weak conditions, we show that the typical rate is 1/

√
n in the follow-

ing:

(i) Consider a sequence of sample sizes n, and a corresponding sequence of
candidate models m(n) (that may depend on n), such that |m(n)|/n ≤ r for fixed r ,
0 < r < 1, and for each n. As always, we also assume that m

(n)
1 = 1 and that

|m(n)| < n − 1. Denoting the distribution of the sample of size n by Pn(·), Theo-
rem 3.1 entails that

Pn

(√
n

∣∣∣∣log
ρ̂2(m(n))

ρ2(m(n))

∣∣∣∣ > t

)
≤ 6 exp

[
−1 − r

8

t2

t + 8

]
,

for each n, for each t > 0, and uniformly over all data-generating processes
as in (2). In other words, log ρ̂2(m(n))/ρ2(m(n)) is of order 1/

√
n in probabil-

ity, uniformly over all data-generating processes as in (2). In a similar fashion,
‖L̂(m(n)) − L(m(n))‖TV is uniformly of order 1/

√
n in probability (see Theo-

rem 4.1).
(ii) Now, consider a sequence of sample sizes n and a corresponding sequence

of families of candidate models M(n) [such that (3) holds for each m ∈ M(n) and
for each n]. Moreover, assume that |M(n)| < r for fixed r , 0 < r < 1, and for
each n, and that log #M(n) = o(n). We stress that now quantities like the “best”
model mρ , the empirically best model m̂, the conditional distribution of the predic-
tion error L(m), its estimated version L̂(m), the prediction interval I(m̂), et cetera,
all depend on n, although this dependence is not shown explicitly by the notation.
Under these assumptions we obtain that the following quantities are each of or-
der 1/

√
n in probability, uniformly over all data-generating processes as in (2):

logρ2(m̂)/ρ2(mρ) and log ρ̂2(m̂)/ρ2(m̂) (see Corollary 3.2); ‖L̂(m̂) − L(m̂)‖TV
(see Corollary 4.2); (1 − α) − Pn(y

(f ) ∈ I(m̂n)|Y,X) (see Proposition 4.3); and
log δ̂2(m̂)/δ2(mδ) (see Proposition 4.4).
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APPENDIX A: PROOFS FOR SECTION 2

The following two lemmas will be instrumental in the proof of Proposition 2.1.
We suspect that these two results, which basically rely on the rotational invariance
of the normal distribution, are well known, in some form or another, but we could
not find a convenient reference in the literature. Throughout, the Euclidean norm
of a vector v ∈ R

k is denoted by ‖v‖.

LEMMA A.1. For k ≥ 1, let a ∼ N(0, Ik) and fix a0 ∈ R
k with ‖a0‖ = 1.

Then, there exists a k × k matrix R whose elements are measurable functions of a,
such that R′R = Ik and a = ‖a‖Ra0 almost surely.

PROOF. Write ej for the j th Euclidean basis vector of R
k . It suffices to

consider the case where a0 = e1, because a0 can be written as a0 = Se1 where
S is a fixed orthonormal k × k matrix. For a0 = e1, consider the event E where
‖a‖ > 0 and where a is linearly independent of e2, . . . , ek . Clearly, E is an al-
most sure event. On E, compute an orthonormal basis r1, . . . , rk of R

k , by setting
r1 = a/‖a‖ and by then applying the Gram–Schmidt orthonormalization proce-
dure to r1, e2, . . . , ek , and set R = (r1, . . . , rk). On Ec, set R = Ik , say. The ma-
trix R has the desired properties. �

LEMMA A.2. Let M be a k × l matrix with i.i.d. standard normal entries, and
let a0 ∈ R

k with ‖a0‖ = 1 (1 ≤ l ≤ k). For PM = M(M ′M)−1M ′, the distribution
of a′

0PMa0 is given by

a′
0PMa0 ∼ χ2

l

χ2
l + χ2

k−l

,

where χ2
l and χ2

k−l denote two independent chi-square random variables with the
indicated degrees of freedom. In case l = k, χ2

k−l is to be interpreted as constant
equal to zero and the distribution on the right-hand side of the preceding display
is to be interpreted as point mass at one.

PROOF. As the case l = k is trivial, we may assume that l < k. Let a ∼
N(0, Ik) independent of M . Using Lemma A.1, we can rewrite a as a = ‖a‖Ra0
almost surely. With probability one, we thus have a0 = R′a/‖a‖ and a′

0PMa0 can
be written as

a′
0PMa0 = a′RPMR′a

a′a
= a′RM(M ′R′RM)−1M ′R′a

a′a
= a′PM◦a

a′a
almost surely, where, for the last equality, we use M◦ as shorthand for RM and
define PM◦ like PM with M◦ replacing M . Conditional on a, the columns of M◦
are i.i.d. N(0, Ik) [because the columns of M are i.i.d. N(0, Ik) independent of a,
and because RR′ = Ik]. As that conditional distribution does not depend on the
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conditioning variable, we see that the entries of M◦ are i.i.d. standard Gaussians
independent of a. Hence, the columns of M◦ are linearly independent with proba-
bility one, and the expression on the far right-hand side of the preceding display is
distributed as χ2

l /(χ2
l + χ2

k−l). �

Before turning to the proof of Proposition 2.1, the following preparatory consid-
eration and the attending lemma are also required. Throughout the following, fix a
candidate model m ∈ M. Recall the linear model (2), and write z for the |m|-vector
of those explanatory variables xj that are included in the model m (in their natural
order, so that z1 corresponds to the intercept, i.e., z1 = x1 = 1). Because y and z

are jointly Gaussian, the conditional distribution of y given z is again a Gaussian.
Because the model m includes an intercept (i.e., z1 = 1) the conditional mean
of y given z is a linear function of z. Recalling that the conditional variance of y

given z is σ 2(m), we see that y|z ∼ N(z′θ, σ 2(m)) for an appropriate |m|-vector θ .
In other words, (2) can be rewritten as

y = z′θ + v(10)

with v ∼ N(0, σ 2(m)) independent of z. The vector z of those explanatory vari-
ables that are included in model m is also Gaussian, and, in the following, we
write η and � for the mean-vector and for the variance/covariance matrix of its
distribution, respectively:

z ∼ N(η,�).(11)

Clearly, η is an |m|-vector and � is an |m|× |m| matrix. Because the first regressor
corresponds to the intercept, we have η1 = 1 and �1,1 = 0. In case |m| > 1, the
submatrix of � corresponding to z2, . . . , z|m| is positive definite by assumption
[see the discussion following (2)].

LEMMA A.3. For fixed m ∈ M, let η and � be as in (11) and set � = � +ηη′.
Then, � is positive definite, and so is its symmetric square root �1/2. Moreover, the
matrix �−1/2��−1/2 admits a spectral representation �−1/2��−1/2 = W�W ′
such that � = diag(0,1, . . . ,1) (i.e., the first eigenvalue equals zero and all the
others equal one), such that W = (w(1), . . . ,w(|m|)) with the w(j), j = 1, . . . , |m|,
being orthonormal eigenvectors, and such that w(1) = �−1/2η. In particular,
W ′�−1/2η = (1,0, . . . ,0)′ ∈ R

|m|.

PROOF. To show that � > 0, assume that w ∈ R|m| is such that w′�w = 0.
Partition w as w = (w1,w

′¬1)
′ (i.e., into its first component w1 and the vector w¬1

of its |m| − 1 remaining components), partition η conformably as η = (η1, η
′¬1)

′,
and let � denote the lower diagonal (|m| − 1) × (|m| − 1) submatrix of �. Recall
that η1 = 1, that � > 0, and that the first row as well as the first column of �

contain zeroes only [see (11) and the attending discussion]. Therefore,

w′�w = w′�w + w′ηη′w = w′¬1�w¬1 + w′ηη′w.
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Because w′�w = 0 and � > 0, we see that w¬1 = 0. Hence, w′�w = w2
1η

2
1 = w2

1,
so that w1 also equals zero and w = 0.

Write K as shorthand for �−1/2��−1/2, and note that K has rank |m| − 1,
because � has rank |m| − 1. Moreover, we have

K = �−1/2��−1/2 = �−1/2(� − ηη′)�−1/2 = I|m| − �−1/2ηη′�−1/2.

Set w(1) = �−1/2η, and note that w(1) is nonzero because η1 = 1. For each vector
w in the orthogonal complement of w(1), we thus have Kw = w. Hence, |m| − 1
eigenvalues of K equal one, and the corresponding eigenvectors (which can be
chosen as normalized and mutually orthogonal) are orthogonal to w(1). The re-
maining eigenvalue of K must be zero, and w(1) must be a corresponding eigen-
vector. This entails that 0 = Kw(1) = w(1) − w(1)w(1)′w(1), whence ‖w(1)‖ = 1.
Finally, W ′�−1/2η = W ′w(1) = (1,0, . . . ,0)′. �

PROOF OF PROPOSITION 2.1. Without loss of generality, we may assume that
the random matrices in the following arguments are invertible whenever we need
them to be, because the event where that is not the case has probability zero. For
the given model m, write Z for the n × |m| matrix of those explanatory variables
in the training sample that are included in the model m, such that the ith entry of Y

and the ith column of Z′ are independent copies of y and z in (10) for i = 1, . . . , n.
Note that the ith column of Z′ is distributed as in (11). Let �1/2, W and � be as
in Lemma A.3, and set Z(•) = Z�−1/2W . Lemma A.3 now entails that the ith
column of Z(•)′ is distributed as N(e1,�), where e1 = (1,0, . . . ,0)′ ∈ R

|m| and �

is the diagonal matrix � = diag(0,1, . . . ,1). In particular, Z(•) can be partitioned
as Z(•) = (ι,Z(◦)), where ι is an n-vector of ones and Z(◦) is an n × (|m| − 1)

matrix with i.i.d. standard normal entries.
For θ as in (10), set V = Y − Zθ , and note that V ∼ N(0, σ 2(m)In) indepen-

dent of Z. From this, it follows that σ̂ 2(m) ∼ σ 2(m)χ2
n−|m|/(n − |m|) as claimed.

Moreover, ν(m) and δ2(m) can be written as

ν(m) = η′(Z′Z)−1Z′V and δ2(m) = V ′Z(Z′Z)−1�(Z′Z)−1Z′V + σ 2(m)

[compare the definitions of ν(m) and δ2(m) in Section 2, as well as (10) and (11)].
From the first equation in the preceding display, we also see that E[ν(m)] = 0.
It remains to derive the distribution of ν2(m) and of δ2(m). To this end, we need
more convenient representations of these quantities. Rewrite ν(m) as

ν(m) = η′�−1/2(�−1/2Z′Z�−1/2)−1�−1/2Z′V

= η′�−1/2W(W ′�−1/2Z′Z�−1/2W)−1W ′�−1/2Z′V

= e′
1
(
Z(•)′Z(•))−1

Z(•)′V,
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where the last equality follows upon observing that we have set Z(•) = Z�−1/2W

and that W ′�−1/2η = e1 by Lemma A.3. A similar argument gives

δ2(m) − σ 2(m) = V ′Z(•)(Z(•)′Z(•))−1
W ′�−1/2��−1/2W

(
Z(•)′Z(•))−1

Z(•)′V

= V ′Z(•)(Z(•)′Z(•))−1
�

(
Z(•)′Z(•))−1

Z(•)′V,

where we use the spectral representation of �−1/2��−1/2 given in Lemma A.3 to
get the last equality. We thus see that ν2(m) is the square of the first component of
the |m|-vector (Z(•)′Z(•))−1Z(•)′V , and δ2(m) − σ 2(m) is the sum of squares of
the remaining |m| − 1 components of that vector.

Partitioning Z(•) as Z(•) = (ι,Z(◦)) as before, we see that

(
Z(•)′Z(•))−1

Z(•)′V =
( (

ι′(In − PZ(◦) )ι
)−1

ι′(In − PZ(◦) )V(
Z(◦)′(In − Pι)Z

(◦))−1
Z(◦)′(In − Pι)V

)
,(12)

where Pι and PZ(◦) denote the orthogonal projections on the space spanned by ι

and on the column space of Z(◦), respectively. Relation (12) follows either by using
the inversion formula for partitioned matrices on the corresponding partition of
Z(•)′Z(•) and simplifying, or from geometric properties of orthogonal projections.

For the distribution of ν2(m), recall that ν2(m) is the square of the first compo-
nent of the vector on the right-hand side of (12). In particular, ν2(m) can be written
as

ν2(m) = V ′P(In−P
Z(◦) )ιV

ι′(In − PZ(◦) )ι
.

The numerator in the preceding display is distributed as σ 2(m)χ2
1 , independent

of Z(◦). The denominator is a function of Z(◦) and, hence, independent of the
numerator. Using the Lemma A.2 with ι/

√
n and Z(◦) replacing a0 and M we

see, in the notation used in that lemma, that ι′PZ(◦) ι has the same distribution as
nχ2|m|−1/(χ

2|m|−1 + χ2
n−|m|+1). Hence,

ι′(In − PZ(◦) )ι ∼ n
χ2

n−|m|+1

χ2|m|−1 + χ2
n−|m|+1

.

This entails that ν2(m) ∼ (χ2
1 /n)σ 2(m)(1 + χ2|m|−1/χ

2
n−|m|+1) as claimed.

For the distribution of δ2(m), write M as shorthand for (In − Pι)Z
(◦). We see

from (12) that

δ2(m) − σ 2(m) = V ′M(M ′M)−2M ′V = w′(M ′M)−1w,

where, for the last equality, we use w to denote the (|m| − 1)-vector w =
(M ′M)−1/2M ′V . Since V ∼ N(0, σ 2(m)In), it follows that w ∼ N(0, σ 2(m) ×
I|m|−1), independent of M . Using Lemma A.1 with w and e1 replacing a and a0,
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we obtain an orthonormal matrix R such that w = ‖w‖Re1 almost surely. It fol-
lows that δ2(m) − σ 2(m) can be written as

‖w‖2e′
1(R

′MM ′R)−1e1 = ‖w‖2e′
1
(
R′Z(◦)′(In − Pι)Z

(◦)R
)−1

e1.

Write Z(R) as shorthand for Z(◦)R. Since R′R = I|m|−1, we see that Z(R) = Z(◦)R
is an n× (|m|−1) matrix with i.i.d. Gaussian entries, and that Z(R) is independent
of w. Partition Z(R) as Z(R) = (Z

(R)
1 ,Z

(R)
¬1 ), where Z

(R)
1 is the first column of

Z(R), and apply the partitioned inversion formula to the corresponding partition of
(Z(R)′(In − Pι)Z

(R)). This gives

δ2(m) − σ 2(m) = ‖w‖2

Z
(R)′
1 (In − Pι)(In − P

(In−Pι)Z
(R)
¬1

)(In − Pι)Z
(R)
1

almost surely. In the preceding expression, the numerator is distributed as
σ 2(m)χ2|m|−1 and is independent of the denominator. For the denominator,

note that Z
(R)
1 is an n-vector of i.i.d. standard Gaussians, and (In − Pι)(In −

P
(In−Pι)Z

(R)
¬1

)(In −Pι) is the matrix of an orthogonal projection of rank n−|m|+1

(except on a probability zero event, as is easy to see). It follows that δ2(m)−σ 2(m)

is distributed as σ 2(m)χ2|m|−1/χ
2
n−|m|+1 and δ2(m) is distributed as σ 2(m)(1 +

χ2|m|−1/χ
2
n−|m|+1) as required. �

APPENDIX B: AUXILIARY LEMMAS FOR SECTIONS 3 AND 4

In this section, we show, in essence, that δ2(m), ρ̂2(m) and ρ2(m) each are close
to the same value with high probability, provided that n − |m| is large enough (see
Lemmas B.3, B.4 and B.5, resp.). To derive these results, we also need the two
elementary lemmas that follow: Lemma B.1 gives bounds on certain probabilities
involving a χ2

1 random variable, and Lemma B.2 gives a collection of inequalities
that will be used later.

LEMMA B.1. Let F(·) denote the cumulative distribution function (c.d.f.) of
the χ2

1 distribution. Then

F

(
t
log(t)

t − 1

)
− F

(
log(t)

t − 1

)
<

log(t)√
2πe

holds for each t > 1. Moreover, we have

1 − F(t) ≤
√

2

π
exp

[
− t + log(t)

2

]

for each t > 0.
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PROOF. For the first inequality, write g(t) as shorthand for the left-hand side,
and write h(t) for the right-hand side. We need to show that g(t) ≤ h(t). Since
limt→1 g(t) = limt→1 h(t) = 0, this will follow if we can show that g′(t) ≤ h′(t).
First, note that g′(t) is given by

F ′
(
t
log(t)

t − 1

)[
1

t − 1
− log(t)

(t − 1)2

]
− F ′

(
log(t)

t − 1

)[
1

t (t − 1)
− log(t)

(t − 1)2

]

= log(t)

(t − 1)2

[
F ′

(
log(t)

t − 1

)
− F ′

(
t
log(t)

t − 1

)]
= 1√

2π

√
log(t)

t − 1
t−(2t−1)/(2t−2),

where the two equalities in the preceding display follow by plugging-in the
formula F ′(t) = t−1/2 exp(−t/2)/

√
2π and simplifying. We need to show that

g′(t)/h′(t) ≤ 1; that is, √
log(t)

t − 1
e−(1/2)(log(t)/(t−1)−1) ≤ 1

[the left-hand side of the preceding inequality equals g′(t)/h′(t), which is easily
seen by using the formula for g′(t) obtained before and h′(t) = 1/(t

√
2πe)]. For s

satisfying 0 < s < 1 set u(s) = √
s exp(−(s − 1)/2), and set v(t) = log(t)/(t − 1)

for t as before. For each t > 1, we have 0 < v(t) < 1, so that u(v(t)) is well
defined. Clearly, the left-hand side of the inequality in the preceding display can
be written as u(v(t)), and we need to show that u(v(t)) ≤ 1. Since limt→1 v(t) = 1
(as is easy to see), we get limt→1 u(v(t)) = 1. It hence suffices to show that u(v(t))

is decreasing or, equivalently, ∂u(v(t))/∂t = u′(v(t))v′(t) ≤ 0 for t > 1. It is now
elementary to verify that v′(t) ≤ 0 for t > 1 and that u′(s) > 0 for s satisfying
0 < s < 1. Hence, u′(v(t))v′(t) ≤ 0 and u(v(t)) is decreasing.

For the second inequality, write �(·) and φ(·), respectively, for the c.d.f. and for
the Lebesgue density of the standard normal distribution. The result follows upon
observing that 1 − F(t) = 2(1 − �(

√
t)) and that

2
(
1 − �

(√
t
)) ≤ 2

φ(
√

t)√
t

=
√

2

π
exp

[
− t + log(t)

2

]
,

where the inequality holds because of the well-known argument that 1 − �(t) =∫ ∞
t φ(u) du <

∫ ∞
t (1 + 1/u2)φ(u)du = φ(t)/t for t > 0. �

LEMMA B.2. (i) For s satisfying 0 < s < 1 and for t ≥ 0, we have

t − s log
et + s − 1

s
≥ (1 − s)

t2

t + 1 + s
.

(ii) For s and t satisfying 0 < s < 1 and 0 ≤ t < − log(1 − s), we have

−t − s log(e−t + s − 1) ≥ t − s log(et + s − 1).
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(iii) For t ≥ 0, we have

et − 1 − t ≥ e−t − 1 + t ≥ t2

t + 2
.

PROOF. For part (i), set f (t) = t − s log((et + s − 1)/s) and g(t) = (1 −
s)t2/(t + 1 + s). To show that f (t) ≥ g(t), first note that f (0) and g(0) are both
equal to zero. It thus suffices to show that f ′(t) ≥ g′(t) for each t > 0. It is easy to
see that

f ′(t) = (1 − s)
et − 1

s + et − 1
and g′(t) = (1 − s)

t2 + 2t (s + 1)

(t + s + 1)2 .

Plugging these formulae into the relation f ′(t) ≥ g′(t) and simplifying, we see
that the relation is equivalent to

(et − 1)(1 + s)2 − st2 − 2s(1 + s)t ≥ 0.

Replacing et − 1 by t + t2/2 in the preceding expression, we obtain a lower bound
for the left-hand side. After trivial simplifications, that bound reduces to t (1 −
s2) + t2(1 + s2)/2 which is nonnegative because t ≥ 0 and s ≤ 1.

For part (ii), let f (t) = t − s log(et + s − 1) and h(t) = f (−t)− f (t). We need
to show that h(t) ≥ 0. Since h(0) = 0, it remains to show that h′(t) ≥ 0. Now,
h(t) = −2t − s log(e−t + s − 1) + s log(et + s − 1) and

h′(t) = −2 + se−t

e−t + s − 1
+ set

et + s − 1
.

Note that, by choice of t < − log(1 − s) and t > 0, both denominators in the two
fractions in the preceding display are positive. Multiplying the expressions in the
preceding display by (e−t + s − 1)(et + s − 1) > 0 and simplifying, we see that
h′(t) ≥ 0 if

(1 − s)(2 − s)(et − 1)(1 − e−t ) ≥ 0.

This inequality is, of course, always satisfied because s < 1 and t ≥ 0.
For part (iii), first expand et − e−t as

∑∞
j=0(t

j − (−t)j )/j ! = 2
∑∞

j=0 t2j+1/

(2j + 1)!. Hence, et − e−t ≥ 2t , which is equivalent to the first inequality in (iii).
For the second inequality, set f (t) = e−t − 1 + t and g(t) = t2/(t + 2). Since
f (0) = g(0) = 0, it suffices to show that f ′(t) ≥ g′(t), and that inequality is easily
seen to be equivalent to

4 − e−t (t + 2)2 ≥ 0.

Write h(t) for the left-hand side of the preceding inequality. Observing that
h(0) = 0 and that h′(t) = e−t t (t + 2) ≥ 0 completes the proof. �

We are now ready to give the three results that state that δ2(m), ρ̂2(m) and
ρ2(m) each are close to the same fixed value with high probability, provided that
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n − |m| is large enough. That value is taken as nσ 2(m)/(n − |m| + 1), which is
close but not equal to E[δ2(m)] or E[ρ2(m)] (see the discussion and formula for
E[ρ2(m)] given at the end of Section 2). Throughout, let m be a fixed candidate
model from M.

LEMMA B.3. For each t ≥ 0, we have

P

(
δ2(m)

n − |m| + 1

nσ 2(m)
> exp(t)

)
≤ exp

[
−n − |m| + 1

2

t2

t + 1 + (|m| − 1)/n

]
,

and P(δ2(m)(n − |m| + 1)/(nσ 2(m)) < exp(−t)) is also bounded by the expres-
sion on the right-hand side of the preceding display. Clearly, that expression is not
larger than exp[−((n − |m|)/2)t2/(t + 2)].

PROOF. The case |m| = 1 is trivial, as then δ2(m) = σ 2(m) by Proposition 2.1,
and the probabilities of interest reduce to P(1 > exp(t)) and P(1 < exp(−t)),
which are both equal to zero. Assume, henceforth, that |m| > 1. Let A and B

be independent and distributed as A ∼ χ2|m|−1 and B ∼ χ2
n−|m|+1. Then, δ2(m) is

distributed as σ 2(m)(1 + A/B) by Proposition 2.1, and

σ 2(m)(1 + A/B)
n − |m| + 1

nσ 2(m)
= |m| − 1

n

(
A(n − |m| + 1)

B(|m| − 1)
− 1

)
+ 1

(as is elementary to verify).
First, consider P(δ2(m)(n − |m| + 1)/(nσ 2(m)) > exp(t)). In view of the con-

sideration in the preceding paragraph, this probability equals

P

(
A(n − |m| + 1)

B(|m| − 1)
− 1 >

n

|m| − 1
(et − 1)

)
.

Using Lemma A.1 of [20] [with |m| − 1, n − |m| + 1 and (exp(t) − 1)n/(n −
|m|+ 1) replacing a, b and ε, resp.], the probability in the preceding display is not
larger than

exp
[
−n − |m| + 1

2
K

( |m| − 1

n − |m| + 1
, (et − 1)

n

n − |m| + 1

)]
,

where the function K(r, c) is defined for r > 0 and c > −r by K(r, c) = (1 +
r) log((1 + r + c)/(1 + r)) − r log((r + c)/r). We need to show that the factor
involving the K-function in the preceding display satisfies

K

( |m| − 1

n − |m| + 1
, (et − 1)

n

n − |m| + 1

)
≥ t2

t + 1 + (|m| − 1)/n
.

To this end, write s as shorthand for (|m| − 1)/n and note that we always have
0 < s < 1. With this, the relation in the preceding display is equivalent to

1

1 − s

(
t − s log

et + s − 1

s

)
≥ t2

t + 1 + s
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(expand the formula for the K-function and simplify). It now follows from part (i)
of Lemma B.2 that the relation in the preceding display holds.

Now, consider P(δ2(m)(n − |m| + 1)/(nσ 2(m)) < exp(−t)), or, equivalently,

P

(
A(n − |m| + 1)

B(|m| − 1)
− 1 <

n

|m| − 1
(e−t − 1)

)
.(13)

In case (e−t − 1)n/(|m| − 1) ≤ −1, this probability is zero and hence trivially
bounded as claimed. In the case where (e−t −1)n/(|m|−1) > −1, or, equivalently,
t < − log(1 − s), we argue as in the preceding paragraph, mutatis mutandis, to see
that (13) is bounded as claimed if

1

1 − s

(
−t − s log

e−t + s − 1

s

)
≥ t2

t + 1 + s
.

But this relation follows by first applying part (ii) and then part (i) of Lemma B.2
as before. �

LEMMA B.4. For each t ≥ 0, we have

P

(
ρ̂2(m)

n − |m| + 1

nσ 2(m)
> exp(t)

)
≤ exp

[
−n − |m|

2

t2

t + 2

]
,

and P(ρ̂2(m)(n − |m| + 1)/(nσ 2(m)) < exp(−t)) is also bounded by the expres-
sion on the right-hand side of the preceding display. The result continues to hold
with δ̂2(m) replacing ρ̂2(m).

PROOF. For B ∼ χ2
n−|m|, we have σ̂ 2(m) ∼ σ 2(m)B/(n − |m|) (see Proposi-

tion 2.1). Hence, ρ̂2(m) = nσ̂ 2(m)/(n − |m| + 1) is distributed as (σ 2(m)B/(n −
|m|))n/(n − |m| + 1), and

σ 2(m)B

n − |m|
n

n − |m| + 1

n − |m| + 1

nσ 2(m)
= B

n − |m| .
First consider P(ρ̂2(m)(n − |m| + 1)/(nσ 2(m)) > exp(t)). By the preceding

consideration, this probability equals

P

(
B

n − |m| − 1 > exp(t) − 1
)
.

Using Lemma A.2 of [20] [with n − |m| and exp(t) − 1 replacing b and ε, resp.],
we see that the probability in the preceding display is not larger than

exp
[
−n − |m|

2
(et − 1 − t)

]
.

Now, Lemma B.2(iii) entails that the expression in the preceding display is
bounded by exp[−(n− |m|)t2/(2(t + 2))] as required. The derivation of the upper
bound for P(ρ̂2(m)(n − |m| + 1)/(nσ 2(m)) < exp(−t)) is completely analogous.
Finally, the statement in parentheses follows, because ρ̂2(m) and δ̂2(m) are given
by the same formula. �
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LEMMA B.5. For each t ≥ 0, we have

P

(
ρ(m)2 n − |m| + 1

nσ 2(m)
< exp(−t)

)
≤ exp

[
−n − |m|

2

t2

t + 2

]

and

P

(
ρ(m)2 n − |m| + 1

nσ 2(m)
> exp(t)

)
≤ 3 exp

[
−n − |m|

4

t2

t + 4

]
.

PROOF. The first inequality follows immediately from Lemma B.3 upon not-
ing that δ2(m) ≤ δ2(m) + ν2(m) = ρ(m)2.

The second inequality holds trivially in case the upper bound is larger
than one. We exclude the trivial case and hence assume that log(3) < ((n −
|m|)/4)t2/(t + 4). For later use, we note that this entails that 1 < nt/2 [be-
cause log(3) < (n/4)t2/(t + 4) < (n/4)t , so that 2 log(3) < nt/2, where the lower
bound is larger than one]. In the second inequality of the lemma, the expression on
the left-hand side is bounded by

P

(
δ2(m)

n − |m| + 1

nσ 2(m)
> exp(t/2)

)
(14)

+ P

(
ν2(m)

n − |m| + 1

nσ 2(m)
>

t

2
exp(t/2)

)
,

because ρ2(m) = ν2(m) + δ2(m) and et = et/2et/2 ≥ et/2(1 + t/2). The first term
in (14) is bounded by exp[−((n − |m|)/4)t2/(t + 4)] (use Lemma B.3 with t/2
replacing t and simplify).

To complete the proof, we need to show that the second term in (14) is bounded
by 2 exp[−((n − |m|)/4)t2/(t + 4)]. To this end, recall from Proposition 2.1 that
ν2(m) is distributed as (A/n)δ2(m), where A ∼ χ2

1 independent of δ2(m). Hence,
the second term in (14) is bounded by

P

(
A > n

t

2

)
+ P

(
δ2(m)

n − |m| + 1

nσ 2(m)
> exp(t/2)

)
.

The second term in the preceding display coincides with the first term in (14)
and is bounded by exp[−((n − |m|)/4)t2/(t + 4)] as shown before. To complete
the proof, we need to show that the first term is also bounded by that quantity.
By the second inequality of Lemma B.1, the term in question is bounded by√

2/π exp[−nt/4 − log(nt/2)/2]. Now recall that we have nt/2 > 1 and note
that

√
2/π < 1. Hence, the first term in the preceding display is bounded by

exp[−nt/4] ≤ exp[−((n − |m|)/4)t2/(t + 4)]. �
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APPENDIX C: PROOFS FOR SECTION 3

PROOF OF THEOREM 3.1. We first derive separate upper bounds for
P(ρ2(m)/ρ̂2(m) < e−ε) and for P(ρ2(m)/ρ̂2(m) > eε).

If ρ2(m)/ρ̂2(m) < e−ε , then either

ρ2(m)
n − |m| + 1

nσ 2(m)
< exp(−ε/2) or ρ̂2(m)

n − |m| + 1

nσ 2(m)
> exp(ε/2).

Using Lemma B.5 to bound the probability of the first event in the preceding dis-
play and using Lemma B.4 to bound the probability of the second one, we see
that

P

(
ρ2(m)

ρ̂2(m)
< e−ε

)
< 2 exp

[
−n − |m|

4

ε2

ε + 4

]
.

Clearly, the upper bound in the preceding display is not larger than 2 exp[−((n −
|m|)/8)ε2/(ε + 8)].

For P(ρ2(m)/ρ̂2(m) > eε), we argue similarly as in the preceding paragraph to
obtain

P

(
ρ2(m)

ρ̂2(m)
> eε

)
< 4 exp

[
−n − |m|

8

ε2

ε + 8

]
.

Relation (4) follows from this. �

COROLLARY C.1. In the setting of Theorem 3.1, relation (4) continues to hold
with δ2(m) replacing ρ2(m); in that case, the constants 6 and 8 in (4) can both be
replaced by 4.

PROOF. The result follows by arguing as in the proof of Theorem 3.1, mutatis
mutandis, now using Lemma B.3 instead of Lemma B.5. �

PROOF OF COROLLARY 3.2. Let E denote the event where

max
m∈M

∣∣∣∣log
ρ̂2(m)

ρ2(m)

∣∣∣∣ ≤ ε/2,

and note that the complement of E, that is, Ec, is such that

P(Ec) ≤ ∑
m∈M

P

(∣∣∣∣log
ρ̂2(m)

ρ2(m)

∣∣∣∣ > ε/2
)

≤ ∑
m∈M

6 exp
[
−n − |m|

8

(ε/2)2

(ε/2) + 8

]

≤ 6#M exp
[
−n − |M|

16

ε2

ε + 16

]
.

(In the preceding chain of inequalities, the first one is derived from Bonferroni’s
inequality, the second one follows from Theorem 3.1, and the last one is obvious
in view of the definitions of #M and |M|.)
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To derive the first statement of the corollary, first note that the relation 0 ≤
log(ρ2(m̂)/ρ2(mρ)) is always satisfied. Moreover, observe that

log
ρ2(m̂)

ρ2(mρ)
= log

ρ2(m̂)

ρ̂2(m̂)
+ log

ρ̂2(m̂)

ρ̂2(mρ)
+ log

ρ̂2(mρ)

ρ2(mρ)

almost surely, because the event where ρ̂2(m) > 0 for each m ∈ M has probability
one. On the right-hand side of the preceding equality, the second term is nonposi-
tive, and hence

log
ρ2(m̂)

ρ2(mρ)
≤

∣∣∣∣log
ρ2(m̂)

ρ̂2(m̂)

∣∣∣∣ +
∣∣∣∣log

ρ̂2(mρ)

ρ2(mρ)

∣∣∣∣
almost surely. Hence, on the event E, we see that log(ρ2(m̂)/ρ2(mρ)) is between
zero and ε, and P(Ec) is bounded from above as required.

For the second statement of the corollary, define E as before but now with ε

replacing ε/2. It is easy to see that now P(Ec) is not larger than 6#M exp[−((n −
|M|)/8)ε2/(ε + 8)]. On the event E, we clearly have | log ρ̂2(m̂)/ρ2(m̂)| ≤ ε. �

APPENDIX D: PROOFS FOR SECTION 4

The following lemma provides an upper bound for the total variation distance
of two normal distributions in terms of their parameters and will be instrumental
in the proof of Theorem 4.1. We believe that the lemma is well known, in some
form or another, but we could not find an appropriate reference.

LEMMA D.1. Write N(a, s2) and N(0,1) for the Gaussian measures with the
indicated parameters (where a ∈ R, s > 0). Then the total variation distance of
these two measures is bounded as

‖N(a, s2) − N(0,1)‖TV ≤ |a|√
2π

+ | log(s2)|√
2πe

.

REMARK D.1. Of course ‖N(a, s2)−N(0,1)‖TV is trivially bounded by one.
Moreover, the lemma also entails that that total variation distance is also bounded
by |a/s|/√2π +| log(s2)|/√2πe, because ‖N(a, s2)−N(0,1)‖TV = ‖N(0,1)−
N(−a/s,1/s2)‖TV.

PROOF OF LEMMA D.1. Recall that the total variation distance of two mutu-
ally absolutely continuous probability measures P and Q is given by

‖P − Q‖TV = P
(
log(p/q) > 0

) − Q
(
log(p/q) > 0

)
,(15)

where p and q are the densities of P and Q, respectively, with respect to a common
dominating sigma-finite measure. Write φ(t) for the Lebesgue density of N(0,1),
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and note that the Lebesgue density of N(a, s2) is then given by φ((t − a)/s)/s.
The log-likelihood ratio of N(a, s2) and N(0,1) in hence given by

log
(

φ((t − a)/s)/s

φ(t)

)
= 1

2
log(1/s2) − 1

2

(
(t − a)2

s2 − t2
)
.(16)

The total variation distance of N(a, s2) and N(0,1) is bounded from above by
‖N(a, s2) − N(a,1)‖TV + ‖N(a,1) − N(0,1)‖TV or, equivalently, by

‖N(a,1) − N(0,1)‖TV + ‖N(0, s2) − N(0,1)‖TV.(17)

The proof will be complete if we can show that the first term in (17) is bounded by
|a|/√2π and that the second term in (17) is bounded by | log(s2)|/√2πe.

To bound the first term in (17), we first use (16) with s2 replaced by 1 to see that
the log-likelihood ratio of N(a,1) and N(0,1) is given by (−1/2)(−2ta + a2),
which is positive if and only if ta > a2/2. Using (15) with N(a,1) and N(0,1)

replacing P and Q, respectively, it is elementary to verify that

‖N(a,1) − N(0,1)‖TV = 2�(|a|/2) − 1,

where �(·) denotes the standard Gaussian c.d.f. For x ≥ 0, set f (x) = 2�(x) − 1
and g(x) = x

√
2/π . If we can show that f (x) ≤ g(x), it will follow that the ex-

pression in the preceding display is bounded from above by g(|a|/2) = |a|/√2π .
To show that f (x) ≤ g(x) for x ≥ 0, note that f (0) = g(0) = 0, and that

f ′(x) = 2
1√
2π

e−x2/2 ≤
√

2/π = g′(x).

The claim now follows because f (x) = f (0) + ∫ x
0 f (t) dt ≤ g(0) + ∫ x

0 g(t) dt =
g(x).

For the second term in (17), note that it suffices to consider the case where
s2 > 1 [because that term is trivially bounded from above by | log(s2)|/√2πe in
case s2 = 1; because ‖N(0, s2) − N(0,1)‖TV = ‖N(0,1) − N(0,1/s2)‖TV; and
because | log(s2)| = | log(1/s2)|]. Use (16) with a replaced by 0 to see that the log-
likelihood ratio of N(0, s2) and N(0,1) is given by − log(s2)/2 − t2(1/s2 − 1)/2.
This log-likelihood ratio is positive at t if and only if t2 > s2 log(s2)/(s2 − 1),
because s2 > 1. Using (15) with N(0, s2) and N(0,1) replacing P and Q, respec-
tively, it is now easy to see that

‖N(0, s2) − N(0,1)‖TV = F

(
s2 log(s2)

s2 − 1

)
− F

(
log(s2)

s2 − 1

)
,

where F(·) denotes the c.d.f. of a chi-square distributed random variable with one
degree of freedom. Using the first inequality of Lemma B.1 with s2 replacing t ,
we see that the expression in the preceding display is bounded by log(s2)/

√
2πe

as required. �
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PROOF OF THEOREM 4.1. Because ‖N(0, δ̂2(m)) − N(ν(m), δ2(m))‖TV =
‖N(−ν(m)/δ(m), δ̂2(m)/δ2(m)) − N(0,1)‖TV, Lemma D.1 entails that

‖N(0, δ̂2(m)) − N(ν(m), δ2(m))‖TV

≤ |ν(m)/δ(m)|√
2π

+ | log(δ̂2(m)/δ2(m))|√
2πe

.

In view of this, and because 1/
√

2πe < 1/4, we get

P

(
‖N(0, δ̂2(m)) − N(ν(m), δ2(m))‖TV >

1√
n

+ ε

)

≤ P

( |ν(m)/δ(m)|√
2π

+ | log(δ̂2(m)/δ2(m))|√
2πe

>
1√
n

+ ε

)
(18)

≤ P

( |ν(m)/δ(m)|√
2π

>
1√
n

+ ε

2

)
+ P

( | log(δ̂2(m)/δ2(m))|√
2πe

>
ε

2

)

≤ P

(∣∣∣∣ν(m)

δ(m)

∣∣∣∣ >
√

2π

(
1√
n

+ ε

2

))
+ P

(∣∣∣∣log
(

δ̂2(m)

δ2(m)

)∣∣∣∣ > 2ε

)
.

For the second term in (18), recall that δ̂2(m) = ρ̂2(m) and use Corollary C.1 to
obtain

P

(∣∣∣∣log
(

δ̂2(m)

δ2(m)

)∣∣∣∣ > 2ε

)
≤ 4 exp

[
−n − |m|

2

ε2

ε + 2

]
.

To complete the proof, we need to show that the first term in (18) is bounded by
3 exp[−((n − |m|)/2)ε2/(ε + 2)]. For the first term in (18), observe that

P

(
ν2(m)

δ2(m)
> 2π

(
1√
n

+ ε

2

)2)

≤ P

(
ν2(m)

n − |m| + 1

nσ 2(m)
> 2π

(
1√
n

+ ε

2

)2

e−ε

)

+ P

(
1

δ2(m)

nσ 2(m)

n − |m| + 1
> eε

)
.

In the preceding display, the second term on the right-hand side equals P(δ2(m)×
(n−|m|+1)/(nσ 2(m)) < e−ε) ≤ exp[−n−|m|

2
ε2

ε+2 ], where inequality follows from
Lemma B.3. It remains to show that, in the preceding display, the first term on the
right is not larger than 2 exp[−((n − |m|)/2)ε2/(ε + 2)]. To this end, let A ∼ χ2

1
independent of δ2(m). In view of Proposition 2.1, ν2(m) has the same distribution
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as (A/n)δ2(m). Therefore,

P

(
ν2(m)

n − |m| + 1

nσ 2(m)
> 2π

(
1√
n

+ ε

2

)2

e−ε

)

= P

(
A

n
δ2(m)

n − |m| + 1

nσ 2(m)
> 2π

(
1√
n

+ ε

2

)2

e−ε

)
(19)

≤ P

(
A

n
> 2π

(
1√
n

+ ε

2

)2

e−2ε

)
+ P

(
δ2(m)

n − |m| + 1

nσ 2(m)
> eε

)
.

For the second term on the far right-hand side of (19), we again use Lemma B.3
to get

P

(
δ2(m)

n − |m| + 1

nσ 2(m)
> eε

)
≤ exp

[
−n − |m|

2

ε2

ε + 2

]
.

In view of this, the proof will be complete if the first term on the far right of (19)
is bounded by exp[−((n − |m|)/2)ε2/(ε + 2)].

For the first term on the far right of (19), we have

P

(
A

n
> 2π

(
1√
n

+ ε

2

)2

e−2ε

)
≤ exp

[
−πn

(
1√
n

+ ε

2

)2

e−2ε

]
,(20)

in view of the second inequality of Lemma B.1 and because 2πn(1/
√

n +
ε/2)2e−2ε = 2π(1 + √

nε/2)2e−2ε ≥ 2πe−2ε ≥ 2πe−2 log 2 = 2π/4 > 1. We now
show that the right-hand side of (20) is not larger than exp[−(n/2)ε2/(ε + 2)] or,
equivalently, that

2π

(
1√
n

+ ε

2

)2

e−2ε ≥ ε2

ε + 2
.(21)

In this inequality, the left-hand side satisfies

2π
(
1/

√
n + ε/2

)2
e−2ε > (π/2)ε2e−2ε.

Thus, (21) will follow if π(ε + 2) ≥ 2e2ε , or if f (ε) = π(ε + 2) − 2e2ε ≥ 0. It is
now easy to verify that f (ε) is strictly decreasing and that f (log(2)) > 0. Hence,
the expression on the left of (20) or, equivalently, the first term on the far right
of (19) is bounded by exp[−(n/2)ε2/(ε + 2)] < exp[−((n − |m|)/2)ε2/(ε + 2)].

�

PROOF OF COROLLARY 4.2. Using Bonferroni’s inequality and Theorem 4.1,
this result follows immediately by arguing as in the first paragraph of the proof of
Corollary 3.2. �

PROOF OF PROPOSITION 4.3. For measurable A ⊆ R, write L(m̂;A) and
L̂(m̂;A) for the probability of A under L(m̂) and under L̂(m̂), respectively. We
have y(f ) ∈ I(m̂) if and only if ŷ(f )(m̂) − y(f ) lies in the interval [−qαδ̂(m̂),
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qαδ̂(m̂)]. Writing A as shorthand for that interval, the conditional coverage prob-
ability of I(m̂) equals L(m̂;A). Because the interval I(m̂) is constructed with
nominal coverage probability 1 − α assuming that ŷ(f )(m̂) − y(f ) is distributed
as L̂(m̂), we have L̂(m̂;A) = 1 − α. The result now follows immediately from
Corollary 4.2. �

PROOF OF PROPOSITION 4.4. To bound P(log δ̂(m̂)/δ(mδ) > ε), we first
note that

log
δ̂2(m̂)

δ2(mδ)
= log

δ̂2(m̂)

δ̂2(mδ)
+ log

δ̂2(mδ)

δ2(mδ)
≤ log

δ̂2(mδ)

δ2(mδ)

almost surely, because m̂ is a minimizer of δ̂2(·) = ρ̂2(·), and because the event
where δ̂2(m) > 0 for each m ∈ M has probability one. Hence, P(log δ̂(m̂)/

δ(mδ) > ε) or, equivalently, P(log δ̂2(m̂)/δ2(mδ) > 2ε), is bounded by

∑
m∈M

P

(
log

δ̂2(m)

δ2(m)
> 2ε

)

in view of Bonferroni’s inequality.
Similarly, to bound P(log δ̂(m̂)/δ(mδ) < −ε), we observe that

log
δ̂2(m̂)

δ2(mδ)
= log

δ̂2(m̂)

δ2(m̂)
+ log

δ2(m̂)

δ2(mδ)
≥ log

δ̂2(m̂)

δ2(m̂)
,

because mδ is a minimizer of δ2(·). Arguing similarly as in the preceding para-
graph, we thus see that P(log δ̂2(m̂)/δ2(mδ) < −2ε) is bounded from above by

∑
m∈M

P

(
log

δ̂2(m)

δ2(m)
< −2ε

)
.

Adding the bounds for P(log δ̂(m̂)/δ(mδ) > ε) and for P(log δ̂(m̂)/δ(mδ) <

−ε) obtained so far, we see that P(| log δ̂(m̂)/δ(mδ)| > ε) is bounded by

∑
m∈M

P

(∣∣∣∣log
δ̂2(m)

δ2(m)

∣∣∣∣ > 2ε

)
.

Recalling that δ̂2(·) = ρ̂2(·), the result now follows from Corollary C.1. �
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