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IMPROVING SAMC USING SMOOTHING METHODS: THEORY
AND APPLICATIONS TO BAYESIAN MODEL

SELECTION PROBLEMS1

BY FAMING LIANG

Texas A&M University

Stochastic approximation Monte Carlo (SAMC) has recently been pro-
posed by Liang, Liu and Carroll [J. Amer. Statist. Assoc. 102 (2007) 305–320]
as a general simulation and optimization algorithm. In this paper, we propose
to improve its convergence using smoothing methods and discuss the appli-
cation of the new algorithm to Bayesian model selection problems. The new
algorithm is tested through a change-point identification example. The nu-
merical results indicate that the new algorithm can outperform SAMC and
reversible jump MCMC significantly for the model selection problems. The
new algorithm represents a general form of the stochastic approximation
Markov chain Monte Carlo algorithm. It allows multiple samples to be gener-
ated at each iteration, and a bias term to be included in the parameter updating
step. A rigorous proof for the convergence of the general algorithm is estab-
lished under verifiable conditions. This paper also provides a framework on
how to improve efficiency of Monte Carlo simulations by incorporating some
nonparametric techniques.

1. Introduction. As known by many researchers, the Metropolis–Hastings
(MH) algorithm [Metropolis et al. (1953), Hastings (1970)] and the Gibbs sam-
pler [Geman and Geman (1984)] are prone to get trapped into local energy min-
ima in simulations from a system for which the energy landscape is rugged. In
terms of physics, the negative of the logarithmic density/mass function is called
the energy function of the system. To overcome the local-trap problem, many ad-
vanced Monte Carlo algorithms have been proposed, such as parallel tempering
[Geyer (1991), Hukushima and Nemoto (1996)], simulated tempering [Marinari
and Parisi (1992), Geyer and Thompson (1995)], evolutionary Monte Carlo [Liang
and Wong (2001)], dynamic weighting [Wong and Liang (1997)], multicanoni-
cal sampling [Berg and Neuhaus (1991)], 1/k-ensemble sampling [Hesselbo and
Stinchcomble (1995)], the Wang–Landau algorithm [Wang and Landau (2001),
Liang (2005)], equi-energy sampler [Mitsutake, Sugita and Okamoto (2003), Kou,
Zhou and Wong (2006)], stochastic approximation Monte Carlo (SAMC) [Liang,
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Liu and Carroll (2007), Atchadé and Liu (2007)], among others. Henceforth, the
work by Liang, Liu and Carroll (2007) will be referred to as LLC.

Among the above algorithms, SAMC is a very sophisticated one in both theory
and applications. The basic idea of SAMC stems from the Wang–Landau algorithm
and can be explained briefly as follows. Let

f (x) = cψ(x), x ∈ X,(1)

denote the target probability density/mass function we are working with, where
X is the sample space and c is an unknown constant. Let E1, . . . ,Em denote a
partition of X, and let ωi = ∫

Ei
ψ(x) dx for i = 1, . . . ,m. SAMC seeks to sample

from the trial distribution

fω(x) ∝
m∑

i=1

πiψ(x)

ωi

I (x ∈ Ei),(2)

where πi ’s are prespecified constants such that πi > 0 for all i and
∑

i=1 πi = 1.
It is easy to see that if ω1, . . . ,ωm are known, sampling from fω(x) will result
in a “random walk” in the space of subregions (by regarding each subregion
as a “point”) with each subregion being sampled with a frequency proportional
to πi . Hence, the local-trap problem can be overcome essentially, provided that
the sample space is partitioned appropriately. How to partition the sample space
will be discussed later. SAMC has been applied successfully to many hard com-
putational problems, such as phylogenetic tree reconstruction [Cheon and Liang
(2007)] neural network training [Liang (2007)] and Bayesian model selection
[LLC (2007)].

The success of SAMC depends crucially on the estimation of ωi . LLC pro-
pose to estimate ωi simultaneously using a stochastic approximation Markov chain
Monte Carlo algorithm. Let θti denote the working estimate of log(ωi/πi) obtained
at iteration t , θt = (θt1, . . . , θtm), and let {γt } be a positive, nonincreasing sequence
satisfying the conditions

(i)
∞∑
t=1

γt = ∞, (ii)
∞∑
t=1

γ
ζ
t < ∞,(3)

for any ζ > 1. Since fω(x) is invariant to a scale change of ω = (ω1, . . . ,ωm), that
is, fcω(x) = fω(x) for any number c > 0, the domain of θt can be restricted to
a compact set � by adjusting θt with a constant vector, provided that � is large
enough. Refer to Chen (2002) and Andrieu, Moulines and Priouret (2005) for more
discussions on this issue. The SAMC algorithm iterates between the following two
steps.

SAMC ALGORITHM.

(a) Simulate a sample xt by a single MH update with the invariant distribution

fθt (x) ∝
m∑

i=1

ψ(x)

eθti
I (x ∈ Ei).(4)
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(b) Set θ∗ = θt + γt+1(ẽt − π), where ẽt = (ẽt,1, . . . , ẽt,m) and ẽt,i = 1 if
xt ∈ Ei and 0 otherwise. If θ∗ ∈ �, set θt+1 = θ∗; otherwise, set θt+1 = θ∗ + c∗,
where c∗ = (c∗, . . . , c∗) can be an arbitrary vector which satisfies the condition
θ∗ + c∗ ∈ �.

Under mild conditions, LLC established the convergence of θt . The superior-
ity of SAMC in sample space exploration is due to its self-adjusting mechanism.
If a subregion is visited, θt will be updated accordingly such that this subregion
has a smaller probability to be revisited in the next iteration. Mathematically, if
xt ∈ Ei , then θt+1,i ← θt,i + γt+1(1 − πi) and θt+1,j ← θt,i − γt+1πj for j �= i.
However, this mechanism has not yet reached its maximum efficiency because it
does not differentiate between the neighboring and nonneighboring subregions of
Ei . We note that for many problems, E1, . . . ,Em form a sequence of naturally
ordered categories with ω1, . . . ,ωm changing smoothly along the index of subre-
gions. For example, for model selection problems X can be partitioned according
to the index of models, the subregions can be naturally ordered according to the
number of parameters contained in each model, and the neighboring subregions
often contain similar probability values. Intuitively, xt may contain some informa-
tion on its neighboring subregions, so the visiting to its neighboring subregions
should also be penalized to some extent in the next iteration. Consequently, this
improves the ergodicity of the simulation. Henceforth, we will call a partition with
ω1, . . . ,ωm changing smoothly a smooth partition or say the sample space is par-
titioned smoothly, and assume that there exists a smooth partition for the problem
under study.

In this paper, we show that the efficiency of SAMC can be improved by in-
cluding at each iteration a smoothing step, which distributes the information con-
tained in each sample to its neighboring subregions. The new algorithm is thus
called smoothing-SAMC or SSAMC for simplicity. SSAMC is tested through
a change-point identification example in this paper. Our numerical results show
that it outperforms both SAMC and reversible jump Markov chain Monte Carlo
(RJMCMC) [Green (1995)] for that example. By comparing the sampling mech-
anisms of SSAMC and RJMCMC, we argue that SSAMC can be superior to
RJMCMC for the model selection problems for which the sample space can be
partitioned smoothly. A rigorous proof for the convergence of SSAMC is provided
in the Appendix. As discussed later, SSAMC represents the most general form of
the stochastic approximation MCMC algorithm.

The remainder of this paper is organized as follows. In Section 2, we describe
the SSAMC algorithm and prove a theorem concerning its convergence. In Sec-
tion 3, we illustrate the use of SSAMC through a mixture Gaussian example. In
Section 4, we apply SSAMC to a change-point identification example. In Sec-
tion 5, we conclude this paper with a brief discussion.
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2. Smoothing-SAMC algorithm. Suppose that we are working with a distri-
bution as specified in (1) and that the sample space X has been partitioned into m

disjoint subregions E1, . . . ,Em according to a function denoted by λ(x). Further-
more, we suppose that the subregions have been ordered such that the weights
ω1, . . . ,ωm change smoothly along the index of the subregions.

The SSAMC algorithm is different from the SAMC algorithm in two aspects.
First, the gain factor sequence used in SSAMC is a little more restrictive than that
used in SAMC. In SSAMC, the gain factor sequence is required to be positive and
nonincreasing, and satisfy the following conditions:

(i) lim
t→∞γt = 0, (ii) lim

t→∞|γ −1
t − γ −1

t+1| < ∞,

(5)

(iii)
∞∑
t=1

γt = ∞, (iv)
∞∑
t=1

γ
ζ
t < ∞ for any ζ > 1.

The trade-off is that a higher-order noise term can be included in updating θt as
prescribed in (21). In this paper, we set

γt = T0

max{T0, t} , t = 1,2, . . . ,(6)

in all computations, where T0 is a prespecified number. It is easy to see that (6)
satisfies the condition (5).

Second, SSAMC allows multiple samples to be generated at each iteration, and
employs a smoothed estimate of pti in updating θt , where pti = ∫

Ei
fθt (x) dx

is the probability that a sample is drawn from Ei at iteration t , and fθt (x) is
as defined in (4). Let x

(1)
t , . . . , x

(κ)
t denote the samples generated by a MH ker-

nel with the invariant distribution fθt (x). Since κ is usually a small number, say,
10 to 20, the samples form a sparse frequency vector ext = (et1, . . . , etm) with
eti = ∑κ

l=1 I (x
(l)
t ∈ Ei). Because the law of large numbers does not apply here,

ext /κ is not a good estimator of pt = (pti, . . . , ptm). As suggested by many au-
thors, for example, Burman (1987), Hall and Titterington (1987), Dong and Si-
monoff (1994), Fan, Heckman and Wand (1995) and Aerts, Augustyns and Janssen
(1997), the frequency estimate can be improved by a smoothing method. Since we
have assumed that the partition is smooth, information in nearby subregions can
be borrowed to help produce more accurate estimates of pt .

In this paper, the frequency estimator ext /κ is smoothed by the Nadaraya–
Watson kernel estimator; that is, pti is estimated by

p̂ti =
∑m

j=1 W(�(i − j)/(mht ))etj /κ∑m
j=1 W(�(i − j)/(mht))

,(7)

where W(z) is a kernel function with bandwidth ht , and � is a rough estimate of
the range of λ(x), x ∈ X. Here, it is assumed that W(z) has a bounded support;
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that is, there exists a constant C such that W(z) = 0 if |z| > C. Under this as-
sumption, it is easy to show that the deviation of p̂ti from the frequency estimate
eti/κ is of the order O(ht); that is, p̂ti − eti/κ = O(ht). Refer to the Appendix
[around (32)] for the details of the proof. We have many choices for W(z), for ex-
ample, an Epanechnikov kernel or a double-truncated Gaussian kernel. The former
is standard, and the latter can be written as

W(z) =
{

exp(−z2/2), if |z| < C,
0, otherwise.

(8)

The bandwidth ht is chosen as a power function of γt , that is, ht = aγ b
t for a > 0

and b > 0. Here b specifies the decay rate of the smoothing adaptation in the
SSAMC algorithm. For a small value of b, the adaptation can decay very slowly. In
all computations of this paper, W(z) is set to the double-truncated Gaussian kernel
with C = 3 and

ht = min
{√

γt ,
range{λ(x

(1)
t ), . . . , λ(x

(κ)
t )}

2(1 + log2(κ))

}
,(9)

where the second term in min{·, ·} is the default bandwidth used in conven-
tional density estimation procedures for continuous observations, for example,
S-PLUS 5.0 [Venables and Ripley (1999), page 135]. It is easy to see that ht = √

γt

when t becomes large.
In summary, one iteration of the SSAMC algorithm consists of the following

three steps:

SSAMC ALGORITHM.

(a) (Sampling) Simulate samples x
(1)
t , . . . , x

(κ)
t using the MH algorithm with

the proposal distribution q(x
(i)
t , ·) and the invariant distribution fθt (x) as defined

in (4), where x
(0)
t = x

(κ)
t−1.

(b) (Smoothing) Calculate p̂t = (p̂t1, . . . , p̂tm) in (7).
(c) (Weight updating) Set

θ∗ = θt + γt+1(̂pt − π).(10)

If θ∗ ∈ �, set θt+1 = θ∗; otherwise, set θt+1 = θ∗ + c∗, where c∗ = (c∗, . . . , c∗)
can be any vector which satisfies the condition θ∗ + c∗ ∈ �.

For reasons of mathematical convenience, we assume that X is either finite (for
a discrete system) or compact (for a continuum system). For the latter case, X can
be restricted to the region {x :ψ(x) ≥ ψmin}, where ψmin is sufficiently small such
that the region {x :ψ(x) < ψmin} is not of interest. As in SAMC, � can also be
restricted to a compact set. In this paper, we set � = [−10100,10100]m, although
as a practical matter this is essentially equivalent to setting � = R

m. Since both
X and � are compact, it is natural to assume that fθt (x) is bounded away from 0
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and ∞ on X. Furthermore, we assume that the proposal distribution q(·, ·) used
in the sampling step of SSAMC satisfies the local positive condition; that is, for
every x ∈ X, there exists ε1 and ε2 such that q(x, y) ≥ ε2 if ‖x − y‖ ≤ ε1, where
‖z‖ denotes the norm of the vector z. In a study of MCMC theory, the proposal
distribution is often assumed to satisfy the local positive condition [Roberts and
Tweedie (1996)].

Under the above assumptions, we establish the following result concerning the
convergence of SSAMC. (A formal statement of this result and the proof are given
in the Appendix.) As t → ∞, we have

θti →
⎧⎨⎩ Const+ log

(∫
Ei

ψ(x) dx

)
− log(πi + ν), if Ei �= ∅,

−∞, if Ei = ∅,
(11)

where ν = ∑
j∈{i : Ei=∅} πj/(m − m0) and m0 is the number of empty subregions,

and Const represents an arbitrary constant. Since fθt (x) is invariant with respect
to a location transformation of θt , Const cannot be determined by the samples
drawn from fθt (x). To determine the constant term, extra information, for example,∑m

i=1 eθti is equal to a known number, is needed.
LLC discussed several practical issues on implementation of SAMC, includ-

ing sample space partitioning, convergence diagnostic, and parameter setting (for
π , T0 and the total number of iterations), most of which are still applicable to
SSAMC. To make the paper self-contained, they are briefly discussed as follows.

The sample space should be partitioned such that the MH chain can mix rea-
sonably fast within the same subregion. For example, if one chooses to parti-
tion the sample space according to the energy function − logψ(x), the partition
may be done as follows: E1 = {x :− logψ(x) ≤ u1}, E2 = {x :u1 < − logψ(x) ≤
u2}, . . . ,Em = {x :− logψ(x) ≥ um−1}, with the energy bandwidth ui − ui−1
(i = 2, . . . ,m) being less than 2, and u1 and um being chosen appropriately such
that the probabilities contained in E1 and Em are ignorable. This partition ensures
that the MH moves within the same subregion have a reasonable acceptance rate.
For the model selection problem, the sample space is usually partitioned according
to the model index by assuming that the MH chain can mix reasonably fast in the
sample space of each model. If this is not true, one may partition the sample space
jointly according to the energy function and the model index.

The convergence of SSAMC can be diagnosed by examining the patterns of the
estimates of ω obtained in multiple runs. If the estimates follow the same pattern,
we may reasonably think the runs have been converged. Otherwise, we may think
the gain factor is still large at the end of the runs, or some parts of the sample space
have not yet been visited, and some parameters should be reset as described below.
LLC also proposed to diagnose the convergence of SAMC based on the realized
sampling frequencies. This may not work well for SSAMC due to its use of the
smoothing estimator at each iteration.
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The choice of π is problem dependent. If one aims at optimization, π may be set
biased to low energy regions to improve the ergodicity of the simulation; whereas,
if one aims at estimating ω, π may be set to a discrete uniform distribution over
the subregions. The parameter T0 and the total number of iterations can be deter-
mined by a trial and error process based on diagnostics for the convergence of the
simulations. If a run is diagnosed as unconverged, SAMC should be rerun with a
larger value of T0, a larger number of iterations, or both. In general, a complex
problem should associate with a large value of T0 and a large number of iterations.

Below we discuss two more issues specifically related to SSAMC.

• On the choice of smoothing estimators. Theoretically, any smoothing estimator,
which satisfies the condition p̂ti − eti/κ = O(hτ ) for some τ > 0, can be used
in SSAMC. Other than the Nadaraya–Watson kernel estimator, the estimators
that possibly can be used include the local log-likelihood estimator [Tibshirani
and Hastie (1987), Fan, Heckman and Wand (1995)] and the local polynomial
estimator [Aerts, Augustyns and Janssen (1997)], etc. Refer to Simonoff (1998)
for a comprehensive review of smoothing estimators.

• On the choice of κ . Since the convergence of SSAMC is determined by the three
parameters κ , T0 and N (the total number of iterations) together, we suggest
that the value of κ should be determined together with the values of T0 and N

through a trial and error process as described above. In practice, κ is usually
set to a number less than 20. Since the gain factor is kept at a constant in each
iteration, a run with a large κ has to end at a large value of γt , provided that
the total running time is fixed. The estimates produced by a run ending at a
large value of gain factor are often highly variable. In our experience, SSAMC
can benefit from the smoothing operation even when κ is as small as 5, and the
maximum benefit is usually attained at a value of κ between 10 and 20.

3. An illustrative example. In this section, we illustrate the use of SSAMC
through a mixture Gaussian example. Our numerical results indicate that SSAMC
can converge much faster than SAMC for this example. Consider the following
distribution:

f (x) = 1
3N

[(−8
−8

)
,

(
1 0.9

0.9 1

)]
+ 1

3N

[(
6
6

)
,

(
1 −0.9

−0.9 1

)]
+ 1

3N

[(
0
0

)
,

(
1 0
0 1

)]
,

which is identical to an example given in Gilks, Roberts and Sahu (1998), except
that the mean vectors are separated by a larger distance in each dimension. Figure 1
shows the contour plot of the distribution, which indicates that the distribution
contains three well-separated components. The MH algorithm was first applied to
simulate from f (x) with a random walk proposal N(x, I2), but it failed to mix the
three components.
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FIG. 1. Contour plot of the distribution. The numbers in the plot indicate the subregions. For ex-
ample, E5 includes three separated small areas labeled by “5.”

Let X = [−10100,10100]2 be compact, and let it be partitioned according to
the function λ(x) = − logf (x) into the following subregions: E1 = {x :λ(x) <

0.5}, E2 = {x : 0.5 ≤ λ(x) < 1.0}, . . . ,E44 = {x : 21.5 ≤ λ(x) < 22.0} and E45 =
{x :λ(x) ≥ 22.0}, as illustrated by Figure 1. Note that in simulations, we never
need to know where the subregions are. It is enough to know which subregion it
belongs to for any given sample. SSAMC (also SAMC) offers to learn the weights∫
E1

ψ(x)dx/π1, . . . ,
∫
Em

ψ(x)dx/πm simultaneously via a stochastic approxima-
tion process. The self-adjusting mechanism of SSAMC ensures the success of the
learning process; the entire sample space is fully explored and the weights con-
verge to their true values. After convergence, importance samples can then be sim-
ulated from the target distribution f (x). Since our purpose of studying this exam-
ple is just to illustrate how the convergence of SAMC can be accelerated by the
smoothing operator, the issue of post-convergence inference will not be discussed
here. Refer to LLC for this issue.

SSAMC was run for this example 20 times independently with the setting:
ψ(x) = f (x), T0 = 25, κ = 20, � = 22, m = 45, N = 5 × 105, and π1 =
· · · = πm = 1/m. Table 1 summarizes the estimates of the probabilities P(Ei) =∫
Ei

f (x) dx, i = 5, . . . ,10. Note that the subregions E1, . . . ,E4 are empty. Like
SAMC, SSAMC allows the existence of empty subregions in simulations. The
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TABLE 1
Comparison of RMSEs (root mean squared errors) of the SAMC and SSAMC estimates

SSAMC

Estimates True prob. (%) SAMC κ = 5 κ = 10 κ = 20

21.60 21.65 21.66 21.68
P(E5) 21.70 (0.23) (0.13) (0.09) (0.11)

19.67 19.67 19.70 19.74
P(E6) 19.74 (0.17) (0.10) (0.08) (0.05)

23.10 23.10 23.08 23.05
P(E7) 23.04 (0.18) (0.09) (0.08) (0.07)

14.01 14.01 13.99 13.98
P(E8) 13.98 (0.08) (0.06) (0.04) (0.04)

8.51 8.49 8.49 8.48
P(E9) 8.47 (0.08) (0.04) (0.02) (0.03)

5.16 5.15 5.15 5.14
P(E10) 5.15 0.04 (0.02) (0.02) (0.02)

CPU (s) — 33.2 35.6 34.8 33.9

The numbers in the parentheses are the RMSEs of the estimates. The CPU time (in seconds) was
measured on a 2.8 GHz computer for a single run of the corresponding algorithm.

corresponding true probability values, which are calculated with a total of 3 × 108

samples drawn equally from each of the three components of f (x), are also given
in Table 1.

For comparison, SAMC was applied to this example with the same setting as
that used by SSAMC except for T0 = 500 and N = 107. SAMC was also run 20
times independently. The computational results are also summarized in Table 1.
SSAMC has made a significant improvement over SAMC in terms of accuracy
of the estimates; in other words, SSAMC converges much faster than SAMC. On
average, the RMSE (root mean squared error) of the SSAMC estimates is only
about half of that of the SAMC estimates. Note that under the above settings, we
have almost the same gain factor sequence {γt } and exactly the same number of
energy evaluations in each of the SAMC and SSAMC runs. Hence, the comparison
is fair. The number of energy evaluations is actually a much better measure than
the CPU time for comparing efficiency of two algorithms, because the CPU cost is
usually dominated by the part used for energy evaluations when we simulate from
a complex system, for example, protein folding. We note that this measure has long
been used in statistical physics [see, e.g., Hesselbo and Stinchcomble (1995)]. To
provide more evidence for the fairness of our comparisons, we also reported in
Table 1 the CPU times cost by the above runs; SAMC and SSAMC cost about the
same CPU time in each run.
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To examine the effect of the sample size κ on efficiency of SSAMC, SSAMC
was rerun with κ = 5 and 10. The values of T0 and N were set accordingly, T0 =
500/κ and N = 107/κ , such that in these runs we have about the same gain factor
sequence and exactly the same number of energy evaluations as in the previous
runs. The computational results are also summarized in Table 1. They indicate
that the smoothing operation can improve the accuracy of the SAMC estimates
generally, even when κ is as small as 5.

4. Bayesian model selection problems. LLC applied SAMC to Bayesian
model selection problems and compared it to RJMCMC. They conclude that
SAMC outperforms RJMCMC when the model space is complex, for example,
it contains several modes which are well separated from each other, or some tiny
probability models, but, of interest to us. However, when the model space is sim-
ple, for example, it only contains several models with comparable probabilities,
SAMC may not work better than RJMCMC, as in this case the self-adjusting abil-
ity of SAMC is no longer crucial for mixing of the models. In this section, we show
that for Bayesian model selection problems, SSAMC can make a significant im-
provement over SAMC and it can also work better than RJMCMC even when the
model space is simple. This is illustrated by a change-point identification example.

The change-point identification problem can be stated as follows. Let Z =
(z1, z2, . . . , zn) denote a sequence of independent observations. Assume that the
index set {1,2, . . . , n} has been partitioned into blocks and that the sequence
follows the same distribution within blocks; that is, there exists a binary vector
ϑ = (ϑ1, . . . , ϑn−1) with ϑc1 = · · · = ϑck

= 1 and 0 elsewhere, such that

0 = c0 < c1 < · · · < ck < ck+1 = n

and

zi ∼ gr(·), cr−1 < i ≤ cr

for r = 1,2, . . . , k + 1, where gr(·) is a density. Our task is to identify the values
of c1, . . . , ck .

Recently this problem has been treated by several authors using simulation-
based methods, such as the Gibbs sampler [Barry and Hartigan (1993)], jump dif-
fusion [Phillips and Smith (1996)], reversible jump MCMC [Green (1995)] and
evolutionary Monte Carlo [Liang and Wong (2000)]. In this article, we follow
Barry and Hartigan (1993) to consider the case where gr(·) is a Gaussian density
parameterized by (μr, σ

2
r ). Let ϑ (k) denote a configuration of ϑ with k ones, which

represents a model of k change-points. Let η(k) = (ϑ (k),μ1, σ
2
1 , . . . ,μk+1, σ

2
k+1),

Xk denote the space of models with k change-points, ϑ (k) ∈ Xk , and X =⋃n
k=0 Xk . The log-likelihood of η(k) is

L
(
Z|η(k)) = −

k+1∑
i=1

{
ci − ci−1

2
logσ 2

i + 1

2σ 2
i

ci∑
j=ci−1+1

(zj − μi)
2

}
.(12)
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To conduct a Bayesian analysis, the following priors are specified for η(k). The
vector ϑ (k) is subject to the distribution

P
(
ϑ (k)) = λk∑n−1

j=0 λj/j !
(n − 1 − k)!

(n − 1)! , k = 0,1, . . . , n − 1,

which is equivalent to assuming that Xk is subject to a truncated Poisson distrib-
ution with parameter λ, and each of the (n − 1)!/[k!(n − 1 − k)!] models in Xk

is a priori equal. The component mean μi is subject to an improper prior, and the
component variance σ 2

i is subject to an inverse-Gamma IG(α,β). By assuming
that all the priors are independent, we have the log-prior density,

logP
(
η(k)) = ak −

k+1∑
i=1

[
(α − 1) logσ 2

i + β

σ 2
i

]
,(13)

where ak = (k +1)[α logβ − log�(α)]+ log(n−1− k)!+ k logλ. The α, β and λ

are hyperparameters to be chosen by the user. The log-posterior of η(k) (up to an
additive constant) can be obtained by adding (12) and (13). Integrating out the
parameters μ1, σ

2
1 , . . . ,μk+1, σ

2
k+1 from the full posterior distribution and taking

a logarithm, we have

logP
(
ϑ (k)|Z) = ak + k + 1

2
log 2π

−
k+1∑
i=1

{
1

2
log(ci − ci−1) − log�

(
ci − ci−1 − 1

2
+ α

)
(14)

+
(

ci − ci−1 − 1

2
+ α

)

× log

[
β + 1

2

ci∑
j=ci−1+1

z2
j − (

∑ci

j=ci−1+1 zj )
2

2(ci − ci−1)

]}
.

The MAP (maximum a posteriori) estimate of ϑ is often a reasonable solution to
the problem. In practice, we are also interested in estimating the marginal pos-
terior distribution P(Xk|Z). SSAMC can be applied to estimate this distribu-
tion. Without loss of generality, we restrict our consideration to the models with
kmin ≤ k ≤ kmax. Let Ek = Xk and ψ(·) ∝ P(ϑ (k)|Z). It follows from (11) that
ω̂

(t)
i /ω̂

(t)
j = eθti−θtj forms a consistent estimator for the ratio P(Xi |Z)/P (Xj |Z)

when t is large.
For the change-point identification problem, the sampling step of SSAMC can

be performed as follows. Let ϑ
(k,l)
t denote the lth sample generated at iteration t ,

where k indicates the number of change-points of the sample. The next sample can
be generated according to the following procedure:
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(a) Set j = k − 1, k, or k + 1 according to probabilities qk,j , where qk,k = 1
3

for kmin ≤ k ≤ kmax, qkmin,kmin+1 = qkmax,kmax−1 = 2
3 , and qk,k+1 = qk,k−1 = 1

3 if
kmin < k < kmax.

(b) If j = k, update ϑ
(k,l)
t by a “simultaneous” move (described below); if j =

k + 1, update ϑ
(k,l)
t by a “birth” move (described below); and if j = k − 1, update

ϑ
(k,l)
t by a “death” move (described below).

The “birth,” “death” and “simultaneous” moves are designed similarly to those
described in Green (1995). In the “birth” move, a random number, say u, is first
drawn uniformly from the set {0,1, . . . , k}; then another random number, say v,
is drawn uniformly from the set {cu + 1, . . . , cu+1 − 1}, and it is proposed to set
ϑv = 1. The resulting new sample is denoted by ϑ (k+1)∗ . In the “death” move,
a random number, say u, is drawn uniformly from the set {1,2, . . . , k}, and it is
proposed to set ϑcu = 0. The resulting new sample is denoted by ϑ (k−1)∗ . In the “si-
multaneous” move, a random number, say u, is first randomly drawn from the set
{1,2, . . . , k}; then another random number, say v, is uniformly drawn from the set
{cu−1 + 1, . . . , cu − 1, cu + 1, . . . , cu+1 − 1}, and it is proposed to set ϑcu = 0 and
ϑv = 1. The resulting new sample is denoted by ϑ (k)∗ . The acceptance probabilities
of the three types of moves are as follows. For the “birth” move, it is

min
{

1,
eθtk

eθt,k+1

P(ϑ (k+1)∗ |X)

P (ϑ
(k,l)
t |X)

qk+1,k

qk,k+1

cu+1 − cu − 1

1

}
.(15)

For the “death” move, it is

min
{

1,
eθtk

eθt,k−1

P(ϑ (k−1)∗ |X)

P (ϑ
(k,l)
t |X)

qk−1,k

qk,k−1

1

cu+1 − cu−1 − 1

}
.(16)

For the “simultaneous” move, it is

min
{

1,
P (ϑ (k)∗ |X)

P (ϑ
(k,l)
t |X)

}
,(17)

because the proposal densities are symmetric in the sense T (ϑ
(k,l)
t → ϑ (k)∗ ) =

T (ϑ (k)∗ → ϑ
(k,l)
t ) = 1/(cu+1 − cu−1 − 2).

Our simulated dataset consists of 1000 observations with z1, . . . , z120 ∼
N(−0.5,1), z121, . . . , z210 ∼ N(0.5,0.5), z211, . . . , z460 ∼ N(0,1.5), z461, . . . ,

z530 ∼ N(−1,1), z531, . . . , z615 ∼ N(0.5,2), z616, . . . , z710 ∼ N(1,1), z711, . . . ,

z800 ∼ N(0,1), z801, . . . , z950 ∼ N(0.5,0.5) and z951, . . . , z1000 ∼ N(1,1). The
time plot is shown in Figure 2. For this dataset we set the hyperparameters
α = β = 0.05 and λ = 1. In simulations, we set kmin = 7 and kmax = 14. The val-
ues of kmin and kmax can be determined rapidly with a short pilot run of the above
algorithm. Outside this range, we have P(Xi |Z) ≈ 0. SSAMC was run 20 times
independently with κ = 20, T0 = 5, N = 105, � = kmax − kmin + 1, m = 8, and
π1 = · · · = πm = 1

m
. The results are summarized in Figure 2 and Table 2.
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FIG. 2. Comparison of the true change-point pattern (horizontal lines) and its MAP estimate (ver-
tical lines).

Figure 2 compares the true change-point pattern and its MAP estimate, which
are (120,210,460,530,615,710,800,950) and (120,211,460,531,610,709,

TABLE 2
The estimated posterior distribution P(Xk |Z) for the change-point identification example

SSAMC SAMC MSAMC RJMCMC

k prob(%) SD prob(%) SD prob(%) SD prob(%) SD

7 0.1010 0.0023 0.0944 0.0029 0.0978 0.0020 0.0907 0.0046
8 55.4666 0.2470 55.3928 0.6112 55.0810 0.3507 55.5726 0.3451
9 33.3744 0.1659 33.3728 0.3573 33.3798 0.2228 33.2117 0.2052

10 9.2982 0.1026 9.3647 0.2788 9.5903 0.1351 9.3537 0.1441
11 1.5655 0.0287 1.5785 0.0685 1.6457 0.0304 1.5694 0.0400
12 0.1768 0.0042 0.1803 0.0097 0.1871 0.0042 0.1845 0.0097
13 0.0157 0.0005 0.0154 0.0009 0.0166 0.0004 0.0165 0.0011
14 0.0018 0.0001 0.0011 0.0001 0.0018 0.0001 0.0009 0.0002

CPU (s) 25.8 25.5 24.9 23.9

SD: standard deviation of the estimates. CPU: the CPU time (in seconds) cost by a single run of the
corresponding algorithm on a 2.8 GHz computer.
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801,939), respectively. The largest discrepancy of the two patterns occurs at the
last change-point position. A detailed exploration of the original data gives a strong
support to the MAP estimate. The last ten observations of the second last cluster
have a larger mean value than the expected and thus, they tend to be clustered to
the last cluster. Our computation shows that the log-posterior probability of the
MAP estimate is 5.33 higher than that of the true pattern.

For comparison, SAMC and RJMCMC were also applied to this example. Each
algorithm was run 20 times independently. The computational results are summa-
rized in Table 2. SAMC employs the same sample space partition, the same tran-
sition proposals (in the sampling step) and the same parameter setting as SSAMC
except for T0 = 100 and N = 2 × 106. RJMCMC employs the same transition pro-
posals as those used by SSAMC and SAMC, and performs 2 × 106 iterations in
each run. Therefore, in each run the three algorithms perform exactly the same
number of energy evaluations, and SAMC and SSAMC also employ the same gain
factor sequence. The comparisons made in Table 2 are thus fair to each of the
algorithms.

SSAMC works best for this example among the three algorithms. As known by
us, RJMCMC can be regarded as a general MH algorithm; and for such a simple
problem, it is really hard to find another Monte Carlo algorithm to beat it. How-
ever, SSAMC does. SSAMC is different from RJMCMC in two respects. First, like
SAMC, it has the capability to self-adjust the acceptance rate of the moves. This
capability enables it to overcome any difficulties in the dimension jumping moves
and to explore the entire model space very quickly. Second, it has the capabil-
ity to make use of nearby model information to improve its estimation. However,
this can hardly be done in RJMCMC due to the strict requirement for its Markov-
ian property. These two capabilities make SSAMC potentially more efficient than
RJMCMC for all types of Bayesian model selection problems. This is evidenced
by the observations: LLC showed that SAMC can make a significant improvement
over RJMCMC for complex Bayesian model selection problems, and in this paper
we showed that SSAMC can make a significant improvement over RJMCMC for
simple Bayesian model selection problems.

It is worth pointing out that although the overall performance of SAMC is
worse than that of RJMCMC for this example, SAMC tends to work better than
RJMCMC for the low probability model spaces, for example, the spaces with 7 and
14 change-points. This is due to the fact that SAMC samples equally from each
model space, while RJMCMC samples from each model space proportionally to
its probability.

We have also tried a variation of SSAMC for this example. At each step, only
multiple samples are generated, but no smoothing is operated on the frequency
estimator; that is, (10) in the SSAMC algorithm is replaced by (18),

θ∗ = θt + γt+1(ext /κ − π).(18)
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It was run 20 times with exactly the same setting as that used by SSAMC. The
results reported in Table 2 under the column MSAMC indicate that averaging over
multiple samples can improve the convergence of SAMC, but a further smoothing
operation on the frequency estimator is also important.

Later, SSAMC was rerun with some other settings, for example, κ = 10,
T0 = 10 and N = 2 × 105; it yielded similar results to those reported in Table 2.

5. Discussion. In this paper, we have introduced the SSAMC algorithm, stud-
ied its convergence and discussed its application to Bayesian model selection prob-
lems. Our numerical results show that SSAMC can converge much faster than
SAMC when the sample space is partitioned smoothly. For the problems for which
the partition contains abrupt jumps between neighboring subregions, smoothing
could potentially make the estimation worse. In the latter case, the subregions can
be reordered according to the estimates of ωi’s from a pilot run such that the re-
sulting partition is smooth.

This paper has made two contributions to the literature. First, it establishes the
convergence of a stochastic approximation Markov chain Monte Carlo algorithm
under verifiable conditions. The algorithm we studied is very general. It allows
multiple samples to be generated at each iteration and a higher-order bias term
to be included in the weight updating step. The existing stochastic approximation
MCMC algorithms usually only allow a single sample to be generated at each it-
eration [e.g., Benveniste, Métivier and Priouret (1990), Tadić (1997) and Andrieu,
Moulines and Priouret (2005)]. Younes (1999) proved convergence for a stochas-
tic approximation MCMC algorithm which allows for multiple samples, but does
not allow for the higher-order bias term. In addition, the conditions assumed by
Younes (1999) are less verifiable than those assumed in this paper. Gu and Kong
(1998) also studied convergence of a stochastic approximation MCMC algorithm
under less verifiable conditions. As indicated by Benveniste, Métivier and Priouret
(1990), Chen (2002) and Kushner and Ying (2003), the convergence theory es-
tablished in this paper can be applied in a much broader context, such as signal
processing and adaptive control.

Second, this paper shows how to improve SAMC using smoothing methods,
which also provides a general framework on how to improve efficiency of Monte
Carlo simulations by incorporating nonparametric techniques. For an illustrative
purpose, we employ the Nadaraya–Watson kernel estimator. An advanced smooth-
ing technique, such as the local log-likelihood estimator, should work better in
general. It is worth noting that even when the smoothing adaptation, which can de-
cay extremely slowly by choosing ht = aγ b

t and b a small positive number, stops,
SSAMC does not become the same as SAMC. SAMC only allows a single sam-
ple to be generated in each iteration, while SSAMC allows multiple samples to be
generated in each iteration. Also, the theory established for SAMC by LLC cannot
be directly extended to the case of multiple samples. Allowing multiple samples
to be generated in each iteration is important, as it provides us much freedom to
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incorporate some data-mining techniques into simulations. We hope the present
work will trigger more research in this direction.

LLC discussed the applications of SAMC to the problems for which the sam-
ple space is jointly partitioned according to two functions λ1(x) and λ2(x). The
applicability of SSAMC to these problems is apparent. For the joint partitions,
the subregions can usually be naturally ordered as a contingency table, and the
smoothing estimator used in this paper can be easily extended to the table. Our
preliminary results (not reported here) show that in this case, the superiority of
SSAMC over SAMC is even more significant.

APPENDIX: THEORETICAL RESULTS ON SAMC

The Appendix is organized as follows. In Section A.1, we describe a theorem
for the convergence of the SSAMC algorithm. In Section A.2, we describe a gen-
eral version of the SSAMC algorithm and give conditions for its convergence. In
Section A.3, we prove the convergence of the general algorithm described in Sec-
tion A.2. In Section A.4, we prove the convergence of the SSAMC algorithm by
verifying that it satisfies the convergence conditions of the general algorithm.

A.1. A convergence theorem for SSAMC. Without loss of generality, we
only show the convergence presented in (11) for the case that all subregions are
nonempty, that is, ν = 0. Extension to the case ν �= 0 is trivial, since replacing (10)
by (19) (given below) will not change the process of SSAMC simulation:

θ ′ = θt + γt (̂pt+1 − π − ν),(19)

where ν = (ν, . . . , ν) is an m-vector of ν.

THEOREM A.1. Let E1, . . . ,Em be a partition of a compact sample space X
and ψ(x) be a nonnegative function defined on X with 0 <

∫
Ei

ψ(x) dx < ∞ for
all Ei ’s. Let π = (π1, . . . , πm) be an m-vector with 0 < πi < 1 and

∑m
i=1 πi = 1.

Let � be a compact set of m dimensions, and there exists a constant C such that
θ̆ ∈ �, where θ̆ = (θ̆1, . . . , θ̆m) and θ̆i = C + log(

∫
Ei

ψ(x) dx) − log(πi). Let θ0 ∈
� be an initial estimate of θ̆ , and θt ∈ � be the estimate of θ̆ at iteration t . Let
{γt } be a nonincreasing, positive sequence satisfying (5). Let the bandwidth ht be a
power function of γt , that is, ht = aγ b

t for some a > 0 and b > 0, when t becomes
large. Suppose that fθt (x) is bounded away from 0 and ∞ on X, and the proposal
distribution satisfies the local positive condition. As t → ∞, we have

P

{
lim

t→∞ θti = Const+ log
(∫

Ei

ψ(x) dx

)
− log(πi)

}
= 1,

(20)
i = 1, . . . ,m,

where Const represents an arbitrary constant.
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A.2. A convergence theorem for a general stochastic approximation algo-
rithm. Let xt = (x

(1)
t , . . . , x

(κ)
t ) be the collection of the samples generated by

a MH kernel at iteration t , fθt (x) be the invariant distribution of the MH kernel,
H(θt ,xt+1) = ext+1/κ − π , h(θ) = ∫

Xk H(θ,x)fθ (dx), and ξt+1 = H(θt ,xt+1) −
h(θt ) + γ τ

t+1η(xt+1) with τ > 0 and η(xt+1) being a bounded function of xt+1;
that is, there exists a constant � such that ‖η(xt+1)‖ ≤ � for all t = 0,1, . . . . The
SSAMC algorithm can then be expressed in a more general form by replacing (10)
by (21):

θ∗ = θt + γt+1h(θt ) + γt+1ξt+1.(21)

In the following the general stochastic approximation MCMC algorithm is ana-
lyzed under the following conditions.

Conditions on the step-sizes.

(A1) The sequence {γt }∞t=0 is nonincreasing, positive and satisfies the condi-
tion (5).

Drift conditions on the transition kernel Pθ . Below, we first give some defini-
tions on general drift and continuity conditions, and then give the specific drift and
continuity conditions for the SSAMC algorithm.

Assume that a transition kernel P is ψ-irreducible, aperiodic and has a station-
ary distribution on a sample space denoted by X. A set C ⊂ X is said to be small
if there exists a probability measure ν on X, a positive integer l and δ > 0 such
that

P l
θ (x,A) ≥ δν(A) ∀x ∈ C, ∀A ∈ BX,

where BX is the Borel set of X. A function V :X → [1,∞) is said to be a drift
function outside C if there exist constants λ < 1 and b such that

PθV (x) ≤ λV (x) + bI (x ∈ C) ∀x ∈ X,

where PθV (x) = ∫
X Pθ(x,y)V (y) dy. For g :X → R

d , define the norm

‖g‖V = sup
x∈X

|g(x)|
V (x)

,

and define the set LV = {g :X → R
d,‖g‖V < ∞}.

The specific drift and continuity conditions for the SSAMC algorithm can be de-
scribed as follows. Let Pθ be the joint transition kernel for generating the samples
x = (x(1), . . . , x(κ)) at each iteration by ignoring the subscript t , Xκ = X×· · ·×X
be the product sample space, A = A1 × · · · × Aκ be a measurable rectangle in Xκ

for which Ai ∈ BX for i = 1, . . . , κ , and BXκ = BX ×· · ·×BX be the σ -algebra
generated by measurable rectangles.

(A2) The transition kernel Pθ is irreducible and aperiodic for any θ ∈ �. There
exist a function V :Xκ → [1,∞) and constants α ≥ 2 and β ∈ (0,1] such
that:



IMPROVING SAMC USING SMOOTHING METHODS 2643

(i) For any θ ∈ �, there exist a set C ⊂ Xκ , an integer l, constants
0 < λ < 1, b,ς , δ > 0 and a probability measure ν such that

Pl
θV

α(x) ≤ λV α(x) + bI (x ∈ C) ∀x ∈ Xκ ,(22)

PθV
α(x) ≤ ςV α(x) ∀x ∈ Xκ ,(23)

Pl
θ (x,A) ≥ δν(A) ∀x ∈ C, ∀A ∈ BXκ .(24)

(ii) There exists a constant c1 such that for all x ∈ Xκ and θ, θ ′ ∈ �,

‖H(θ,x)‖ ≤ c1V (x),(25)

‖H(θ,x) − H(θ ′,x)‖ ≤ c1V (x)‖θ − θ ′‖β.(26)

(iii) There exists a constant c2 such that for all θ, θ ′ ∈ �,

‖Pθg − Pθ ′g‖V ≤ c2‖g‖V |θ − θ ′|β ∀g ∈ LV ,(27)

‖Pθg − Pθ ′g‖V α ≤ c2‖g‖V α |θ − θ ′|β ∀g ∈ LV α .(28)

Lyapunov condition on h(θ). Let L = {θ ∈ � :h(θ) = 0}.
(A3) The function h :� → R

d is continuous, and there exists a continuously
differentiable function v :� → [0,∞) such that v̇(θ) = ∇T v(θ)h(θ) < 0,
∀θ ∈ Lc and supθ∈Q v̇(θ) < 0 for any compact set Q ⊂ Lc.

A main convergence result. Let Px0,θ0 denote the probability measure of the
Markov chain {(xt , θt )}, started in (x0, θ0), and implicitly defined by the sequences
{γt }. Also define D(z,A) = infz′∈A ‖z − z′‖.

THEOREM A.2. Assume the conditions (A1), (A2) and (A3) hold, and
supx∈Xκ V (x) < ∞. Let the sequence {θn} be defined as in the stochastic approxi-
mation algorithm. Then for all (x0, θ0) ∈ Xκ × �,

lim
t→∞D(θt ,L) = 0, Px0,θ0-a.e.

A.3. Proof of Theorem A.2. The following lemma is a partial restatement of
Proposition 6.1 of Andrieu, Moulines and Priouret (2005).

LEMMA A.1. Assume the drift condition (A2). Then the following results
hold:

(B1) For any θ ∈ �, the Markov kernel Pθ has a single stationary distrib-
ution fθ . In addition H :� × Xκ is measurable for all θ ∈ �, h(θ) =∫
Xκ H(θ,x)fθ (dx) < ∞.

(B2) For any θ ∈ �, the Poisson equation u(θ,x) − Pθu(θ,x) = H(θ,x) − h(θ)

has a solution u(θ,x), where Pθu(θ,x) = ∫
Xκ u(θ,x′)Pθ (x,x′) dx′. There ex-

ist a function V :Xκ → [1,∞) such that the set {x ∈ Xκ :V (x) < ∞} �= ∅,
constant β ∈ (0,1], p ≥ 2 such that for any compact subset �0 ⊂ �,
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(i) supθ∈�0
‖H(θ,x)|V < ∞,

(ii) supθ∈�0
(‖u(θ,x)‖V + ‖Pθu(θ,x)‖V ) < ∞,

(iii) sup(θ,θ ′)∈�0
|θ −θ ′|−β(‖u(θ,x)−u(θ,x′)‖V +‖Pθu(θ,x)−Pθ ′u(θ ′,

x)‖V ) < ∞.

Vladislav Tadić studied the convergence of a stochastic approximation MCMC
algorithm, which is the same as the SAMC algorithm except that it does not include
the step of sample space partitioning, under different conditions from those given
in Andrieu, Moulines and Priouret (2005). Tadić proved the following lemma,
which corresponds to Theorem 4.1 and Lemma 2.2 of Tadić (1997). In this pa-
per, we show that the results also hold for SSAMC. Our proof is similar to Tadić’s
except for some necessary changes for including the higher-order noise term in ξt .

LEMMA A.2. Assume that the conditions (A1), (A2), (B1) and (B2) hold and
that supx∈Xκ V (x) < ∞. For the SSAMC algorithm, the following results hold:

(C1) There exist R
d -valued random processes {εt }t≥0, {ε′

t }t≥0 and {ε′′
t }t≥0 defined

on a probability space (�,F ,P) such that

γt+1ξt+1 = εt+1 + ε′
t+1 + ε′′

t+1 − ε′′
t , t ≥ 0.(29)

(C2) The series
∑∞

t=0 ‖ε′
t‖,

∑∞
t=0 ‖ε′′

t ‖2 and
∑∞

t=0 ‖εt+1‖2 all converge a.s. and

E(εt+1|Ft ) = 0, a.s., n ≥ 0,(30)

where {Ft }t≥0 is a family of σ -algebras of F satisfying σ {θ0} ⊆ F0 and
σ {εt , ε

′
t , ε

′′
t } ⊆ Ft ⊆ Ft+1, t ≥ 0.

(C3) Let Rt = R′
t + R′′

t , t ≥ 1, where R′
t = γt+1∇T v(θt )ξt+1, and

R′′
t+1 =

∫ 1

0

[∇v
(
θt + s(θt+1 − θt )

) − ∇v(θt )
]T

(θt+1 − θt ) ds.

Then
∑∞

t=1 γtξt and
∑∞

t=1 Rt converge a.s.

PROOF.

(C1) Since X is compact, the condition (B2) implies that there exists a constant
c1 ∈ R

+ such that

‖θt+1 − θt‖ = ‖γt+1H(θt ,xt+1) + γ 1+τ
t+1 η(xt+1)‖ ≤ c1γt+1[V (xt+1) + �].

The condition (A1) yields γt+1/γt = O(1) and |γt+1 − γt | = O(γtγt+1) for
t → ∞. Consequently, there exists a constant c2 ∈ R

+ such that

γt+1 ≤ c2γt , |γt+1 − γt | ≤ c2γ
2
t , t ≥ 0.
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Let ε0 = ε′
0 = 0, and

εt+1 = γt+1[u(θt ,xt+1) − Pθt u(θt ,xt )],
ε′
t+1 = γt+1[Pθt+1u(θt+1,xt+1) − Pθt u(θt ,xt+1)]

+ (γt+2 − γt+1)Pθt+1u(θt+1,xt+1) + γ 1+τ
t+1 η(xt+1),

ε′′
t = −γt+1Pθt u(θt ,xt ).

It is easy to verify that (29) is satisfied.
(C2) Since σ(θt ) ⊆ Ft , we have

E(u(θt ,xt+1)|Ft ) = Pθt u(θt ,xt ),

which concludes (30). The condition (B2) implies that there exist constants
c3, c4, c5, c6, c7, c8 ∈ R

+ and τ ′ = min(β, τ ) > 0 such that

‖εt+1‖2 ≤ 2c3γ
2
t+1V

2(xt ),

‖ε′
t+1‖ ≤ c4γt+1V (xt+1)‖θt+1 − θt‖β + c5γ

2
t+1V (xt+1) + c6γ

1+τ
t+1 �

≤ c7γ
1+τ ′
t+1 [V (xt+1) + �)],

‖ε′′
t+1‖2 ≤ c8γ

2
t+1V

2(xt+1).

It follows from the condition (A1) and the condition supx V (x) < ∞ that the
series

∑∞
t=0 ‖εt+1‖2,

∑∞
t=0 ‖ε′

t‖ and
∑∞

t=0 ‖ε′′
t ‖2 all converge.

(C3) Let M = supθ∈� max{‖h(θ)‖,‖∇v(θ)‖}, and L is the Lipschitz constant of
∇v(·). Since σ {θt } ⊂ Ft , the condition (C2) implies that E(∇T v(θt )εt+1|
Ft ) = 0. In addition, we have

∞∑
t=0

E(|∇T v(θt )εt+1|)2 ≤ M2
∞∑
t=0

E(‖εt+1‖2) < ∞.

It follows from the martingale convergence theorem [Hall and Heyde (1980),
Theorem 2.15] that both

∑∞
t=0 εt+1 and

∑∞
t=0 ∇T v(θt )εt+1 converge almost

surely. Since
∞∑
t=0

|∇T v(θt )ε
′
t+1| ≤ M

∞∑
t=1

‖ε′
t‖,

∞∑
t=1

γ 2
t ‖ξt‖2 ≤ 4

∞∑
t=1

‖εt‖2 + 4
∞∑
t=1

‖ε′
t‖2 + 8

∞∑
t=0

‖ε′′
t ‖2,

it follows from (C2) that both
∑∞

t=0 |∇T v(θt )ε
′
t+1| and

∑∞
t=1 γ 2

t ‖ξt‖2 con-
verge. In addition,

‖R′′
t+1‖ ≤ L‖θt+1 − θt‖2 = L‖γt+1h(θt ) + γt+1ξt+1‖2

≤ 2L(M2γ 2
t+1 + γ 2

t+1‖ξt+1‖2),∣∣(∇v(θt+1) − ∇v(θt )
)T

ε′′
t+1

∣∣ ≤ L‖θt+1 − θt‖‖ε′′
t+1‖,
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for all t ≥ 0. Consequently,
∞∑
t=1

|R′′
t | ≤ 2LM2

∞∑
t=1

γ 2
t + 2L

∞∑
t=1

γ 2
t ‖ξt‖2 < ∞,

∞∑
t=0

∣∣(v(θt+1) − v(θt )
)T

ε′′
t+1

∣∣ ≤
(

2L2M2
∞∑
t=1

γ 2
t + 2L2

∞∑
t=1

γ 2
t ‖ξt‖2

)1/2

×
( ∞∑

t=1

‖ε′′
t ‖2

)1/2

< ∞.

Since
n∑

t=1

γtξt =
n∑

t=1

εt +
n∑

t=1

ε′
t + ε′′

n − ε′′
0 ,

n∑
t=0

R′
t+1 =

n∑
t=0

∇T v(θt )εt+1 +
n∑

t=0

∇T v(θt )ε
′
t+1

−
n∑

t=0

(∇v(θt+1 − ∇v(θt )
)T

ε′′
t+1

+ ∇T v(θn+1)ε
′′
n+1 − ∇T v(θ0)ε

′′
0 ,

it is obvious that
∑∞

t=1 γtξt and
∑∞

t=1 Rt converge almost surely.

The proof for Lemma A.2 is completed. �

Based on the above lemmas, Theorem A.2 can be proved in a similar way to
Theorem 2.2 of Tadić (1997). Since the manuscript Tadić (1997) is not available
publicly, we rewrite the proof to make the paper be self-contained.

PROOF OF THEOREM A.2. Let M = supθ∈� max{‖h(θ)‖, |v(θ)|} and Vε =
{θ :v(θ) ≤ ε}. Applying Taylor’s expansion formula [Folland (1990)], we have

v(θt+1) = v(θt ) + γn+1v̇(θt+1) + Rt+1, t ≥ 0,

which implies that
t∑

i=0

γi+1v̇(θi) = v(θt+1) − v(θ0) −
t∑

i=0

Ri+1 ≥ −2M −
t∑

i=0

Ri+1.

Since
∑t

i=0 Ri+1 converges (owing to Lemma A.2),
∑t

i=0 γi+1v̇(θi) also con-
verges. Furthermore,

v(θt ) = v(θ0) +
t−1∑
i=0

γi+1v̇(θi) +
t−1∑
i=0

Ri+1, t ≥ 0,
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{v(θt )}t≥0 also converges. On the other hand, the conditions (A1) and (A2) imply
limt→∞ d(θt ,L) = 0. Otherwise, there exists ε > 0 and n0 such that d(θt ,L) ≥ ε,
t ≥ n0; as

∑∞
t=1 γt = ∞ and p = sup{v̇(θ) : θ ∈ Vc

ε } < 0, it is obtained that∑∞
t=n0

γt+1v̇(θt ) ≤ p
∑∞

t=1 γt+1 = −∞.
Suppose that limt→∞ d(θt ,L) > 0. Then, there exists ε > 0 such that

limt→∞ d(θt ,L) ≥ 2ε. Let t0 = inf{t ≥ 0 :d(θt ,L) ≥ 2ε}, while t ′k = inf{t ≥
tk :d(θt ,L) ≤ ε} and tk+1 = inf{t ≥ t ′k :d(θt ,L) ≥ 2ε}, k ≥ 0. Obviously, tk <

tk′ < tk+1, k ≥ 0, and

d(θtk ,L) ≥ 2ε, d(θt ′k ,L) ≤ ε, d(θt ,L) ≥ ε, tk ≤ t < t ′k, k ≥ 0.

Let q = sup{v̇(θ) : θ ∈ Vc
ε }. Then

q

∞∑
k=0

t ′k−1∑
i=tk

γi+1 ≥
∞∑

k=0

t ′k−1∑
i=tk

γi+1v̇(θi) ≥
∞∑
t=0

γt+1v̇(θt ) > −∞.

Therefore,
∑∞

k=0
∑t ′k−1

i=tk
γi+1 < ∞, and consequently, limk→∞

∑t ′k−1
i=tk

γi+1 = 0.
Since

∑∞
t=1 γtξt converges (owing to Lemma A.2), we have

ε ≤ ‖θt ′k − θtk‖ ≤ M

t ′k−1∑
i=tk

γi+1 +
∥∥∥∥∥
t ′k−1∑
i=tk

γi+1ξi+1

∥∥∥∥∥ −→ 0,

as k → ∞. This contradicts our assumption ε > 0. Hence, limt→∞ d(θt ,L) > 0
does not hold. Therefore, limt→∞ d(θt ,L) = 0 almost surely. �

A.4. Proof of Theorem A.1. Let ext = (et1, . . . , etm). Since the kernel used
in (7) has a bounded support, p̂ti − eti/κ can then be re-expressed as

p̂ti − eti/κ =
∑min{m,i+k0}

l=max{1,i−k0} W(�l/(mht ))(et,i+l/κ − eti/κ)∑min{m,i+k0}
l=max{1,i−k0} W(�l/(mht))

,(31)

where k0 = [Cmht

�
], and [z] denotes the maximum integer less than z. By noting

that −1 ≤ etj

κ
− eti

κ
≤ +1, we have |p̂ti − eti/κ| ≤ 2k0. This is true even when

k0 = 0. Thus, there exists a bounded function −2Cm/� ≤ η∗
i (ext ) ≤ 2Cm/� such

that

p̂ti − eti/κ = htη
∗
i (ext ).(32)

Since ht is chosen in (9) as a power function of γt , the SSAMC algorithm falls into
the class of stochastic approximation MCMC algorithms described in Section A.2
by letting η(xt ) = (η∗

1(ext ), . . . , η
∗
m(ext )), and its convergence can be proved by

verifying that it satisfies the conditions (A1) to (A3):

(A1) It is obvious that this condition is satisfied by the sequence as specified in (6).
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(A2) Let xt+1 = (x
(1)
t+1, . . . , x

(κ)
t+1), which can be regarded as a sample produced

by a Markov chain on the product space Xκ = X × · · · × X with the kernel

Pθt (x,y) = Pθt

(
x(κ), y(1))Pθt

(
y(1), y(2)) · · ·Pθt

(
y(κ−1), y(κ)),

where Pθt (x, y) denotes the one-step MH kernel. To simplify notations,
in the following we will drop the subscript t , denoting xt by x and θt =
(θt1, . . . , θtm) by θ = (θ1, . . . , θm).

Roberts and Tweedie (1996, Theorem 2.2) showed that if the target distribution
is bounded away from 0 and ∞ on every compact set of its support X, then the
MH chain with a proposal distribution satisfying the local positive condition is
irreducible and aperiodic, and every nonempty compact set is small. It follows
from this result that Pθ(x, y) is irreducible and aperiodic, and thus Pθ (x,y) =
P κ

θ (x, y) is also irreducible and aperiodic.
Since X is compact, Roberts and Tweedie’s result implies that X is a small set

and the minorization condition holds on X for the kernel Pθ(x, y); that is, there
exist an integer l′, a constant δ and a probability measure ν′(·) such that

P l′
θ (x,A) ≥ δν′(A) ∀x ∈ X, ∀A ∈ BX.

It then follows from Rosenthal (1995, Lemma 7) that

Pl
θ (x,A) ≥ δν(A) ∀x ∈ Xκ, ∀A ∈ BXκ ,

by setting l = min{n :n × κ ≥ l′, n = 1,2,3, . . .} and defining the measure ν(·) as
follows: Marginally on the first coordinate, ν(·) agrees with ν′(·); conditionally on
the first coordinate, ν(·) is defined by

ν
(
x(2), . . . , x(κ)|x(1)) = W

(
x(2), . . . , x(κ)|x(1)),(33)

where W(x(2), . . . , x(κ)|x(1)) is the conditional distribution of the Markov chain
samples generated by the kernel Pθ . Conditional on x

(1)
t , the samples x

(2)
t , . . . , x

(κ)
t

are generated independent of all previous samples xt−1, . . . ,x1. Hence, W(x(2),

. . . , x(κ)|x(1)) exists. This verifies condition (24) by setting C = Xκ . Thus, for any
θ ∈ � the following conditions hold:

Pl
θV

α(x) ≤ λV α(x) + bI (x ∈ C) ∀x ∈ Xκ ,
(34)

PθV
α(x) ≤ ςV α(x) ∀x ∈ Xκ ,

by choosing V (x) = 1, 0 < λ < 1, b = 1 − λ, ς > 1, and α ≥ 2. These conclude
that (A2)(i) is satisfied.

Let H(i)(θ,x) be the ith component of the vector H(θ,x) = (ex/κ − π). By
construction, |H(i)(θ,x)| = |e(i)

x /κ − πi | < 1 for all x ∈ Xκ and i = 1, . . . ,m.
Therefore, there exists a constant c1 = √

m such that for any θ ∈ � and all x ∈ Xκ ,

‖H(θ,x)‖ ≤ c1.(35)
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Also, H(θ,x) does not depend on θ for a given sample x. Hence, H(θ,x) −
H(θ ′,x) = 0 for all (θ, θ ′) ∈ � × �, and the following condition holds for the
SSAMC algorithm:

‖H(θ,x) − H(θ ′,x)‖ ≤ c1‖θ − θ ′‖,(36)

for all (θ, θ ′) ∈ � × �. Equations (35) and (36) imply that (A2)(ii) is satisfied by
choosing β = 1 and V (x) = 1.

Let sθ (x, y) = q(x, y)min{1, rθ (x, y)}, where rθ (x, y) = fθ (y)q(y,x)
fθ (x)q(x,y)

. Thus, we
have ∣∣∣∣∂sθ (x, y)

∂θi

∣∣∣∣ = ∣∣−q(x, y)I
(
rθ (x, y) < 1

)
× I

(
J (x) = i or J (y) = i

)
I
(
J (x) �= J (y)

)
rθ (x, y)

∣∣
≤ q(x, y),

where I (·) is the indicator function, and J (x) denotes the index of the subregion
to which x belongs. The mean-value theorem implies that there exists a constant
c2 such that

|sθ (x, y) − sθ ′(x, y)| ≤ q(x, y)c2‖θ − θ ′‖,(37)

which implies that

sup
x

∫
X

|sθ (x, y) − sθ ′(x, y)|dy ≤ c2‖θ − θ ′‖.(38)

Since the MH kernel can be expressed in the form

Pθ(x, dy) = sθ (x, dy) + I (x ∈ dy)

[
1 −

∫
X

sθ (x, z) dz

]
,

for any measurable set A ⊂ X we have

|Pθ(x,A) − Pθ ′(x,A)|
=

∣∣∣∣∫
A

[
sθ (x, y) − sθ ′(x, y)

]
dy

+ I (x ∈ A)

∫
X

[
sθ ′(x, z) − sθ (x, z)

]
dz

∣∣∣∣
(39)

≤
∫
X

|sθ (x, y) − sθ ′(x, y)|dy + I (x ∈ A)

∫
X

|sθ ′(x, z) − sθ (x, z)|dz

≤ 2
∫
X

|sθ (x, y) − sθ ′(x, y)|dy

≤ 2c2‖θ − θ ′‖.
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Since Pθ (x,A) can be expressed in the following form:

Pθ (x,A)

=
∫
A1

· · ·
∫
Aκ

Pθ

(
x(κ), y(1))Pθ

(
y(1), y(2)) · · ·Pθ

(
y(κ−1), y(κ))dy(1) · · ·dy(κ),

(39) implies that there exists a constant c3 such that

|Pθ (x,A) − Pθ ′(x,A)|
=

∣∣∣∣∫
A1

· · ·
∫
Aκ

[
Pθ

(
x(κ), y(1))

× Pθ

(
y(1), y(2)) · · ·Pθ

(
y(κ−1), y(κ))

− Pθ ′
(
x(κ), y(1))Pθ ′

(
y(1), y(2)) · · ·

× Pθ ′
(
y(κ−1), y(κ))]dy(1) · · ·dy(κ)

∣∣∣∣
≤

∫
A1

∫
X

· · ·
∫
X

∣∣Pθ

(
x(κ), y(1)) − Pθ ′

(
x(κ), y(1))∣∣

× Pθ

(
y(1), y(2)) · · ·Pθ

(
y(κ−1), y(κ))dy(1) · · ·dy(κ)

+
∫
X

∫
A2

∫
X

· · ·
∫
X

Pθ ′
(
x(κ), y(1))∣∣Pθ

(
y(1), y(2)) − Pθ ′

(
y(1), y(2))∣∣

× Pθ

(
y(2), y(3)) · · ·Pθ

(
y(κ−1), y(κ))dy(1) · · ·dy(κ)

+ · · ·
+

∫
X

· · ·
∫
X

∫
Aκ

Pθ ′
(
x(κ), y(1)) · · ·Pθ ′

(
y(κ−2), y(κ−1))

× ∣∣Pθ

(
y(κ−1), y(κ)) − Pθ ′

(
y(κ−1), y(κ))∣∣dy(1) · · ·dy(κ)

≤ c3‖θ − θ ′‖,
which implies that (27) is satisfied.

For any function g ∈ LV ,

‖Pθg − Pθ ′g‖V =
∥∥∥∥∫ (

Pθ (x, dy) − Pθ ′(x, dy)
)
g(y)

∥∥∥∥
V

=
∥∥∥∥∫

Xκ+

(
Pθ (x, dy) − Pθ ′(x, dy)

)
g(y)

+
∫
Xκ−

(
Pθ (x, dy) − Pθ ′(x, dy)

)
g(y)

∥∥∥∥
V

≤ ‖g‖V {|Pθ (x,Xκ+) − Pθ ′(x,Xκ+)| + |Pθ (x,Xκ−) − Pθ ′(x,Xκ−)|}
≤ 4c2‖g‖V |θ − θ ′| [following from (39)]
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where Xκ+ = {y : y ∈ Xκ ,Pθ (x, dy) − Pθ ′(x,y) > 0} and Xκ− = Xκ \ Xκ+. There-
fore, condition (A2)(iii) is satisfied by choosing V (x) = 1 and β = 1.

(A3) Since the invariant distribution of the kernel Pθ(x, ·) is fθ (x), we have for
any fixed θ ,

E
(
e(i)

x /κ − πi

) =
∫
Ei

ψ(x) dx/eθi∑m
k=1[

∫
Ek

ψ(x)dx/eθk ] − πi

(40)

= Si

S
− πi, i = 1, . . . ,m,

where Si = ∫
Ei

ψ(x) dx/eθi and S = ∑m
k=1 Sk . Thus, we have

h(θ) =
∫
X

H(θ,x)f (dx)

=
(

S1

S
− π1, . . . ,

Sm

S
− πm

)′
.

It follows from (40) that h(θ) is a continuous function of θ . Let v(θ) =
1
2

∑m
k=1(

Sk

S
− πk)

2. As shown below, v(θ) has continuous partial derivatives of
the first order.

Solving the system of equations formed by (40), we have

L =
{
(θ1, . . . , θm) :

θi = Const+ log
(∫

Ei

ψ(x) dx
)

− log(πi), i = 1, . . . ,m; θ ∈ �

}
,

where Const = log(S) can be determined by imposing a constraint on S. For ex-
ample, setting S = 1 leads to that c = 0. It is obvious that L is nonempty and
v(θ) = 0 for every θ ∈ L.

To verify the conditions related to v̇(θ), we have the following calculations:

∂S

∂θi

= ∂Si

∂θi

= −Si,

∂Si

∂θj

= ∂Sj

∂θi

= 0,

(41)
∂(Si/S)

∂θi

= −Si

S

(
1 − Si

S

)
,

∂(Si/S)

∂θj

= ∂(Sj/S)

∂θi

= SiSj

S2 ,
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for i, j = 1, . . . ,m and i �= j ,

∂v(θ)

∂θi

= 1

2

m∑
k=1

∂(Sk/S − πk)
2

∂θi

= ∑
j �=i

(
Sj

S
− πj

)
SiSj

S2 −
(

Si

S
− πi

)
Si

S

(
1 − Si

S

)
(42)

=
m∑

j=1

(
Sj

S
− πj

)
SiSj

S2 −
(

Si

S
− πi

)
Si

S

= μη∗
Si

S
−

(
Si

S
− πi

)
Si

S
,

for i = 1, . . . ,m, where μη∗ = ∑m
j=1(

Sj

S
− πj )

Sj

S
. Thus, we have

v̇(θ) = μη∗
m∑

i=1

(
Si

S
− πi

)
Si

S
−

m∑
i=1

(
Si

S
− πi

)2 Si

S

= −
{

m∑
i=1

(
Si

S
− πi

)2 Si

S
− μ2

η∗

}
(43)

= −σ 2
η∗ ≤ 0,

where σ 2
η∗ denotes the variance of the discrete distribution defined in the following

table:

State (η∗)
S1
S

− π1 · · · Sm
S

− πm

Prob. S1
S

· · · Sm
S

If θ ∈ L, v̇(θ) = 0; otherwise, v̇(θ) < 0. Therefore, supθ∈Q v̇(θ) < 0 for any
compact set Q ⊂ Lc.

The proof is completed.
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