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ON ASYMPTOTICALLY OPTIMAL TESTS UNDER LOSS OF
IDENTIFIABILITY IN SEMIPARAMETRIC MODELS

BY RUI SONG1, MICHAEL R. KOSOROK1 AND JASON P. FINE2

University of North Carolina

We consider tests of hypotheses when the parameters are not identifiable
under the null in semiparametric models, where regularity conditions for pro-
file likelihood theory fail. Exponential average tests based on integrated pro-
file likelihood are constructed and shown to be asymptotically optimal under
a weighted average power criterion with respect to a prior on the nonidentifi-
able aspect of the model. These results extend existing results for parametric
models, which involve more restrictive assumptions on the form of the alter-
native than do our results. Moreover, the proposed tests accommodate mod-
els with infinite dimensional nuisance parameters which either may not be
identifiable or may not be estimable at the usual parametric rate. Examples
include tests of the presence of a change-point in the Cox model with current
status data and tests of regression parameters in odds-rate models with right
censored data. Optimal tests have not previously been studied for these sce-
narios. We study the asymptotic distribution of the proposed tests under the
null, fixed contiguous alternatives and random contiguous alternatives. We
also propose a weighted bootstrap procedure for computing the critical val-
ues of the test statistics. The optimal tests perform well in simulation studies,
where they may exhibit improved power over alternative tests.

1. Introduction. In this paper we investigate nonstandard testing problems
involving a family of probability distributions {Pθ , θ ∈ �}, known up to a parame-
ter θ , in a parameter space �. The parameter space � is assumed to be a subset of
an infinite-dimensional metric space. The null and alternative hypotheses are:

H0 : θ ∈ �0 vs. H1 : θ ∈ �\�0,

where �0 is a subset of � and contains at least two elements. In the usual testing
framework, the parameters are unique under the null so that identifiability is not an
issue. While we allow multiple values of θ satisfying the null, we assume that the
null distribution, denoted by P0, is unique, where �0 = {θ ∈ � :Pθ = P0}. Under
this setup, the true value of θ is not identifiable under the null, since for any θ �= θ ′
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in �0, Pθ = Pθ ′ = P0. Such loss of identifiability occurs in diverse applications
in the social, biological, physical and medical sciences. We next present two such
examples followed by a description of the main contributions of this paper. The
Introduction concludes with a brief outline of the remainder of the paper.

1.1. Example 1: Univariate frailty regression under right censoring. Let T be
a nonnegative random variable representing the failure time, C be the independent
censoring time, V ≡ min(T ,C) and Z ≡ Z(·) be a corresponding p-dimensional
covariate process. The observed data {Xi = (Vi,�i,Zi), i = 1, . . . , n} consists
of n i.i.d. realizations of X = (V ,�,Z), where � ≡ 1{T ≤ V }, 1{·} is the in-
dicator function. In this model, the hazard function of the survival time T given
covariates Z is

λ{t;Z(t),W } = η(t)W exp{βT Z(t)},(1)

where t is the time index, W is an unobserved gamma frailty with mean 1 and
variance ζ , β is a p-dimensional regression parameter and η(·) is a completely
unspecified baseline hazard function.

When β is not zero, the odds-rate model has been treated extensively; see
Kosorok, Lee and Fine (2004), Murphy, Rossini and van der Vaart (1997); Mur-
phy and van der Vaart (1997, 2000); Parner (1998); Slud and Vonta (2004), among
others. Scharfstein, Tsiatis and Gilbert (1998) considered semiparametric effi-
cient estimation in the setting, where the covariates are time independent, ζ is as-
sumed known and η(·) is assumed to be absolutely continuous. Bagdonavičius and
Nikulin (1999) considered estimation for a class of proportional hazards model,
which includes the odds-rate model with ζ unspecified, based on a modified partial
likelihood. Kosorok, Lee and Fine (2004) considered robust inference for odds-rate
models when the frailty distribution and regression covariates may be misspeci-
fied. To our knowledge, problems associated with testing the null β = 0 when the
frailty parameter is unknown have not been previously considered in the statistical
literature.

It has been shown that ζ and η(·) are not identifiable under the null [Kosorok,
Lee and Fine (2004)]. Intuitively, when β = 0, the covariate process Z provides
no information for the failure time process. The frailty W and the baseline hazard
η(·) are not distinguishable from each other, hence ζ and η(·) are not identifiable.
Thus, the testing problem described above is nonregular and standard asymptotic
results are not applicable.

1.2. Example 2: Change-point regression for current status data. Change-
point models have been studied extensively and have proven to be popular in clin-
ical research. In many settings, a change-point effect is realistic and can be much
easier to interpret than a quadratic or more complex nonlinear effect [Chappell
(1989)]. Change-point Cox models have been widely used in survival applications,
as in Kosorok and Song (2007); Luo, Turnbull and Clark (1997); Pons (2003),
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where likelihood ratio tests were investigated. However, to our knowledge, opti-
mal testing has not been explored for such models.

Under current status censoring, a subject is examined once at a random obser-
vation time V and at that time it is observed whether the event time T ≤ V or not.
The observed data {Xi = (Vi,�i,Zi), i = 1, . . . , n} consists of n i.i.d. realizations
of X = (V ,�,Z), where � ≡ 1{T ≤ V } and Z is a d-dimensional covariate. Here
we let d = 1 for simplicity. In this example, we assume that the time to event T

satisfies a change-point Cox model conditionally on the covariate Z. That is, the
density of X is given by:

pθ(x) = (
1 − e−erγ (z)
(v))�(

e−erγ (z)
(v))1−�
fV,Z(v, z),(2)

with rγ (z) = αz + (β1 + β2z)1{z > ζ }, where α, β1 and β2 are scalar regression
parameters, ζ is the change-point parameter and 
(·) is the cumulative baseline
hazard function. We also define the collected parameters β ≡ (β1, β2), ξ ≡ (β,α),
γ ≡ (ξ, ζ ) and η ≡ (α,
). We are particularly interested in the hypothesis test of
the existence of a change-point for regression parameters in the above model, that
is, H0 :β = 0.

Although Cox regression with current status data was discussed by Huang
(1996) and others, change-point Cox regression has not been studied with cur-
rent status data. The development of optimal tests in the current status setting is
further complicated by the fact that the nuisance parameter 
 cannot be estimated
at the parametric rate, unlike with right censored data.

In model (2), the change-point parameter is present only under the alternative.
This is different from Example 1, where the odds rate parameter ζ and the baseline
hazard function η(·) are both present, but indistinguishable, under the null.

1.3. Description of main contribution. The statistical literature contains nu-
merous precedents on the nonidentifiability problem in parametric models, see
Chernoff (1954), Chernoff and Lander (1995), Dacunha-Castelle and Gassiat
(1999) and Liu and Shao (2003). Among others, Dacunha-Castelle and Gassiat
(1999) proposed a locally conic parametrization approach to enable asymptotic ex-
pansions of the likelihood ratio test under loss of identifiability under the null. Liu
and Shao (2003) derived a quadratic approximation of the loglikelihood ratio func-
tion by using Hellinger distance. Most authors directly study the approximation of
the log-likelihood ratio function in some neighborhood and obtain its asymptotic
null distribution. However, the asymptotic optimality properties of the classical
likelihood ratio tests (LRT) do not hold anymore [Lindsay (1995)] and Wald and
score tests are not even well defined in these nonstandard problems. To our knowl-
edge, all results for testing nonidentifiable P0 using likelihood based tests are for
parametric models. The main aim of this paper is to investigate the construction of
optimal likelihood based tests for semiparametric models.

A key question which arises, as noted by Dacunha-Castelle and Gassiat (1999),
is: since the parameter is not identifiable, around which point can an expansion be



2412 R. SONG, M. R. KOSOROK AND J. P. FINE

made? To address this question, we assume the existence of a “full rank” repara-
meterization which contains all the information of the null model and in which all
parameters are identifiable. To be specific, we partition θ ≡ (ψ, ζ ) and ψ ≡ (β, η),
where β ∈ R

p is a parameter of interest, ζ ∈ R
q and η is a parameter defined on an

arbitrary parametric space, Hη. We assume that the information in the null model
can be absorbed into the parameter space of η, through this full rank reparame-
terization. This is made precise in Section 2. Note that Example 1 requires such a
reparameterization since both ζ and η are present under the null. In contrast, such
a reparameterization is not required for Example 2 since ζ is not present under the
null.

When the models involved are parametric, a special case when η does not de-
pend on ζ under the null, that is, ζ is only present under the alternative, has been
studied extensively by Andrews and Ploberger (1994); Davies (1977, 1987); King
and Shively (1993), and others. Davies (1977) showed that the likelihood ratio test
is optimal in the sense that as the significance level of the test tends to zero, its
power function approaches that of the optimum test when ζ is given. These opti-
mality results are very weak and do not provide any guidance regarding the perfor-
mance of the test in practical applications, where the significance level is fixed, for
example, at level 0.05 [Andrews (1999)]. Andrews and Ploberger (1994) studied
optimal tests for parametric models using the weighted average power criterion
originally introduced by Wald (1943) when studying the likelihood ratio test under
regularity conditions, where the model is identifiable under the null. Under loss
of identifiability, the likelihood ratio test is generally less powerful than the opti-
mal test in Andrews and Ploberger (1994). These optimal tests possess a Bayesian
interpretation, where the weight corresponds to a prior on the nonidentifiable pa-
rameter, and are asymptotically equivalent to a Bayesian posterior odds ratio.

In this paper, we adapt the weighted average power criterion [Andrews and
Ploberger (1994), Wald (1943)] to construct optimal tests in semiparametric mod-
els under loss of identifiability. Our main contribution is to extend the results of
Andrews and Ploberger (1994) in at least four directions.

First, Andrews and Ploberger (1994) address only parametric models, as is the
case for most of the literature on testing problems with nonidentifiability under the
null. Our optimality results are available for semiparametric models, where η may
be infinite dimensional and ζ may not be estimable at the usual parametric rate un-
der either the null or the alternative. A semiparametric profile likelihood approach
is adopted to reduce the infinite-dimensional model to a finite-dimensional uni-
formly least-favorable submodel; see Murphy and van der Vaart (2000) for a dis-
cussion of profile likelihood in regular settings. We note however, that the idea of
uniformly least favorable submodels is a new concept in semiparametric settings,
which is not discussed in Murphy and van der Vaart (2000). The development of
this concept is both nontrivial and critical to establishing an appropriate optimality
criterion for semiparametric models under loss of identifiability.
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Second, the results of Andrews and Ploberger (1994) are applicable only for
tests where a nuisance parameter (namely ζ ) is present only under the alternative.
This may not be true in our situation, where a nondegenerate reparameterization
may be needed to make ζ vanish under the null. Furthermore, our tests and the
optimality results do not depend on the reparameterization.

Third, Andrews and Ploberger (1994) establish that their test is optimal with re-
spect to local alternatives for ψ involving a multivariate normal prior with singular
covariance matrix. In our approach, it is only necessary to specify the prior in the
direction of β , the parameter of interest, and no prior is needed on the remaining
parameter η. This enables us to avoid the singular covariance issue in Andrews and
Ploberger (1994).

Fourth, we develop a simple and effective Monte Carlo method of inference for
the proposed test statistics.

Adopting a profile likelihood approach has several advantages. First, under the
identifiable submodel, the MLE for η may converge at a slower rate than the
usual

√
n rate, such as the change-point Cox model with current status data. This

makes the theoretical justification based on Taylor expansion of the full likelihood
fail. Second, even if the MLE of the nonparametric component converges at the√

n rate, semiparametric likelihoods may not be suitably “differentiable,” in partic-
ular, when such a likelihood contains certain empirical terms, as with, for example,
the odds-rate model. Third, handling the remainder terms in a Taylor type expan-
sion is challenging, owing to the presence of the infinite dimensional parameters,
and a delicate Banach space analysis is required. Employing the profile likelihood
enables us to address these issues rigorously.

1.4. Organization of paper. The remainder of the paper is organized as fol-
lows. In Section 2, we present the generic testing problem and the model and data
assumptions. The optimality results are given in Section 3. We verify that the re-
sults hold for the examples in Section 4. In Section 5, we describe a simulation
study to evaluate the finite-sample behavior of the proposed tests and to compare
its efficiency with some alternative tests for the current status example. In Sec-
tion 6, we discuss some additional examples without identifiability under the null
which are not covered in our current settings and which require further extensions.
Proofs are given in Section 7.

2. The hypothesis tests and assumptions.

2.1. The optimal tests. In this subsection we formulate the tests of hypotheses
when the parameters are not identifiable under the null. Let Pθ denote the probabil-
ity measure, based on observed data X̃n ≡ (X1,X2, . . . ,Xn), where θ ∈ � and the
subscript n is the sample size. As mentioned previously, the parameters θ ∈ �0
under the null hypothesis are not identifiable. We assume, as in the examples,
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that θ can be partitioned as (ψ, ζ ), with ζ q-dimensional and ψ of arbitrary di-
mension. We further assume that ψ can be partitioned as (β, η) so that the null
hypothesis can be stated in terms of β , with the nuisance parameter η having ar-
bitrary dimension. The likelihood function of the data is given by ln(θ) and the
profile likelihood for β and ζ is defined as pln(β, ζ ) = supη ln(β, η, ζ ). For the
semiparametric model {P(β,η,ζ )} on a sample space X, we assume β ∈ R

p , ζ ∈ �,
a compact subset of R

q and η ∈ Hη, which is a subset of a Banach space.
The hypotheses to be tested are:

H0 :β = β0 vs. H1 :β �= β0.(3)

When β = β0, the null distribution P0 is unique and the likelihood for a single ob-
servation under the null is abbreviated as l0. Let π ≡ (η, ζ ). The null set of π is �0
and its cardinality is the same as that of �, which is at least two. �0 = {β0} × �0.
For each ζ ∈ �, η0(ζ ) ≡ {t ∈ Hη : (t, ζ ) ∈ �0} is an interior point of Hη. Let
ψ0(ζ ) ≡ (β0, η0(ζ )), and θ0(ζ ) ≡ (ψ0(ζ ), ζ ). Thus, �0 can be represented as
�0 = {θ0(ζ ) : ζ ∈ �}.

Before introducing the optimal tests, we need some additional notations for the
parameter space and the score and information operators in the semiparametric
settings. We denote l̇β ∈ L0

2(Pθ ) as the derivative of log l1(θ) with respect to β

and l̈β is the second derivative of log l1(θ) with respect to β . L0
2(Pθ ) refers to the

class of square integrable functions under the measure Pθ with mean 0. The score
operator for η is defined as l̇η, which is a bounded linear map from Hη to L0

2(Pθ )

with adjoint operator l̇�η :L0
2(Pθ ) �→ Hη, where Hη is the closed linear span of Hη.

The information operator is l̇�ηl̇η :L0
2(Pθ ) �→ L0

2(Pθ ). The efficient score for β is the
ordinary score function l̇β minus its orthogonal projection onto the closed linear
span of the score operator l̇η. The efficient information for β is Ĩβ = ∫

l̃β l̃′β dPθ ,
which is the asymptotic variance of the efficient score function.

We use the notations Pn and Gn for the empirical distribution and the empirical
process of the observations. That is, for every measurable function f and proba-
bility measure P ,

Pnf = 1

n

n∑
i=1

f (Xi), Pf =
∫

f dP, Gnf = 1√
n

n∑
i=1

(
f (Xi) − P(f )

)
.

We note that although simultaneous estimation of β and ζ fails under the null
due to nonidentifiability, estimation results for β̂n(ζ ), the MLE of β at a fixed
value of ζ , are often valid under the null. This suggests making inference about β

using β̂n(ζ ). For fixed ζ ∈ �, the score, Wald and likelihood ratio test statistics for
testing H0 against H1 are given by

Rn(ζ ) = Pnl̇β(θ̂0(ζ ))′{Pnl̇β l̇′β(θ̂0(ζ ))}−1
Pnl̇β(θ̂0(ζ )),

Wn(ζ ) = (
β̂n(ζ ) − β0

)′ ˆ̃
Iβ(θ̂n(ζ ))

(
β̂n(ζ ) − β0

)
and

LRn(ζ ) = −2{ln(θ̂0(ζ )) − ln(θ̂n(ζ ))},
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where θ̂n(ζ ) ≡ (β̂n(ζ ), η̂n(ζ ), ζ ) is the unrestricted MLE of θ at a fixed value of ζ

and θ̂0(ζ ) ≡ (β0, η̂0(ζ ), ζ ) is the restricted MLE of θ for a fixed value of ζ under
the null. Pnl̇β(θ̂0(ζ )) = Pnl̇β(β0, η̂0(ζ ), ζ ) is the empirical score function of β

evaluated at the restricted MLE θ̂0(ζ ). Pnl̇β(θ̂n(ζ )) = Pnl̇β(β̂n(ζ ), η̂n(ζ ), ζ ) is the
empirical score function of β evaluated at the unrestricted MLE θ̂n(ζ ). The inverse

matrix of ˆ̃
Iβ(θ̂n(ζ )), a consistent estimator of the efficient information Ĩβ under

the null, estimates the covariance matrix of β̂n(ζ ).
The optimal tests we propose take the form

ERn = (1 + c)−p/2
∫

exp
(

1

2

c

1 + c
Rn(ζ )

)
dJ (ζ ),

EWn = (1 + c)−p/2
∫

exp
(

1

2

c

1 + c
Wn(ζ )

)
dJ (ζ ) and

ELRn = (1 + c)−p/2
∫

exp
(

1

2

c

1 + c
LRn(ζ )

)
dJ (ζ ),

where c > 0 is a known constant and J (·) is a pre-selected integrable prior on ζ .
Their optimality will be discussed in Section 3. We note that, in semiparametric
settings, the computation of the efficient information may involve high dimen-
sional maximization and nonparametric smoothing. Then the tests ERn and EWn

may be computationally harder than ELRn. Hence the likelihood ratio based test
ELRn is more attractive in these settings.

In construction of the optimal tests, understanding and computing θ̂0(ζ ), may
be complicated due to the dependence of the parameter θ0(ζ ) on ζ . Assuming
the existence of the following full rank reparameterization, we can eliminate the
dependence between η and ζ , thereby easing both the theoretical developments
and the computations for the proposed tests.

2.2. Full rank reparameterization: Breaking the dependence between η and ζ .
We assume there exists a map φζ :Hη �→ Hη, which is one-to-one and uniformly
Hadamard-differentiable at η tangentially to Hη over ζ ∈ �, that is,

sup
(η+tnhn(ζ ),ζ )∈�0

∥∥∥∥φζ (η + tnhn(ζ )) − φζ (η)

tn
− φ̇ζ (η)(h(ζ ))

∥∥∥∥ → 0,

as supζ∈� ‖hn(ζ ) − h(ζ )‖ → 0, and tn → 0, where h(ζ ) is in the tangent space
of Hη for all ζ ∈ � and ‖ · ‖ denotes the norm of Hη. Its derivative φ̇ζ is
one-to-one and continuously invertible uniformly over ζ ∈ �. That is, there ex-
ists a positive constant c such that ‖φ̇ζ (η1(ζ ) − η2(ζ ))‖ ≥ c‖η1(ζ ) − η2(ζ )‖ for
every η1(ζ ) and η2(ζ ) in Hη for all ζ ∈ �. Let η ≡ φζ (η), and �1(β0, η, ζ )(x) ≡
l1(β0, φ

−1
ζ (η), ζ )(x) = l0(x), where ζ vanishes under the null, for all x in X.

This reparameterization does not change the likelihood, that is, the equality
l1(β, η(ζ ), ζ )(x) = �1(β, η, ζ )(x) holds both under the null and the alternative.
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Under the null, the likelihood l1(β0, η0(ζ ), ζ ) = �1(β0, η0, ζ ) for a specific η0,
which does not depend on ζ , and ζ disappears in the null likelihood. We thus re-
duce the parameter dimension of the null space from �0 to Hη. For Example 2 in
the Introduction, φ can be taken to be the identity and thus the reparameterization
is not needed. In contrast, a reparameterization is needed for Example 1. We will
give the details later in Section 4.

The reason we assume the existence of such a full rank reparameterization is to
eliminate the dependence between η and ζ . The issue is that the optimality results
are with respect to a perturbation of the parameter η, which is not well defined in
the original space, due to the dependence between parameters η and ζ . Subsequent
assumptions are built on the new parameterization θ ≡ (β, η, ζ ). However, the
results still hold for the original parameterization, since the efficient score and
efficient information of β are invariant under such reparameterization of η, as given
in the following lemma:

LEMMA 1. Under the full rank reparameterization, l̃β (θ) = �̃β(θ), where
�̃β(θ) is the efficient score of β under the new reparameterization. The efficient
information matrix is also invariant to these reparameterizations.

REMARK 1. The full rank reparameterization defined above may not be
unique. We will show later in the proof of Theorem 2 that the optimal tests pro-
posed in this paper are invariant to the choice of the full rank reparameterization.

Next we discuss how to construct the optimal tests with the new parameteriza-
tion, where ζ vanishes, and ψ does not depend on ζ under the null.

2.3. Constructing optimal tests under the full rank reparameterization. Though
ζ disappears in the likelihood under the null hypothesis, the score and information
are still processes indexed by ζ . For fixed ζ ∈ �, the score, Wald and likelihood
ratio test statistics for testing H0 against H1 with the new parameterization can be
represented as:

Rn(ζ ) = Pn�̇β(ψ̂0, ζ )′{Pnl̇β l̇′β(ψ̂0, ζ )}−1
Pn�̇β(ψ̂0, ζ ),

Wn(ζ ) = (β̂n − β0)
′ ˆ̃Iβ(ψ̂n, ζ )(β̂n − β0) and

LRn(ζ ) = −2{�n(ψ̂0, ζ ) − �n(ψ̂n, ζ )},
where ψ̂n is the unrestricted MLE of ψ and ψ̂0 is the restricted MLE of ψ0.
Pn�̇β(β0, η̂0, ζ ) is the empirical score function of β evaluated at the restricted

MLE ψ̂0. Pn�̇β(β̂n, η̂n, ζ ) is the empirical score function of β evaluated at the

unrestricted MLE ψ̂n. The inverse matrix of ˆ̃Iβ(ψ̂n, ζ ), a consistent estimator of
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the efficient information of β under the null, estimates the covariance matrix of
β̂n. It is thus obvious that the optimal tests are invariant with respect to the choice
of full rank reparameterizations.

To further study the asymptotic distribution and the optimality of the proposed
tests, we need the following assumptions, based on the full rank reparameteriza-
tion. We note that except assumption C, all other assumptions can also be stated
with the original parameterization.

2.4. The assumptions based on the reparameterization. To derive asymptot-
ically optimal tests of H0, we consider local alternatives to H0 of the form
�n(β0 + h/

√
n,η, ζ ) with ζ and η unspecified. The optimality criterion will in-

volve a weighted average power criterion, where the averaging is with respect to
an integrable prior Qζ (h) on the values of h in R

p defining local alternatives and
an integrable prior J (ζ ) on ζ . Before formally stating the optimality criterion, we
give assumptions on the data and the parameter spaces. The first two assumptions
postulate the existence of the prior on local alternatives, Qζ (h).

A1 The efficient information function of β evaluated at (ψ0, ζ ), Ĩβ(ψ0, ζ ), is
uniformly continuous in β and ζ over B0 ×�, where B0 is some neighborhood
of β0. Furthermore, Ĩβ(ψ0, ζ ) is uniformly positive definite over ζ ∈ �, that
is infζ∈� λmin{Ĩβ(ψ0, ζ )} > 0, where λmin(C) is the smallest eigenvalue of
the matrix C.

A2 Qζ is a normal measure with mean β0 and variance cĨ−1
β (ψ0, ζ ) for ζ ∈ �,

where c > 0 is a scalar constant.

Assumptions A1 and A2 are analogous to Assumptions 1(e), 1(f) and 4 of Andrews
and Ploberger (1994), although there are fundamental differences. Andrews and
Ploberger (1994) work directly by building on the full parametric likelihood and
their assumptions refer to the information matrix for all parameters. Furthermore,
their optimality results are defined in terms of local alternatives for ψ , where the
prior is a multivariate normal with singular covariance matrix. Our assumptions
A1 and A2 are only for the parameter of interest, β , with no prior assumptions
needed for η under either the null or the alternative.

The next set of conditions assumes the existence of a uniformly least-favorable
submodel. This submodel can be viewed as a “uniform” version of the least fa-
vorable submodel discussed in Murphy and van der Vaart (2000): the convergence
rate of the nuisance parameter now is in the “uniform” sense, and the efficient
score and the efficient information possess Donsker and Glivenko–Cantelli prop-
erties with “larger” index sets, respectively. When the set of ζ , �, is a singleton,
this new submodel concept reduces to the ordinary least favorable submodel. The
development of this concept is critical to establishing an appropriate optimality
criterion for general semiparametric models under loss of identifiability. Here are
the needed assumptions:



2418 R. SONG, M. R. KOSOROK AND J. P. FINE

B1 There exists a map t �→ ft from a fixed neighborhood of β0 into Hη, such
that the map t �→ �(t, θ) defined by �(t, θ) ≡ �1(t, ft , ζ ) is twice continuously
differentiable. Let �̇(t, θ) and �̈(t, θ) denote the derivatives with respect to t .
The submodel with parameters (t, ft , ζ ) passes through η at t = β , that is,
fβ(β, η, ζ ) = η for all ζ ∈ �.

B2 The submodel is uniformly least-favorable at ψ0 = (β0, η0) and ζ for es-
timating β0 in the sense that �̇(β0,ψ0, ζ ) = �̃β(ψ0, ζ ). As (t, β, η) →
(β0, β0, η0), we assume that supζ∈� ‖�̇(t,ψ, ζ ) − �̃β(ψ0, ζ )‖ = oP0(1) and
supζ∈� ‖�̈(t,ψ, ζ ) − �̈(β0,ψ0, ζ )‖ = oP0(1). In the sequel, we let o�

P denote
a quantity going to zero in probability, under P , uniformly over the set �.

B3 We assume that ψ̂0, the restricted MLE of ψ under the null, satisfies ψ̂0 =
ψ0 + oP0(1). The unrestricted MLE ψ̂n(ζ ) = ψ0 + o�

P0
(1). Moreover, let

η̂β(ζ ) ≡ arg maxη �n(β, η, ζ ), that is, p�n(β, ζ ) = �n(β, η̂β(ζ ), ζ ). Assume

that for any random sequences β̃n →P0 β0, we have η̂β̃n
(ζ ) = η0 + o�

P0
(1)

and the following uniform “no-bias” condition holds:

P0�̇(β0, β̃n, η̂β̃n
(ζ ), ζ ) = o�

P0
(‖β̃n − β0‖ + n−1/2).(4)

B4 There exist neighborhoods U of β0 and V of ψ0, such that the class of func-
tions {�̇(t,ψ, ζ ) : t ∈ U,ψ ∈ V, ζ ∈ �} is P0-Donsker with square integrable
envelope function and the class of functions {�̈(t,ψ, ζ ) : t ∈ U,ψ ∈ V, ζ ∈ �}
is P0-Glivenko–Cantelli and is bounded in L1(P0), where L1(Pθ ) refers to the
class of integrable functions under Pθ .

Assumptions B1–B4 set the stage for the quadratic expansion of the profile likeli-
hood and the derivation of the optimality properties of the proposed tests. Note that
these assumptions can also be built on the original parameterization, but we use
the new parameterization for ease of presentation. Since our formulation includes
parametric models as special cases, the existence of a uniformly least-favorable
submodel in our set-up covers all situations considered by Andrews and Ploberger
(1994).

Compared with Andrews and Ploberger (1994), we have a stronger form of the
unbiasedness condition and stronger requirements on the consistency of the esti-
mators for the expansion of the profile likelihood. This is partly due to the more
general structure of the semiparametric model. As in assumption B3, we require
that if β̃n is any sequence of estimators consistent for β0, η̂ζ (β̃n) must be con-
sistent for η0, the true value of the nuisance parameter η, uniformly over �. In
Andrews and Ploberger (1994), consistency is only needed for the unconstrained
MLE (assumption 2) and the constrained MLE under the null hypothesis (assump-
tion 3).

To evaluate the local asymptotic distribution of the proposed tests, we require
differentiability in quadratic mean (DQM) of the parameters ψ , as stated in the
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following assumption C, which is commonly used to evaluate the local power. It
will be verified for the two examples presented in the introduction. Unlike assump-
tions B1–B4, the full rank reparameterization is indispensable in assumption C:

C Differentiability in quadratic mean of the parameter ψ . A perturbation of ψ in
its domain is ψt = ψ0 + th+ o(1), where h ≡ (hβ,hη), hβ ∈ R

p and hη ∈ Hη.
The DQM condition for ψ0 with respect to the collection of paths {ψt } is:

∫ [(dPψt ,ζ
)1/2 − (dP0)

1/2

t
− 1

2
(Aζh)dP

1/2
0

]2

→ 0, as t → 0,

for all ζ ∈ �, where Aζ is a bounded linear operator defined on R
p × Hη and

takes values in L0
2(Pθ ).

Differentiability in quadratic mean implies that the range of Aζ is contained
in L0

2(Pθ ). Note that Aζh = (∂/∂t)�1(ψt , ζ )|t=0, following similar arguments as
in Kosorok and Song (2007), where h = (hβ,hη). We define Aζ to be given by
Aζ (hβ,hη) = �̇′

β(ψ, ζ )hβ + �̇η(ψ, ζ )hη, where �̇β and �̇η are the score operators

for β and η, respectively. Moreover, R
p × Hη is a Hilbert space with ‖ · ‖ de-

noting its norm and 〈·, ·〉 denoting its inner product. Since in parametric settings,
twice continuous differentiability implies DQM [Pollard (1995)], this assumption
is weaker than Assumption 1(c) in Andrews and Ploberger (1994).

3. Main results. This section includes several main results. The first one gives
the asymptotic null distribution of the proposed tests.

3.1. The distributions of the test statistics under the null. To establish the as-
ymptotic null distribution of the test statistics, a key result about the uniform profile
likelihood expansion is summarized in the following lemma.

LEMMA 2. Under assumptions A–C, for any random sequence β̃n →P0 β0,

logpln(β̃n, ζ ) = logpln(β0, ζ ) + n(β̃n − β0)
′
Pnl̃β(θ0(ζ ))

− 1
2n(β̃n − β0)

′Ĩβ(θ0(ζ ))(β̃n − β0)(5)

+ o�
P0

(√
n‖β̃n − β0‖ + 1

)2
.

Lemma 2 enables us to establish the asymptotic equivalence of these test statis-
tics and their asymptotic distributions:

THEOREM 1. Under assumptions A–C, ELRn = EWn + oP0(1) = ERn +
oP0(1) →d eχ(c), where

eχ(c) = (1 + c)−p/2
∫

exp
(

1

2

c

1 + c
G

′(θ0(ζ ))Ĩ−1
β (θ0(ζ ))G(θ0(ζ ))

)
dJ (ζ ),
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and G(θ0(ζ )) is the limiting process of Gnl̃β(θ0(ζ )), which is a mean zero
Gaussian process with variance function σ 2(ζ ) = Ĩβ(θ0(ζ )) indexed by ζ and with
covariance function σ 2(ζ1, ζ2) = P0{l̃β (θ0(ζ1))l̃β(θ0(ζ2))

′}, indexed by ζ1 and ζ2,
for ζ , ζ1 and ζ2 ∈ �.

REMARK 2. When J (·) does not correspond to a prior on ζ , corresponding
rather to a weight function lacking a probabilistic interpretation, then the results
in Theorem 1 will generally hold, although the test may no longer possess the
optimality discussed in the sequel. Theorem 1 should also hold if Qζ (h) is not a
prior distribution, corresponding rather to a weight function on local alternatives
for β . This robustness indicates that the tests are generally valid under loss of
identifiability, yielding a large class of test statistics, with the optimal test being a
member of this class.

We note that Theorem 1 only holds for normal weight Qc
ζ , which corresponds to

the uniform least favorable direction. As indicated in the proof of Theorem 1, the
normal weight function Qζ (·) is integrated out, hence does not appear in the test
with the original form. Subsequently, the optimal tests depend on the weight func-
tion Qζ (·) only through the scalar c. The larger c is, the more weight is given to
alternatives for which β is large. For example, for a test of the change-point model,
larger values of c correspond to greater weight being given to larger changes. In
the special case where J (ζ ) is a pointmass at a single value ζ0, the optimal test
rejects if and only if LR(ζ0) exceeds some constant (i.e., the optimal test equals
the standard score test for fixed ζ0) and the optimal test is independent of c. When
J (ζ ) is not a pointmass distribution, however, the optimal test ELRn depends on c.
The larger c is, the more power is directed at alternatives for which β is large.

The limit as c → 0 of the 2(ELRn −1)/c statistic is equal to the “average score”
statistic

∫
LRn(ζ ) dJ (ζ ), which is the limit of the ELR statistics that are designed

for alternatives that are very close to the null hypothesis. At the other extreme,
the limit as c → ∞ is log

∫
exp(LRn(ζ )/2) dJ (ζ ). Thus for testing against more

distant alternatives, the optimal test statistic is still of an average exponential form.
If the constant c/(1 + c) which appears in the definition of ELRn is replaced

by a constant r > 0, then the limit as r → ∞ of ELRn is the likelihood ratio test,
equivalently, the “sup score” statistic studied in Kosorok and Song (2007). Hence,
the sup score test is designed for distant alternatives, but is of a more extreme form
than the optimal exponential test, since the latter requires r < 1. It can be easily
shown as a corollary to Theorem 1 that the usual likelihood ratio, Wald and score
tests have the following distribution:

COROLLARY 1. Under the null hypotheses and assumptions A–C,
supζ LRn(ζ ) = supζ Wn(ζ ) + oP0(1) = supζ Rn(ζ ) + oP0(1) →d χ , with χ =
supζ G

′(θ0(ζ ))Ĩ−1
β (θ0(ζ ))G(θ0(ζ )).
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3.2. Optimality of the proposed tests. The second main result of this paper is
the optimality property of the proposed tests. Following assumptions in Section 2,
we consider local alternatives β = β0 +hβ/

√
n+ o(n−1/2) for hβ ∈ R

p with prior
distribution Qζ (hβ) on the local alternative direction hβ and prior distribution
J (ζ ) on the nonidentifiable parameter ζ . The optimality result is as follows:

THEOREM 2. Under assumptions A–C, the test statistics in Theorem 1 are
asymptotically uniformly most powerful for testing H0 :β = β0 against the con-
tiguous alternative ∫

dP n
ψ0+h/

√
n+o(n−1/2),ζ

dQζ (hβ) dJ (ζ ),

where h ≡ (hβ,hη(ζ )), hη(ζ ) ≡ q̃ ′
ζ hβ and where q̃ζ ≡ −(�̇�

η�̇η)
−�̇�

η�̇β(ψ, ζ ) is the
uniformly least-favorable direction indexed by ζ . Moreover, this optimality result
is invariant under the choice of reparameterization.

Theorem 2 also implies that the proposed tests have the greatest weighted aver-
age power asymptotically in the class of all tests of asymptotic significance level α,
against the alternative P n

ψ0+h/
√

n+o(n−1/2),ζ
. That is, they maximize

lim
n→∞

∫
P

(
φn rejects|ψ0 + h/

√
n + o(n−1/2), ζ

)
dQζ (hβ) dJ (ζ )

over all tests φn of asymptotic level α.
Our optimality results are under alternatives β0 +hβ/

√
n+o(n−1/2), with non-

singular normal weights on hβ . Our weights on hβ are precisely Andrews and
Ploberger’s [2] weights projected onto the parameter space that is of interest. Thus,
our results and Andrews and Ploberger’s are consistent.

We now discuss the choice of the direction qζ , the priors Qζ (·) and J (·).
By the Neyman–Pearson lemma, for any appropriate prior distributions Qζ (·)
and J (·) and any known directions qζ , a UMP test for testing H0 :β = β0
against the contiguous alternative

∫
dP n

ψ0+h/
√

n+o(n−1/2),ζ
dQζ (hβ) dJ (ζ ), where

h ≡ (hβ,hη(ζ )), hη(ζ ) = q ′
ζ hβ is defined by

γn =
⎧⎪⎨
⎪⎩

1, if QLRn > kαn,
λn, if QLRn = kαn,
0, if QLRn < kαn,

where kαn > 0, λn ∈ [0,1] are constants such that the rejection probability is α

under the null and

QLRn =
∫

ln(ψ0 + h/
√

n + o(n−1/2), ζ ) dQζ (hβ) dJ (ζ )

l0
n

.

We have the following result:
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COROLLARY 2. Under assumptions A–C, the null hypothesis and the con-
tiguous alternatives,

QLRn = (1 + c)−p/2
∫

exp
(

1

2

c

1 + c
LRn(ζ )

)
W(qζ , ζ ) dJ (ζ ) + op(1),

where W(qζ , ζ ) ≤ 1 is defined in equation (17) in Section 7 below. When qζ = q̃ζ ,
W(q̃ζ , ζ ) = 1 and QLRn = ELRn + oP0(1).

As the alternatives we consider are contiguous to the null, in each direction qζ ,
which indexes QLRn, there exists a consistent estimator η̃n(qζ ) of η0 by the con-
volution theorem, provided certain conditions hold. The optimal tests can thus be
built on η̃n(qζ ).

In applications with composite hypotheses, where qζ is unknown, there may
not exist a direction which can maximize the power over all directions [Bickel,
Ritov and Stoker (2006)]. In a regular testing problem, where all parameters are
identifiable, it can be shown that the likelihood ratio test, which is built on the
uniformly least-favorable direction, will maximize the minimum power of all di-
rections of the alternatives, over all the test based directions. In our nonregular
testing problem, the situation is further complicated, since the power depends on
the covariance structure of G(θ0(ζ )). It is not clear if the maximin property still
holds in our problem. We note that, however, our tests can be interpreted as the
“maximum direction” test. Moreover, since the power of the test is not affected
by multiplying by a constant in QLRn, we can standardize W(qζ , ζ ) dJ (ζ ) to ob-
tain dJ̃ (ζ ), which is a probability measure on ζ . Then the question of the optimal
choice of both qζ and J (ζ ) reduces to the question of the optimal choice of J̃ (ζ ).
Hence, without loss of generality we can replace qζ with q̃ζ . For this reason, we
should choose qζ = q̃ζ and focus on the choice of Qζ (·) and J̃ (·) for optimization.

One reason we use the normal weight for Qζ in this paper is to facilitate a
comparison with Andrews and Ploberger (1994). Using the normal prior with co-
variance matrix proportional to the efficient information matrix also leads to a sig-
nificant simplification of the representation of the test statistics, since many terms
cancel in the proof of Theorem 1. However we note that the choice of Qζ (·) is
not limited to the normal weight studied in this paper, as indicated in the proof of
Theorem 2. More general choices of the priors Qζ (·) and J (·) merit future consid-
eration, but this is beyond the scope of the current paper.

The optimality of the likelihood ratio statistics with loss of identifiability under
the null for semiparametric models is of potential interest. Similar to the likeli-
hood ratio test under loss of identifiability with parametric models [Andrews and
Ploberger (1994)], in the semiparametric setting, the profile likelihood ratio statis-
tic is not of the optimal average exponential form. It can be shown to be a limit of
an average exponential test, but only if a parameter is pushed beyond an admissible
boundary, as noted by Andrews and Ploberger (1995) in the parametric case.
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3.3. The distributions of the test statistics under local alternatives. To gain
insight into the power of the optimal tests in practice, it is worthwhile to study
their asymptotic distributions under local alternatives. In the following two the-
orems, Theorem 3 gives the asymptotic distribution for fixed local alternatives
P n

ψ0+h/
√

n+o(n−1/2),ζ1
, while Theorem 4 gives the asymptotic distribution for ran-

dom local alternatives
∫

dP n
ψ0+h/

√
n+o(n−1/2),ζ

dQζ (hβ) dJ (ζ ). As shown in the

theorems, the distributions depend on the form of the alternative, which will de-
pend in part on the specifics of the application. These results also usually depend
on the prior distributions J (·) and Qζ (·), for both fixed alternatives and random
alternatives, although in different manners.

THEOREM 3. Under local alternatives P n
ψ0+h/

√
n+o(n−1/2),ζ1

and assump-

tions A–C, ELRn = EWn + op(1) = ERn + op(1) →d f χ(c), with

f χ(c) = (1 + c)−p/2
∫

exp
[

1

2

c

1 + c
{G(θ0(ζ )) + ν�(hβ, ζ, ζ1)}′

× Ĩ−1
β (θ0(ζ )){G(θ0(ζ )) + ν�(hβ, ζ, ζ1)}

]
dJ (ζ ),

where ν�(hβ, ζ, ζ1) ≡ P0 l̃β (θ0(ζ ))l̃β(θ0(ζ1))
′hβ .

Now we establish the asymptotic distribution of the test statistics under the al-
ternative

∫
dP n

ψ0+h/
√

n+o(n−1/2),ζ
dQζ (hβ) dJ (ζ ).

THEOREM 4. Under assumptions A–C and the local alternative∫
dP n

ψ0+h/
√

n+o(n−1/2),ζ
dQζ (hβ) dJ (ζ ), ELRn = EWn + op(1) = ERn +

op(1) →d rχ(c), where rχ(c) is a real random variable such that its cumula-
tive distribution function Pr(rχ(c) ≤ t) = P0[1{eχ(c) ≤ t}eχ(c)].

3.4. Monte Carlo computation and inference. Although we have obtained the
asymptotic distributions of the test statistics, these distributions generally have
complicated analytic forms which depend on the values of unknown nuisance pa-
rameters. We now introduce a weighted bootstrap method to obtain the asymptot-
ically valid critical values of eχ(c). This method does not require explicit evalua-
tion of the limiting distribution, thereby avoiding the numerical difficulties inher-
ent in such an evaluation.

We first generate n i.i.d. positive random variables κ1, . . . , κn, with mean
0 < μκ < ∞, variance 0 < σ 2

κ < ∞ and with
∫ ∞

0
√

P(κ1 > u)du < ∞. Next,
we divide each weight by the sample average of the weights κ̄ , to obtain “stan-
dardized weights” κ◦

1 , . . . , κ◦
n which sum to n. For a real, measurable function f ,

define the weighted empirical measure P
◦
nf ≡ n−1 ∑n

i=1 κ◦
i f (Xi). Let ψ̂◦

n(ζ ) =
(β̂◦

n(ζ ), η̂◦
n(ζ )) denote the maximizer of l◦n(ψ, ζ ) over ψ ∈ � at fixed ζ ∈ �,
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where l◦n is obtained by replacing Pn with P
◦
n in the definition of ln. Similarly, let

ψ̂◦
0 (ζ ) = (β̂◦

0 (ζ ), η̂◦
0(ζ )) denote the maximizer of (l0

n)
◦(ψ, ζ ) over ψ ∈ � at fixed

ζ ∈ �, where (l0
n)

◦ is obtained by replacing Pn with P
◦
n in the definition of l0

n,
the log likelihood under the null. Now repeat the bootstrap procedure a large num-
ber of times M̃n and compute the differences of the bootstrapped unrestricted MLE
and restricted MLE of β :dβ̂◦

k (ζ ) = β̂◦
n,k(ζ )− β̂◦

0,k(ζ ), k = 1, . . . ,Mn, as processes
of ζ . Note that we are allowing the number of bootstraps to depend on n. Define

ζ �→ μ̂n(ζ ) ≡ M̃−1
n

∑M̃n

k=1 dβ̂◦
k (ζ ) and let

ζ �→ V̂n(ζ ) = M̃−1
n

M̃n∑
k=1

(
dβ̂◦

1,k(ζ ) − μ̂n(ζ )
)(

dβ̂◦
1,k(ζ ) − μ̂n(ζ )

)′
.

To estimate critical values, we compute the standardized bootstrap test statistics

T ◦
n,k ≡ (1 + c)−p/2

∫
exp

[
1

2

c

1 + c

{(
dβ̂◦

1,k(ζ ) − μ̂n(ζ )
)′

× V̂ −1
n (ζ )

(
dβ̂◦

1,k(ζ ) − μ̂n(ζ )
)}]

dJ (ζ ),

for 1 ≤ k ≤ M̃n. For a test of size α, we compare the observed test statistics with
the (1 − α)th quantile of the corresponding M̃n standardized bootstrap statistics.
The reason we subtract off the mean is to ensure that we obtain a valid approxima-
tion to the null distribution when the null hypothesis may not be true. If not, then
there may be loss of power, although the type I error rate will still be controlled
when the null is true. The proof of the bootstrap validity can be built upon the
proof of Theorems 7 and 8 in Kosorok and Song (2007). We omit the details.

4. Examples. In this section, we study the two examples in the introduction to
illustrate the two types of nonidentifiability settings, one where a nuisance parame-
ter is present under the null and one where it is not. These examples demonstrate
important differences in how the full rank reparameterizations and uniformly least
favorable submodels are defined in the two settings. We present Example 2 first
because a reparameterization is not required, simplifying the presentation.

4.1. Example 2 revisited: Change-point regression for current status data. In
the change-point Cox model with current status data, a test of the existence of
a threshold effect corresponds to a test of the null H0 :β = 0. The change-point
parameter ζ is present only under the alternative. Hence it suffices to take φζ as
the identity map.

We make the following assumptions and will argue that the assumptions in Sec-
tion 2 can be checked under these assumptions. Given Z, T and V are independent,
Z belongs to a compact subset of R. The change-point parameter ζ ∈ [a, b], for
some known −∞ < a < b < ∞ with Pr(Z < a) > 0 and Pr(Z > b) > 0. Assume
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P(Var(Z|V )) > 0, which guarantees that, as we will show later, the efficient infor-
mation Ĩβ(θ0(ζ )) is positive definite uniformly over ζ ∈ �. The Lebesgue density
of V is positive and continuous on its support [σ, τ ] with 0 < σ < τ < ∞. The
baseline hazard function 
 is continuously differentiable at [σ, τ ], with deriva-
tive that is bounded away from 0 and satisfies 
0(σ ) > 0, 
0(τ ) < M , for some
known M . We let H
 denote a set of nondecreasing cadlag functions 
 on [σ, τ ]
with 
(τ) ≤ M .

The likelihood function equals (2) with fV,Z(v, z) removed, because it can be
absorbed into the underlying measure on the sample space. The log-likelihood for
a single observation log l1(θ) takes the form log l1(θ) = δ log[1 − exp{−
(v) ×
exp(rγ (z))}]− (1 − δ) exp(rγ (z))
(v). Define Z(ζ ) ≡ (1{Z > ζ },Z1{Z > ζ },Z)

and note that with such a data representation we can adopt much material in the
literature and hence simplify our arguments.

To define a uniformly least-favorable submodel in β , we take two steps. For
Step 1, we calculate scores for ξ and 
. The score function for ξ is l̇ξ (x) =
z(ζ )
(v)Q(x; θ) with

Q(x; θ) = erγ (z)

[
δ

e−erγ (z)
(v)

1 − e−erγ (z)
(v)
− (1 − δ)

]
.

The score operator for 
 along 
t = 
 + th with t ≥ 0 and h a nondecreasing
nonnegative right continuous function, is given by

l̇
(h)(x) = ∂

∂t
logp(x;γ,
t)|t=0 = h(v)Q(x; θ).

We project l̇ξ (X) onto the space generated by l̇
. That is, we need to find a function
h�

ζ (V ) ∈ H
 such that l̇ξ − l̇
(h�
ζ ) ⊥ l̇
(h), for all h ∈ H
, which is equivalent

to solving the least squares problem Pθ‖l̇ξ − l̇
h‖2. The solution under the null is
h�

ζ (V ) ≡ 
0(V )h��
ζ (V ), where h��

ζ = P(Z(ζ )Q2(X;ψ))/P (Q2(X; θ)), which is
assumed to possess a version that is differentiable componentwise with the deriv-
atives being bounded on [σ, τ ] uniformly over ζ ∈ �. It can be shown that 
t(θ)

is indeed a hazard function when t is sufficiently close to ξ .
The uniformly least-favorable direction for ξ is 
t(θ) = 
+ (ξ − t)′ϕ(
)h��

ζ ◦

−1

0 ◦ 
. Here ϕ is a function mapping [0,M] into [0,∞) such that ϕ(y) = y

on [
0(σ ),
0(τ )] and the function y �→ ϕ(y)/y is Lipschitz and ϕ(y) ≤
c(min(y,M − y)) for a sufficiently large constant c. The efficient score for ξ

for this uniformly least-favorable submodel is given by:

l̃ξ (x; t, θ) =
[
z − ϕ(
)(v)


t(θ)(v)
h��

ζ ◦ 
−1
0 ◦ 
(v)

]

t(θ)(v)Q(x; t,
t (θ)).


−1
0 may be extended to [0,∞) by setting 
−1

0 (u) = σ for u ≤ 
0(σ ) and

−1

0 (u) = τ for u > 
0(τ ).
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For Step 2, we next project l̇β (x) onto the space generated by l̃ξ . The efficient
score function for β , l̃β , is the first two coordinates of l̃ξ minus its projection on
the remaining coordinates of l̃ξ . Since l̃ξ lies in a finite-dimensional space, the
projection path has a matrix representation. The efficient information for ξ , Ĩξ ,
can be partitioned as a two-by-two block matrix, with Ĩ 11

ξ (θ) denoting its first

two-by-two principle submatrix, and so on. We define ν′
θ = (1,−(Ĩ 22

ξ )−1Ĩ 21
ξ ), and

ξt (θ) = ξ − (β − t)νθ . We also define 
t(θ) = 
+ (ξt (θ)− t)′ϕ(
)h��
ζ ◦
−1

0 ◦
.
Now we use the uniformly least-favorable path t �→ (ξt (θ),
t(θ)) in the para-

meter space for the nuisance parameter η ≡ (α,
). This leads to l(t, β,α,
) =
log l(ξt (θ),
t(θ)). This submodel is least favorable at (ξ0,
0) uniformly over
ζ ∈ � since ∂/∂t |t=β0 l(t, β0, α,
) = ν′

θ l̃ξ ,. whereas ν′
θ l̃ξ = l̃β . The efficient in-

formation matrix for β is, Ĩβ = Ĩ 11
ξ − Ĩ 11

ξ (Ĩ 22
ξ )−1Ĩ 21

ξ (θ). The remainder of as-
sumption B4 can be verified by standard empirical process arguments.

To verify assumption A1 in Section 2, it suffices to show that Ĩξ is uni-
formly positive definite over ζ ∈ �, which can be achieved by checking that
infζ∈� λmin{P0(Cov(Z(ζ )|V ))} > 0. We first show that the random vector (Z,

1{Z > ζ },Z1{Z > ζ }) is linearly independent given V pointwisely in ζ ∈ �. Sup-
pose that given V ,

aZ + b1{Z > ζ } + cZ1{Z > ζ } = 0,(6)

a.s., for some constants a, b and c. Our aim is to show a = b = c = 0. When
Z ≤ ζ , (6) becomes aZ1{Z ≤ ζ } = 0. Since Var(Z|V ) > 0 and P(Z ≤ ζ |V ) > 0,
for every ζ ∈ �, Var(Z|Z ≤ ζ,V ) > 0, and therefore a = 0. When Z > ζ , (6) be-
comes (b + cZ)1{Z > ζ } = 0. If c �= 0, Z = −b/c, which is contradicted with the
fact that Var(Z|Z > ζ,V ) > 0. Thus we conclude that c = 0 and b = 0 as a conse-
quence. That P(Cov(Z(ζ )|V )) is uniformly positive definite over ζ ∈ � follows
since P(Cov(Z(ζ )|V )) is a continuous function of ζ and � is compact.

The profile likelihood estimator ψ̂n(ζ ) can be shown to be consistent for
(β0,
0) by a similar proof as used for the full maximum likelihood estimator
in Huang (1996). The following lemma shows the uniform consistency of ψ̂n(ζ )

under the null.

LEMMA 3. ψ̂n(ζ ) − ψ0 = o�
P0

(1).

To verify the uniform no-bias condition (4), we need the following result about
the uniform rate of convergence.

LEMMA 4. Suppose that d(η, η1) :η,η1 ∈ Hη is the metric defined on Hη,
and C1, C2 and C3 are positive constants with,

P0(mβ,η,ζ − mβ,η0,ζ ) ≤ −C1d
2(η, η0) + C2‖β − β0‖2(7)
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and

P �
0 sup

β∈B,η∈Hη,‖β−β0‖<δ,d(η,η0)<δ,ζ∈�

|Gn(mβ,η,ζ − mβ,η0,ζ )| ≤ C3φn(δ),(8)

for functions φn such that δ �→ φn(δ)/δ
α is decreasing for some α < 2 and sets

B × Hη × � such that under the null Pr(β̃n ∈ B, η̂β̃n
(ζ ) ∈ Hη, ζ ∈ �) → 1. Then

supζ∈� rnd(η̂β̃n
(ζ ), η0) ≤ O�

P0
(1+ rn‖β̃n −β0‖) for any sequence of positive num-

bers rn such that r2
nφn(1/rn) ≤ √

n for every n.

We apply Lemma 4 with η = (α,
), Hη = R × H
, where H
 is the closed
linear span of H
, d(η, η1) = ‖α − α1‖ + ‖
 − 
1‖2 and

mβ,η,ζ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

log
pβ,η,ζ

pβ0,η0

, if η = η0,

2 log
pβ,η,ζ + pβ0,η0

2pβ0,η0

, otherwise.

Condition (7) can be established by the Taylor expansion and the uniform bound-
edness on the derivatives of the loglikelihood. Condition (8) can be verified us-
ing Lemma 3.3 of Murphy and van der Vaart (1999), with the choice φn(δ) =
δ1/2(1+Mδ−3/2/

√
n), where M ≥ ‖mβ,η,ζ‖∞ is a constant. These conditions im-

ply that ‖α̂β̃n
(ζ ) − α0‖ + ‖
̂β̃n

(ζ ) − 
0‖2 = O�
p (‖β̃n − β0‖ + n−1/3), for any

sequence β̃n → 0. Now we only need to verify

P0�̇(β0, β0, η̂β̃n
(ζ ), ζ ) = o�

P0
(‖β̃n − β0‖ + n−1/2),(9)

which is equivalent to (4) under regularity conditions. We further decompose (9)
as (17) in Murphy and van der Vaart (2000), which can be easily verified by the
Taylor expansion and the uniform boundedness on the first and second derivatives
of the loglikelihood.

It is not difficult to see that {pξ,
(ζ )} is differentiable in quadratic mean at
(ψ0, ζ ) with respect to the set of directions {ξ0 + th1,
0 + th2}, where h1 ∈ R

3,
and h2 is a nondecreasing nonnegative right continuous function. Thus all condi-
tions in Section 2 are satisfied.

4.2. Example 1 revisited: Univariate frailty regression under right censor-
ing. The odds-rate model we consider in this paper posits that the hazard func-
tion has the form (1). We define gζ (s) ≡ (1 + ζ s)−1/ζ , for ζ > 0, and g0(s) ≡
limζ↓0 gζ (s) = exp(−s). Let SZ(·) denote the survival function of T given Z, and
after integrating over W , SZ(t) becomes gζ (

∫ t
0 eβ ′Z(u) dη(u)), where the cumu-

lative baseline hazard function η(·) is a nonnegative, monotone increasing cad-
lag (right-continuous with left-hand limits) function. We will argue later that
assumptions A–C can be checked under the following conditions. The true null
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survival function is unique and denoted as S0. The censoring time C is inde-
pendent of T given Z and uninformative of ζ and β . Moreover, for a finite time
point τ , P01{C ≥ τ } = P01{C = τ } > 0 almost surely. ζ ∈ � ≡ [0,K0] for some
known K0 < ∞. The null value β0 = 0 is an interior point of a known compact
set B0 ∈ R

p . The parameter space for η, Hη, is a Banach space consisting of con-
tinuous and monotone increasing functions on the interval [0, τ ] equipped with
the total variation norm ‖ · ‖v . Its closed linear span is denoted as Hη. The func-
tion η(·) ∈ Hη satisfies η(0) = 0 and η(τ) < ∞. The covariate process Z(·) is
uniformly bounded in total variation on [0, τ ] and var[Z(0+)] is positive definite.

The true values of π ≡ (η, ζ ) are not unique under the null, since the null set �0
contains all pairs of (η, ζ ) satisfying, for t ∈ [0, τ ], (1 + ζη(t))−1/ζ = S0(t), when
ζ ∈ (0,K0]; and exp(−η(t)) = S0(t), when ζ = 0. In this example, ζ appears
both under the null and the alternative. Equivalently, for any fixed ζ ∈ (0,K0],
η0(t)(ζ ) = (S0(t)

−ζ − 1)/ζ and for ζ = 0, η0(t)(ζ ) = − log(S0(t)), t ∈ [0, τ ].
Hence �0 = {(ζ, η0(ζ )) : ζ ∈ �}. Thus we need a suitable parameter transfor-
mation for this example. Let η = φζ (η) ≡ (1 + ηζ )1/ζ − 1, for ζ > 0; and
η = limζ→0 φζ (η) = exp(η) − 1. It can be easily checked that η ∈ Hη. The fol-
lowing arguments reveal that the map φζ (η) :Hη �→ Hη is a full-rank reparame-
terization.

The log likelihood function with the new parameter θ = (β, η, ζ ) is

�n(θ) = Pn

[
δ
{
loga1(v) + (ζ − 1) log

(
η(v) + 1

)} + β ′z(v)

(10)

+ (1 + δζ ) loggζ

{∫ v

0
eβ ′z(s)(η(s) + 1

)ζ−1
dη(s)

}]
,

where a1(·) is the derivative of η(·). We will replace a1(·) with n�η(·) in the
sequel, since this form of the empirical log-likelihood function is asymptotically
equal to the true log-likelihood function. When β = 0, it is clear that ζ vanishes
since (10) = Pn{δ log�η(v)− (δ + 1) log(1 + η(v))}, and η(0) = 0. The odds-rate
model with new parameterization ψ ≡ (β, η) is identifiable under the null, since
the null survival function S0(t |z) = (1 + η)−1 is a strictly monotone function of η

and is unique.
The Gâteaux derivative of φζ (η) at η ∈ Hη exists and is obtained by differ-

entiating φζ (η) along the submodels t �→ η + th. This derivative is φ̇ζ (η)(h) ≡
∂/∂tφζ (η + th)|t=0 = (1 + ζη)1/ζ−1h for ζ > 0 and exp(η)h for ζ = 0.

The Gâteaux differentiability of φζ (η) pointwisely in ζ can be strengthened to
uniform Fréchet differentiability by noticing that

lim
t↓0

sup
ζ∈�

sup
‖h‖v≤r,h∈Hη

∣∣∣∣
∫ 1

0

{
φ̇ζ

(
η + sth(ζ )

) − φ̇ζ (η)
}
ds

∣∣∣∣ = 0,

for any r > 0. Thus supζ∈� sup‖h‖v≤r,h∈Hη
‖φζ (η + h(ζ )) − φζ (η) − φ̇ζ (η) ×

(h(ζ ))‖v/‖h(ζ )‖v = o(1), as ‖h(ζ )‖v → 0 uniformly over ζ ∈ �, which we will
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hereafter refer to as “uniformly Fréchet differentiable.” Since φ̇ζ (η)(h) is uni-
formly bounded and Lipschitz in h, by checking the definition, we can show that
φ̇ζ is one-to-one and continuously invertible uniformly over ζ ∈ �.

To define a uniformly least-favorable submodel, we calculate scores for β and η.
Let H denote the space of elements h = (h1, h2) such that h1 ∈ R

p and h2 ∈ Hη.
Consider the one-dimensional submodel defined by the map t �→ ψt ≡ ψ +
t (h1,

∫ (·)
0 h2(u) dη(u)), h ∈ H . The derivative of log�n(ψt , ζ ) with respect to t

evaluated at t = 0 yields score operators �̇n(ψ, ζ )(h) ≡ (�̇nβ(h1), �̇nη(h2)), where

�̇nβ(ψ, ζ )(h1)

= Pn�̇β(h1)

= Pn

{
δh′

1Z(X)

− (1 + δζ )

∫ τ
0 h′

1Z(u)Y (u)eβ ′Z(u)(η(u) + 1)ζ−1 dη(u)

1 + ζ
∫ τ

0 h′
1Z(u)Y (u)eβ ′Z(u)(η(u) + 1)ζ−1 dη(u)

}
,

and

�̇nη(ψ, ζ )(h2)

= Pn�̇η(h2)

= Pn

{∫ τ

0

(
h2(u) + (ζ − 1)

∫ u
0 h2(s)dη(s)

η(u) + 1

)
dN(u)

− (1 + δζ )

×
∫ τ

0
Y(u)eβ ′Z(u)(η(u) + 1

)ζ−2

×
[
(ζ − 1)

∫ u

0
h2(s) dη(s) + h2(u)

(
1 + η(u)

)]
dη(u)

×
(

1 + ζ

∫ τ

0
Y(u)eβ ′Z(u)(η(u) + 1

)ζ−1
dη(u)

)−1}
,

with Y(u) ≡ 1{V ≥ u}.
To obtain the information operator, we consider the two-dimensional sub-

model defined by the map (s, t) �→ ψst ≡ ψ + s(h1,
∫ (·)

0 h2(u) dη(u)) + t (h̃1,∫ (·)
0 h̃2(u) dη(u)), where h, h̃ ∈ H . Define H∞ = {h ∈ H :‖h‖H < ∞}. The in-

formation operator σθ (h) :H∞ �→ H∞ is given by −P0∂/∂s∂t�1(ψst )|s,t=0 =
ψ(σ θ(h)). We will show σ θ is one-to-one, continuously invertible and onto uni-
formly over ζ ∈ �, via Part (1) of Lemma 7 in the Section 7 for which it suffices
to show that the information operator for the original parameterization σθ is one-
to-one, continuously invertible and onto uniformly over ζ ∈ �.
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With the same derivation of σ θ , σθ :H∞ �→ H∞ takes the form

σθ(h) =
(

σ 11
θ σ 12

θ

σ 21
θ σ 22

θ

)(
h1
h2

)
,

where

σ 11
θ (h1) = −P0S(θ)

∫ τ

0
h′

1Z(u)Y (u)eβ ′Z(u) dη0(u),

σ 12
θ (h2) = −P0S(θ)

∫ τ

0
h2(u)Z(u)Y (u)eβ ′Z(u) dη0(u),

σ 21
θ (h1) = −P0S(θ)

(
1 + ζη(T ∧ τ)(ζ )

)
h′

1Z(u)Y (u)eβ ′Z(u)

− ζP0S(θ)Y (u)

∫ τ

0
h′

1Z(u)Y (u)eβ ′Z(u) dη0(u),

σ 22
θ (h2) = −P0S(θ)

(
1 + ζη(T ∧ τ)(ζ )

)
h2(u)Y (u)eβ ′Z(u)

− ζP0S(θ)Y (u)

∫ τ

0
h2(u)Y (u)eβ ′Z(u) dη0(u),

with S(θ) = −(1 + δζ )/(1 + ζη(τ ))2.
All of the operators σ

ij
θ , 1 ≤ i, j ≤ 2 are uniformly compact and bounded

over ζ ∈ �. With a similar argument as in Kosorok, Lee and Fine (2004), the
linear operator σθ :H∞ �→ H∞ is one-to-one, continuously invertible and onto
uniformly over ζ ∈ � by verifying the conditions of Lemma 8 in the Section 7.
Thus a uniformly least-favorable submodel for estimating β in the presence of η

and ζ is ηt (β, η, ζ ) = (1 + (β − t)′νθ ) dη, where νθ : R �→ R
p is the uniformly

least-favorable direction at (β0, η, ζ ) defined by h′νθ = (σ 22
θ

)−1σ 21
θ

h, h ∈ R
p .

This leads to �(t, β, η, ζ ) = �1(β, ηt (θ), ζ ). Because ηβ(β, η, ζ ) = η, B1 is satis-

fied. Since ∂/∂t |t=β0�(t, β0, η0, ζ ) = �̇β(β0,ψ0, ζ ) = �̃β(ψ0, ζ ), where �̃β(x) =
�̇β − �̇ηνθ is the efficient score for β , B2 is satisfied due to the continuity of the
involved functions with respect to ψ and the fact that � is compact. The efficient
information for β is Ĩβ = P0�̃β �̃′

β . That {�̇(t,ψ, ζ ) : t ∈ U,ψ ∈ V, ζ ∈ �} is P0-

Donsker and {�̈(t,ψ, ζ ) : t ∈ U,ψ ∈ V, ζ ∈ �} is P0-Glivenko–Cantelli for some
neighborhoods U and V follows from standard empirical process arguments.

It follows from Corollary 8.1.3 in Golub and Van Loan (1983) that the set of
eigenvalues is a continuous function of the elements of Ĩβ(θ), which are continu-
ous functions of ζ . The set of eigenvalues is therefore a continuous function of ζ .
Thus infζ λmin{Ĩβ(θ0(ζ ))} > 0 by the compactness of �, and assumption A1 is
satisfied.

The consistency of the restricted MLE ψ̂0 and the uniform consistency of the

unrestricted MLE ψ̂n(ζ ) can be established via the self-consistency equation ap-
proach, with arguments similar to the proof of Theorem 3 in Kosorok, Lee and
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Fine (2004). We omit the details. To verify the uniform no-bias condition (4), it
suffices to show that

sup
ζ∈�

‖η̂β̃n
(ζ ) − η0‖∞ = O�

P0
(‖β̃n − β0‖ + n−1/2)

for any sequence β̃n → β0,

where “�” denotes outer probability. By verifying conditions in Lemma 9 in the
Section 7, we have

sup
ζ∈�

(Pn − P0){�̇ψ (β̃n, η̂β̃n
(ζ ), ζ ) − �̇ψ (β0, η0, ζ )} = o�

P0
(n−1/2).

Together with the fact that Pn�̇ψ(β̃n, η̂β̃n
(ζ ), ζ ) = P0�̇ψ (β0, η0, ζ ) = 0, we obtain

P0{�̇ψ (β̃n, η̂β̃n
(ζ ), ζ ) − �̇ψ (β0, η0, ζ )}

= P0�̇ψ (β̃n, η̂β̃n
(ζ ), ζ ) − Pn�̇ψ(β̃n, η̂β̃n

(ζ ), ζ )

= −(Pn − P0)�̇ψ(β0, η0, ζ ) + o�
P0

(n−1/2),

uniformly over ζ ∈ �.
Let l̇ψ (h) ≡ (l̇β(h1), l̇η(h2)) denote the score operator of ψ with the original

parameterization. It was shown in Kosorok, Lee and Fine (2004) that the operator
ψ �→ l̇ψ is Fréchet differentiable with derivative ψ(σθ(h)), and it can be strength-
ened to uniform Fréchet differentiability due to the smoothness of the involved
functions. Since φζ is uniformly Fréchet differentiable, by Part (2) of Lemma 7, the
chain rule for uniform Fréchet differentiability, �̇ψ ≡ (�̇β, �̇η) is uniformly Fréchet

differentiable with derivative σ
φ−1

ζ (θ)
◦ φ̇−1

ζ (θ).

By the uniform Fréchet differentiability of �̇ψ ,

σθ

(
β̃n, η̂β̃n

(ζ ) − η0
) = P0{�̇ψ (β̃n, η̂β̃n

(ζ ), ζ ) − �̇ψ (β0, η0, ζ )}
+ o�

P0
(‖β̃n − β0‖ + ‖η̂β̃n

(ζ ) − η0‖∞).

Since σ θ is linear, the first term on the right-hand side is of the order OP0(n
−1/2).

It follows that supζ∈� ‖η̂β̃n
(ζ ) − η0‖∞ = O�

P0
(‖β̃n − β0‖ + n−1/2), since σθ is

uniformly continuously invertible over ζ ∈ �.

5. Simulation results. This section presents simulation results regarding the
finite-sample properties of the proposed optimal test statistics for Example 2, the
change-point Cox model with current status data. The simulation study was de-
signed with several objectives. First, we demonstrate how to compute the asymp-
totic critical values with the proposed weighted bootstrap procedure. Second, we
analyze the empirical type I error of the proposed tests and compare with the nom-
inal size of the tests. Third, we compare the power of the optimal tests with that of
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other tests such as the sup score statistics (equivalent to the likelihood ratio statis-
tic) and some naive (pointwise) tests under several different alternatives. Fourth,
we evaluate the sensitivity of the power of the optimal test to the choice of c under
several different alternatives.

A single time-independent covariate Z with a uniform [0,1] distribution was
used. The threshold covariate Y = Z. The parameter α was set at α0 = 0,
with the cumulative baseline hazards A0(t) = 3t2. The censoring time was uni-
formly distributed on the interval [0,5]. This resulted in a censoring rate of
about 25% under the null hypothesis. Under the alternative, we set β10 = −0.5,
β20 ∈ {−0.3,−0.5,−0.8}. The range of β20 values reflects the distance from the
null. We consider the following alternative distributions of ζ :

1. The weight J (ζ ) degenerates to one point at 0.5, that is ζ = 0.5.
2. A uniform weight J (ζ ) with support on [0.05,0.95].

For all the scenarios, we compute the optimal tests with a uniform weight on
[0.05,0.95]. The sample size for each simulated data set was 300. For each sim-
ulated data set, 250 bootstraps were generated with standard exponential weights
truncated at 5, to compute the critical values for Rn(ζ ), the naive score statistic at
several ζ values, supζ Rn(ζ ), the sup score statistic and ERn, the weighted expo-
nential score statistic. We take c = 0,0.5,1,3 and ∞, respectively. Each scenario
was replicated 1000 times. To compute the restricted MLE under the null, we use
the iterative convex minorant algorithm. Empirical type I error and power results
for selected subsets of the test statistics described above are provided in Table 1.

We now make several general comments on the simulation results. The em-
pirical type I error for all the tests is quite close to the nominal level. When the
alternative distribution of ζ is correctly specified, the optimal test is notably more
powerful than the sup score statistic and naive tests. When the true alternative dis-
tribution of ζ degenerates to one point, although the weighted exponential tests
are no longer optimal, the empirical powers are still superior to the naive tests with
misspecified ζ . We also observe that the empirical power of the sup score statistics
is comparable to that of the naive test at the true ζ , which may be due to the fast
convergence rate of the change-point estimator. For all the alternatives considered,
the empirical power of the weighted exponential tests seems to increase as c in-
creases. However, the trend is rather weak. In many cases, the difference in power
is less than 0.01. This suggests that the direction of the test (specifically, least fa-
vorable curve in this paper), rather than the scale of the curve, is most critical for
the power of the weighted exponential test.

6. Discussion. In this paper, we consider tests of hypotheses when the para-
meters are not identifiable under the null in semiparametric models. Our optimality
results apply to a large class of semiparametric testing problems under loss of iden-
tifiability, where nuisance parameters may not be root-n estimable either under the
null or alternative. We note that our current regularity conditions are not directly
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TABLE 1
The empirical type I error and power of the proposed tests, sample size n = 300, 1000 simulations,

with bootstrap size 250. The worst case Monte Carlo error for table entries is 0.016. The Monte
Carlo error is 0.007 and 0.009 for empirical type I error with nominal size 0.05 and 0.1,

respectively. The empirical power results are based on size 0.05 tests

Empirical type I error

Nominal
size

Weighted exponential tests, c = Naive tests Rn(ζ ), ζ =
0 0.5 1 3 ∞ Sup score 0.3 0.9 0.5

J (ζ ) ∼ Uniform[0.05,0.95]
0.05 0.056 0.057 0.045 0.063 0.046 0.058 0.043 0.044 0.039
0.10 0.098 0.103 0.109 0.095 0.099 0.085 0.112 0.103 0.100

Empirical power

True
alternative

Weighted exponential tests, c = Naive tests Rn(ζ ), ζ =
0 0.5 1 3 ∞ Sup score 0.3 0.9 0.5

J (ζ ) ∼ Uniform[0.05,0.95]
ζ = 0.5
η = −0.3 0.646 0.647 0.653 0.653 0.656 0.688 0.243 0.044 0.692
η = −0.5 0.835 0.833 0.839 0.845 0.847 0.865 0.616 0.076 0.840
η = −0.8 0.922 0.925 0.928 0.928 0.928 0.968 0.957 0.174 0.942

J (ζ ) ∼ Uniform[0.05,0.95]
η = −0.3 0.320 0.320 0.320 0.320 0.312 0.211 0.133 0.055 0.142
η = −0.5 0.485 0.488 0.492 0.494 0.500 0.405 0.258 0.083 0.272
η = −0.8 0.748 0.757 0.763 0.768 0.769 0.605 0.494 0.183 0.413

applicable for testing under loss of inevitability when the parameter of interest is
not root-n estimable. One example is testing for homogeneity in mixture mod-
els, where the usual first order Taylor approximation may not be possible [Chen,
Chen and Kalbfleisch (2004); Chernoff and Lander (1995); Dacunha-Castelle and
Gassiat (1999); Lindsay (1995); Liu and Shao (2003)]. A higher order expansion
is required. Although not directly covered by our framework, the homogeneity
tests may possess a uniform quadratic expansion [Zhu and Zhang (2006)], thus
permitting a generalization of our results to general quadratic expansions. In the
following, we conclude the paper with a brief discussion of this generalization.

To be concrete, let us consider a two-component mixture with density g(ρ,μ1,

μ2, η) = ρf (μ1, η) + (1 − ρ)f (μ2, η), where f (μ,η) is a parametric p.d.f. with
parameters μ ∈ R

p , η ∈ R
q , such as a location-scale family. Let β = μ2 −μ1, θ =

(ρ,β ′,μ′
1, η

′)′, and the hypothesis of interest is β = 0; that is, there is only a single
component in the mixture. For convenience, we assume the mixing proportion
ρ ∈ (0,1] and μ1 = μ2 = μ0 under the null.
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In this example, ρ is not identifiable and μ1 and μ2 are mutually indistin-
guishable under the null. Simple algebra shows that the information matrix for
ψ ≡ (β,μ1) is singular under the null, for arbitrary values of ρ, which corre-
sponds to the fact that μ1 and μ2 are not root-n estimable [Chen and Chen
(2003); Zhu and Zhang (2004)]. We consider the following reparameterization:
μ = (1 − ρ)(μ1 − μ0) + ρ(μ2 − μ0) and v = (1 − ρ)(μ1 − μ0)

2 + ρ(μ2 − μ0)
2,

which can be considered as “mixed mean” and “mixed variance”. Let β ≡ (μ, v)

and ψ ≡ (μ, v, η). We can establish the identifiability of ψ and the consistency and
the root-n rate of the MLE of ψ under the null. Furthermore, under a set of assump-
tions on the parameter space [e.g., the cone condition in Andrews (1999, 2001)]
and the stochastic differentiability and equicontinuity of the involved functions, we
can establish the following quadratic expansion of the loglikelihood with respect
to ψ :

Ln(ψ, ζ ) = Ln(ψ0, ζ ) + (ψ − ψ0)
′Snζ (ψ0)

+ 1
2(ψ − ψ0)

′Bζ (ψ0)(ψ − ψ0) + rn(ζ ),

where rn(ζ ) = o�
p (1), and Snζ (·) and Bζ (·) are different from but similar in struc-

ture to the score and information processes for ψ indexed by ζ .
When the nuisance parameter η is not present, a similar weight as in the cur-

rent paper for ψ can be chosen as Qζ (·) = Bζ (·). The corresponding weighted
exponential tests are still optimal in the Neyman–Pearson sense. If η is present,
a uniformly least favorable curve for this quadratic expansion with respect to β

would need to be characterized. This is beyond the scope of the current paper but
is an interesting topic for future research.

7. Proofs.

PROOF OF LEMMA 1. Since φ̇ζ is linear, continuously invertible and one-to-
one, the tangent set for η and η are identical. By the chain rule, �̇η(γ ) = l̇ηφ̇

−1
ζ (γ )

for any γ in the tangent set of η. The efficient score for β with the parame-
ter (β, η, ζ ) is: l̃β (β, η, ζ ) = (I − l̇η(l̇

�
ηlη)

−1 l̇�η)l̇β(ψ, ζ ) and with the parameter
(β, η, ζ ) is: (I − �̇η(�̇

�
η�η)

−1�̇�
η)�̇β(ψ, ζ ). The efficient score function is invariant

under such reparameterizations since

I − �̇η(�̇
�
η�η)

−1�̇�
η(ψ, ζ ) = I − l̇ηφ̇

−1
ζ (φ̇−1�

ζ l̇�ηl̇ηφ̇
−1
ζ )−1φ̇�

ζ l̇
�
η(ψ, ζ )

= I − l̇ηφ̇
−1
ζ φ̇ζ (l̇

�
ηl̇η)

−1φ̇�
ζ (φ̇

�
ζ )

−1 l̇�η(ψ, ζ )

= I − l̇η(l̇
�
ηlη)

−1 l̇�η(ψ, ζ ),

and �̇β(ψ, ζ ) = l̇β (ψ, ζ ). That the efficient information matrix is invariant under
reparameterizations thus follows from its definition. �
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PROOF OF LEMMA 2. It suffices to show that under the full rank reparameter-
ization, for any random sequence β̃n →P0 β0,

logp�n(β̃n, ζ ) = logp�n(β0, ζ ) + n(β̃n − β0)
′
Pn�̃β(ψ0, ζ )

− 1
2n(β̃n − β0)

′Ĩβ(ψ0, ζ )(β̂n − β0)(11)

+ o�
P0

(√
n‖β̃n − β0‖ + 1

)2
.

By assumptions B2, B4 and the dominated convergence theorem, for every
(t̃ , β̃, η̃)− (β0, β0, η0) → 0, we have P0(�̇(t̃ , β̃, η̃, ζ )− �̃β(ψ0, ζ ))2 = o�(1). Sim-
ilarly, we have P0�̈(t̃ , β̃, η̃, ζ ) − P0�̈(β0, β0, η0, ζ ) = o�(1). The derivative of
the function t �→ log�(t,ψ0, ζ ) satisfies P0�̈(β0,ψ0, ζ ) = −Ĩβ(ψ0, ζ ). These
facts, together with the empirical process conditions, imply that for every ran-
dom sequence (t̃ , β̃, η̃) → (β0, β0, η0), Gn�̇(t̃ , β̃, η̃) − Gn�̃β(ψ0, ζ ) = o�

P0
(1) and

Pn�̈(t̃ , β̃, η̃, ζ ) + Ĩβ(ψ0, ζ ) = o�
P0

(1). The subsequent steps of the proof are sim-
ilar to those used in the proof of Theorem 1 in Murphy and van der Vaart (2000),
and we omit the details. �

PROOF OF THEOREM 1. The proof takes several steps. We first show the as-
ymptotic equivalence of these statistics, which is summarized in Lemma 5 below.
With a small abuse of notation, let PLRn ≡ ∫

pln(β + h/
√

n, ζ ) dQζ (h)dJ (ζ )/

pln(β0, ζ ). This is the profile likelihood ratio of the alternative over the null and it
can be approximated by

PLRn ≡
∫

exp
{1

2βn(θ0(ζ ))′Ĩβ(θ0(ζ ))βn(θ0(ζ ))
}

×
∫

exp
{−1

2

(
βn(θ0(ζ )) − h

)′

× Ĩβ(θ0(ζ ))
(
βn(θ0(ζ )) − h

)}
dQζ (h)dJ (ζ ),

with the linear statistic βn(θ0(ζ )) ≡ √
nĨ−1

β (θ0(ζ ))Pnl̃β(θ0(ζ )). An approximate
exponential Wald statistic EWn is defined as

EWn = (1 + c)−p/2
∫

exp
(

1

2

c

1 + c
Wn(ζ )

)
dJ (ζ ),

where Wn(ζ ) = βn(θ0(ζ ))′Ĩβ(θ0(ζ ))βn(θ0(ζ )).
Now we show the asymptotic distribution of these tests under the null hy-

pothesis. Assume without loss of generality that β̂n and ψ̂n take their values in
U and V as defined in assumption B4, respectively. Following Lemma 3.2 in

Murphy and van der Vaart (1997), we have Gn(�̇(β̂n, ψ̂n, ζ ) − �̃β(ψ0, ζ )) →P0 0.
Thus �̃β(ψ0, ζ ) = l̃β (θ0(ζ )) is P0-Donsker as a class indexed by ζ ∈ � and
EWn →d eχ(c) by the continuous mapping theorem. Lemma 5 below then gives
the desired results of Theorem 1. �
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LEMMA 5. Under the null hypothesis and assumptions A–C, (1) PLRn −
PLRn →P0 0, (2) PLRn = EWn, (3) EWn − EWn →P0 0, (4) EWn − ERn →P0 0
and (5) ERn − ELRn →P0 0.

PROOF. For notational simplicity, let βn = βn(θ0(ζ )) and Ĩ0 = Ĩβ(θ0(ζ )).
We first show (1). For 0 < M < ∞, define

PLRn(M) =
∫
ζ∈�

∫
‖h‖≤M

pln
(
β0 + h/

√
n, ζ

)
dQζ (h)dJ (ζ )/pln(β0, ζ ),

and

PLRn(M) =
∫
ζ∈�

exp
(1

2β
′
nĨββn

)

×
∫
‖h‖≤M

exp
(−1

2(βn − h)′Ĩ0(βn − h)
)
dQζ (h)dJ (ζ ).

Note that for any M > 0,

|PLRn − PLRn| ≤ |PLRn − PLRn(M)| + |PLRn(M) − PLRn(M)|
+ |PLRn − PLRn(M)|.

Hence it suffices to show that (i) |PLRn − PLRn(M)| →P0 0, (ii) |PLRn −
PLRn(M)| →P0 0 and (iii) |PLRn(M) − PLRn(M)| →P0 0, as n → ∞ and
∀M : 0 < M < ∞. To show (i), for any ε > 0,

Pr(|PLRn − PLRn(M)| > ε)

≤ ε−1P0|PLRn − PLRn(M)|

= ε−1P

∫
ζ∈�

∫
‖h‖>M

pln(β0 + h/
√

n, ζ )

pln(β0, ζ )
dQζ (h)dJ (ζ )(12)

≤ ε−1P

∫
ζ∈�

∫
‖h‖>M

pln(β̂n(ζ ), ζ )

pln(β0, ζ )
dQζ (h)dJ (ζ )(13)

→ ε−1P

∫
ζ∈�

∫
‖h‖>M

(
1 + op(1)

)
dQζ (h)dJ (ζ )(14)

= ε−1
∫
ζ∈�

∫
‖h‖>M

dQζ (h)dJ (ζ ) + o(1),(15)

where (12) uses assumption C and (13) holds by definition of the profile likelihood.
(14) holds by assumption B3 and Lemma 2. (15) holds by Fubini’s theorem. The
right-hand side of (15) can be made arbitrarily small for all n by taking M large
enough, since Qζ is a uniformly tight measure.
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For (ii), we have

|PLRn − PLRn(M)|
=

∫
ζ∈�

exp
(1

2Pnl̃β(θ0(ζ ))′Ĩ−1
0 Pnl̃β(θ0(ζ ))

)
(16)

×
∫
‖h‖>M

exp
(−1

2(βn − h)′Ĩ0(βn − h)
)
dQζ (h)dJ (ζ )

≤ exp
(

1
2 sup

ζ∈�

‖Pnl̃β(θ0(ζ ))‖2 sup
ζ∈�

‖Ĩ−1
0 ‖

)∫
ζ∈�

∫
‖h‖>M

dQζ (h)dJ (ζ ).

In the inequality, ‖Pnl̃β(θ0(ζ ))‖2 = O�
P0

(1) follows from assumption B4. The fact

that ‖Ĩ−1
0 ‖ = O�

P0
(1) follows from assumption A. The last term∫

ζ∈�

∫
‖h‖>M dQζ (h)dJ (ζ ) → 0, as M → ∞. Hence (16) = op(1), as M → ∞.

Now we show (iii). For contiguous sequences β0 +h/
√

n →P0 β0 and ‖h‖ ≤ M ,
Lemma 2 yields the following expansion of the profile likelihood under the null:

logpln
(
β0 + h/

√
n, ζ

) = logpln(β0, ζ ) + √
nh′

Pnl̃β(θ0(ζ )) − 1
2h′Ĩ0h + o�

P0
(1)

= 1
2β

′
nĨ0βn − 1

2(βn − h)′Ĩ0(βn − h) + o�
P0

(1),

therefore,

PLRn(M) =
∫ ∫

‖h‖≤M

(
pln

(
β0 + h/

√
n, ζ

) − pln(β0, ζ )
)
dQζ (h)dJ (ζ )

=
∫ ∫

‖h‖≤M
exp

(1
2β

′
nĨ0βn

− 1
2(βn − h)′Ĩ0(βn − h) + o�

p (1)
)
dQζ (h)dJ (ζ )

= PLRn(M) + op(1)

where the last equality follows from PLRn(M) = Op(1), by arguments analogous
to those used in (16) above. The proof for Part (1) is now completed.

For Part (2), since h ∼ Qζ = N(0, cĨ−1
0 ),

PLRn =
∫
ζ∈�

ξn(ζ ) dJ (ζ ),

with

ξn(ζ ) =
∫

exp
(

1

2
β

′
nĨ0βn − 1

2
(βn − h)′Ĩ0(βn − h)

)
dQζ (h)

= (2π)−p/2det1/2(Ĩ0/c)

×
∫

exp
[

1

2

{
β

′
nĨ0βn − (h − βn)

′Ĩ0(h − βn) − h′Ĩ0h

c

}]
dh

= (1 + c)−p/2 exp
(

1

2

c

1 + c
β

′
nĨ0βn

)
,
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where the last equality holds by integrating out a normal density.
For Part (3), it follows from Lemma 2 and assumption B3 that

√
n‖β̂n(ζ ) −

β0‖ = O�
P0

(1), and reapplication of Lemma 2 and the arg max theorem yields√
n(β̂n(ζ ) − β0) = Ĩβ(θ0(ζ ))−1√nPnĨβ(θ0(ζ )) + o�

P0
(1). Part (3) now follows.

For the proof of Part (4) and Part (5), it suffices to show that Wn(ζ ) − Rn(ζ ) =
o�
P0

(1) and Rn(ζ ) − LRn(ζ ) = o�
P0

(1). These results follow from Donsker proper-
ties and standard arguments. We omit the details. The proof of Lemma 5 is thus
complete. �

PROOF OF COROLLARY 1. The proof is similar to the proof of Theorem 1.
We omit the details. �

PROOF OF COROLLARY 2. The proof follows the same lines as the proof of
Part (2)(iii) of Lemma 5, with

W(qζ , ζ ) = (2π)−p/2det1/2
(

1 + c

c
Ĩ0

)

×
∫

exp
[
−1 + c

2c

(
λ − c

1 + c
βn

)′
Ĩ0

(
λ − c

1 + c
βn

)
(17)

− λ′〈qζ − q̃ζ ,P l̇�ηl̇η(qζ − q̃ζ )
′〉ηλ

]
dλ,

where det is the determinant of a matrix, 〈·, ·〉η is the inner product defined on Hη,
and W(qζ , ζ ) ≤ 1 since 〈qζ − q̃ζ ,P l̇�ηl̇η(qζ − q̃ζ )

′〉η is nonnegative definite. �

LEMMA 6. Under assumptions A–C, the densities �n(ψ0 + h/
√

n, ζ ) and∫
�n(ψ0 + h/

√
n, ζ ) dQζ (h)dJ (ζ ) are contiguous to the densities l0

n. As a con-
sequence, the results of Lemma 5 still hold under local alternatives {Pψ0+h/

√
n,ζ }

and {∫ Pψ0+h/
√

n,ζ dQζ (h)dJ (ζ )}.
PROOF. Assumption C implies that a LAN (local asymptotic normal) expan-

sion for the log-likelihood ratio holds immediately by Lemma 3.10.11 of van der
Vaart and Wellner (1996):


nζ ≡ log
(dP n

ψ0+h/
√

n,ζ

dP n
ψ0,ζ

)
= 1√

n

n∑
i=1

Aζh(Xi) − 1

2
‖Aζh‖2 + oP0(1).

It follows from LAN that 
nζ →d Wζ , where Wζ ∼ N(−1/2‖Aζ h‖2,‖Aζh‖2),
under P0. Therefore, under P0,

exp(
nζ ) ≡
dP n

ψ0+h/
√

n,ζ

dP n
0

→
d

expWζ .

P0(exp(Wζ )) = 1, using the formula for the moment generating function of the
normal distribution. By Le Cam’s first lemma [van der Vaart (1996), page 88],



OPTIMAL TESTS UNDER LOSS OF IDENTIFIABILITY 2439

we conclude that the sequences of probability measures {Pψ0+h/
√

n,ζ } and {P0}
are contiguous, for every ζ ∈ �. Consequently the convergence in probability that
holds under P0 also holds under {Pψ0+h/

√
n,ζ } and vice versa. Similarly, since

P(eχ) = 1 using the formula for the moment generating function of the χ2 distri-
bution, we conclude that the sequences {∫ P n

ψ0+h/
√

n,ζ
dQζ (h)dJ (ζ )} and P n

0 are

contiguous. �

PROOF OF THEOREM 2. We define a
√

n-neighborhood of β0 as a collection
of sequences βn(hβ) = β0 +hβ/

√
n+o(n−1/2), for hβ ∈ R

p . A
√

n neighborhood
of η is similarly defined as ηn(hη) = η + hη/

√
n + o(n−1/2), for hη ∈ Hη. With a

minor abuse of notation, a local form of the hypotheses can be written as:

H0 :ψ = ψ0 vs. H1 :ψ = ψ0 + h1/
√

n,(18)

where h1 ∈ R
p × Hη takes the value (hβ1, hη1), with hη1 = q̃ ′

ζ hβ1. We note that
the least favorable direction q̃ζ is invariant under the choice of φζ , and, as a con-
sequence, the contiguous alternative H1 is also invariant under the choice of φζ .

Define

LRn ≡
∫

�n(ψ0 + h1/
√

n, ζ ) dQζ (hβ1) dJ (ζ )

�0
n

.(19)

A test defined by LRn is

γ̃n =
⎧⎨
⎩

1, if LRn > k̃αn,
λ̃n, if LRn = k̃αn,
0, if LRn < k̃αn,

where k̃αn > 0, λ̃n ∈ [0,1] are constants such that the rejection probability is α

under the null. For notational simplicity, let P n
1 = ∫

P n
ψ0+h1/

√
n,ζ

dQζ (hβ1) dJ (ζ ).

By the Neyman–Pearson lemma, for all n ≥ 1 and any test φn with level α, with a
minor abuse of notation,

lim
n→∞

∫
φn

{∫
�n

(
ψ0 + h1/

√
n, ζ

)
dQζ (hβ1)dJ (ζ )

}
dP n

1

(20)

≤ lim
n→∞

∫
γ̃n

{∫
�n

(
ψ0 + h1/

√
n, ζ

)
dQζ (hβ1) dJ (ζ )

}
dP n

1

= lim
n→∞

∫
I (LRn > k̃αn)

(21)

×
{∫

�n

(
ψ0 + h1/

√
n, ζ

)
dQζ (hβ1) dJ (ζ )

}
dP n

1

= lim
n→∞

∫ {∫
I (PLRn > k̃αn) dP n

ψ0+h1/
√

n,ζ

}
dQζ (hβ1) dJ (ζ )(22)

= lim
n→∞

∫ {∫
I (EWn > k̃αn) dP n

ψ0+h1/
√

n,ζ

}
dQζ (hβ1) dJ (ζ ),(23)
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where (21) follows since LRn has an absolutely continuous asymptotic distribu-
tion under the contiguous alternative H1 and by Fubini’s theorem. (22) follows
since PLRn − LRn = oP (1) under H1, which will be established at the end of the
proof. (23) follows from Lemma 6. The results for ERn and ELRn also follow
from Lemma 6. By Fubini’s theorem, we obtain lim supn→∞

∫ {φn(P
n
ψ0+h1/

√
n,ζ

)}
dQζ (hβ1) dJ (ζ ) ≤ limn→∞

∫ {∫ I (EWn > k̃αn) dP n
ψ0+h1/

√
n,ζ

}dQζ (hβ1) dJ (ζ ),

which implies that the proposed tests have the greatest weighted average power
asymptotically in the class of all tests of asymptotic significance level α, against
the alternative P n

ψ0+h/
√

n,ζ
.

To show PLRn − LRn = oP (1) under H1, it suffices to show PLRn − LRn =
oP (1) under the null by Lemma 6. Define LRn(M) ≡ ∫

ζ∈�

∫
‖h‖≤M �n(ψ0 +

h1/
√

n, ζ ) dQζ (h)dJ (ζ )/�n(ψ0, ζ ), and note that ∀M : 0 < M < ∞, |PLRn −
LRn| ≤ |PLRn − PLRn(M)| + |PLRn(M) − LRn(M)| + |LRn − LRn(M)|. Hence it
suffices to show that: (i) |PLRn − PLRn(M)| →P0 0, (ii) |LRn − LRn(M)| →P0 0
and (iii) |PLRn(M)−LRn(M)| →P0 0, as n → ∞. Part (i) was shown in Lemma 5.
Part (ii) can be similarly established by taking M large enough and using assump-
tion A.

To show Part (iii), we take Taylor expansion of log�n(ψ0 + h1/
√

n, ζ ) at
(ψ0, ζ ) with respect to hβ along the direction q̃ζ , which leads to the following
expansion in the least favorable submodel:

log �n

(
ψ0 + h1√

n
, ζ

)
= log�n(ψ0, ζ ) + √

nh′
β1Pn�̇(β0,ψ0, ζ )

+ 1
2h′

β1Pn�̈(β̃, ψ̃, ζ )hβ1.

On the right-hand side, we can replace Pn�̇(β0,ψ0, ζ ) by Pn�̇β(ψ0, ζ ) + o�
P0

(1),

and Pn�̈(β̃, ψ̃, ζ ) by −Ĩβ(ψ0, ζ ) + o�
P0

(1), according to assumption B2. Compar-

ing the above display and Lemma 2 with β̃n ≡ hβ1/
√

n, we obtain Part (iii). �

PROOF OF THEOREM 3. The equivalence of the three tests under local alter-
natives is shown in Lemma 6. To show their asymptotic distribution, a key step is
to establish that βn converges under P n

ψ0+h/
√

n,ζ1
in distribution to the process

ζ �→ G(θ0(ζ )) + ν�(hβ, ζ, ζ1), where ν�(hβ, ζ, ζ1) ≡ P0 l̃β (θ0(ζ ))l̃β(θ0(ζ1))
′hβ ,

by Theorem 3.10.12 in van der Vaart and Wellner (1996). The result follows by
Lemma 6 and the continuous mapping theorem. �

PROOF OF THEOREM 4. The equivalence of the three tests under local al-
ternatives is shown in Lemma 6. Since the sequences of densities

∫
�n(ψ0 +

h/
√

n, ζ ) dQζ (h)dJ (ζ ) are contiguous to the density l0
n, we have

(
ELRn,

∫
dP n

ψ0+h/
√

n,ζ
dQζ (h)dJ (ζ )

dP n
0

)
�
d

(eχ(c), eχ(c)),
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under P0. Then ELRn →d rχ(c) under
∫

dP n
ψ0+h/

√
n,ζ

dQζ (h)dJ (ζ ), by Le

Cam’s third lemma. �

PROOF OF LEMMA 3. The proof mainly involves an argument that for an ar-
bitrary, possibly random sequence {ζn}, the distance between the minimizer of the
Kullback–Leibler information and θ̂n(ζn) goes to zero. Consequently, the asser-
tion of Lemma 3 follows from the arbitrariness of the sequence ζn and Slutsky’s
theorem. We omit the details. �

PROOF OF LEMMA 4. The proof mainly involves a uniform “peeling device”
with an adaptation of the proof of Theorem 3.2 given in Murphy and van der Vaart
(1999), which details we omit. �

LEMMA 7. (1) Assume φζ : Dφ ⊂ D �→ Eψ ⊂ E is one-to-one, continuously
invertible and onto and ψζ : Eψ ⊂ E �→ F is one-to-one, continuously invertible
and onto, then ψζ ◦ φζ : Dφζ �→ F is one-to-one, continuously invertible and onto.
(2) Assume φζ : Dφ ⊂ D �→ Eψ ⊂ E is uniformly Fréchet differentiable at θ ∈ Dψ

and ψζ : Eψ ⊂ E �→ F is uniformly Fréchet differentiable at φζ (θ) over ζ ∈ �.
Then ψζ ◦ φζ : Dφ �→ F is uniformly Fréchet differentiable at θ with derivative
ψ ′

ζ (φζ (θ)) ◦ φ′
ζ (θ).

PROOF. For Part (1), it suffices to note that ‖ψ̇ζ (φζ (θ))(φ̇ζ (θ)(h))‖ ≥
c1‖φ̇ζ (θ)(h)‖ ≥ c1c2‖h‖. For Part (2), we note that, ψζ ◦ φζ (θ + th) − ψζ ◦
φζ (θ) = ψζ (φζ (θ) + tkt ) − ψζ (φζ (θ)), where kt = {φζ (θ + th) − φζ (θ)}/t . So
we rewrite the uniform Fréchet difference as ψζ (φζ (θ + h))(·) − ψζ (φζ (θ))(·) =
ψ̇ζ (φζ (θ))(φζ (θ + h) − φζ (θ)) + o�(‖φζ (θ + h) − φζ (θ)‖) = ψ̇ζ (φζ (θ)) ×
φ̇ζ (θ)(h) + o�(‖h‖). �

LEMMA 8. Let Aζ = Tζ + Kζ : D �→ E be a linear operator between Banach
spaces, where Tζ is onto and there exists c1 > 0, such that ‖Tζh‖ ≥ c1‖h‖ for
all h ∈ D and ζ ∈ �, and Kζ is uniformly compact, that is,

⋃
ζ∈�

⋃
‖h‖≤1 Kζh

is compact. Then if N(Aζ ) = {0} for all ζ ∈ �, then Aζ is onto and there exists
c2 > 0 such that ‖Aζh‖ ≥ c2‖h‖, ∀ζ ∈ � and all h ∈ D.

PROOF. Since, for an arbitrary random sequence ζn, T −1
ζn

is continuous, the

operator T −1
ζn

K : E �→ D is compact. Hence I + T −1
ζn

Kζn is one-to-one and there-
fore also onto be a result of Riesz for compact operators. Thus Tζn + Kζn is also
onto. We will be done if we can show that I + T −1

ζn
Kζn is continuously invertible,

since that would imply that (Tζn +Kζn)
−1 = (I +T −1

ζn
Kζn)

−1T −1
ζn

is bounded. The
remainder of the proof follows the proof of Lemma 6.17 in Kosorok (2008). �
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LEMMA 9. Suppose that Un(ψ, ζ )(h) = Pnν(ψ, ζ )(h) and U(ψ, ζ )(h) =
Pν(ψ, ζ )(h) for given P -measurable functions ν(ψ, ζ )(h) indexed by � × �

and an arbitrary index set Hη. Assume ψ = ψ0, ν(ψ0, ζ )(h) = ν(ψ0)(h). If
ψ̂n(ζ ) = ψ0 + o�

P (1), the class of functions {ν(ψ, ζ )(h) − ν(ψ0)(h) :‖ψ − ψ0‖ <

δ, h ∈ Hη, ζ ∈ �} is P -Donsker for some δ > 0 and supζ∈�,h∈Hη
P0(ν(ψ, ζ )(h)−

ν(ψ0)(h))2 → 0, as ψ → ψ0, then supζ∈� ‖√n(Un − U)(ψ̂n(ζ ), ζ ) − √
n(Un −

U)(ψ0, ζ )‖ = o�
P (1 + √

n‖ψ̂n(ζ ) − ψ0‖).

PROOF. This is a “uniform” version of Lemma 3.3.5 in van der Vaart
and Wellner (1996). Let �δ ≡ {ψ :‖ψ − ψ0‖ < δ} and define an extraction
function f :�∞(�δ × � × Hη) × �δ �→ �∞(Hη × �) as f (z,ψ, ζ )(h) ≡
z(ψ, ζ,h), where z ∈ �∞(�δ × Hη × �). Since f is continuous at every point
(z,ψ1, ζ ), we have suph∈Hη,ζ∈� |z(ψ, ζ,h) − z(ψ1, ζ, h)| → 0 as ψ → ψ1. De-
fine the stochastic process Zn(ψ, ζ,h) ≡ Gn(ν(ψ, ζ )(h) − ν(ψ0, ζ )(h)) indexed
by �δ × � × Hη. By assumptions, Zn converges weakly in �∞(�δ × � × Hη)

to a tight Gaussian process Z0 with continuous sample paths with respect
to the metric ρζ defined by ρ2

ζ ((ψ1, ζ, h1), (ψ2, ζ, h2)) = P(ν(ψ1, ζ )(h1) −
ν(ψ0, ζ )(h1) − ν(ψ2, ζ )(h2) + ν(θ0, ζ )(h2))

2, at fixed ζ . Since as assumed,
suph∈Hη,ζ∈� ρζ ((ψ,h), (ψ0, h)) → 0, we have that f is continuous at almost all
sample paths of Z0 uniformly over ζ ∈ �. The result now follows by Slutsky’s
theorem and the continuous mapping theorem. �
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