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SOME SHARP PERFORMANCE BOUNDS FOR LEAST
SQUARES REGRESSION WITH L1 REGULARIZATION

BY TONG ZHANG1

Rutgers University

We derive sharp performance bounds for least squares regression with L1
regularization from parameter estimation accuracy and feature selection qual-
ity perspectives. The main result proved for L1 regularization extends a sim-
ilar result in [Ann. Statist. 35 (2007) 2313–2351] for the Dantzig selector. It
gives an affirmative answer to an open question in [Ann. Statist. 35 (2007)
2358–2364]. Moreover, the result leads to an extended view of feature selec-
tion that allows less restrictive conditions than some recent work. Based on
the theoretical insights, a novel two-stage L1-regularization procedure with
selective penalization is analyzed. It is shown that if the target parameter vec-
tor can be decomposed as the sum of a sparse parameter vector with large
coefficients and another less sparse vector with relatively small coefficients,
then the two-stage procedure can lead to improved performance.

1. Introduction. Consider a set of input vectors x1, . . . ,xn ∈ Rd with corre-
sponding desired output variables y1, . . . ,yn. We use d instead of the more conven-
tional p to denote data dimensionality, because the symbol p is used for another
purpose. The task of supervised learning is to estimate the functional relationship
y ≈ f (x) between the input x and the output variable y from the training examples
{(x1,y1), . . . , (xn,yn)}.

In this paper, we consider the linear prediction model f (x) = βT x and focus on
least squares for simplicity. A commonly used estimation method is L1-regularized
empirical risk minimization (aka, Lasso)

β̂ = arg min
β∈Rd

[
1

n

n∑
i=1

(βT xi − yi )
2 + λ‖β‖1

]
,(1)

where λ ≥ 0 is an appropriate regularization parameter.
We are specifically interested in two related themes: parameter estimation accu-

racy and feature selection quality. A general convergence theorem is established in
Section 4, which has two consequences. First, the theorem implies a parameter es-
timation accuracy result for standard Lasso that extends the main result of Dantzig
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selector in [4]. A detailed comparison is given in Section 6. This result provides an
affirmative answer to an open question in [10] concerning whether a bound similar
to that of [4] holds for Lasso. Second, we show, in Section 7, that the general theo-
rem in Section 4 can be used to study the feature selection quality of Lasso. In this
context, we consider an extended view of feature selection by selecting features
with estimated coefficients larger than a certain nonzero threshold. This method
is different from [20], which only considered zero threshold. An interesting con-
sequence of our method is the consistency of feature selection, even when the
irrepresentable condition of [20] (the condition is necessary in their approach) is
violated. Moreover, the combination of our parameter estimation and feature selec-
tion results suggest that the standard Lasso might be sub-optimal when the target
can be decomposed as a sparse parameter vector with large coefficients, plus an-
other less sparse vector with small coefficients. A two-stage selective penalization
procedure is proposed in Section 8 to remedy the problem. We obtain a parameter
estimation accuracy result for this procedure that can improve the corresponding
result of the standard (one-stage) Lasso under appropriate conditions.

For simplicity, most results (except for Theorem 4.1) in this paper are stated
under the fixed design situation (i.e., xi are fixed, while yi are random). However,
with small modifications, they can also be applied to random design.

2. Related work. In the literature, there are typically three types of results
for learning a sparse approximate target vector β̄ = [β̄1, . . . , β̄d ] ∈ Rd such that
E(y|x) ≈ β̄T x. These results are as follows:

1. Feature selection accuracy. Identify nonzero coefficients (e.g., [5, 18–20]), or
more generally, identify features with target coefficients larger than a certain
threshold (see Section 7). That is, we are interested in identifying the relevant
feature set {j : |β̄j | > α} for some threshold α ≥ 0.

2. Parameter estimation accuracy. How accurate is the estimated parameter, com-
paring to the approximate target β̄ , measured in a certain norm (e.g., [1, 2, 4, 5,
9, 13, 17, 19])? That is, let β̂ be the estimated parameter; we are interested in
developing a bound for ‖β̂ − β̄‖p for some p. Theorems 4.1 and 8.1 give such
results.

3. Prediction accuracy. The prediction performance of the estimated parameter,
both in fixed and random design settings (e.g., [2, 3, 5, 11, 13, 14]). For exam-
ple, in fixed design, we are interested in a bound for 1

n

∑n
i=1(β̂

T xi − Eyi )
2 or

the related quantity 1
n

∑n
i=1((β̂ − β̄)T xi )

2.

In general, good feature selection implies good parameter estimation, and good
parameter estimation implies good prediction accuracy. However, the reverse di-
rections do not usually hold. In this paper, we focus on the first two aspects, feature
selection and parameter estimation, as well as their inter-relationship. Due to the
space limitation, the prediction accuracy of Lasso is not consider in this paper.
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However, it is a relatively straight-forward consequence of parameter estimation
bounds with p = 1 and p = 2.

As mentioned in the Introduction, one motivation of this paper is to develop
a parameter estimation bound for L1 regularization directly comparable to that of
the Dantzig selector in [4]. Compared to [4], where a parameter estimation er-
ror bound in 2-norm is proved for the Dantzig selector, Theorem 4.1 in Section 4
presents a more general bound for p-norm where p ∈ [1,∞]. We are particularly
interested in a bound in ∞-norm because such a bound immediately induces a
result on the feature selection accuracy of Lasso. This point of view is taken in
Section 7, where feature selection is considered. Achieving good feature selection
is important, because it can be used to improve the standard one-stage Lasso. In
Section 8, we develop this observation and show that a two-stage method with
good feature selection achieves a bound better than that of one-stage Lasso. Ex-
periments in Section 9 confirm this theoretical observation.

Since the development of this paper relies heavily on parameter estimation ac-
curacy of Lasso in p-norm, it is different and complements earlier work on Lasso
given above. Among earlier work, prediction accuracy bounds for Lasso were de-
rived in [2, 3] and [5] under mutual incoherence conditions (introduced in [9]) that
are generally regarded as stronger than the sparse eigenvalue conditions employed
by [4]. This is because it is easier for a random matrix to satisfy sparse eigenvalue
conditions than mutual incoherence conditions. A more detailed discussion on this
point is given at the end of Section 4. Moreover, the relationship of different quanti-
ties are presented in Section 3. As we shall see from Section 3, mutual incoherence
conditions are also stronger than conditions required for deriving p-norm estima-
tion error bounds in this paper. Therefore, under appropriate mutual incoherence
conditions, our analysis leads to sharp p-norm parameter estimation bounds for all
p ∈ [1,∞] in Corollary 4.1. In comparison, sharp p-norm parameter estimation
bounds cannot be directed derived from prediction error bounds studied in some
earlier work.

We shall also point out that some 1-norm parameter estimation bounds were
established in [2], but not for p > 1. At the same time this paper was written,
related parameter estimation error bounds were also obtained in [1], under appro-
priate sparse eigenvalue conditions, both for the Dantzig selector and for Lasso.
However, the results are only for p ∈ [0,2] and only for truly sparse targets [i.e.,
E(y|x) = β̄T x for some sparse β̄]. In particular, their parameter estimation, bound
with p = 2, does not reproduce the main result of [4], while our bounds in this
paper (which allows approximate sparse target) do. We shall point out that, in ad-
dition to parameter estimation error bounds, a prediction error bound that allows
approximately sparse target was also obtained, in [1], in a form quite similar to the
parameter estimation bounds of Lasso in this paper and that of Dantzig selector
in [4]. However, that result does not immediately imply a bound on p-norm pa-
rameter estimation error. A similar bound was derived in [5] for Lasso but not as
elaborated as that in [4]. Another related work is [19], which contains a 2-norm
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parameter estimation error bound for Lasso but has a cruder form than ours. In
particular, their result is worse than the form given in [4], as well as the first claim
of Theorem 4.1 in this paper. A similar 2-norm parameter estimation error bound,
but only for truly sparse targets, can be found in [17]. In [9], the authors derived
2-norm estimation bound for Lasso with approximate sparse targets under mu-
tual incoherence conditions but without stochastic noise. We shall note that the
“noise” in their paper is not random and corresponds to approximation error in our
notation, as discussed in Section 5. Their result is thus weaker than our result in
Corollary 5.1. In addition to the above work, prediction error bounds were also ob-
tained in [13, 14] and [11] for general loss functions and random design. However,
such results cannot be used to derive p-norm parameter estimation bound, which
we consider here.

3. Conditions on design matrix. In order to obtain good bounds, it is neces-
sary to impose conditions on the design matrix that generally specifies that small
diagonal blocks of the design matrix are nonsingular. For example, mutual inco-
herence conditions [9] or sparse eigenvalue conditions [19]. The sparse eigenvalue
condition is also known as RIP (restricted isometry property) in the compressed
sensing literature, which was first introduced in [7].

Mutual incoherence conditions are usually more restrictive than sparse eigen-
value conditions. That is, a matrix that satisfies an appropriate mutual incoherence
condition will also satisfy the necessary sparse eigenvalue condition in our analy-
sis, but the reverse direction does not hold. For example, we will see from the
discussion at the end of Section 4 that, for random design matrices, more samples
are needed in order to satisfy the mutual incoherence condition than to satisfy the
sparse eigenvalue condition. In our analysis, the weaker sparse eigenvalue con-
dition can be used to obtain sharp bounds for 2-norm parameter estimation error.
Since we are interested in general p-norm parameter estimation error bounds, other
conditions on the design matrix will be considered. They can be regarded as gen-
eralizations of the sparse eigenvalue condition, or RIP. All of these conditions are
weaker than the mutual incoherence condition.

We introduce the following definitions that specify properties of sub-matrices
of a large matrix A. These quantities (when used with the design matrix Â =
1
n

∑n
i=1 xixT

i ) will appear in our result.

DEFINITION 3.1. The p-norm of a vector β = [β1, . . . , βd ] ∈ Rd is defined
as ‖β‖p = (

∑d
j=1 |βj |p)1/p . Given a positive semi-definite matrix A ∈ Rd×d , and

given �, k ≥ 1 such that � + k ≤ d , let I, J be disjoint subsets of {1, . . . , d} with
k and � elements, respectively. Also, let AI,I ∈ Rk×k be the restriction of A to
indices I , AI,J ∈ Rk×� be the restriction of A to indices I on the left and J on the
right. Define, for p ∈ [1,∞],

ρ
(p)
A,k = sup

v∈Rk,I

‖AI,I v‖p

‖v‖p

, θ
(p)
A,k,� = sup

u∈R�,I,J

‖AI,J u‖p

‖u‖∞
,
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μ
(p)
A,k = inf

v∈Rk,I

‖AI,I v‖p

‖v‖p

, γ
(p)
A,k,� = sup

u∈R�,I,J

‖A−1
I,IAI,J u‖p

‖u‖∞
.

Moreover, for all v = [v1, . . . ,vk] ∈ Rk , define vp−1 = [|v1|p−1 sgn(v1), . . . ,

|vk|p−1 sgn(vk)], and

ω
(p)
A,k = inf

v∈Rk,I

max(0,vT AI,I vp−1)

‖v‖p
p

,

π
(p)
A,k,� = sup

v∈Rk,u∈R�,I,J

(vp−1)T AI,J u‖v‖p

max(0,vT AI,I vp−1)‖u‖∞
.

The ratio ρ
(p)
A,k/μ

(p)
A,k measures the closeness to the identity matrix of k × k di-

agonal sub-matrices of A. The RIP concept in [7] can be regarded as ρ
(2)
A,k/μ

(2)
A,k

in our notation. The quantities θ
(p)
A,k,�, γ

(p)
A,k,� and π

(p)
A,k,� measures the closeness to

zero of the k × � off diagonal blocks of A. Note that μ
(2)
A,k = ω

(2)
A,k and ρ

(2)
A,k are the

smallest and largest eigenvalues of k ×k diagonal blocks of A. It is easy to see that
the inequalities μ

(p)
A,k ≤ ρ

(p)
A,k hold. Moreover, we can also obtain bounds on θ

(p)
A,k,�,

γ
(p)
A,k,� and π

(2)
A,k,� using eigenvalues of sub-matrices of A. The bounds essentially

say that if diagonal sub-matrices of A of size k + � are well-conditioned, then the
quantities θ

(2)
A,k,�, γ

(2)
A,k,� and π

(2)
A,k,� are O(

√
�).

PROPOSITION 3.1. The following inequalities hold:

θ
(2)
A,k,� ≤ �1/2

√(
ρ

(2)
A,k − μ

(2)
A,�+k

)(
ρ

(2)
A,� − μ

(2)
A,�+k

)
,

θ
(p)
A,k,� ≤ kmax(0,1/p−0.5)θ

(2)
A,k,�,

π
(2)
A,k,� ≤ �1/2

2

√
ρ

(2)
A,�/μ

(2)
A,k+� − 1, π

(p)
A,k,� ≤ θ

(p)
A,k,�/ω

(p)
A,k,

γ
(p)
A,k,� ≤ kmax(0,1/p−0.5)γ

(2)
A,k,�, γ

(p)
A,k,� ≤ θ

(p)
A,k,�/μ

(p)
A,k,

min
i

Ai,i − sup
I

‖AI,I − diag(AI,I )‖p ≤ ω
(p)
A,k ≤ μ

(p)
A,k,

where, for a matrix B , diag(B) is the diagonal of B , and ‖B‖p = supu(‖Bu‖p/

‖u‖p).

The last inequality in the above proposition shows that μ
(p)
A,k > 0 and ω

(p)
A,k > 0

when A has a certain diagonal dominance (in p-norm) property for its k×k blocks.
Finally, we state a result that bounds all quantities defined here using the mutual

incoherence concept of [9]. This result shows that mutual incoherence is a stronger
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notation than all quantities we employ in this paper. Although more complicated,
by using these less restrictive quantities in Theorem 4.1, we obtain stronger results
than using the mutual incoherence condition (Corollary 4.1). For simplicity, we
consider diagonally normalized A such that Ai,i = 1 for all i.

PROPOSITION 3.2. Given a matrix A ∈ Rd×d and assuming that Ai,i = 1
for all i, define the mutual coherence coefficient as MA = supi 	=j |Ai,j |. Then the
following bounds hold:

• ρ
(p)
A,k ≤ 1 + MAk;

• μ
(p)
A,k ≥ ω

(p)
A,k ≥ 1 − MAk;

• θ
(p)
A,k,� ≤ MAk1/p�;

• π
(p)
A,k,� ≤ MAk1/p�/max(0,1 − MAk);

• γ
(p)
A,k,� ≤ MAk1/p�/max(0,1 − MAk).

4. A general performance bound for L1 regularization. For simplicity, we
assume sub-Gaussian noise as follows. We use xi,j to indicate the j th component
of vector xi ∈ Rd .

ASSUMPTION 4.1. Assume that, conditioned on {xi}i=1,...,n, {yi}i=1,...,n are
independent (but not necessarily identically distributed) sub-Gaussians. There ex-
ists a constant σ ≥ 0 such that ∀i and ∀t ∈ R,

Eyi
et (yi−Eyi )|{xi}i=1,...,n ≤ eσ 2t2/2.

Both Gaussian and bounded random variables are sub-Gaussian using the
above definition. For example, if a random variable ξ ∈ [a, b], then Eξ e

t (ξ−Eξ) ≤
e(b−a)2t2/8. If a random variable is Gaussian, ξ ∼ N(0, σ 2), then Eξ e

tξ ≤ eσ 2t2/2.
For convenience, we also introduce the following definition.

DEFINITION 4.1. Let β = [β1, . . . , βd ] ∈ Rd and α ≥ 0. We define the set of
relevant features with threshold α as

suppα(β) = {j : |βj | > α}.
Moreover, if |β(1)| ≥ · · · ≥ |β(d)| are in descending order, then define

r
(p)
k (β) =

(
d∑

j=k+1

∣∣β(j)

∣∣p)1/p

as the p-norm of the d − k smallest components (in absolute value) of β .
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Consider a target parameter vector β̄ ∈ Rd that is approximately sparse. Note
that we do not assume that β̄ is the true target; that is, β̄T xi may not equal to Eyi .
We only assume that this holds approximately, and we are interested in how well
we can estimate β̄ using (1). In particular, the approximation quality (or its close-
ness to the true model) of any β̄ is measured by ‖ 1

n

∑n
i=1(β̄

T xi − Eyi )xi‖∞ in our
analysis. If β̄T xi = Eyi , then the underlying model is yi = β̄T xi + εi , where εi

are independent sub-Gaussian noises. In the more general case, we only need to
assume that ‖ 1

n

∑n
i=1(β̄

T xi − Eyi )xi‖∞ is small for some approximate target β̄ .
The relationship of this quantity and least squares approximation error is discussed
in Section 5.

The following theorem holds both in fixed design and in random design. The
only difference is that, in the fixed design situation, we may let a = (supj Âj,j )

1/2,

and the condition (supj Âj,j )
1/2 ≤ a automatically holds. In order to simplify the

claims, our later results are all stated under the fixed design assumption. In the
following theorem, the statement of “with probability 1 − δ: if X then Y ” can
also be interpreted as “with probability 1 − δ: either X is false or Y is true.” We
note that, in practice, the condition of the theorem can be combinatorially hard to
check, since computing the quantities in Definition 3.1 requires searching over sets
of fixed cardinality.

THEOREM 4.1. Let Assumption 4.1 hold, and let Â = 1
n

∑n
i=1 xixT

i . Let β̂ be
the solution of (1). Consider any fixed target vector β̄ ∈ Rd and a positive constant
a > 0. Given δ ∈ (0,1), then, with probability larger than 1 − δ, the following
two claims hold for q = 1,p, and all k, � such that k ≤ � ≤ (d − k)/2, t ∈ (0,1),
p ∈ [1,∞]:
• If t ≤ 1 − π

(p)

Â,k+�,�
k1−1/p/�, λ ≥ 4(2−t)

t
(σa

√
2
n

ln(2d/δ) + ‖ 1
n

∑n
i=1(β̄

T xi −
Eyi )xi‖∞), and (supj Âj,j )

1/2 ≤ a, then

‖β̂ − β̄‖q ≤ 8k1/q−1/p

tω
(p)

Â,k+�

[
ρ

(p)

Â,k+�
r
(p)
k (β̄) + k1/pλ

]

+ 32k1/q−1/p

t
π

(p)

Â,k+�,�
r
(1)
k (β̄)�−1

+ 4k1/q−1/pr
(p)
k (β̄) + 4r

(1)
k (β̄)�1/q−1;

• If t ≤ 1 − γ
(p)

Â,k+�,�
k1−1/p/�, λ ≥ 4(2−t)

t
(σa

√
2
n

ln(2d/δ) + ‖ 1
n

∑n
i=1(β̄

T xi −
Eyi )xi‖∞), and (supj Âj,j )

1/2 ≤ a, then

‖β̂ − β̄‖q ≤ 8k1/q−1/p

t

[
4γ

(p)

Â,k+�,�
�−1r

(1)
k (β̄) + λ(k + �)1/p/μ

(p)

Â,k+�

]
+ 4r

(1)
k (β̄)�1/q−1.
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Although, for a fixed p, the above theorem only gives bounds for ‖β̂ − β̄‖q with
q = 1,p, this information is sufficient to obtain bounds for general q ∈ [1,∞]. If
q ∈ [1,p], we can use the following interpolation rule (which follows from the
Hölder’s inequality):

‖�β̂‖q ≤ ‖�β̂‖(p−q)/(qp−q)
1 ‖�β̂‖(pq−p)/(pq−q)

p

and if q > p, we use ‖�β̂‖q ≤ ‖�β̂‖p . Although the estimate we obtain when
q 	= p is typically worse than the bound achieved at p = q (assuming that the
condition of the theorem can be satisfied at p = q), it may still be useful, because
the condition for the theorem to apply may be easier to satisfy for certain p.

It is important to note that the first claim is more refined than the second claim,
as it replaces the explicit �-dependent term O(�1/pλ) by the term O(r

(p)
k (β̄)),

which does not explicitly depend on �. In order to optimize the bound, we can
choose k = | suppλ(β̄)|, which implies that O(r

(p)
k (β̄)) = O(�1/pλ + r

(p)
k+�(β̄)) =

O(�1/pλ + �1/p−1r
(1)
k (β̄)). This quantity is dominated by the bound in the second

claim. However, if O(r
(p)
k (β̄)) is small, then the first claim is much better when �

is large.
The theorem as stated is not intuitive. In order to obtain a more intuitive bound

from the first claim of the theorem, we consider a special case with mutual incoher-
ence condition. The following corollary is a simple consequence of the first claim
of Theorem 4.1 (with q = p) and Proposition 3.2. The result shows that mutual
incoherence condition is a stronger assumption than the quantities that appear in
our analysis.

COROLLARY 4.1. Let Assumption 4.1 hold, and let Â = 1
n

∑n
i=1 xixT

i , and

assume that Âj,j = 1 for all j . Define M
Â

= supi 	=j |Âi,j |. Let β̂ be the so-
lution of (1). Consider any fixed target vector β̄ ∈ Rd . Given δ ∈ (0,1), then,
with probability larger than 1 − δ, the following claim holds for all k ≤ � ≤
(d − k)/2, t ∈ (0,1), p ∈ [1,∞]: if M

Â
(k + �) ≤ (1 − t)/(2 − t) and λ ≥

4(2−t)
t

(σ
√

2
n

ln(2d/δ) + ‖ 1
n

∑n
i=1(β̄

T xi − Eyi )xi‖∞), then

‖β̂ − β̄‖p ≤ 8(2 − t)

t

[
1.5r

(p)
k (β̄) + k1/pλ

] + 4r
(p)
k (β̄) + 4(8 − 7t)

t
r
(1)
k (β̄)�1/p−1.

The above result is of the form

‖β̂ − β̄‖p = O
(
k1/pλ + r

(p)
k (β̄) + r

(1)
k (β̄)�1/p−1)

,(2)

where we can let k = | suppλ(β̄)|, so that k is the number of components such that
|β̄j | > λ. Although mutual incoherence is assumed for simplicity, a similar bound
holds for any p if we assume that Â is p-diagonal dominant at block size k + �.
Such an assumption is weaker than mutual-incoherence.
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To our knowledge, none of the earlier work on Lasso obtained parameter es-
timation bounds in the form of (2). The first two terms in the bound are what
we shall expect from the L1-regularization method (1) and, thus, unlikely to be
significantly improved (except for the constants). The first term is the variance
term, and the second term is needed because L1 regularization tends to shrink
coefficients j /∈ suppλ(β̄) to zero. Although it is not clear whether the third
term can be improved, we shall note that it becomes small if we can choose a
large �. Note that, if β̄ is the true parameter: β̄T xi = Eyi , then we may take
λ = 4(2 − t)t−1σ

√
ln(d/δ)/n in (2). The bound in [4] has a similar form (but

with p = 2), which we will compare in the next section.
Note that, in Theorem 4.1, one can always take λ sufficiently large, so that the

condition for λ is satisfied. Therefore, in order to apply the theorem, one needs
either the condition 0 < t ≤ 1 − π

(p)

Â,k+�,�
k1−1/p/� or the condition 0 < t ≤ 1 −

γ
(p)

Â,k+�,�
k1−1/p/�. They require that small diagonal blocks of Â are not nearly

singular. As pointed out after Proposition 3.1, the condition for the first claim is
typically harder to satisfy. For example, as discussed below, even when p 	= 2,
the requirement γ

(p)

Â,k+�,�
k1−1/p/� < 1 can always be satisfied when diagonal sub-

blocks of Â at certain size satisfy some eigenvalue conditions, while this is not true
for the condition π

(p)

Â,k+�,�
k1−1/p/� < 1.

In the case of p = 2, the condition 0 < 1 − π
(2)

Â,k+�,�
k0.5/� can always be satis-

fied if the small diagonal blocks of Â have eigenvalues bounded from above and
below (away from zero). We shall refer to such a condition as sparse eigenvalue
condition (also see [1, 19]). Indeed, Proposition 3.1 implies that π

(2)

Â,k+�,�
k0.5/� ≤

0.5(k/�)0.5
√

ρ
(2)
A,�/μ

(2)
A,k+2� − 1. Therefore, this condition can be satisfied if we can

find � such that ρ
(2)
A,�/μ

(2)
A,k+2� ≤ �/k. In particular, if ρ

(2)
A,�/μ

(2)
A,k+2� ≤ c for a con-

stant c > 0 when � ≤ ck (which is what we will mean by sparse eigenvalue condi-
tion in later discussions), then one can simply take � = ck.

For p > 2, a similar claim holds for the condition 0 < 1 − γ
(p)

Â,k+�,�
k1−1/p/�.

Proposition 3.1 implies that γ
(p)

Â,k+�,�
≤ γ

(2)

Â,k+�,�
≤ γ

(2)

Â,k+�,�
≤ θ

(2)

Â,k+�,�
/μ

(2)

Â,k+�
≤√

�ρ
(2)

Â,k+�
/μ

(2)

Â,k+�
. Sparse eigenvalue condition (bounded eigenvalue) at block

size of order k2−2/p implies that the condition 0 < 1 − γ
(p)

Â,k+�,�
k1−1/p/� can be

satisfied with an appropriate choice of � = O(k2−2/p). Under assumptions that
are stronger than the sparse eigenvalue condition, one can obtain better and sim-
pler results. For example, this is demonstrated in Corollary 4.1 under the mutual
incoherence condition.

Finally, in order to concretely compare the condition of Theorem 4.1 for differ-
ent p, we consider the random design situation (with random vectors xi ), where



2118 T. ZHANG

each component xi,j is independently drawn from the standard Gaussian dis-
tribution N(0,1) (i = 1, . . . , n and j = 1, . . . , d). This situation is investigated
in the compressed sensing literature, such as [7]. In particular, it was shown
that, with large probability, the following RIP inequality holds for some constant
c > 0 (s ≤ n ≤ d): |ρ(2)

Â,s
− 1| + |μ(2)

Â,s
− 1| ≤ c

√
s lnd/n. Now, for p ≥ 2, us-

ing Proposition 3.1, it is not hard to show that (we shall skip the detailed deriva-
tion here because it is not essential to the main point of this paper), for k ≤ �,

θ
(p)

Â,k+�,�
≤ 4c�

√
lnd/n and ω

(p)
A,k+� ≥ 1 − 2c

√
�2−2/p lnd/n. Therefore, the con-

dition 0.5 ≤ 1 − γ
(p)

Â,k+�,�
k1−1/p/� in Theorem 4.1 holds with large probability, as

long as n ≥ 256c2�2−2/p lnd . Therefore, in order to apply the theorem with fixed
k ≤ � and d , the larger p is, the larger the sample size n has to be. In comparison,
the mutual incoherence condition of Corollary 4.1 is satisfied when n ≥ c′�2 lnd

for some constant c′ > 0.

5. Noise and approximation error. In Theorem 4.1 and Corollary 4.1, we
do not assume that β̄ is the true parameter that generates Eyi . The bounds depend
on the quantity ‖ 1

n

∑n
i=1(β̄

T xi − Eyi )xi‖∞ to measure how close β̄ is different
from the true parameter. This quantity may be regarded as an algebraic definition
of noise, in that it behaves like stochastic noise.

The following proposition shows that, if the least squares error achieved by β̄

(which is often called approximation error) is small, then the algebraic noise level
(as defined above) is also small. However, the reverse is not true. For example, for
the identity design matrix and βT∗ xi = Eyi , the algebraic noise is ‖ 1

n

∑n
i=1(β̄

T xi −
Eyi )xi‖∞ = ‖β̄ − β∗‖∞, but the least squares approximation error is ‖β̄ − β∗‖2

2.
Therefore, in general, algebraic noise can be small, even when the least squares
approximation error is large.

PROPOSITION 5.1. Let Â = 1
n

∑n
i=1 xixT

i and a = (supj Âj,j )
1/2. Given

k ≥ 0, there exists β̄(k) ∈ Rd such that∥∥∥∥∥1

n

n∑
i=1

(
β̄(k)T xi − Eyi

)
xi

∥∥∥∥∥∞
≤ a√

k + 1

(
n−1

n∑
i=1

(β̄T xi − Eyi )
2

)1/2

,

supp0(β̄
(k) − β̄) ≤ k, and ‖β̄(k) − β̄‖2 ≤ 2(n−1 ∑n

i=1(β̄
T xi − Eyi )

2)1/2/

√
μ

(2)

Â,k
.

This proposition can be combined with Theorem 4.1 or Corollary 4.1 to derive
bounds in terms of the approximation error n−1 ∑n

i=1(β̄
T xi − Eyi )

2 instead of the
algebraic noise ‖ 1

n

∑n
i=1(β̄

T xi −Eyi )xi‖∞. For example, as a simple consequence
of Corollary 4.1, we have the following bound. A similar but less general result
[with σ = 0 and | supp0(β̄)| = k] was presented in [9].
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COROLLARY 5.1. Let Assumption 4.1 hold, let Â = 1
n

∑n
i=1 xixT

i and assume

that Âj,j = 1 for all j . Define M
Â

= supi 	=j |Âi,j |. Let β̂ be the solution of (1).
Consider any fixed target vector β̄ ∈ Rd . Given δ ∈ (0,1), then, with probability
larger than 1 − δ, the following claim holds for all 2k ≤ � ≤ (d − 2k)/2, t ∈ (0,1),

p ∈ [1,∞]. If M
Â
(2k + �) ≤ (1 − t)/(2 − t) and λ ≥ 4(2−t)

t
(σ

√
2
n

ln(2d/δ) +
ε/

√
k + 1), then

‖β̂ − β̄‖2 ≤ 8(2 − t)

t

[
1.5r

(2)
k (β̄) + (2k)1/2λ

] + 4r
(2)
k (β̄)

+ 4(8 − 7t)

t
r
(1)
k (β̄)�−1/2 + 4ε,

where ε = (n−1 ∑n
i=1(β̄

T xi − Eyi )
2)1/2.

A similar result holds under the sparse eigenvalue condition. We should point
out that, in L1 regularization, the behavior of stochastic noise (σ > 0) is similar to
that of the algebraic noise introduced above, but it is very different from the least
squares approximation error ε. In particular, the so-called bias of L1 regularization
shows up in the stochastic noise term but not in the least squares approximation
error term. If we set σ = 0 but ε 	= 0, our analysis of the two-stage procedure
in Section 8 will not improve that of the standard Lasso given in Corollary 5.1,
simply because the two-stage procedure does not improve the term involving the
approximation error ε. However, the benefit of the two-stage procedure clearly
shows up in the stochastic noise term. For this reason, it is important to distinguish
the true stochastic noise and the approximation error ε, and to develop analysis
that includes both stochastic noise and approximation error.

6. Dantzig selector versus L1 regularization. Recently, Candes and Tao
proposed an estimator, called the Dantzig selector in [4], and proved a very strong
performance bound for this new method. However, it was observed [8, 10] and [12]
that the performance of Lasso is comparable to that of the Dantzig selector. Con-
sequently, the authors of [10] asked whether a performance bound similar to the
Dantzig selector holds for Lasso as well. In this context, we observe that a sim-
ple but important consequence of the first claim of Theorem 4.1 leads to a bound
for L1 regularization that reproduces the main result for Dantzig selector in [4].
We restate the result below, which provides an affirmative answer to the above
mentioned open question of [10].

COROLLARY 6.1. Let Assumption 4.1 hold, and let Â = 1
n

∑n
i=1 xixT

i and a =
(supj Âj,j )

1/2. Consider the true target vector β̄ such that Ey = β̄T x. Define Â =
1
n

∑n
i=1 xixT

i . Let β̂ be the solution of (1). Given δ ∈ (0,1), then, with probability
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larger than 1 − δ, the following claim holds for all (d − k)/2 ≥ � ≥ k. If t =
1 − π

(2)

Â,k+�,�
k0.5/� > 0, λ ≥ 4(2 − t)t−1σa

√
2 ln(2d/δ)/n, then

‖β̂ − β̄‖2 ≤
(32ρ

(2)

Â,k+�

tμ
(2)

Â,k+�

+ 4
)

r
(1)
k (β̄)√

�
+

(8ρ
(2)

Â,k+�

tμ
(2)

Â,k+�

+ 4
)
r
(2)
k (β̄) + 8

tμ
(2)

Â,k+�

√
kλ.

Corollary 6.1 is directly comparable to the main result of [4] for the Dantzig
selector, which is given by the estimator

β̂D = arg min
β∈Rd

‖β‖1 subject to sup
j

∣∣∣∣∣
n∑

i=1

xi,j (xT
i β − yi )

∣∣∣∣∣ ≤ bD.

Their main result is stated below, in Theorem 6.1. It uses a different quantity θ̄A,k,�,
which is defined as

θ̄A,k,� = sup
β∈R�,I,J

‖AI,J β‖2

‖β‖2
,

using notation of Definition 3.1. It is easy to see that θ
(2)
A,k,� ≤ θ̄A,k,�

√
�.

THEOREM 6.1 [4]. Assume that there exists a vector β̄ ∈ Rd with s nonzero
components, such that yi = β̄T xi + εi , where εi ∼ N(0, σ 2) are i.i.d. Gaussian
noises. Let Â = 1

n

∑n
i=1 xixT

i , and assume that Âj,j ≤ 1 for all j . Given tD > 0
and δ ∈ (0,1), we set bD = √

nλDσ , with

λD = (√
1 − (

ln δ + ln
(√

π lnd
))

/ lnd + t−1
D

)√
2 lnd.

Let θ̄
Â,2s

= max(ρ
(2)

Â,2s
− 1,1 −μ

(2)

Â,2s
). If θ̄

Â,2s
+ θ̄

Â,2s,s
< 1 − tD , then, with prob-

ability exceeding 1 − δ,

‖β̂D − β̄‖2
2 ≤ C2(θ̄Â,2s

, θ̄
Â,2s,s

)λ2
D

(
(k + 1)σ 2

n
+ r

(2)
k (β̄)2

)
.

The quantity C2(a, b) is defined as C2(a, b) = 2C0(a,b)
1−a−b

+ 2b(1+a)

(1−a−b)2 + 1+a
1−a−b

, where

C0(a, b) = 2
√

2(1 + 1−a2

1−a−b
) + (1 + 1/

√
2)(1 + a)2/(1 − a − b).

In order to see that Corollary 6.1 is comparable to Theorem 6.1, we shall com-
pare their conditions and consequences. To this end, we can pick any � ∈ [k, s] in
Corollary 6.1.

We shall first look at the conditions. The condition required in Theorem 6.1 is
θ̄
Â,2s

+ θ̄
Â,2s,s

< 1 − tD , which implies that θ̄
Â,2s,s

< μ
(2)

Â,2s
− tD . This condition is
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stronger than θ
(2)
A,k+�,�/

√
k ≤ θ̄

Â,k+�,�
< μ

(2)

Â,k+�
− tD , which implies the condition

t > 0 in Corollary 6.1:

t = 1 − π
(2)

Â,k+�,�

√
k

�
≥ 1 −

θ
(2)

Â,k+�,�

√
k

μ
(2)

Â,k+�
�

≥ 1 −
(μ

(2)

Â,k+�
− tD)k

μ
(2)

Â,k+�
�

= (1 − k/�) + tDk

μ
(2)

Â,k+�
�

> 0.

Therefore, Corollary 6.1 can be applied, as long as Theorem 6.1 can be applied.
Moreover, as long as tD > 0, t is never much smaller than tD but can be signifi-
cantly larger (e.g., t > 0.5 when k ≤ �/2, even if tD is close to zero). It is also ob-
vious that the condition t > 0 does not imply that tD > 0. Therefore, the condition
of Corollary 6.1 is strictly weaker. As discussed in Section 4, if ρ

(2)
A,�/μ

(2)
A,k+2� ≤ c

for a constant c > 0 when � ≤ ck; then, the condition t > 0 holds with � = ck.
Next, we shall look at the consequences of the two theorems when both

t > 0 and tD > 0. Ignoring constants, the bound in Theorem 6.1, with λD =
O(

√
ln(d/δ)), can be written as

‖β̂D − β̄‖2 = O
(√

ln(d/δ)
)(

r
(2)
k (β̄) + σ

√
k/n

)
.

However, the proof itself implies a stronger bound of the form

‖β̂D − β̄‖2 = O
(
σ

√
k ln(d/δ)/n + r

(2)
k (β̄)

)
.(3)

In comparison, in Corollary 6.1, we can pick λ = O(σ
√

ln(d/δ)/n), and then the
bound can be written as (with � = s)

‖β̂ − β̄‖2 = O
(
σ

√
k ln(d/δ)/n + r

(2)
k (β̄) + r

(1)
k (β̄)/

√
s
)
.(4)

Note that we do not have to assume that β̄ only contains s nonzero components.
The quantity r

(1)
k (β̄)/

√
s is no more than r

(2)
k (β̄) under the sparsity of β̄ assumed

in Theorem 6.1. It is thus clear that (4) has a more general form than that of (3).
It was pointed out in [1] that Lasso and the Dantzig selector are quite simi-

lar, and the authors presented a simultaneous analysis of both. Since the explicit
parameter estimation bounds in [1] are with the case k = supp0(β̄), it is natural
to ask whether our results (in particular, the first claim of Theorem 4.1) can also
be applied to the Dantzig selector, so that a simultaneous analysis similar to that
of [1] can be established. Unfortunately, the techniques used in this paper do not
immediately give an affirmative answer. This is because a Lasso-specific property
is used in our proof of Lemma 10.4, and the property does not hold for the Dantzig
selector. However, we conjecture that it may still be possible to prove similar re-
sults for the Dantzig selector through different techniques such as those employed
in [4] and [6].
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7. Feature selection through coefficient thresholding. A fundamental result
of L1 regularization is its feature selection consistency property, which is consid-
ered in [16] and more formally analyzed in [20]. It was shown that, under a strong
irrepresentable condition (introduced in [20]) together with the sparse eigenvalue
condition, the set supp0(β̂), with β̂ estimated using Lasso, may be able to con-
sistently identify features with coefficients larger than a threshold of order

√
kλ

(with λ = O(σ
√

ln(d/δ)/n)). Here, k is the sparsity of the true target. That is,
with probability 1 − δ, all coefficients larger than a certain threshold of the or-
der O(σ

√
k ln(d/δ)/n) remain nonzero, while all zero coefficients remain zero.

It was also shown that a slightly weaker irrepresentable condition is necessary for
Lasso to possess this property. For Lasso, the

√
k factor cannot be removed (under

the sparse eigenvalue assumption plus the irrepresentable condition) unless addi-
tional conditions (such as the mutual incoherence assumption in Corollary 7.1) are
imposed. Also, see [5, 18] for related results without the

√
k factor.

It was acknowledged in [19] and [17] that the irrepresentable condition can
be quite strong (e.g., often more restricted than eigenvalue conditions required for
Corollary 6.1). This is the motivation of the sparse eigenvalue condition introduced
in [19], although such a condition does not necessarily yield consistent feature
selection under the scheme of [20], which employs the set supp0(β̂) to identify
features. However, limitations of the irrepresentable condition can be removed by
considering suppα(β̂) with α > 0.

In this section, we consider a more extended view of feature selection, where
a practitioner would like to find relevant features with coefficient magnitude larger
than some threshold α that is not necessarily zero. Features with small coefficients
are regarded as irrelevant features, which are not distinguished from zero for prac-
tical purposes. The threshold α can be pre-chosen based on the interests of the
practitioner as well as our knowledge of the underlying problem. We are interested
in the relationship of features estimated from the solution β̂ of (1) and the true
relevant features obtained from β̄ . The following result is a simple consequence of
Theorem 4.1, where we use ‖β̂ − β̄‖p for some large p to approximate ‖β̂ − β̄‖∞
(which is needed for feature selection). A consequence of the result (see Corol-
lary 7.2) is that, using a nonzero threshold α (rather than zero-threshold of [20]), it
is possible to achieve consistent feature selection even if the irrepresentable con-
dition in [20] is violated. For clarity, we choose a simplified statement with sparse
target β̄ . However, it is easy to see from the proof that, just as in Theorem 4.1,
a similar but more complicated statement holds, even when the target is not sparse.

THEOREM 7.1. Let Assumption 4.1 hold, and let Â = 1
n

∑n
i=1 xixT

i and a =
(supj Âj,j )

1/2. Let β̄ ∈ Rd be the true target vector with Ey = β̄T x, and assume

that | supp0(β̄)| = k. Let β̂ be the solution of (1). Given δ ∈ (0,1), then, with prob-
ability larger than 1− δ, the following claim is true. For all ε ∈ (0,1), if there exist
(d − k)/2 ≥ � ≥ k, t ∈ (0,1), and p ∈ [1,∞] so that:
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• λ ≥ 4(2 − t)t−1(σa
√

2 ln(2d/δ)/n);
• either 8(εαω

(p)

Â,k+�
)−1k1/pλ ≤ t ≤ 1−π

(p)

Â,k+�,�
k1−1/p/�, or 8(εαμ

(p)

Â,k+�
)−1(k+

�)1/pλ ≤ t ≤ 1 − γ
(p)

Â,k+�,�
k1−1/p/�;

then supp(1+ε)α(β̄) ⊂ suppα(β̂) ⊂ supp(1−ε)α(β̄).

If either t ≤ 1 − π
(p)

Â,k+�,�
k1−1/p/� or t ≤ 1 − γ

(p)

Â,k+�,�
k1−1/p/�, then the re-

sult can be applied as long as α is sufficiently large. As we have pointed out
after Theorem 4.1, if the sparse eigenvalue condition holds at block size of or-
der k2−2/p for some p ≥ 2, then one can take � = O(k2−2/p), so that the con-
dition t ≤ 1 − γ

(p)

Â,k+�,�
k1−1/p/� is satisfied. This implies that we may take α =

O(k2/p−2/p2
λ) = O(σk2/p−2/p2√

ln(d/δ)/n), assuming that μ
(p)

Â,k+�
is bounded

from below (which holds when Â is p-norm diagonal dominant at size k + �,
according to Proposition 3.1). That is, sparse eigenvalue condition at a certain
block size of order k2−2/p , together with the boundedness of μ

(p)

Â,k+�
, imply that

one can distinguish coefficients of magnitude larger than a threshold of order
σk2/p−2/p2√

ln(d/δ)/n from zero. In particular, if p = ∞, we can distinguish
nonzero coefficients of order σ

√
ln(d/δ)/n from zero. For simplicity, we state

such a result under the mutual incoherence assumption.

COROLLARY 7.1. Let Assumption 4.1 hold, let Â = 1
n

∑n
i=1 xixT

i and as-

sume that Âj,j = 1 for all j . Define M
Â

= supi 	=j |Âi,j |. Let β̂ be the solution
of (1). Let β̄ ∈ Rd be the true target vector with Ey = β̄T x and k = | supp0(β̄)|.
Assume that kM

Â
≤ 0.25 and 3k ≤ d . Given δ ∈ (0,1), with probability larger

than 1 − δ, if α/32 ≥ λ ≥ 12σ
√

2 ln(2d/δ)/n, then supp(1+ε)α(β̄) ⊂ suppα(β̂) ⊂
supp(1−ε)α(β̄), where ε = 32λ/α.

One can also obtain a formal result on the asymptotic consistency of feature
selection. An example is given below. In the description, we allow the problem to
vary with sample size n, and study the asymptotic behavior when n → ∞. There-
fore, except for the input vectors xi , all other quantities such as d , β̄ , etc., will be
denoted with subscript n. The input vectors xi ∈ Rdn also vary with n; however, we
drop the subscript n to simplify the notation. The statement of our result is in the
same style as a corresponding asymptotic feature selection consistency theorem
of [20] for the zero-thresholding scheme supp0(β̂), which requires the stronger
irrepresentable condition in addition to the sparse eigenvalue condition. In con-
trast, our result employs nonzero thresholding suppαn

(β̂), with an appropriately
chosen sequence of decreasing αn; the result only requires the sparse eigenvalue
condition (and, for clarity, we only consider p = 2 instead of general p discussed
above) without the need for irrepresentable condition.



2124 T. ZHANG

COROLLARY 7.2. Consider regression problems indexed by the sample size n,
and let the corresponding true target vector be β̄n = [β̄n,1, . . . , β̄n,dn] ∈ Rdn ,
where Ey = β̄T

n x. Let Assumption 4.1 hold, with σ independent of n. Assume
that there exists a > 0 that is independent of n, such that 1

n

∑n
i=1 x2

i,j ≤ a2 for

all j . Denote, by β̂n, the solution β̂ of (1) with λ = 12σa

√
2(ln(2dn) + ns′

)/n,

where s′ ∈ (0,1). Pick s ∈ (0,1 − s ′), and set αn = n−s/2. Then, as n → ∞,
P(suppαn

(β̂n) 	= supp0(β̄n)) = O(exp(−ns′
)) if the following conditions hold:

1. β̄n only has kn = o(n1−s−s′
) nonzero coefficients;

2. kn ln(dn) = o(n1−s);
3. 1/minj∈supp0(β̄n) |β̄n,j | = o(ns/2);

4. Let Ân = 1
n

∑n
i=1 xixT

i ∈ Rdn×dn . There exists a positive integer qn such

that (1 + 2qn)kn ≤ dn, 1/μ
(2)

Ân,(1+2qn)kn
= O(1), and ρ

(2)

Ân,(1+2qn)kn
≤ (1 +

qn)μ
(2)

Ân,(1+2qn)kn
.

The conditions of the corollary are all standard. Similar conditions have also
appeared in [20]. The first condition simply requires β̄n to be sufficiently sparse;
if kn is in the same order of n, then one cannot obtain meaningful consistency
results. The second condition requires that dn is not too large, and, in particular,
that it should be sub-exponential in n; otherwise, our analysis does not lead to
consistency. The third condition requires that |β̄n,j | be sufficiently large when j ∈
supp0(β̄n). In particular, the condition implies that each feature component |β̄n,j |
needs to be larger than the 2-norm noise level σ

√
kn ln(dn)/n. If some component

β̄n,j is too small, then we cannot distinguish it from the noise. Note that, since the
2-norm parameter estimation bound is used here, we have a

√
kn factor in the noise

level. Under stronger conditions, such as mutual incoherence, this
√

kn factor can
be removed (as shown in Corollary 7.1). Finally, the fourth condition is the sparse
eigenvalue assumption; it can also be replaced by some other conditions (such as
mutual incoherence). In comparison, [20] employed zero-threshold scheme with
αn = 0; therefore, in addition to our assumptions, the irrepresentable condition is
also required.

8. Two-stage L1 regularization with selective penalization. We shall refer
to the feature components corresponding to the large coefficients as relevant fea-
tures and the feature components smaller than an appropriately defined cut-off
threshold α as irrelevant features. Theorem 7.1 implies that Lasso can be used to
approximately identify the set of relevant features suppα(β̄). This property can be
used to improve the standard Lasso. In this context, we observe that as an estima-
tion method, L1 regularization has two important properties, which are as follows:

1. Shrink estimated coefficients corresponding to irrelevant features toward zero;
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2. Shrink estimated coefficients corresponding to relevant features toward zero.

While the first effect is desirable, the second effect is not. In fact, we should avoid
shrinking the coefficients corresponding to the relevant features if we can identify
these features. In this case, the standard L1 regularization may have sub-optimal
performance. In order to improve L1, we observe that, under appropriate condi-
tions such as those of Theorem 7.1, estimated coefficients corresponding to rele-
vant features tend to be larger than estimated coefficients corresponding to irrele-
vant features. Therefore, after the first stage of L1 regularization, we can identify
the relevant features by picking the components corresponding to the largest co-
efficients. Those coefficients are over-shrinked in the first stage. This problem can
be fixed by applying a second stage of L1 regularization, where we do not penalize
the features selected in the first stage. The procedure is described in Figure 1. Its
overall effect is to “unshrink” coefficients of relevant features identified in the first
stage. In practice, instead of tuning α, we may also let suppα(β̂) contain exactly q

elements, and simply tune the integer valued q . The parameters can then be tuned
by cross-validation in sequential order: first, find λ to optimize stage 1 prediction
accuracy; second, find q to optimize stage 2 prediction accuracy. If cross-validation
works well, then this tuning method ensures that the two-stage selective penaliza-
tion procedure is never much worse than the one-stage procedure in practice, be-
cause they are equivalent with q = 0. However, under the right conditions, we can
prove a much better bound for this two stage procedure, as shown in Theorem 8.1.

A related method, called relaxed Lasso, was proposed recently by Mein-
shausen [15], which is similar to a two-stage Dantzig selector in [4] (also see [12]
for a more detailed study). Their idea differs from our proposal in that, in the sec-
ond stage, the parameter coefficients β ′

j are forced to be zero when j /∈ supp0(β̂).
It was pointed out in [15] that, if supp0(β̂) can exactly identify all nonzero com-
ponents of the target vector, then, in the second stage, the relaxed Lasso can as-
ymptotically remove the bias in the first-stage Lasso. However, it is not clear what
theoretical result can be stated when Lasso cannot exactly identify all relevant
features. In the general case, it is not easy to ensure that relaxed Lasso does not

FIG. 1. Two-stage L1 regularization with selective penalization.
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degrade the performance when some relevant coefficients become zero in the first
stage. On the contrary, the two-stage selective penalization procedure in Figure 1
does not require that all relevant features are identified. Consequently, we are able
to prove a result for Figure 1 with no counterpart for relaxed Lasso. For clarity,
the result is stated under similar conditions to those of the Dantzig selector in
Theorem 6.1 with sparse targets and p = 2 only. Both restrictions can be easily
removed, with a more complicated version of Theorem 7.1, to deal with nonsparse
targets (which can be easily obtained from Theorem 4.1) as well as the general
form of Lemma 10.4, which allows p 	= 2.

THEOREM 8.1. Let Assumption 4.1 hold, and let Â = 1
n

∑n
i=1 xixT

i and a =
(supj Âj,j )

1/2. Consider any target vector β̄ ∈ Rd such that Ey = β̄T x, and β̄

contains only s nonzeros. Let k = | suppλ(β̄)|. Consider the two-stage selective
penalization procedure in Figure 1. Given δ ∈ (0,0.5), with probability larger than
1 − 2δ for all (d − s)/2 ≥ � ≥ s and t ∈ (0,1), assume the following:

• t ≤ 1 − π
(2)

Â,k+�,�
k0.5/�;

• 0.5α ≥ λ ≥ 4(2 − t)t−1σa
√

2 ln(2d/δ)/n;
• either 16(αω

(p)

Â,s+�
)−1s1/pλ ≤ t ≤ 1−π

(p)

Â,s+�,�
s1−1/p/�, or 16(αμ

(p)

Â,s+�
)−1(s +

�)1/pλ ≤ t ≤ 1 − γ
(p)

Â,s+�,�
s1−1/p/�.

Then,

‖β̂ ′ − β̄‖2 ≤ 8

tμ
(2)

Â,k+�

[
5ρ

(2)

Â,k+�
r
(2)
k (β̄) + √

k − qλ + aσ
(
1 +

√
20 ln(1/δ)

)√
q/n

]

+ 8r
(2)
k (β̄),

where q = | supp1.5α(β̄)|.
Again, we include a simplification of Theorem 8.1 under the mutual incoherence

condition.

COROLLARY 8.1. Let Assumption 4.1 hold, let Â = 1
n

∑n
i=1 xixT

i and assume

that Âj,j = 1 for all j . Define M
Â

= supi 	=j |Âi,j |. Consider any target vector β̄

such that Ey = β̄T x, and assume that β̄ contains only s nonzeros where s ≤ d/3
and assume that M

Â
s ≤ 1/6. Let k = | suppλ(β̄)|. Consider the two-stage selective

penalization procedure in Figure 1. Given δ ∈ (0,0.5), with probability larger than
1 − 2δ, if α/48 ≥ λ ≥ 12σ

√
2 ln(2d/δ)/n, then

‖β̂ ′ − β̄‖2 ≤ 24
√

k − qλ + 24σ

(
1 +

√
20q

n
ln(1/δ)

)
+ 168δ

(2)
k (β̄),

where q = | supp1.5α(β̄)|.
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Theorem 8.1 can significantly improve the corresponding one-stage result (see
Corollary 6.1 and Theorem 6.1) when r

(2)
k (β̄) � √

kλ and k − q � k. The lat-
ter condition is true when | supp1.5α(β̄)| ≈ | suppλ(β̄)|. In such a case, we can
identify most features in suppλ(β̄). These conditions are satisfied when most
nonzero coefficients in suppλ(β̄) are relatively large in magnitude and the other
coefficients are small (in 2-norm). That is, the two-stage procedure is superior
when the target β̄ can be decomposed as a sparse vector with large coefficients
plus another (less sparse) vector with small coefficients. In the extreme case,
when r

(2)
k (β) = 0 and q = k, we obtain ‖β̂ ′ − β̄‖2 = O(

√
k ln(1/δ)/n) instead

of ‖β̂ − β̄‖2 = O(
√

k ln(d/δ)/n) for the one-stage Lasso. The difference can be
significant when d is large.

Finally, we shall point out that the two-stage selective penalization procedure
may be regarded as a two-step approximation to solving the least squares problem
with a nonconvex regularization:

β̂ ′ = arg min
β∈Rd

[
1

n

n∑
i=1

(βT xi − yi )
2 + λ

d∑
j=1

min(α, |βj |)
]
.

However, for high-dimensional problems, it not clear whether one can effectively
find a good solution using such a nonconvex regularization condition. When d is
sufficiently large, one can often find a vector β , such that |βj | > α and it perfectly
fits (thus overfits) the data. This β is clearly a local minimum for this noncon-
vex regularization condition, since the regularization has no effect locally for such
a vector β . Therefore, the two-stage L1 approximation procedure in Figure 1 not
only preserves desirable properties of convex programming, but also prevents such
a local minimum to contaminate the final solution.

9. Experiments. Although our investigation is mainly theoretical, it is use-
ful to verify whether the two stage procedure can improve the standard Lasso in
practice. In the following, we show with a synthetic data and a real data that the
two-stage procedure can be helpful. Although more comprehensive experiments
are still required, these simple experiments show that the two-stage method is use-
ful at least on datasets with the right properties, which is consistent with our the-
ory. Note that, instead of tuning the α parameter in Figure 1, in the following
experiments, we tune the parameter q = suppα(β̂), which is more convenient. The
standard Lasso corresponds to q = 0.

9.1. Simulation data. In this experiment, we generate an n×d random matrix
with its column j corresponding to [x1,j , . . . ,xn,j ], and each element of the ma-
trix is an independent standard Gaussian N(0,1). We then normalize its columns
so that

∑n
i=1 x2

i,j = n. A truly sparse target β̄ , is generated with k nonzero ele-

ments that are uniformly distributed from [−10,10]. Observe that yi = β̄T xi + εi ,
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FIG. 2. Performance of the algorithms on simulation data. Left: average training squared error
versus λ; right: parameter estimation error versus λ.

where each εi ∼ N(0, σ 2). In this experiment, we take n = 25, d = 100, k = 5
and σ = 1, and repeat the experiment 100 times. The average training error and
parameter estimation error in 2-norm are reported in Figure 2. We compare the
performance of the two-stage method with different q versus the regularization
parameter λ. Clearly, the training error becomes smaller when q increases. The
smallest estimation error for this example is achieved at q = 3. This shows that the
two-stage procedure with appropriately chosen q performs better than the standard
Lasso (which corresponds to q = 0).

9.2. Real data. We use real data to illustrate the effectiveness of two-stage L1
regularization. For simplicity, we only report the performance on a single data,
Boston Housing. This is the housing data for 506 census tracts in Boston from
the 1970 census, available from the UCI machine learning database repository
(http://archive.ics.uci.edu/ml/). Each census tract is a data-point with 13 features
(we add a constant offset on e as the 14th feature), and the desired output is the
housing price. In the experiment, we randomly partition the data into 20 training
plus 456 test points. We perform the experiments 100 times and report training
and test squared error versus the regularization parameter λ for different q . The
results are plotted in Figure 3. In this case, q = 1 achieves the best performance.
Note that this dataset contains only a small number (d = 14) features, which is not
the case we are interested in (most of other UCI data similarly contain only small
number of features). In order to illustrate the advantage of the two-stage method
more clearly, we also consider a modified Boston Housing data, where we append
20 random features (similar to the simulation experiments) to the original Boston
Housing data, and rerun the experiments. The results are shown in Figure 4. As
we can expect, the effect of using q > 0 becomes far more apparent. This again
verifies that the two-stage method can be superior to the standard Lasso (q = 0) on
some data.

http://archive.ics.uci.edu/ml/
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FIG. 3. Performance of the algorithms on the original Boston Housing data. Left: average training
squared error versus λ; right: test squared error versus λ.

10. Proofs. In the proof, we use the following convention: let I be a subset
of {1, . . . , d} and a vector β ∈ Rd , then βI denotes either the restriction of β to
indices I , which lies in R|I |, or its embedding into the original space Rd with
components not in I set to zero.

10.1. Proof of Proposition 3.1. Given any v ∈ Rk and u ∈ R�, without loss of
generality, we may assume that ‖v‖2 = 1 and ‖u‖2 = 1 in the following derivation.
Take indices I and J as in the definition. We let I ′ = I ∪ J . Given any α ∈ R, let
u′T = [vT ,αuT ] ∈ R�+k . By definition, we have

μ
(2)
A,�+k‖u′‖2

2 ≤ u′T AI ′,I ′u′ = vT AI,I v + 2αvT AI,J u + α2uT AJ,J u.

FIG. 4. Performance of the algorithms on the modified Boston Housing data. Left: average training
squared error versus λ; right: test squared error versus λ.
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Let b = vT AI,J u, c1 = vT AI,I v and c2 = uT AJ,J u. The above inequality can be
written as

μ
(2)
A,�+k(1 + α2) ≤ c1 + 2αb + α2c2.

By optimizing over α, we obtain (c1 − μ
(2)
A,�+k)(c2 − μ

(2)
A,�+k) ≥ b2. Therefore,

b2 ≤ (ρ
(2)
A,� −μ

(2)
A,�+k)(ρ

(2)
A,k −μ

(2)
A,�+k), which implies that (with ‖v‖2 = ‖u‖2 = 1)

vT AI,J u
‖v‖2‖u‖∞

≤ |vT AI,J u|
‖v‖2‖u‖2/

√
�

≤ √
�|b|

≤ √
�

√(
ρ

(2)
A,� − μ

(2)
A,�+k

)(
ρ

(2)
A,k − μ

(2)
A,�+k

)
.

Since v and u are arbitrary, this implies the first inequality.
The second inequality follows from ‖v‖p ≤ kmax(0,1/p−0.5)‖v‖2 for all v ∈ Rk ,

so that

‖AI,J u‖p

‖u‖∞
≤ kmax(0,1/p−0.5) ‖AI,J u‖2

‖u‖∞
.

From (c1 − μ
(2)
A,�+k)(c2 − μ

(2)
A,�+k) ≥ b2, we also obtain

4b2/c2
1 ≤ 4c−1

1

(
1 − μ

(2)
A,�+k/c1

)(
c2 − μ

(2)
A,�+k

) ≤ (
c2 − μ

(2)
A,�+k

)
/μ

(2)
A,�+k

≤ ρ
(2)
A,�/μ

(2)
A,�+k − 1.

Note that, in the above derivation, we have used 4μ
(2)
A,�+kc

−1
1 (1 −μ

(2)
A,�+kc

−1
1 ) ≤ 1.

Therefore, with ‖v‖2 = ‖u‖2 = 1,

vT AI,J u‖v‖2

vT AI,I v‖u‖∞
≤ |vT AI,J u|

vT AI,I v/
√

�
= |b|

c1

√
� ≤ 0.5�1/2

√
ρ

(2)
A,�/μ

(2)
A,�+k − 1.

Because v and u are arbitrary, we obtain the third inequality.
The fourth inequality follows from max(0,vT AI,I vp−1) ≥ ω

(p)
A,k‖v‖p

p , so that

(vp−1)T AI,J u‖v‖p

max(0,vT AI,I vp−1)‖u‖∞
≤ 1

ω
(p)
A,k

|(vp−1)T AI,J u|
‖v‖p−1

p ‖u‖∞
≤ 1

ω
(p)
A,k

‖AI,J u‖p

‖u‖∞
.

In the above derivation, the second inequality follows from ‖(v/

‖v‖p)p−1‖p/(p−1) = 1 and the Hölder’s inequality.
The fifth inequality follows from ‖v‖p ≤ kmax(0,1/p−0.5)‖v‖2 for all v ∈ Rk , so

that

‖A−1
I,IAI,J u‖p

‖u‖∞
≤ ‖A−1

I,IAI,J u‖2

‖u‖∞
kmax(0,1/p−0.5).



SHARP BOUNDS FOR L1 REGULARIZATION 2131

The sixth inequality follows from ‖A−1
I,I v‖p ≤ ‖v‖p/μ

(p)
A,k for all v ∈ Rk , so that

‖A−1
I,IAI,J u‖p

‖u‖∞
≤ 1

μ
(p)
A,k

‖AI,J u‖p

‖u‖∞
.

The last inequality is due to

‖AI,I v‖p

‖v‖p

= ‖(v/‖v‖p)p−1‖p/(p−1)‖AI,I v‖p

‖v‖p

≥ (vp−1)T AI,I v

‖v‖p
p

= (vp−1)T diag(AI,I )v

‖v‖p
p

+ (vp−1)T (AI,I − diag(AI,I ))v

‖v‖p
p

≥ min
i

Ai,i − ‖(v/‖v‖p)p−1‖p/(p−1)

‖(AI,I − diag(AI,I ))v‖p

‖v‖p

≥ min
i

Ai,i − ‖AI,I − diag(AI,I )‖p.

In the above derivation, Hölder’s inequality is used to obtain the first two
inequalities. The first equality and the last inequality use the fact that ‖(v/

‖v‖p)p−1‖p/(p−1) = 1.

10.2. Proof of Proposition 3.2. Let B ∈ Rd×d be the off-diagonal part of A;
that is, A−B is the identity matrix. We have supi,j |Bi,j | ≤ MA. Given any v ∈ Rk ,
we have

‖BI,I v‖p ≤ MAk1/p‖v‖1 ≤ MAk‖v‖p.

This implies that ‖BI,I‖p ≤ MAk. Therefore, we have

‖AI,I v‖p ≤ ‖v‖p(1 + Mk).

This proves the first claim. Moreover,

(1 − MAk) ≤ 1 − ‖BI,I‖p = min
i

Ai,i − ‖AI,I − diag(AI,I )‖p.

We thus obtain the second claim from Proposition 3.1.
Now, given u ∈ R�, since I ∩ J = ∅, we have

‖AI,J u‖p = ‖BI,J u‖p ≤ MAk1/p‖u‖1 ≤ MAk1/p�‖u‖∞.

This implies the third claim. The last two claims follow from Proposition 3.1.
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10.3. Some auxiliary results.

LEMMA 10.1. Consider k, � > 0 and p ∈ [1,∞]. Given any β,v ∈ Rd , let
β = βF + βG, where supp0(βF ) ∩ supp0(βG) = ∅ and | supp0(βF )| = k. Let J

be the indices of the � largest components of βG (in absolute values), and I =
supp0(βF ) ∪ J . If supp0(v) ⊂ I , then

vT Aβ ≥ vT
I AI,I βI − ‖AI,I vI‖p/(p−1)γ

(p)
A,k+�,�‖βG‖1�

−1,

max
(
0,

(
(v/‖v‖p)p−1)T

Aβ
) ≥ ω

(p)
A,k+�

(‖vI‖p − π
(p)
A,k+�,��

−1‖βG‖1
)

− ρ
(p)
A,k+�‖βI − vI‖p.

PROOF. In order to prove the first inequality, we may assume, without loss
of generality, that β = [β1, . . . , βd ] where supp0(βF ) = {1,2, . . . , k}, and when
j > k, βj is arranged in descending order of |βj | : |βk+1| ≥ |βk+2| ≥ · · · ≥ |βd |.
Let J0 = {1, . . . , k}, and let Js = {k + (s − 1)� + 1, . . . , k + s�} (s = 1,2, . . .),
except the largest index in the last block stops at d . Note that, in this definition, we
require that J1 = J and I = J0 ∪ J1. We have ‖βJs‖∞ ≤ ‖βJs−1‖1�

−1 when s > 1,
which implies that

∑
s>1 ‖βJs‖∞ ≤ ‖βG‖1�

−1. This gives

vT Aβ = vT
I AI,I βI + ∑

s>1

vT
I AI,JsβJs

≥ vT
I AI,I βI − ‖AI,I vI‖p/(p−1)

∑
s>1

‖A−1
I,IAI,JsβJs‖p

≥ vT
I AI,I βI − γ

(p)
A,|I |,�‖AI,I vI‖p/(p−1)

∑
s>1

‖βJs‖∞

≥ vT
I AI,I βI − γ

(p)
A,|I |,�‖AI,I vI‖p/(p−1)‖βG‖1�

−1.

The first inequality in the above derivation is due to Hölder’s inequality. This
proves the first inequality of the lemma.

The proof of the second inequality is similar, but with a slightly different esti-
mate. We can assume that the right-hand side is positive (the inequality is trivial
otherwise). It implies that (vp−1

I )T AI,I vI > 0, since, otherwise, ω
(p)
A,|I | = 0:

(vp−1)T Aβ = (
v(p−1)
I

)T
AI,I (βI − vI ) + (

v(p−1)
I

)T
AI,I vI + ∑

s>1

(vp−1
I )T AI,JsβJs

≥ (
v(p−1)
I

)T
AI,I (βI − vI )

+ (
v(p−1)
I

)T
AI,I vI

[
1 − π

(p)
A,|I |,�

∑
s>1

‖βJs‖∞/‖vI‖p

]

≥ −ρ
(p)
A,|I |

∥∥v(p−1)
I

∥∥
p/(p−1)‖βI − vI‖p
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+ (
v(p−1)
I

)T
AI,I vI

[
1 − π

(p)
A,|I |,��

−1‖βG‖1/‖vI‖p

]
≥ −ρ

(p)
A,|I |

∥∥v(p−1)
I

∥∥
p/(p−1)‖βI − vI‖p

+ ω
(p)
A,|I |‖vI‖p

p

[
1 − π

(p)
A,|I |,��

−1‖βG‖1/‖vI‖p

]
.

The second inequality in the above derivation is due to Hölder’s inequality. The
last inequality assumes that the right-hand side is nonnegative. Observe that
‖v(p−1)

I ‖p/(p−1) = ‖vI‖p−1
p ; thus, we obtain the second inequality of the lem-

ma. �

LEMMA 10.2. Consider the decomposition of any target vector β̄ = β̄F + β̄G

such that {1,2, . . . , d} = F ∪ G and F ∩ G = ∅. Consider the solution β̂ to the
following, more general, problem instead of (1):

β̂ = arg min
β∈Rd

[
1

n

n∑
i=1

(βT xi − yi )
2 + λ

∑
j /∈F̂

|βj |
]
,(5)

where F̂ ⊂ F . Let �β̂ = β̂ − β̄ , Â = 1
n

∑n
i=1 xixT

i and ε̂ = 1
n

∑n
i=1(β̄

T xi − yi )xi .
If we pick a sufficiently large λ in (5) such that λ > 2‖ε̂‖∞, then

‖β̂G‖1 ≤ 2‖ε̂‖∞ + λ

λ − 2‖ε̂‖∞
(‖�β̂F ‖1 + ‖β̄G‖1).

PROOF. We define the derivative of ‖β‖1 as sgn(β), where, for β = [β1, . . . ,

βd ] ∈ Rd , sgn(β) = [sgn(β1), . . . , sgn(βd)] ∈ Rd is defined as sgn(βj ) = 1 when
βj > 0, sgn(βj ) = −1 when βj < 0 and sgn(βj ) ∈ [−1,1] when βj = 0. We start
with the first-order condition

2

n

n∑
i=1

(β̂T xi − yi )xi + λg(β̂) = 0,

where g(β̂) = [g(β̂1), . . . , g(β̂d)], with g(β̂j ) = 0 when j ∈ F̂ and g(β̂j ) =
sgn(β̂j ), otherwise. This implies that

2Â�β̂ + λg(β̂) = −2

n

n∑
i=1

(β̄T xi − yi )xi .

Therefore, for all v ∈ Rd , we have

2vT Â�β̂ ≤ −2vT ε̂ − λvT g(β̂).(6)

Now, let v = �β̂ in (6), and use the fact that β̂T
Gg(β̂G) = β̂T

G sgn(β̂G) = ‖β̂G‖1 as
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well as ‖g(β̂)‖∞ ≤ 1. We obtain

0 ≤ 2�β̂T Â�β̂ ≤ 2|�β̂T ε̂| − λ�β̂T g(β̂)

≤ 2‖�β̂‖1‖ε̂‖∞ − λ�β̂F
T
g(β̂) − λβ̂T

Gg(β̂) + λβ̄T
Gg(β̂)

≤ 2(‖�β̂F ‖1 + ‖β̂G‖1 + ‖β̄G‖1)‖ε̂‖∞ + λ‖�β̂F ‖1 − λ‖β̂G‖1 + λ‖β̄G‖1

= (2‖ε̂‖∞ − λ)‖β̂G‖1 + (2‖ε̂‖∞ + λ)(‖�β̂F ‖1 + ‖β̄G‖1).

By rearranging the above inequality, we obtain the desired bound. �

LEMMA 10.3. Let the conditions of Lemma 10.2 hold. Let J be the indices
of the largest � coefficients (in absolute value) of �β̂G and I = F ∪ J . If λ ≥
4(2 − t)t−1‖ε̂‖∞ for some t ∈ (0,1), then ∀p ∈ [1,∞],

‖�β̂‖1 ≤ 4k1−1/p‖�β̂I‖p + 4‖β̄G‖1,

‖�β̂‖p ≤ (
1 + 3(k/�)1−1/p)‖�β̂I‖p + 4‖β̄G‖1�

1/p−1.

PROOF. The condition on λ implies that (λ + 2‖ε̂‖∞)/(λ − 2‖ε̂‖∞) ≤ (4 −
t)/(4 − 3t) ≤ 3. We have, from Lemma 10.2,

‖�β̂G‖1 ≤ ‖β̄G‖1 + ‖β̂G‖1 ≤ 3‖�β̂F ‖1 + 4‖β̄G‖1.

Therefore, ‖�β̂ − �β̂I‖∞ ≤ ‖�β̂G‖1/� ≤ (3‖�β̂F ‖1 + 4‖β̄G‖1)/�, which im-
plies that

‖�β̂ − �β̂I‖p ≤ (‖�β̂G‖1‖�β̂ − �β̂I‖p−1∞ )1/p ≤ (3‖�β̂F ‖1 + 4‖β̄G‖1)�
1/p−1.

Now, the first inequality in the proof also implies that

‖�β̂‖1 ≤ 4‖�β̂F ‖1 + 4‖β̄G‖1.

By combining the previous two inequalities with ‖�β̂F ‖1 ≤ k1−1/p‖�β̂I‖p , we
obtain the desired bounds. �

LEMMA 10.4. Let the conditions of Lemma 10.2 hold. Let J be the indices
of the largest � coefficients (in absolute value) of �β̂G and I = F ∪ J . Assume
that ÂI,I is invertible. If t = 1−π

(p)

Â,k+�,�
k1−1/p�−1 > 0 and λ ≥ 4(2− t)t−1‖ε̂‖∞,

then

‖�β̂I‖p ≤ 2

tω
(p)

Â,k+�

[
ρ

(p)

Â,k+�
‖β̄G‖p + (k − |F0|)1/pλ + ‖ε̂F0‖p

]

+
8π

(p)

Â,k+�,�
‖β̄G‖1/�

t
+ ‖β̄G‖p,

where F0 is any subset of F̂ .



SHARP BOUNDS FOR L1 REGULARIZATION 2135

PROOF. The condition of λ implies that (λ + 2‖ε̂‖∞)/(λ − 2‖ε̂‖∞) ≤ (4 −
t)/(4 − 3t). Therefore, if we let �β̇ = �β̇I = �β̂I + β̄J , then

max
(
0,

(
(�β̇I /‖�β̇I‖p)p−1)T

Â�β̂
) + ρ

(p)

Â,k+�
‖β̄J ‖p

≥ ω
(p)

Â,k+�

(‖�β̇I‖p − π
(p)

Â,k+�,�
�−1‖�β̂G‖1

)
≥ ω

(p)

Â,k+�

[‖�β̇I‖p

− π
(p)

Â,k+�,�
�−1(

(4 − t)(4 − 3t)−1(‖�β̂F ‖1 + ‖β̄G‖1) + ‖β̄G‖1
)]

≥ ω
(p)

Â,k+�

(‖�β̇I‖p − (1 − t)(4 − t)(4 − 3t)−1‖�β̇I‖p

− 4π
(p)

Â,k+�,�
�−1‖β̄G‖1

)
≥ 0.5tω

(p)

Â,k+�
‖�β̇I‖p − 4ω

(p)

Â,k+�
π

(p)

Â,k+�,�
�−1‖β̄G‖1.

In the above derivation, the first inequality is due to Lemma 10.1, and the second
inequality is due to Lemma 10.2. The third inequality uses ‖�β̂F ‖1 = ‖�β̇F ‖1 ≤
k1−1/p‖�β̇I‖p and (4− t)/(4−3t) ≤ 3. The last inequality follows from 1− (1−
t)(4 − t)(4 − 3t)−1 ≥ 0.5t .

If (�β̇
p−1
I )T Â�β̂ ≤ 0, then the above inequality, together with ‖�β̂I‖p ≤

‖�β̇I‖p + ‖β̄J ‖p ≤ ‖�β̇I‖p + ‖β̄G‖p , already implies the lemma. Therefore in
the following, we can assume that(

(�β̇I /‖�β̇I‖p)p−1)T
Â�β̂ ≥ 0.5tω

(p)

Â,k+�
‖�β̇I‖p

− 4ω
(p)

Â,k+�
π

(p)

Â,k+�,�
�−1‖β̄G‖1 − ρ

(p)

Â,k+�
‖β̄J ‖p.

Moreover, we obtain, from (6) with v = �β̇
p−1
I , the following:

(�β̇
p−1
I )T Â�β̂

≤ |(�β̇
p−1
I )T ε̂| − λ(�β̇

p−1
I )T g(β̂)/2

≤ |(β̂p−1
J )T ε̂| − λ(β̂

p−1
J )T g(β̂)/2 + |(�β̂

p−1
F−F0

)T ε̂|
− λ(�β̂

p−1
F−F0

)T g(β̂)/2 + |(�β̂
p−1
F0

)T ε̂|
≤ (‖ε̂‖∞ − λ/2)‖β̂p−1

J ‖1 + (‖ε̂‖∞ + λ/2)‖�β̂
p−1
F−F0

‖1 + |(�β̂
p−1
F0

)T ε̂|
≤ λ‖�β̂

p−1
F−F0

‖1 + |(�β̂
p−1
F0

)T ε̂|
≤ (k − |F0|)1/pλ‖�β̂

p−1
F−F0

‖p/(p−1) + ‖�β̂
p−1
F0

‖p/(p−1)‖ε̂F0‖p

≤ (
(k − |F0|)1/pλ + ‖ε̂F0‖p

)‖�β̇I‖p−1
p .
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In the above derivation, the second inequality uses g(β̂F0) = 0; the third inequality

uses the fact that ‖g(β̂)‖∞ ≤ 1 and (β̂
p−1
J )T g(β̂) = ‖β̂p−1

J ‖1; the fourth inequal-
ity uses ‖ε̂‖∞ ≤ 0.5λ; and the last inequality uses the fact that ‖βp−1‖p/(p−1) =
‖β‖p−1

p . Now, by combining the above two estimates, together with ‖�β̂I‖p ≤
‖�β̇I‖p + ‖β̄J ‖p ≤ ‖�β̇I‖p + ‖β̄G‖p , we obtain the desired bound. �

LEMMA 10.5. Let the conditions of Lemma 10.2 hold. Let J be the indices
of the largest � coefficients (in absolute value) of �β̂G, and I = F ∪ J . Assume
that ÂI,I is invertible. Let p ∈ [1,∞]. If t = 1 − γ

(p)

Â,k+�,�
k1−1/p�−1 > 0 and λ ≥

4(2 − t)t−1‖ε̂‖∞. Then,

‖�β̂I‖p ≤ 2

t

[
4γ

(p)

Â,k+�,�
�−1‖β̄G‖1 + λ(k + �)1/p/μ

(p)

Â,k+�

]
.

PROOF. Consider v ∈ Rd such that supp0(v) ⊂ I . We have, from Lemma 10.1
and (6),

vT Â�β̂I − ‖ÂI,I vI‖p/(p−1)γ
(p)

Â,k+�,�
‖�β̂G‖1�

−1 ≤ vT Â�β̂

≤ −vT (
ε̂ + 0.5λg(β̂)

)
.

Take v such that ‖ÂI,I vI‖p/(p−1) = 1 and vT Â�β̂I = ‖�β̂I‖p . We obtain

‖�β̂I‖p − γ
(p)

Â,k+�,�
(‖β̂G‖1 + ‖β̄G‖1)�

−1 ≤ ∥∥Â−1
I,I

(
ε̂I + 0.5λg(β̂I )

)∥∥
p.

By using Lemma 10.2, (λ + 2‖ε̂‖∞)/(λ − 2‖ε̂‖∞) ≤ (4 − t)/(4 − 3t) ≤ 3 and
1 − (1 − t)(4 − t)/(4 − 3t) ≥ 0.5t ; thus, we obtain

‖�β̂I‖p − γ
(p)

Â,k+�,�
�−1‖β̂G‖1

≥ ‖�β̂I‖p − γ
(p)

Â,k+�,�
�−1(4 − t)(4 − 3t)−1(‖�β̂F ‖1 + ‖β̄G‖1)

≥ ‖�β̂I‖p − γ
(p)

Â,k+�,�
�−1(4 − t)(4 − 3t)−1(k1−1/p‖�β̂F ‖p + ‖β̄G‖1)

≥ ‖�β̂I‖p − (1 − t)(4 − t)(4 − 3t)−1‖�β̂I‖p − 3γ
(p)

Â,k+�,�
�−1‖β̄G‖1

≥ 0.5t‖�β̂I‖p − 3γ
(p)

Â,k+�,�
�−1‖β̄G‖1.

Combine the previous two inequalities. We obtain

0.5t‖�β̂I‖p ≤ 4γ
(p)

Â,k+�,�
‖β̄G‖1�

−1 + ∥∥Â−1
I,I

(
ε̂I + 0.5λg(β̂I )

)∥∥
p

≤ 4γ
(p)

Â,k+�,�
‖β̄G‖1�

−1 + (k + �)1/p‖ε̂I + 0.5λg(β̂I )‖∞/μ
(p)

Â,k+�
.

Since ‖ε̂I + 0.5λg(β̂I )‖∞ ≤ λ, we obtain the desired bound. �
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PROPOSITION 10.1. Consider n independent random variables ξ1, . . . , ξn

such that Eet(ξi−Eξi) ≤ eσ 2
i t2/2 for all t and i, then ∀ε > 0:

P

(∣∣∣∣∣
n∑

i=1

ξi −
n∑

i=1

Eξi

∣∣∣∣∣ ≥ nε

)
≤ 2e−n2ε2/(2

∑n
i=1 σ 2

i ).

PROOF. Let sn = ∑n
i=1(ξi − Eξi); then, by assumption, E(etsn + e−tsn) ≤

2e
∑

i σ 2
i t2/2, which implies that P(|sn| ≥ nε)etnε ≤ 2e

∑
i σ 2

i t2/2. Now, let t =
nε/

∑
i σ

2
i ; thus, we obtain the desired bound. �

PROPOSITION 10.2. Consider n independent random variables ξ1, . . . , ξn,
such that Eξi = 0 and Eetξi ≤ eσ 2t2/2 for all t and i. Let z1, . . . , zn ∈ Rd be n

fixed vectors, and let an = (
∑n

i=1 ‖zi‖2
2)

1/2. Then, ∀ε > 0:

P

(∥∥∥∥∥
n∑

i=1

ξizi

∥∥∥∥∥
2

≥ an(σ + ε)

)
≤ e−ε2/(20σ 2).

PROOF. For each i, let ξ ′
i be an identically distributed and independent copy

of ξi and h(·) be any real-valued function such that h(ξi) − h(ξ ′
i ) ≤ |ξi | + |ξ ′

i |.
Then,

Eξi
e
t (h(ξi)−Eξ ′

i
h(ξ ′

i ))

= 1 +
∞∑

k=2

tk

k!Eξi

(
h(ξi) − Eξ ′

i
h(ξ ′

i )
)k

≤ 1 +
∞∑

k=2

tk

k!Eξi
(|ξi | + Eξ ′

i
|ξ ′

i |)k ≤ 1 +
∞∑

k=2

(2t)k

k! Eξi
|ξi |k

= 1 +
∞∑

k=1

[
1

(2k)!Eξi
|2tξi |2k + 1

(2k + 1)!Eξi
|2tξi |2k+1

]

≤ 1 +
∞∑

k=1

[
1

(2k)!E|2tξi |2k + 0.5

(2k)!E|2tξi |2k + 1

(2k + 2)!E|2tξi |2k+2
]

≤ 1 + 2.5
∞∑

k=1

1

(2k)!E|2tξi |2k = 1 + 1.25(Ee2tξi + Ee−2tξi − 2)

≤ 1 + 1.25(2e2t2σ 2 − 2) ≤ e5t2σ 2
.

The second inequality is due to Jensen’s inequality. In the third inequality, we have
used |a|2k+1/(2k + 1)! ≤ 0.5|a|2k/(2k)! + |a|2k+2/(2k + 2)!. The last inequality
can be obtained by comparing the Taylor expansion of the function ex on both
sides.
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Now, let sj = Eξj+1,...,ξn‖
∑n

i=1 ξizi‖2. If we regard h(ξj ) = sj /‖zj‖2 as a
function of ξj (with variables ξ1, . . . , ξj−1 fixed), then sj − sj−1 = (h(ξj ) −
Eξ ′

j
h(ξ ′

j ))‖zj‖2 and h(ξj ) − h(ξ ′
j ) ≤ |ξj | + |ξ ′

j |. Therefore, from the above in-

equality, we have Eξj
et (sj−sj−1) ≤ e5‖zj‖2

2t
2σ 2

and

Eξ1,...,ξj
etsj = Eξ1,...,ξj−1e

tsj−1Eξj
et (sj−sj−1) ≤ e5‖zj ‖2

2σ
2t2

Eξ1,...,ξj−1e
tsj−1 .

By induction, we obtain Eξ1,...,ξne
tsn ≤ e5σ 2t2a2

nets0 , which implies that P(sn ≥
s0 + anε)e

t (s0+anε) ≤ e5a2
nσ 2t2

ets0 . Let t = ε/(10anσ
2), we have P(sn ≥ s0 +

anε) ≤ e−ε2/(20σ 2).
Note that

Eξ2
i = lim

t→0

2

t2 (Eξi
etξi − 1) ≤ lim

t→0

2(eσ 2t2/2 − 1)

t2 = σ 2.

Therefore, s0 = E‖∑n
i=1 ξizi‖2 ≤ (

∑n
i=1 Eξ2

i ‖zi‖2
2)

1/2 ≤ anσ . This leads to the
desired bound. �

10.4. Proof of Theorem 4.1. Let F be the indices corresponding to the
largest k coefficients of β̄ in absolute value. We only need to estimate ‖ε̂‖∞ and
then apply Lemmas 10.4, 10.5 and 10.3, with F0 = ∅. By Proposition 10.1, we
have

P

[
sup
j

n∑
i=1

x2
i,j ≤ na2 and sup

j

∣∣∣∣∣1

n

n∑
i=1

(yi − Eyi )xi,j

∣∣∣∣∣ ≥ ε

]

≤ d sup
j

P

[∣∣∣∣∣1

n

n∑
i=1

(yi − Eyi )xi,j

∣∣∣∣∣ ≥ ε
∣∣∣ sup

j ′

n∑
i=1

x2
i,j ′ ≤ na2

]

≤ 2d sup
j

e
−n2ε2/(2σ 2 ∑n

i=1 x2
i,j )

(
subject to sup

j ′

n∑
i=1

x2
i,j ′ ≤ na2

)

≤ 2de−nε2/(2σ 2a2).

Therefore, with probability larger than 1 − δ, if supj

∑n
i=1 x2

i,j ≤ na2, then

sup
j

∣∣∣∣∣1

n

n∑
i=1

(yi − Eyi )xi,j

∣∣∣∣∣ ≤ σa

√
2 ln(2d/δ)

n
.

The latter implies that

‖ε̂‖∞ = sup
j

∣∣∣∣∣1

n

n∑
i=1

(β̄T xi −yi )xi,j

∣∣∣∣∣ ≤ σa

√
2 ln(2d/δ)

n
+

∥∥∥∥∥1

n

n∑
i=1

(β̄T xi −Eyi )xi

∥∥∥∥∥∞
.
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With this bound, the condition of Lemma 10.3 is satisfied. Using k/� ≤ 1, we
obtain, for q = 1,p,

‖�β̂‖q ≤ 4k1/q−1/p‖�β̂I‖p + 4‖β̄G‖1�
1/q−1.

This estimate, together with Lemma 10.4 (let F0 = ∅), leads to the first claim of
the theorem; with Lemma 10.5, it gives the second claim.

10.5. Proof of Corollary 4.1. The condition M
Â
(k + �) ≤ (1 − t)/(2 − t) is

equivalent to t ≤ 1 − M
Â
(k + �)/(1 − M

Â
(k + �)). It implies t ≤ 1 − M

Â
(k +

�)1/pk1−1/p/(1 − M
Â
(k + �)). Now, using Proposition 3.2, it implies that the

condition t ≤ 1 − π
(p)

Â,k+�,�
k1−1/p/� in the first claim of Theorem 4.1 is satisfied.

Therefore, we have (with q = p)

‖�β̂‖p ≤ 8

tω
(p)

Â,k+�

[
ρ

(p)

Â,k+�
r
(p)
k (β̄) + k1/pλ

] + 4r
(p)
k (β̄)

+
[

32

t
π

(p)

Â,k+�,�
�−1 + 4�1/p−1

]
r
(1)
k (β̄).

Now, using Proposition 3.2 again, the inequality can be simplified to

‖�β̂‖p ≤ 8

t (1 − M
Â
(k + �))

[(
1 + M

Â
(k + �)

)
r
(p)
k (β̄) + k1/pλ

]

+ 32M
Â
(k + �)1/p

t (1 − M
Â
(k + �))

r
(1)
k (β̄) + 4r

(p)
k (β̄) + 4r

(1)
k (β̄)�1/p−1.

Now, by using the condition M
Â
(k + �)) ≤ (1 − t)/(2 − t) ≤ 0.5 to eliminate M

Â
and simplify the result, we obtain the desired bound.

10.6. Proof of Proposition 5.1. We construct a sequence β(k) with a greedy
algorithm as follows. Let β(0) = β̄ , and, for k = 1,2, . . . , we perform the following
steps:

• j (k) = arg maxj |∑n
i=1(β

(k−1)T xi − Eyi )xi,j |;
• α(k) = −∑n

i=1(β
(k−1)T xi − Eyi )xi,j (k)/(na2);

• β(k) = β(k−1) + α(k)ej (k) , where ej ∈ Rd is the vector of zeros, except for the
j th component being one.

The following derivation holds for the above procedure:
n∑

i=1

(
β(k)T xi − Eyi

)2

=
n∑

i=1

(
β(k−1)T xi − Eyi

)2 + α(k)2
n∑

i=1

x2
i,j (k)
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+ 2α(k)
n∑

i=1

(
β(k−1)T xi − Eyi

)
xi,j (k)

≤
n∑

i=1

(
β(k−1)T xi − Eyi

)2 −
∣∣∣∣∣

n∑
i=1

(
β(k−1)T xi − Eyi

)
xi,j (k)

∣∣∣∣∣
2/

(na2)

=
n∑

i=1

(
β(k−1)T xi − Eyi

)2 −
∥∥∥∥∥

n∑
i=1

(
β(k−1)T xi − Eyi

)
xi

∥∥∥∥∥
2

∞

/
(na2).

In the above derivation, first equality is simple algebra; the inequality uses the
definition of a and α(k); and the last equality uses the definition of j (k). Since∑n

i=1(β
(k+1)T xi − Eyi )

2 ≥ 0, we obtain

k∑
k′=0

∥∥∥∥∥
n∑

i=1

(
β(k′)T xi − Eyi

)
xi

∥∥∥∥∥
2

∞
≤ na2

n∑
i=1

(
β(0)T xi − Eyi

)2
.

Therefore, there exists k′ ≤ k such that the displayed equation of the proposition
holds with β̄(k) = β(k′). Moreover,√

μ
(2)

Â,k

∥∥(
β̄(k) − β̄

)∥∥
2 ≤ ∥∥Â1/2(

β̄(k) − β̄
)∥∥

2

≤ ∥∥Â1/2(
β̄(k) − Ey

)∥∥
2 + ‖Â1/2(β̄ − Ey)‖2

≤ 2‖Â1/2(β̄ − Ey)‖2.

The proof is complete.

10.7. Proof of Corollary 5.1. The proof is just a straightforward application of
Corollary 4.1, in which we replace β̄ by β̄(k) of Proposition 5.1 and then replace k

by 2k. This leads to the bound

‖β̂ − β̄‖2 ≤ ∥∥β̂ − β̄(k)
∥∥

2 + ∥∥β̄ − β̄(k)
∥∥

2

≤ 8(2 − t)

t

[
1.5r

(2)
2k

(
β̄(k)) + (2k)1/2λ

] + 4r
(2)
2k

(
β̄(k))

+ 4(8 − 7t)

t
r
(1)
2k

(
β̄(k))�−1/2 + 2ε/

√
μ

(2)

Â,k
.

Note that, from Proposition 3.2, we have 1/

√
μ

(2)

Â,k
≤ (1 − kM

Â
)−1/2 < 2. More-

over, since supp0(β̄
(k) − β̄) ≤ k, we have r

(p)
2k (β̄(k)) ≤ r

(p)
k (β̄). This leads to the

desired bound.

10.8. Proof of Corollary 6.1. Note that Proposition 3.1 implies that π
(2)

Â,k+�,�
≤

θ
(2)

Â,k+�,�
/ω

(2)

Â,k+�
≤ ρ

(2)

Â,k+�

√
�/ω

(2)

Â,k+�
. Also note that ω

(2)
A,k+� = μ

(2)
A,k+�. The first

statement of Theorem 4.1 (with q = p = 2) implies the desired bound.
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10.9. Proof of Theorem 7.1. Under the conditions of this theorem, we obtain,
from Theorem 4.1, that, with probability 1−δ, the following two claims hold (with
q = p):

• If t ≤ 1 − π
(p)

Â,k+�,�
k1−1/p/�, λ ≥ 4(2 − t)t−1(σa

√
2 ln(2d/δ)/n), then

‖�β̂‖p ≤ 8
tω

(p)

Â,k+�

k1/pλ;

• If t ≤ 1−γ
(p)

Â,k+�,�
k1−1/p/�, λ ≥ 4(2− t)t−1(σa

√
2 ln(2d/δ)/n), then ‖�β̂‖p ≤

8
t
λ(k + �)1/p/μ

(p)

Â,k+�
.

That is, if there exist � ≥ k, t ∈ (0,1), and p ∈ [1,∞] so that:

• λ ≥ 4(2 − t)t−1(σa
√

2 ln(2d/δ)/n);
• either t ≤ 1 − π

(p)

Â,k+�,�
k1−1/p/�, α ≥ 8ε−1(tω

(p)

Â,k+�
)−1k1/pλ; or t ≤ 1 −

γ
(p)

Â,k+�,�
k1−1/p/�, α ≥ 8ε−1(tμ

(p)

Â,k+�
)−1(k + �)1/pλ;

then ‖�β̂‖∞ ≤ ‖�β̂‖p ≤ εα. Note that the condition ‖�β̂‖∞ ≤ εα implies that
supp(1+ε)α(β̄) ⊂ suppα(β̂) ⊂ supp(1−ε)α(β̄). This proves the desired result.

10.10. Proof of Corollary 7.1. We take p = ∞, � = k and t = 0.5 in The-
orem 7.1. Proposition 3.2 implies that ω

(∞)

Â,k+�
≥ 1 − M

Â
(k + �) ≥ 0.5 and

π
(∞)

Â,k+�,�
≤ M

Â
�/(1 − M

Â
(k + �)) ≤ 0.5 under the conditions of the corollary.

Therefore, the condition 8(εαω
(∞)

Â,k+�
)−1λ ≤ t ≤ 1 − π

(∞)

Â,k+�,�
k/� in Theorem 7.1

holds.

10.11. Proof of Corollary 7.2. We want to apply Theorem 7.1 with ε =
0.5, Â = Ân, δ = δn = exp(−ns′

), t = 0.5, α = αn = n−s/2, d = dn, k = kn,
and � = qnkn. Then, λ = λn = 4(2 − t)t−1(σa

√
2 ln(2dn/δn)/n). The condition

ρ
(2)

Ân,(1+2qn)kn
≤ (1 + qn)μ

(2)

Ân,(1+2qn)kn
implies that �/k ≥ ρ

(2)

Â,k+2�
/μ

(2)

Â,k+2�
− 1 ≥

4(π
(2)

Â,k+�,�
)2�−1, where the second inequality is due to Proposition 3.1. Therefore,

the condition t ≤ 1 − π
(2)

Â,k+�,�
k0.5/� is satisfied.

Now, from the conditions kn = o(n1−s−s′
) and kn ln(dn) = o(n1−s), we

have limn→∞(
√

knλn/αn) = 0. Since (μ
(2)

Â,k+�
)−1 = O(1), the condition α ≥

16(tμ
(2)

Â,k+�
)−1

√
kλ is also satisfied when n is sufficiently large.

Therefore, by Theorem 7.1, when n is sufficiently large, supp1.5αn
(β̄n) ⊂

suppαn
(β̂n) ⊂ supp0.5αn

(β̄n) with probability at least 1 − δn. Since 1/

minj∈supp0(β̄n) |β̄n,j | = o(ns/2), we know when n is sufficiently large,

minj∈supp0(β̄n) |β̄n,j | > 2αn. Thus, supp1.5αn
(β̄n) = supp0.5αn

(β̄n) = supp0(β̄n).
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This means that supp0(β̄n) = suppαn
(β̂n) with probability at least 1 − δn when n

is sufficiently large.

10.12. Proof of Theorem 8.1. Let F = suppλ(β̄). We would like to apply Lem-
mas 10.2, 10.4 and 10.3, with F̂ = suppα(β̂) and F0 = supp1.5α(β̄).

First, Theorem 7.1 implies that, with probability larger than 1−δ, supp1.5α(β̄) ⊂
suppα(β̂) ⊂ supp0.5α(β̄) ⊂ F . Moreover,

‖ε̂‖∞ ≤ aσ

√
2 ln(2d/δ)

n
.(7)

This can be seen from the proof of Theorem 4.1 (which directly implies Theo-
rem 7.1).

Let zi = [zi,1, . . . , zi,d ] ∈ Rd , so that zi,j = − 1
n

xi,j if j ∈ F0 and zi,j = 0, other-
wise. We thus have ε̂F0 = ∑n

i=1(yi −Eyi )zi . Since each yi −Eyi is an independent
sub-Gaussian random variable, and

∑n
i=1 ‖zi‖2

2 = ∑
j∈F0

∑n
i=1(xi,j /n)2 ≤ qa2/n,

we obtain, from Proposition 10.2, that, with probability larger than 1 − δ,

‖ε̂F0‖2 ≤ aσ
(
1 +

√
20 ln(1/δ)

)√
q/n.(8)

Therefore, with probability exceeding 1 − 2δ, both (7) and (8) hold. Therefore,
Lemma 10.4 implies that

‖�β̂ ′
I‖2 ≤ 2

tμ
(2)

Â,k+�

[
4θ

(2)

Â,k+�,�
�−1‖β̄G‖1 + ρ

(2)

Â,k+�
‖β̄G‖2 + √

k − qλ + ‖ε̂F0‖2
]

+ ‖β̄G‖2

≤ 2

tμ
(2)

Â,k+�

[
5ρ

(2)

Â,k+�
‖β̄G‖2 + √

k − qλ + aσ
(
1 +

√
20 ln(1/δ)

)√
q/n

]

+ ‖β̄G‖2.

In the first inequality, we have used π
(2)

Â,k+�,�
≤ θ

(2)

Â,k+�,�
/μ

(2)

Â,k+�
(Proposition 3.1).

In the second inequality, we have used ‖β̄G‖1 ≤ √
s‖β̄G‖2 ≤ √

�‖β̄G‖2, and
θ

(2)

Â,k+�,�
≤ ρ

(2)

Â,k+�

√
� (Proposition 3.1). By combining the above estimate with

Lemma 10.3, we obtain the desired bound.

10.13. Proof of Corollary 8.1. We take p = ∞, � = s, and t = 0.5 in The-
orem 8.1. Proposition 3.2 implies that π

(2)

Â,k+�,�
≤ M

Â
(2s)1/2s/(1 − M

Â
2s) ≤

√
2s/4, ω

(p)

Â,s+�
≥ 1 − M

Â
2s ≥ 2/3 and π

(p)

Â,s+�,�
≤ M

Â
s/(1 − M

Â
2s) ≤ 1/4.

Now, it is clear that t ≤ 1 − π
(2)

Â,k+�,�
k0.5/� holds. Moreover, the condition

16(αω
(p)

Â,s+�
)−1s1/pλ ≤ t ≤ 1 − π

(p)

Â,s+�,�
s1−1/p/� is also valid. Therefore, The-
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orem 8.1 can be applied with μ
(2)

Â,k+�
≥ 1 − M

Â
(k + �) ≥ 2/3 and ρ

(2)

Â,k+�
≤

1 + M
Â
(k + �) ≤ 4/3.

11. Conclusion. This paper considers the performance of least squares re-
gression with L1 regularization from parameter estimation accuracy and feature
selection quality perspectives. To this end, a general theorem is established in Sec-
tion 4.

An important consequence of this theorem is a performance bound for Lasso
similar to that of [4] for the Dantzig selector. The detailed comparison is given
in Section 6. Our result gives an affirmative answer to an open question in [10]
concerning whether a bound similar to that of [4] holds for Lasso. Another impor-
tant consequence of Theorem 4.1 is the feature selection quality of Lasso using a
nonzero thresholding feature selection method, which extends the zero threshold-
ing method considered in [20]. Our method can remove some limitations of [20],
as discussed in Section 7.

Moreover, we pointed out that the standard (one-stage) Lasso may be sub-
optimal under certain conditions. However, the problem can be remedied by com-
bining the parameter estimation and feature selection perspectives of Lasso. In
Section 8, a two-stage L1-regularization procedure with selective penalization was
analyzed. In practice, if one is able to appropriately tune the thresholding para-
meter using cross-validation, then the procedure should not be much worse than
the standard one-stage Lasso. Theoretically, it is shown that, if the target vector
can be decomposed as the sum of a sparse parameter vector with large coeffi-
cients and another (less sparse) vector with small coefficients, then the two-stage
L1-regularization procedure can lead to improved performance when d is large.

Finally, we shall point out some limitations of our analysis. First, procedures
considered in this work are not adaptive. For example, in the one-stage method,
the regularization parameter λ has to satisfy certain conditions that depend on t

and the noise level σ . In feature selection and the two-stage method, the thresh-
old parameter α also needs to satisfy certain conditions. Although, in practice,
such parameters can be tuned using cross-validation, it still remains an interesting
problem to come out with a theoretical procedure for setting such parameters that
leads to a so-called “adaptive” estimation method. Moreover, although bounds in
this paper can be applied in random design situations with small modifications,
the results are incomplete for random design because the conditions on the design
matrix (which is now random) needs to be shown to concentrate at a certain rate.
Although a number of such results exist in the random matrix literature, a more
general treatment with better integration is still needed in future work.
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