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For time-to-event data with finitely many competing risks, the propor-
tional hazards model has been a popular tool for relating the cause-specific
outcomes to covariates [Prentice et al. Biometrics 34 (1978) 541–554]. This
article studies an extension of this approach to allow a continuum of com-
peting risks, in which the cause of failure is replaced by a continuous mark
only observed at the failure time. We develop inference for the proportional
hazards model in which the regression parameters depend nonparametrically
on the mark and the baseline hazard depends nonparametrically on both time
and mark. This work is motivated by the need to assess HIV vaccine efficacy,
while taking into account the genetic divergence of infecting HIV viruses in
trial participants from the HIV strain that is contained in the vaccine, and
adjusting for covariate effects. Mark-specific vaccine efficacy is expressed
in terms of one of the regression functions in the mark-specific proportional
hazards model. The new approach is evaluated in simulations and applied to
the first HIV vaccine efficacy trial.

1. Introduction. It has been 30 years since Prentice et al. [14] introduced a
Cox regression framework for the analysis of failure time data in the presence of
finitely many competing risks. Yet many important applications of competing risks
methodology involve continuous causes-of-failure (marks). In HIV vaccine trials,
for example, genetic divergence of infecting HIV viruses from the HIV strain rep-
resented in the vaccine needs to be taken into account to properly assess vaccine
efficacy, but the mark variable is essentially continuous because of the large num-
ber of mutations involved. Other examples of continuous mark variables include
lifetime medical cost or a quality of life score associated with survival time [13].
The grouping of continuous mark data into discrete marks is unsatisfactory be-
cause that amounts to a coarsening of the data and the results will depend on the
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way the groups are defined. To address this problem, we develop inference for a
proportional hazards model in which both the regression parameters and the base-
line hazard function depend nonparametrically on a continuous mark.

The paper is motivated by the need for new methods to analyze data from HIV
vaccine efficacy trials. Approximately 15,000 new HIV infections occur each day
[20], making development of a protective HIV vaccine a top priority for biomedical
science. In efficacy trials thousands of HIV-negative volunteers are randomized to
receive vaccine or placebo, and are monitored for HIV infection. Five efficacy tri-
als have recently been conducted. A primary objective of each trial is to assess vac-
cine efficacy (VE) to prevent infection, where typically VE is defined as one minus
the hazard ratio (vaccine/placebo) of HIV infection. One of the greatest barriers to
achieving an efficacious vaccine is the extreme genetic heterogeneity of HIV [6,
11]. Although it may be possible to develop a vaccine that protects against HIV
strains genetically similar to the HIV virus or viruses represented in the vaccine, it
may be quite difficult to develop one to protect against HIV strains dissimilar from
the vaccine material. This phenomenon is well known for flu vaccines—moderate
genetic mismatch between an exposing flu virus and the virus represented in the
vaccine causes vaccine failure, which has necessitated development of a new vac-
cine each year that is closely matched to the contemporary circulating flu strains.
The genetic divergence (or distance) between two aligned HIV sequences can be
measured as the weighted percent mismatch of amino acids, and since this distance
may be unique for all infected subjects, it is natural to consider it as a continuous
mark variable. The formidable problem of HIV genetic diversity implies that an
important objective of an efficacy trial is assessment of if and how VE depends on
the genetic divergence.

This problem can be addressed in terms of the conditional mark-specific hazard
function, defined as

λ(t, v|z) = lim
h1,h2→0

P {T ∈ [t, t + h1),

(1)
V ∈ [v, v + h2)|T ≥ t,Z(t) = z}/h1h2,

where T is the failure (infection diagnosis) time, V is a continuous mark vari-
able and Z(t) is a (possibly time-dependent) p-dimensional covariate. Huang and
Louis [7] developed the nonparametric maximum likelihood estimator of the joint
distribution of T and V in terms of the unconditional mark-specific hazard func-
tion. Gilbert, McKeague and Sun [5] defined mark-specific vaccine efficacy as
VE(t, v) = 1 − λ(t, v|1)/λ(t, v|0), with z being the indicator of membership in
the vaccine group; they developed several nonparametric and semiparametric tests
concerning VE(t, v).

In this article, we develop the mark-specific proportional hazards (PH) model

λ(t, v|z(t)) = λ0(t, v) exp{β(v)T z(t)},(2)
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where the baseline hazard function λ0(·, v) and the p-dimensional regression para-
meter β(v) are unknown continuous functions of v. As far as we know, this model
has never been studied in the literature, even though it is closely related to the
discrete cause-of-failure models discussed by Prentice et al. [14]. The approach in
the continuous case departs from the discrete case in that it is necessary to “borrow
strength” from data in a neighborhood of v, with the data closest to v contributing
the most.

For the HIV vaccine trial application, we partition the covariate as z(t) =
(z1, z2(t))

T , where z1 is the treatment (vaccine) group indicator and z2(t) is a vec-
tor of possibly time-dependent covariates. Then the vaccine efficacy defined above
takes the simpler form VE(v) = 1 − exp(β1(v)), without any dependence on t .
By assuming proportional hazards, model (2) can provide more powerful tests
of mark-specific vaccine efficacy than the nonparametric procedures of Gilbert,
McKeague and Sun [5], and the model allows adjustment for covariate effects.
Furthermore, ignoring the mark variable and studying vaccine efficacy using the
standard Cox model, as is widely practiced in vaccine trials for many infectious
diseases, can give misleading results. In fact, even in the case of model (2) with z

as the treatment indicator, the ordinary (marginal) Cox model will be misspecified
unless the baseline λ0(t, v) factors into separate functions of t and v.

Indeed, consider the model λ(t, v|z = 0) = γ0/2 + γ1tv and λ(t, v|z = 1) =
γ0v + γ1tv

2, for t ≥ 0, 0 ≤ v ≤ 1, z ∈ {0,1}. The corresponding marginal haz-
ard functions are λ(t |z = 0) = γ0/2 + γ1t/2 and λ(t |z = 1) = γ0/2 + γ1t/3,
for t ≥ 0. It is clear that λ(t |z) is not a proportional hazards model unless γ0
or γ1 is zero. If γ1 = 0, the resulting marginal hazards become proportional
for z = 0 and z = 1. However, in this example, the marginal vaccine efficacy
VE = 1 − λ(t |z = 1)/λ(t |z = 0) = 0 while the mark-specific vaccine efficacy is
VE(v) = 1 − 2v. The ordinary Cox model averages the mark-specific vaccine ef-
ficacy over its range, and important vaccine effects may be missed. This issue will
be further illustrated in our simulation study. In general, use of the ordinary Cox
model for studying hazard ratios can be misleading if an important mark variable
is ignored. The mark-specific PH model offers a way to correct for that deficiency.

We also consider a cumulative vaccine efficacy estimand defined as CV(v) =∫ v
a VE(u) du where a > 0. We develop distribution-free uniform confidence bands

for CV(v), which are useful for inferential purposes. In addition we derive test
statistics for evaluating mark-specific vaccine efficacy based on the estimator of
CV(v).

The paper is organized as follows. Section 2 develops a local partial likelihood
procedure for estimating β(v), leading to the construction of pointwise confidence
intervals and formal tests for various hypotheses of interest concerning vaccine
efficacy. A simulation study evaluating the performance of the proposed tests and
the pointwise and simultaneous confidence intervals for VE(v) and CV(v) is pre-
sented in Section 3. The proposed methods are applied to analyze the data from
the first HIV vaccine efficacy trial in Section 4. We discuss some general aspects
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of mark-specific PH models in Section 5. Proofs of the main results are placed in
the Appendix.

2. Mark-specific proportional hazards model.

2.1. Local partial likelihood. We begin by stating some assumptions and no-
tations that are used throughout the paper. The mark variable V is assumed to have
a known and bounded support; rescaling V if necessary, this support is taken with-
out loss of generality to be [0,1]. The observations (Xi, δi, δiVi,Zi), i = 1, . . . , n,
are assumed to be i.i.d. replicates of (X, δ, δV,Z), where X is the right-censored
failure time corresponding to T , which satisfies the model (2), and δ is the indi-
cator of non-censorship. The mark is assumed to be observed whenever the cor-
responding failure time is uncensored; when δi = 0, Vi is undefined and is not
meaningful. The censoring time is assumed to be conditionally independent of
(T ,V ) given Z.

We consider a localized version of the log partial likelihood function for β =
β(v) at a fixed v:

l(v, β) =
n∑

i=1

∫ 1

0

∫ τ

0
Kh(u − v)

[
βT Zi(t) − log

(
n∑

j=1

Yj (t)e
βT Zj (t)

)]
(3)

× Ni(dt, du),

where Kh(x) = K(x/h)/h, K(·) is a kernel function with support [−1,1], τ is
the end of the follow-up period and h = hn is a bandwidth. Here Yi(t) = I (Xi ≥ t)

and Ni(t, v) = I (Xi ≤ t, δi = 1,Vi ≤ v) is the marked point counting process
with a jump at an uncensored failure times Xi and the associated mark Vi . For
background on marked point processes see Brémaud [2] and Martinussen and
Scheike [10].

The log partial likelihood function (3) resembles that of Kalbfleisch and Prentice
[8] in the case of discrete marks, except that it borrows strength from observations
having marks in the neighborhood of v. The kernel function is designed to give
greater weight to observations with marks near v than those further away. The local
maximum partial likelihood estimator of β(v) is a maximizer β̂(v) of (3). A sim-
ilar approach has been studied by Cai and Sun [3] for estimating time-dependent
coefficients in Cox regression models.

Denote μj = ∫
ujK(u)du, νj = ∫

ujK2(u) du for j = 0,1,2. For β ∈ R
p ,

t ≥ 0, let

S(j)(t, β) = n−1
n∑

i=1

Yi(t) exp{βT Zi(t)}Zi(t)
⊗j ,
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where for any z ∈ R
p , we denote z⊗0 = 1, z⊗1 = z and z⊗2 = zzT . Define

s(j)(t, β) = ES(j)(t, β) and

Jn(t, β) = S(2)(t, β)

S(0)(t, β)
−

(
S(1)(t, β)

S(0)(t, β)

)⊗2

,

J (t, β) = s(2)(t, β)

s(0)(t, β)
−

(
s(1)(t, β)

s(0)(t, β)

)⊗2

.

Taking the derivative of l(v, β) with respect to β gives the score function

U(v,β) = l′β(v,β)
(4)

=
n∑

i=1

∫ 1

0

∫ τ

0
Kh(u − v)

[
Zi(t) − S(1)(t, β)

S(0)(t, β)

]
Ni(dt, du).

The maximum partial likelihood estimator is a solution to U(v, β̂(v)) = 0, and can
be computed using a Newton–Raphson algorithm. The second derivative of l(v, β)

with respect to β yields

l′′β(v,β) = −
n∑

i=1

∫ 1

0

∫ τ

0
Kh(u − v)Jn(t, β)Ni(dt, du).

Although inference on β is usually of primary interest, the baseline function
λ0(t, v) can also be estimated, by smoothing the increments of the following esti-
mator of the doubly cumulative baseline function �0(t, v) = ∫ t

0
∫ v

0 λ0(s, u) ds du:

�̂0(t, v) =
∫ t

0

∫ v

0

N(ds, du)

nS(0)(s, β̂(u))
.(5)

2.2. Asymptotic results. We make use of the following regularity conditions;
not all of these conditions are required for the proof of each theorem, nor are they
the minimum required set of conditions.

CONDITION A.

(A.1) β(v) has componentwise continuous second derivatives on [0,1]. The sec-
ond partial derivative of λ0(t, v) with respect to v exists and is contin-
uous on [0, τ ] × [0,1]. The covariate process Z(t) has paths that are
left-continuous and of bounded variation, and satisfies the moment con-
dition E[‖Z(t)‖4 exp(2M‖Z(t)‖)] < ∞, where M is a constant such that
(v,β(v)) ∈ [0,1]× (−M,M)p for all v and ‖A‖ = maxk,l |akl| for a matrix
A = (akl).

(A.2) For j = 0,1,2, each component of s(j)(t, θ) is continuous on [0, τ ] ×
[−M,M]p, and supt∈[0,τ ],θ∈[−M,M]p ‖S(j)(t, θ)− s(j)(t, θ)‖ = Op(n−1/2).
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(A.3) s(0)(t, θ) > 0 on [0, τ ]× [−M,M]p and the matrix 
(v) = ∫ τ
0 J (t, β(v))×

λ0(t, v)s(0)(t, β(v)) dt is positive definite.
(A.4) E(Ni(dt, dv)|Ft−) = E(Ni(dt, dv)|Yi(t),Zi(t)), where Ft = σ {I (Xi ≤ s,

δi = 1), I (Xi ≤ s, δi = 0),ViI (Xi ≤ s, δi = 1),Zi(s);0 ≤ s ≤ t, i =
1, . . . , n} is the (right-continuous) filtration generated by {Ni(s, v), Yi(s),
Zi(s);0 ≤ s ≤ t,0 ≤ v ≤ 1, i = 1, . . . , n}.

(A.5) The kernel function K(·) is symmetric with support [−1,1] and of bounded
variation. The bandwidth satisfies nh2 → ∞ and nh5 → 0 as n → ∞.

Note that the condition (A.2) holds under the condition (A.1) given some ad-
ditional moment conditions on Z(t) − Z(s) and exp(bT Z(t)) − exp(bT Z(s)). If
Z(t) = Z, not depending on t , then (A.2) holds by the Donsker theorem (The-
orem 19.5 of van der Vaart [19]). The condition (A.4) assumes that the mark-
specific instantaneous failure rate at time t given the observed information up
to time t only depends on the failure status and the current covariate value. Un-
der (A.4) and by the definition (1), E(Ni(dt, dv)|Ft−) = Yi(t)λ(t, v|Zi(t)) dt dv,
and Mi(t, v) = ∫ t

0
∫ v

0 [Ni(ds, dx) − Yi(s)λ(s, x|Zi(s)) ds dx] is a martingale with
respect to Ft for each fixed v ([10], page 31). Further, it follows by Aalan and Jo-
hansen [1] that Mi(·, v1) and Mi(·, v2)−Mi(·, v1) are orthogonal square integrable
martingales with respect to Ft for any 0 ≤ v1 ≤ v2 ≤ 1. To avoid the problems at
the boundaries v = 0,1, we shall study the asymptotic properties of β̂(v) for the
interior values of v ∈ [a, b] ⊂ (0,1).

First we present the following result that is essential for proving the asymptotic
normality of β̂(v) and provides insight into the constructions of the confidence
bands and test statistics that follow. Let

W̃A(v) = n−1/2
n∑

i=1

∫ v

a

∫ τ

0
A(u)

[
Zi(t) − s(1)(t, β(u))

s(0)(t, β(u))

]
Mi(dt, du),(6)

where A(u) is a deterministic p × p matrix with bounded components and 0 ≤
a < b ≤ 1.

THEOREM 1. Assume that each component of the p × p matrix A(v), v ∈
[a, b], is continuous. Under conditions (A.1)–(A.4), W̃A(v) converges weakly to a
p-dimensional mean-zero Gaussian martingale, WA(v), with continuous sample
paths on v ∈ [a, b]. The covariance matrix of WA(v) is given by Cov(WA(v)) =∫ v
a A(u)
(u)A(u)du.

Let


̂
Â
(v) = n−1

n∑
i=1

∫ v

a

∫ τ

0
Â(u)Jn(t, β̂(u))ÂT (u)Ni(dt, du),(7)

where Â(v) is a consistent estimator of A(v) uniformly in v ∈ [a, b] ⊂ [0,1]. It
can be shown that 
̂A(v) is a consistent estimator of Cov(WA(v)).
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The consistency and asymptotic normality of β̂(v) are established in the next
two theorems.

THEOREM 2. Under conditions (A.1)–(A.5), β̂(v) converges to β(v) uni-
formly in v ∈ [a, b] ⊂ (0,1).

THEOREM 3. Under conditions (A.1)–(A.5), (nh)1/2(β̂(v) − β(v))
D−→

N(0, ν0

−1(v)) for v ∈ [a, b].

The proof of Theorem 3 uses a Taylor expansion of the score function, lead-
ing to β̂(v) − β(v) = −(l′′β(v,β∗(v)))−1U(β(v)), where β∗(v) is on the line seg-

ment between β̂(v) and β(v). The asymptotic variance of n−1/2h1/2U(β(v)) is
shown to be ν0
(v), which is the in probability limit of 
̃n(β(v)) = n−1h ×∑n

i=1
∫ 1

0
∫ τ

0 (Kh(u − v))2Jn(t, β(v))Ni(dt, du). It can also be shown that 
̂(v) ≡
−l′′β(v, β̂(v))/n

P−→ 
(v) as n → ∞. Thus, the asymptotic variance of (nh)1/2 ×
(β̂(v) − β(v)) can be estimated by 
̂1(v) = (l′′β(v, β̂(v))/n)−1
̃n(β̂(v))(l′′β(v,

β̂(v))/n)−1. An alternative estimator is 
̂2(v) = −ν0(l
′′
β(v, β̂(v))/n)−1. It is easy

to check that ν0 = 3/5 for Epanechnikov’s kernel K(x) = 3
4(1 − x2), −1 < x < 1.

Simulations indicate that the two estimators have similar finite sample perfor-
mance.

Theorem 3 will lead to the construction of pointwise confidence intervals
for VE(v). Simultaneous inference over v ∈ [a, b] will be possible in terms of
the estimate B̂(v) = ∫ v

a β̂(u) du of the cumulative regression coefficient B(v) =∫ v
a β(u)du. We have the following weak convergence result for B̂(v).

THEOREM 4. Under conditions (A.1)–(A.5), n1/2(B̂(v) − B(v)) converges
weakly to a p-dimensional mean-zero Gaussian martingale W
−1(v) with con-
tinuous sample paths on v ∈ [a, b]. The covariance matrix of W
−1(v) is∫ v
a 
(u)−1 du, which can be consistently estimated by 
̂

Â
(v) defined by (7) with

A(v) = (
(v))−1 and Â(v) = (
̂(v))−1.

2.3. Confidence bands for vaccine efficacy. Let β(v) = (β1(v), βT
2 (v))T .

Then the vaccine efficacy can be expressed as VE(v) = 1 − exp(β1(v)). The es-
timated vaccine efficacy is V̂E(v) = 1 − exp(β̂1(v)). By Theorem 3 and the delta

method, (nh)1/2(V̂E(v) − VE(v))
D−→ N(0, ν0σ

2
1 (v) exp(2β1(v))) for v ∈ [a, b],

where σ 2
1 (v) is the first element on the diagonal of 
−1(v). Let σ̂ 2

β1
(v) be the first

element on the diagonal of 
̂1(v). By the discussions on the consistent estimators
for the asymptotic variance following Theorem 3, σ̂ 2

β1
(v) is a consistent estimator

for ν0σ
2
1 (v). A pointwise 100(1 − α)% confidence band for VE(v) is given by

V̂E(v) ± (nh)−1/2zα/2σ̂β1(v) exp(β̂1(v)), a ≤ v ≤ b,(8)
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where zα/2 is the upper α/2 quantile of the standard normal distribution.
To derive simultaneous confidence bands for the cumulative vaccine efficacy

CV(v) = ∫ v
a VE(u) du, we consider the point estimator ĈV(v) = ∫ v

a V̂E(u) du.
Then

√
n
(
ĈV(v) − CV(v)

) = √
n

∫ v

a

(
exp(β1(v)) − exp(β̂1(v))

)
du.

Note that
√

n(ĈV(v) − CV(v)) ≈ √
n

∫ v
a exp(β1(v)(β1(v) − β̂1(v)) du. From the

proof of Theorem 4, it can be shown that
√

n(ĈV(v) − CV(v)) converges weakly
to a mean-zero Gaussian process, eT

1 WA(v), a ≤ v ≤ b, with continuous paths
and independent increments, where A(v) = exp(β1(v))
(v)−1 and e1 is the first
column of the p × p identity matrix. The variance of eT

1 WA(v) equals ρ2(v) =∫ v
a σ 2

1 (u) exp(2β1(u)) du by Theorem 1, which can be conveniently estimated
by

∫ v
a σ̂ 2

1 (u) exp(2β̂1(u)) du, where σ̂ 2
1 (v) is the first element of the diagonal of


̂(v)−1. We suspect that this estimator may ignore the finite sample correlations
of β1(v) − β̂1(v) at different values of v, thus over- or underestimating the true
variance. We propose to use ρ̂2(v) = eT

1 
̂
Â
(v)e1 as the estimator of the asymp-

totic variance of
√

n(ĈV(v) − CV(v)), where 
̂
Â
(v) is obtained from (7) with

Â(v) = exp(β̂1(v))
̂(v)−1, which is uniformly consistent by Theorem 1. Conse-
quently, a pointwise 100(1 − α)% confidence band for CV(v) is given by

ĈV(v) ± n−1/2zα/2ρ̂(v), a ≤ v ≤ b.(9)

Let V be a set of values of v in [a, b]. We may take V = [a, b] or V = {vk, k =
1, . . . ,K} with v1 < · · · < vK . Note that if U(v) is a Gaussian martingale with
variance ρ2(v), for a ≤ v ≤ b, then U(v)ρ(b)[ρ2(b) + ρ2(v)]−1 has the same
distribution as B0(ρ2(v)/(ρ2(b) + ρ2(v))), a ≤ v ≤ b, where B0(·) is a Brownian
bridge. By the weak convergence of

√
n(ĈV(v)−CV(v)), the uniform consistency

of ρ̂2(v) to ρ2(v) and the continuous mapping theorem, we have

sup
v∈V

∣∣√n
(
ĈV(v) − CV(v)

)
ρ̂(b)/

(
ρ̂2(b) + ρ̂2(v)

)∣∣
D−→ sup

v∈V

∣∣B0(
ρ2(v)/

(
ρ2(b) + ρ2(v)

))∣∣.
Thus a simultaneous 100(1 − α)% confidence band for CV(v), v ∈ V , is given by

ĈV(v) ± n−1/2uα[ρ̂2(b) + ρ̂2(v)]/ρ̂(b),(10)

where uα is the upper α-quantile of the distribution of supv∈V |B0(ρ2(v)/(ρ2(b)+
ρ2(v)))|. The uα is the upper α-quantile of sup0≤v≤1/2 |B0(v)| if V = [a, b], which
has been tabulated by Schumacher [15] for some α values. In the simulation study
presented in the next section, we estimate uα by the upper α-quantile of the distrib-
ution of supvk∈V |B0(ρ̂2(vk)/(ρ̂

2(b) + ρ̂2(vk)))| in both cases when V = [a, b] or
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V = {vk, k = 1, . . . ,K}, which can be obtained by simulating a Brownian bridge
for given ρ̂2(v).

Alternatively, other resampling techniques such as the Gaussian multiplier
method of Lin, Wei and Ying [9] can be used to estimate the critical value uα .
This method can be briefly outlined as follows. Let ξ1, . . . , ξn be i.i.d. standard
normal random variables and

W ∗
Â
(v) = n−1/2

n∑
i=1

ξi

∫ v

0

∫ τ

0
Â(u)

[
Zi(t) − S(1)(t, β̂(u))

S(0)(t, β̂(u))

]
Mi(dt, du).(11)

Then the distribution
√

n(ĈV(v) − CV(v)) can be approximated by the condi-
tional distribution of eT

1 W ∗
Â
(v) given the observed data sequence, where Â =

exp(β̂1(v)) × (
̂(v))−1. Consequently, the distribution of supv∈V |√n(ĈV(v) −
CV(v))ρ̂(b)[ρ̂2(b) + ρ̂2(v)]−1| can be approximated by the conditional distrib-
ution of U∗ = supv∈V |eT

1 W ∗
Â
(v)ρ̂(b)[ρ̂2(b) + ρ̂2(v)]−1| given the observed data

sequence. Let u∗
α be the (1 − α)-quantile of the copies of U∗ obtained by repeat-

edly generating sets of i.i.d. standard normal random variables. A simultaneous
100(1 − α)% confidence band for CV(v), v ∈ V , is given by

ĈV(v) ± n−1/2u∗
α[ρ̂2(b) + ρ̂2(v)]/ρ̂(b).(12)

This resampling technique is also applicable to the hypothesis tests for vaccine
efficacy developed in the next subsection.

2.4. Testing vaccine efficacy. We are interested in testing the following two
sets of hypotheses. The first set of hypotheses is

H10 : VE(v) = 0 for v ∈ [a, b]
versus H1a : VE(v) �= 0 for some v (general alternative)

or H1m : VE(v) ≥ 0 with strict inequality for at least some v

(monotone alternative).

The second set of hypotheses is

H20 : VE(v) does not depend on v ∈ [a, b]
versus H2a : VE(v) depends on v (general alternative)

or H2m : VE(v) decreases as v increases (monotone alternative).

Let β1(v) be the first component of β(v). Then the null hypothesis H10 is equiv-
alent to β1(v) = 0 and the null hypothesis H20 is equivalent to β1(v) does not
depend on v. The null hypothesis H10 implies the vaccine affords no protection
against any infecting strain of virus. The alternative H1m indicates that the vaccine
provides protection for at least some of the infecting strains, while H1a states that
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the vaccine provides either protection or increased risk for some infecting strains.
The null hypothesis H20 implies there is no difference in vaccine effect for differ-
ent infecting strains, measured by their distance v to the strains contained in the
vaccine. The ordered alternative H2m states that vaccine efficacy decreases with v

and the alternative H2a indicates that the vaccine efficacy changes with v.
In this section, we develop some test procedures for detecting departures from

H10 in the direction of H1m and H1a and for detecting departures from H20 in the
direction of H2m and H2a . By Theorem 4 and the discussions in Section 2.3, the
process

√
n(ĈV(v) − CV(v)), a ≤ v ≤ b, converges weakly to a Gaussian mar-

tingale with predictable variation ρ2(v). Let ξ(v) = √
n(ĈV(v) − CV(v))/ρ(b).

It follows from Theorem 4 that ξ(v)
D−→ W(t(v)), a ≤ v ≤ b, where W(·) is a

Wiener process and t (v) = ρ2(v)/ρ2(b).
To test H10, let Ẑ(1)(v) = √

nĈV(v)/ρ̂(b) and t̂ (v) = ρ̂2(v)/ρ̂2(b). Consider
the following test statistics:

T (1)
a =

∫ b

a
(Ẑ(1)(v))2 dt̂(v), T

(1)
m1 =

∫ b

a
Ẑ(1)(v) dt̂(v).

These test statistics have somewhat complicated null distributions (see below) so
we also consider the following simpler test statistic based on a finite grid, which
leads to a standard normal null distribution:

T
(1)
m2 = (K − 1)−1/2

K∑
k=2

(
Ẑ(1)(vk) − Ẑ(1)(vk−1)

)
/
(
t̂ (vk) − t̂ (vk−1)

)1/2
,

where a ≤ v1 < · · · < vK ≤ b are the grid points in [a, b]. A similar test statistic
with a standard normal null distribution is also proposed for H20 later. Under H10,

T
(1)
a

D−→ ∫ b
a (W(t (v)))2 dt (v)

D= ∫ 1
0 (W(t))2 dt , T

(1)
m1

D−→ ∫ b
a W(t (v)) dt (v)

D=∫ 1
0 W(t) dt and T

(1)
m2

D−→ N(0,1). The distributions of T
(1)
a and T

(1)
m1 under H10

can also be approximated by those of
∫ b
a (W(t̂(v)))2 dt̂(v) and

∫ b
a W(t̂(v)) dt̂(v)

for given t̂ (v), respectively, which are used in the numerical studies for better finite
sample approximations. We denote the upper α-quantiles of these two distributions
by c

(1)
a and c

(1)
m1, respectively.

The test statistic T
(1)
a captures general departures H1a , while the test statistics

T
(1)
m1 and T

(1)
m2 are sensitive to the monotone departure H1m. Both test statistics T

(1)
m1

and T
(1)
m2 are likely to be positive when VE(v) ≥ 0 for all v with strict inequality

for some v. Hence the tests based on T
(1)
a , T

(1)
m1 and T

(1)
m2 reject H10 if T

(1)
a > c

(1)
a ,

T
(1)
m1 > c

(1)
m1 and T

(1)
m2 > zα , respectively.

To test H20, let Ẑ(2)(v) = √
n( 1

v−a
ĈV(v) − 1

b−a
ĈV(b))/ρ̂(b). Note that, un-

der H20, Ẑ(2)(v) = √
n[ 1

v−a
(ĈV(v) − CV(v)) − 1

b−a
(ĈV(b) − CV(b))]/ρ̂(b).

By Theorem 4 and the continuous mapping theorem, under H20, Ẑ(2)(v)
D−→
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1
v−a

W(t (v))− 1
b−a

W(1) ≡ Z(2)(v) for v ∈ [a1, b], where a < a1 < b. We propose
the following test statistics for evaluating H20:

T (2)
a =

∫ b

a1

(
Ẑ(2)(v)

)2
dt̂(v), T

(2)
m1 =

∫ b

a1

Ẑ(2)(v) dt̂(v),

T
(2)
m2 = �̂−1

K

K∑
k=2

(
Ẑ(2)(vk−1) − Ẑ(2)(vk)

)
/π̂k,

where a1 ≤ v1 < · · · < vK ≤ b are K grid points in [a1, b], π̂2
k is an estimate of the

variance π2
k = Var(Z(2)(vk−1) − Z(2)(vk)) and �̂2

K is an estimate of the variance
�2

K of
∑K

k=2(Z
(2)(vk−1)−Z(2)(vk))/πk . By the covariance of the Wiener process,

it is easy to show that

τi,j = Cov
(
Z(2)(vi),Z

(2)(vj )
)

= t (vi)

(vi − a)(vj − a)
− t (vi)

(vi − a)(b − a)
− t (vj )

(vj − a)(b − a)
+ 1

(b − a)2 ,

for vi ≤ vj . Thus, π2
k = τk−1,k−1 − 2τk−1,k + τk,k . Let � = (τi,j )K×K and

ξT = (π−1
2 , π−1

3 − π−1
2 , . . . , π−1

K − π−1
K−1,−π−1

K ).

It follows that �K = ξT �ξ . The estimates π̂2
k and �̂2

K are obtained by replacing
t (v) with t̂ (v).

By the weak convergence of Ẑ(2)(v) to Z(2)(v), and the convergence in prob-

ability of t̂ (v) to t (v), a1 ≤ v ≤ b, we have T
(2)
m2

D−→ N(0,1) under H20. It

also follows that T
(2)
a

D−→ ∫ b
a1

(Z(2)(v))2 dt (v), and T
(2)
m1

D−→ ∫ b
a1

Z(2)(v) dt (v) un-

der H20. The distributions of T
(2)
a and T

(2)
m1 under H20 can be approximated by

those of
∫ b
a1

(W(t̂(v))/(v − a) − W(t̂(b))/(b − a))2 dt̂(v) and
∫ b
a1

(W(t̂(v))/(v −
a) − W(t̂(b))/(b − a)) dt̂(v) for given t̂ (v), respectively, which are used in the
numerical studies for better finite sample approximations. We denote the upper
α-quantiles of these two distributions by c

(2)
a and c

(2)
m1, respectively.

The test statistic T
(2)
a captures general departures H2a while the test statistics

T
(2)
m1 and T

(2)
m2 are sensitive to the monotone departure H2m. Both T

(2)
m1 and T

(2)
m2 are

expected to be positive when VE(v) decreases as v increases, that is, when H2m

holds. Hence the tests T
(2)
a , T

(2)
m1 and T

(2)
m2 reject H20 if T

(2)
a > c

(2)
a , T

(2)
m1 > c

(2)
m1 and

T
(2)
m2 > zα , respectively.

3. Simulation study. In this section, we conduct a simulation study to check
the finite sample performance of the proposed estimation and hypothesis testing
procedures using the simple mark-specific proportional hazards model:

λ(t, v|z) = exp{γ v + (α + βv)z}, t ≥ 0,0 ≤ v ≤ 1,(13)
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where α, β and γ are constants and the treatment indicator z takes value 0 or 1 with
probability of 0.5 for each value. Under model (13), the mark-specific baseline
function is λ0(t, v) = exp(γ v) and VE(v) = 1 − exp(α +βv). The null hypothesis
H10 of no vaccine efficacy holds if both α = 0 and β = 0, and the null hypothesis
H20 that vaccine efficacy does not depend on the type of infecting strain is true if
β = 0. Various choices of α and β specify different alternatives for H10 and H20.

We consider the following simulation models:

(M1) (α,β, γ ) = (0,0,0.3), for the null hypothesis H10 of no vaccine efficacy;
(M2) (α,β, γ ) = (−0.5,0.5,0.3), as the first alternative of H10;
(M3) (α,β, γ ) = (−0.6,0.6,0.3), as the second alternative of H10;
(M4) (α,β, γ ) = (−0.6,0,0.3), as the third alternative of H10;
(M5) (α,β, γ ) = (−0.69,0,0.3), for the null hypothesis H20 that vaccine efficacy

does not depend on the type of infecting strain;
(M6) (α,β, γ ) = (−1.2,1.2,0.3), as the first alternative of H20;
(M7) (α,β, γ ) = (−1.5,1.5,0.3), as the second alternative of H20;
(M8) (α,β, γ ) = (−1.8,1.8,0.3), as the third alternative of H20.

The models (M2) to (M4) are considered as the alternatives for H1m and H1a .
The departure from H10 : VE(v) = 0 increases as the simulation model moves
from (M2) to (M4). The models (M6) to (M8) are considered as the alternatives for
H2m and H2a . The departure from H20 increases as the simulation model moves
from (M6) to (M8).

We generate the censoring times from an exponential distribution, indepen-
dent of (T ,V ), with the censoring rates ranging from 20% to 30%. We set the
interval of analyses for v as [a, b] = [0.1,0.9] and bandwidths are chosen as
h = 0.05,0.1,0.15. The observed failure times with marks outside the interval
[a, b] can also be used since the smoothing at v takes the cases with marks in its
h-neighborhood. The Epanechnikov kernel K(x) = 0.75(1−x2)I {|x| ≤ 1} is used
throughout. Sample sizes of n = 500 and 800 are studied.

For the tests T
(1)
m2 and T

(2)
m2 , we take the grid of eight evenly spaced points in

[a, b] from 0.196 to 0.868. Table 1 lists the empirical sizes and powers of the test
statistics T

(1)
a , T

(1)
m1 and T

(1)
m2 and Table 2 for the test statistics T

(2)
a , T

(2)
m1 and T

(2)
m2 .

The significance levels of these tests are given at α = 0.05. Both tables also list the
coverage probabilities of the 95% simultaneous confidence intervals for CV(v),
for v ∈ [a, b] and for v in the grid. The critical values for the tests T

(1)
m2 and T

(2)
m2 at

nominal level 0.05 are zα = 1.645. The critical values for the tests T
(1)
a and T

(2)
a ,

T
(1)
m1 and T

(2)
m1 are obtained by generating 10,000 Wiener processes W(·) with time

parameter equal to t̂ (v) and calculating the corresponding functionals of W(t̂(v)),
as described in the previous section. Each entry in Tables 1 and 2 is based on
1000 repetitions.

Most tests have appropriate sizes close to 5%. The test T
(2)
a seems to be conser-

vative for the simulation models used in the study. The test T
(1)
m1 has better power
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TABLE 1
Empirical sizes and powers of the tests T

(1)
a , T

(1)
m1 and T

(1)
m2 at the nominal level 0.05, and coverage

probabilities of the 95% simultaneous confidence intervals for CV(v) with v on the grid
and on [a, b]

Size/Power Coverage

Model (α,β,γ ) n h T
(1)
a T

(1)
m1 T

(1)
m2 Grid [a,b]

M1 (0,0,0.3) 500 0.05 2.9 3.1 7.8 97.5 98.1
0.1 4.9 5.9 8.3 96.6 97.4
0.15 5.1 6.9 7.3 96.2 96.8

800 0.05 5.3 2.8 6.9 95.9 96.8
0.1 5.7 4.7 6.8 95.5 97.0
0.15 5.8 5.2 6.3 95.6 96.5

M2 (−0.5,0.5,0.3) 500 0.05 45.4 56.3 63.2 97.6 98.0
0.1 60.3 71.4 65.7 97.0 97.5
0.15 66.0 77.4 65.5 96.7 97.6

800 0.05 69.1 78.4 77.5 96.1 96.8
0.1 80.3 86.5 80.1 95.6 96.7
0.15 82.9 89.1 80.1 96.0 97.2

M3 (−0.6,0.6,0.3) 500 0.05 59.7 70.0 76.5 97.5 98.0
0.1 75.4 83.9 78.8 96.9 97.8
0.15 80.9 87.2 78.5 96.9 97.9

800 0.05 83.7 90.4 87.6 96.2 96.9
0.1 90.8 94.4 89.6 96.0 96.8
0.15 93.0 96.0 89.6 96.2 97.2

M4 (−0.6,0,0.3) 500 0.05 96.0 95.6 99.9 97.0 97.8
0.1 99.1 98.8 100 96.7 97.6
0.15 99.5 99.7 100 96.7 97.4

800 0.05 99.9 99.5 100 97.0 98.0
0.1 100 100 100 96.9 97.3
0.15 100 100 100 96.4 97.4

than the tests T
(1)
a and T

(1)
m2 . The test T

(2)
m1 has better power than the tests T

(2)
a

and T
(2)
m2 . Therefore the tests that incorporate ĈV(v) over the entire range [a, b]

present greater power than the simpler tests based on ĈV(v) over the grid. We
also observed that the powers of the tests seem to be influenced by the selection of
bandwidth, with greater power for a larger bandwidth. Similar plots (not included
here) to Figure 1 and Figure 2 but with larger bandwidth h = 0.2 show that the es-
timated standard errors of ĈV(v) become smaller for larger h while the biases stay
approximately the same, resulting in increased power for the larger bandwidth. We
suspect that this phenomenon is associated with the sample size and the conver-
gence rate of the normalized ĈV(v) to a Wiener process. The dependence of the
power on the bandwidth should become small as the sample size increases. Further
study on the bandwidth selection is warranted.
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TABLE 2
Empirical sizes and powers of the tests T

(2)
a , T

(2)
m1 and T

(2)
m2 at the nominal level 0.05, and coverage

probabilities of the 95% simultaneous confidence intervals for CV(v) with v on the grid
and on [a, b]

Size/Power Coverage

Model (α,β,γ ) n h T
(2)
a T

(2)
m1 T

(2)
m2 Grid [a,b]

M5 (−0.69,0,0.3) 500 0.05 1.6 3.7 3.7 97.0 97.8
0.1 2.1 3.7 4.5 96.5 97.5
0.15 2.1 3.5 4.6 96.8 97.3

800 0.05 2.3 4.0 2.9 97.3 98.3
0.1 2.6 4.3 3.2 97.0 97.6
0.15 2.1 3.5 3.0 96.9 97.4

M6 (−1.2,1.2,0.3) 500 0.05 47.2 67.6 47.7 97.9 98.5
0.1 60.2 76.7 62.3 97.1 97.6
0.15 63.2 80.3 73.3 97.5 97.8

800 0.05 69.2 85.1 69.2 96.5 97.2
0.1 80.4 92.0 80.4 96.6 97.6
0.15 84.2 94.1 88.4 96.9 97.8

M7 (−1.5,1.5,0.3) 500 0.05 63.8 81.4 62.1 97.7 98.0
0.1 76.9 78.0 63.6 97.2 98.0
0.15 81.2 91.7 86.3 97.6 98.0

800 0.05 85.1 94.4 82.6 96.2 97.1
0.1 93.2 98.2 91.8 96.1 97.6
0.15 96.0 98.9 97.4 96.7 97.7

M8 (−1.8,1.8,0.3) 500 0.05 77.6 89.1 73.6 97.8 98.5
0.1 87.1 95.6 85.7 97.3 98.4
0.15 91.5 96.9 92.8 97.7 98.7

800 0.05 93.5 98.2 91.4 96.4 97.4
0.1 98.2 99.5 97.0 96.3 97.5
0.15 99.3 99.9 99.2 96.5 97.9

The coverage probabilities of the simultaneous confidence intervals for CV(v)

are closer to the 95% nominal level for v on the grid than on [a, b]. This may be ex-
plained by the fact that the convergence for v over the entire range [a, b] is slower
than the convergence on the grid. The evaluations of the proposed estimators for
β(v), VE(v) and CV(v) and their respective estimators of the standard deviations
under some of the simulation models are presented in Figure 1 and Figure 2. The
plots of the pointwise coverage probabilities for VE(v) and for CV(v) are given in
Figure 3. These plots are based on n = 500 and h = 0.1.

Now we demonstrate with a simulation example that the adoption of a stan-
dard method for testing the vaccine efficacy that ignores the mark is inefficient
and can be misleading. We consider a special case of the model discussed in the
Introduction, with λ(t, v|z = 0) = 1 and λ(t, v|z = 1) = 2v, for t ≥ 0, 0 ≤ v ≤ 1.
The covariate z is again a treatment indicator taking values 0 and 1 with prob-
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FIG. 1. Plots of estimates for β(v), VE(v) and CV(v) under the models M1, M2, M5 and M6 for n = 500, h = 0.1. The solid dark lines are the true
functions and the dashed lines are the averages of the estimates based on 1000 repetitions. The gray lines are the corresponding estimates for β(v), VE(v)

and CV(v) of 50 random samples.



M
A

R
K

-SPE
C

IFIC
PR

O
PO

R
T

IO
N

A
L

H
A

Z
A

R
D

S
M

O
D

E
L

S
409

FIG. 2. Plots of the standard errors under the models M1, M2, M5 and M6, based on n = 500, h = 0.1. The solid lines are the averages of the estimates
of the standard deviations of β̂(v), V̂E(v) and ĈV(v), while the dashed lines are the sample standard deviations of β̂(v), V̂E(v) and ĈV(v), based on
1000 repetitions. The gray lines are the corresponding estimates for the standard deviations of β̂(v), V̂E(v) and ĈV(v) of 50 random samples.
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FIG. 3. Plots of the pointwise coverage probabilities for VE(v) (gray lines) and for CV(v) (solid
lines), based on n = 500, h = 0.1 and 1000 repetitions. The models on the left panel are M1, M2
and M3. The models on the right panel are M5, M6 and M7.

ability of 0.5 for each value. The marginal hazards model ignoring the mark is
therefore λ(t |z = 0) = 1 and λ(t |z = 1) = 1, for t ≥ 0. The rest of the simula-
tion setup such as the percentage of censorship, the kernel function and the band-
width is the same as for the previous models. The model considered here represents
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TABLE 3
Comparison of the standard Wald test with the proposed tests T

(1)
a , T

(1)
m1 , T

(1)
m2 , T

(2)
a , T

(2)
m1 and T

(2)
m2

at the nominal level 0.05

Power

n h Tw T
(1)
a T

(1)
m1 T

(1)
m2 T

(2)
a T

(2)
m1 T

(2)
m2

500 0.05 5.9 14.9 24.2 16.6 98.0 99.4 97.3
0.1 − 23.9 35.7 16.0 99.6 100 99.8
0.15 − 27.9 39.1 15.7 99.9 100 99.9

800 0.05 6.1 32.4 39.6 15.0 100 100 99.6
0.1 − 43.1 51.5 13.8 100 100 100
0.15 − 46.0 53.3 13.9 100 100 100

both a proportional mark-specific hazards model for λ(t, v|z) and a proportional
hazards model for λ(t |z) = λ0(t) exp(βz), with the mark-specific vaccine efficacy
VE(v) = 1 − 2v and the marginal VE = 1 − exp(β) = 0. The standard Wald test,
denoted by Tw , under the marginal Cox model is often used to test for the vac-
cine efficacy. As expected, the standard Wald test shows no power (Table 3). It is
incapable of revealing any vaccine efficacy or that the vaccine efficacy depends
on the mark, thus missing the important scientific finding that the vaccine protects
against viruses with smaller mark values (V < 0.5) and increases risk of infection
with viruses with larger mark values (V > 0.5). The example we constructed here
shows the weakness of using the standard approach that ignores the mark and is
what motivates the present research.

4. Application. The first preventive HIV vaccine efficacy trial was carried
out in North America and The Netherlands, and enrolled 5403 HIV-negative
volunteers at risk for acquiring HIV infection [4]. Volunteers were randomized
in a 2:1 ratio to receive a recombinant glycoprotein 120 vaccine (AIDSVAX)
or placebo, and were monitored for HIV infection at semi-annual HIV testing
visits for 36 months. The primary objective was to assess VE using the stan-
dard Cox model, and a secondary objective was to test H10 : VE(t, v) = 0 and
H20 : VE(t, v) = VE(t) for three different mark variables V defined in terms of
the percent mismatch of aligned amino acid sequences (for each infecting HIV se-
quence compared to the HIV sequence [named GNE8] contained in the AIDSVAX
construct) in three subregions of HIV-gp120. For brevity, in this article we consider
only one mark V , defined as the percent mismatch of amino acids in the whole
gp120 region (581 amino acids long), where all possible mismatches of particular
pairs of amino acids (e.g., A versus C) are weighted by the estimated probability
of interchange [12]. The distance is based on the gp120 region because this re-
gion contains neutralizing epitopes that potentially can induce anti-HIV antibody
responses that prevent HIV infection [21]; the vaccine was designed to protect by
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stimulating high titer antibodies that neutralize exposing HIVs. Of the 368 individ-
uals infected during the trial, 32 had missing marks. Of the remaining 336 samples,
all marks were unique (217 vaccine; 119 placebo).

The vaccine efficacy is estimated and tested by adjusting for two covariates: age
(ranging 18–62 years with mean of 36.5) and behavioral risk score (taking val-
ues 0–7) as defined in [4]. It is relevant to adjust for these covariates because they
predict infection rate and because trial participants with different values of these
covariates may be exposed to HIV strains with different distributions of V . Both
covariates are considered as continuous variables. The histograms of the rescaled
mark values, ages in years and behavioral risk scores are plotted in Figure 4. We
denote the treatment indicator by z1 (z1 = 1 for the vaccine and z1 = 0 for the
placebo), age by z2 and behavioral risk score by z3, and denote the corresponding
coefficient functions by β1(v), β2(v) and β3(v). Fitting model (2) with h = 0.3, the
plots of the estimates for β1(v), β2(v) and β3(v) and their pointwise confidence
bands are given in Figure 5. The plots of V̂E(v) and ĈV(v) with their correspond-
ing pointwise confidence bands adjusting for the two covariates z2 and z3 are given
in Figure 6.

Adjusting for age and behavioral risk score, the Wald test statistic for testing
the marginal VE = 0 using the standard Cox model is −0.978, yielding a p-value
of 0.328 for the two-sided alternative and 0.164 for the monotone alternative. Our
test with the test statistic T

(1)
a for H10 : VE(v) = 0 for all v versus the general

alternative H1a yields a p-value of 0.1532. The p-values for testing against the
monotone alternative H1m are 0.0916 for T

(1)
m1 and 0.0228 for T

(1)
m2 . These results

give some, albeit weak, evidence of nonzero vaccine efficacy for at least one mark
value; see Figure 6.

In addition, adjusting for age and behavioral risk score, we conducted the tests
to evaluate whether the vaccine efficacy varies with the mark. The p-value for
testing H20 that VE(v) does not depend on v versus the general alternative H2a is
0.2067 for the test statistic T

(2)
a . The p-value for testing for the monotone alterna-

tive H2m is 0.9363 for the test statistic T
(2)
m1 and 0.9047 for the test statistic T

(2)
m2 .

These p-values are expected given the plots in Figure 6 where V̂E(v) shows some
tendency to increase with v.

5. Discussion. This article developed inference techniques for the propor-
tional hazards model with a continuous mark variable, including nonparametric
methods for estimation and testing of mark-specific regression functions. These
techniques can be used to estimate mark-specific vaccine efficacy (VE(v)) and
cumulative mark-specific vaccine efficacy (CV(v)) with simultaneous confidence
bands, and to test hypotheses for VE(v), while adjusting for time-dependent co-
variate effects. The testing procedures based on the statistics T

(1)
m1 and T

(2)
m2 showed

greatest power in simulations and are recommended for testing VE(v) = 0 for all
v and for testing VE(v) independent of v, respectively.
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FIG. 4. Histograms for the observed mark values, ages in years and behavioral risk scores. The left panel is for the vaccine group and the right panel
is for the placebo group.
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FIG. 5. Plots of the estimated regression coefficients β1(v), β2(v) and β3(v) and their 95% point-
wise confidence bands for the vaccine trial data with h = 0.3.

An alternative approach to the continuous mark-specific PH model would be a
similar model that treats the mark variable as ordinal categorical. We focused on a
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FIG. 6. Plots of the estimates of VE(v) and CV(v) and their confidence bands for the vaccine trial
data with h = 0.3. The dashed lines are 95% pointwise confidence bands and the dotted lines are
95% simultaneous confidence bands.

continuous mark because (i) it most naturally suits the HIV vaccine application, as
the choice of K bins for categorizing the marks would be arbitrary and (ii) testing
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β(v) = β can often be done with greater power than testing equality of the cause-
specific regression coefficients β1 = · · · = βK.

As is well known for a discrete mark-specific hazard function, the interpretation
of the continuous mark-specific hazard function λ(t, v) is restricted to actual study
conditions, that is, it is the instantaneous rate of failure in the presence of all of the
circulating competing risks (i.e., is a “crude” hazard in the terminology of Prentice
et al. [14]). However, often the main scientific interest is in the “net” mark-specific
hazard, the instantaneous rate of failure by mark v in the absence of any other
competing risks, but unfortunately this parameter is not identified except under
untestable assumptions such as mutual independence of all of the notional (latent)
mark-specific failure times [18]. This problem necessitates careful interpretation
of inferences in the mark-specific PH model.

For the HIV vaccine trial example, the crude mark-specific hazard can be fac-
tored as

λ(t, v|z) = λE(t, v|z) × λPC(t |v, z)(14)

where λE(t, v|z) is the intensity of exposure to strain v for participants with co-
variates z and λPC(t |v, z) (the “per-contact” transmission hazard) is the same as
λ(t, v|z) except that it further conditions on the (unobserved) presence of ex-
posure to a virus with genetic distance v during [t, t + dt). Exposure can arise
from unprotected sex or sharing a needle with an individual infected with strain v.
Therefore the identified parameter measures a mixture of vaccine/placebo-group
differences in mark-specific exposure rates and in conditional mark-specific per-
exposure transmission probabilities, whereas biological interest is in

VEPC(t |v, z2) = 1 − λPC(t |v,1, z2)

λPC(t |v,0, z2)

as a measure of vaccine efficacy. However, as data are not available for estimating
the relative intensity λE(t, v|1, z2)/λE(t, v|0, z2), our approach is to use

VE(t, v|z2) = 1 − λ(t, v|1, z2)

λ(t, v|0, z2)

as the target estimand, and assume identical exposure rates between the two
groups, so this target has the same interpretation as VEPC(t |v, z2). Reliance on
this assumption demonstrates the value of including covariates z2 that predict
mark-specific exposure into the mark-specific PH model: the richer the covari-
ate information the more likely VE(t, v|z2) reflects biological vaccine efficacy.
Gilbert, McKeague and Sun [5] provided further discussion of the interpretation
of mark-specific hazard ratios.

The usefulness of our approach relies on the validity of the mark-specific pro-
portional hazards model. Lin, Wei and Ying [9] developed goodness-of-fit tests
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for the standard Cox model based on martingale residuals, and their tests can be
extended to the present setting by using the mark-specific martingale residuals

M̂i(t, v) =
∫ t

0

∫ v

a
[Ni(ds, du) − Yi(s) exp((β̂(u))T Zi)�̂0(ds, du)],(15)

for i = 1, . . . , n. These residuals may be interpreted as the difference at time t

between the observed and the predicted number of events with mark less than v

for the ith subject, and are informative about model misspecification. It can be
checked that n−1/2 ∑n

i=1 M̂i(t, v) = op(1). This property is similar to that in the
standard Cox model, where the sum of the martingale residuals is exactly zero.
The difference here is caused by the kernel smoothing in a neighborhood of v.
Because β(v) is treated nonparametrically, the checking of the model (2) needs
further development and has additional issues related to the bandwidth. This would
need a thorough treatment that is beyond the scope of the present paper.

Finally, we caution that the method proposed here requires large sample sizes
to work well as demonstrated in the simulation study. This is the result of β(v)

being treated nonparametrically: the estimation of β(v) utilizes only the observed
failures with marks in a neighborhood of v. Although this does not cause a problem
in our application to the first preventive HIV vaccine trial (which has a sample size
of 5403), one needs to be careful in applying the method to situations with small
sample sizes.

APPENDIX

The following lemma is an extension of Theorem 5.7 of van der Vaart [19] and
will be used to prove the uniform consistency of β̂(v).

LEMMA A.1. Let Qn(v, θ) be random functions and let Q(v, θ) be a fixed
function of (v, θ) ∈ [a, b] × �, � ⊂ R

p . Let β(v) be a fixed function of v ∈ [a, b]
taking values in �. Assume that supv,θ |Qn(v, θ) − Q(v, θ)| P−→ 0 and that for
every ε > 0 there exists an η > 0 such that sup‖θ−β(v)‖>ε Q(v, θ) < Q(v,β(v)) −
η for v ∈ [a, b]. Then for any sequence of estimators β̂(v), with Qn(v, β̂(v)) >

Qn(v,β(v)) − op(1) uniformly in v ∈ [a, b], we have β̂(v)
P−→ β(v) uniformly in

v ∈ [a, b].

PROOF. For every ε > 0, there exists an η > 0 such that{
sup
v

‖β̂(v) − β(v)‖ > ε

}
⊂ ⋃

v

{‖β̂(v) − β(v)‖ > ε}

⊂ ⋃
v

{Q(v, β̂(v)) < Q(v,β(v)) − η}.
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Since Qn(v, β̂(v)) > Qn(v,β(v)) − op(1)
P−→ Q(v,β(v)), uniformly in v ∈

[a, b], we have Qn(v, β̂(v)) > Q(v,β(v)) − op(1), uniformly in v ∈ [a, b]. It fol-
lows that ⋃

v

{Q(v, β̂(v)) < Q(v,β(v)) − η}

⊂ ⋃
v

{Q(v, β̂(v)) < Qn(v, β̂(v)) − η + op(1)}

=
{

inf
v

(
Q(v, β̂(v)) − Qn(v, β̂(v))

)
< −η + op(1)

}
=

{
sup
v

(
Qn(v, β̂(v)) − Q(v, β̂(v))

)
> η − op(1)

}
⊂

{
sup
v

|Qn(v, β̂(v)) − Q(v, β̂(v))| > η − op(1)

}
,

whose probability goes to 0 by the uniform convergence of Qn(v, θ) to Q(v, θ).
Hence P {supv ‖β̂(v) − β(v)‖ > ε} → 0. �

The following lemma is used to prove Theorems 3 and 4. Let N = ∑n
i=1 Ni and

M = ∑n
i=1 Mi .

LEMMA A.2. Under conditions (A.1)–(A.4), n−1N(t, v)
P−→ ENi(t, v), uni-

formly in (t, u) ∈ [0, τ ] × [0,1], and n−1/2M(t, v) converges weakly to a mean-
zero continuous Gaussian random field G(t, v), (t, v) ∈ [0, τ ] × [0,1], with inde-
pendent increments and Var(G(t, v)) = ∫ t

0
∫ v

0 λ0(s, u)s(0)(s, β(u)) ds du.

PROOF. We treat ωi = (Xi, δi, Vi), i = 1, . . . , n, as a random sample from
a probability distribution P on a measurable space (X,A), with X = [0,∞) ×
{0,1} × [0,1] and A its Borel σ -field. Let F be the class of all indicator func-
tions ft,v :X −→ R, where ft,v(ωi) = I ([0, t] × {1} × [0, v])(ωi) = I (Xi ≤ t ,
δi = 1, Vi ≤ v), for 0 ≤ t ≤ τ,0 ≤ v ≤ 1. Then n−1N(t, v) = n−1 ∑n

i=1 ft,v(ωi).
Let ‖ft,v‖P,r = (P |ft,v|r )1/r be Lr(P )-norm of ft,v .

Let 0 = t0 < t1 < · · · < tK = τ and 0 = v0 < v1 < · · · < vJ = 1 be partitions of
the intervals [0, τ ] and [0,1]. Define the bracketing functions lkj = Ni(tk−1, vj−1)

and ukj = Ni(tk, vj ), for k = 1, . . . ,K , j = 1, . . . , J . Then for any ft,v ∈ F , there
is a bracket [lkj , ukj ] such that ft,v ∈ [lkj , ukj ]. And

‖ukj − lkj‖P,1 ≤ E
(
Ni(tk, vj ) − Ni(tk−1, vj−1)

)
=

∫ tk

0

∫ vj

0
λ0(s, x)s(0)(s, β(x)) ds dx

−
∫ tk−1

0

∫ vj−1

0
λ0(s, x)s(0)(s, β(x)) ds dx
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≤
∫ tk

tk−1

∫ 1

0
λ0(s, x)s(0)(s, β(x)) ds dx

+
∫ τ

0

∫ vj

vj−1

λ0(s, x)s(0)(s, β(x)) ds dx

≤ C1(tk − tk−1) + C2(vj − vj−1),

where C1 and C2 are some positive constants. For any ε > 0, choose the grid
points such that tk − tk−1 < ε and vj − vj−1 < ε. Then ‖ukj − lkj‖P,1 ≤ [C1 +
C2]ε. Hence, the bracketing number N[·](ε,F ,L1(P )) is of the polynomial order
(1/ε)2. By the Glivenko–Cantelli theorem (Theorem 19.4 of van der Vaart [19]),

n−1N(t, v)
P−→ ENi(t, v), uniformly in (t, v) ∈ [0, τ ] × [0,1].

Next, consider the processes {Mi(t, v),0 ≤ t ≤ τ,0 ≤ v ≤ 1}, i = 1, . . . , n, as a
random sample from a probability distribution P on a measurable space (X,A).
Let F be the class of coordinate projections ft,v :X −→ R, where ft,v(Mi) =
Mi(t, v), for 0 ≤ t ≤ τ,0 ≤ v ≤ 1. The process {Mi(t, v),0 ≤ t ≤ τ,0 ≤ v ≤ 1} is
determined by the {Xi, δi, δiVi,Zi}.

Again, let 0 = t0 < t1 < · · · < tK = τ and 0 = v0 < v1 < · · · < vJ = 1 be
the partitions of the intervals [0, τ ] and [0,1]. Define the bracketing functions
lkj = Ni(tk−1, vj−1) − ∫ tk

0

∫ vj

0 Yi(s)λ(s, x|Zi(s)) ds dx and ukj = Ni(tk, vj ) −∫ tk−1
0

∫ vj−1
0 Yi(s)λ(s, x|Zi(s)) ds dx, for k = 1, . . . ,K , j = 1, . . . , J . Then for any

ft,v ∈ F , there is a bracket [lkj , ukj ] such that ft,v ∈ [lkj , ukj ]. The bracket size is

‖ukj − lkj‖P,2 ≤ ‖Ni(tk, vj ) − Ni(tk−1, vj−1)‖P,2

+
∥∥∥∥∫ tk

0

∫ vj

0
Yi(s)λ(s, x|Zi(s)) ds dx

−
∫ tk−1

0

∫ vj−1

0
Yi(s)λ(s, x|Zi(s)) ds dx

∥∥∥∥
P,2

≤ [C1(tk − tk−1) + C2(vj − vj−1)]1/2,

where C1 and C2 are some positive constants. For any ε > 0, choose the grid points
such that tk − tk−1 < ε and vj −vj−1 < ε. Then ‖ukj − lkj‖P,2 ≤ [C1 +C2]1/2ε1/2.
Hence, the bracketing number N[·](ε1/2,F ,L2(P )) is of the polynomial order
(1/ε)2. Thus, N[·](ε,F ,L2(P )) is of the polynomial order (1/ε)4. So the brack-
eting integral J[·](1,F ,L2(P )) < ∞. By the Donsker theorem (Theorem 19.5 of
van der Vaart [19]), n−1/2M = {n−1/2 ∑n

i=1 Mi(t, v),0 ≤ t ≤ τ,0 ≤ v ≤ 1} con-
verges weakly to a mean-zero Gaussian process G(t, v), (t, v) ∈ [0, τ ] × [0,1],
which can be constructed to have continuous paths by Theorem 18.14 and
Lemma 18.15 of van der Vaart [19].

Now we show that G(t, v) has independent increments. Note that for t1 ≤ t2 and
v1 ≤ v2, the covariance of G(t1, v1) and G(t2, v2) − G(t1, v1) is E{Mi(t1, v1) ×
(Mi(t2, v2) − Mi(t1, v1))}. By Aalan and Johansen [1], Mi(t, v1) and Mi(t, v2) −
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Mi(t, v1), 0 ≤ t ≤ τ , are orthogonal square integrable martingales for 0 ≤ v1 ≤
v2 ≤ 1. It follows that

E
{
Mi(t1, v1)

(
Mi(t2, v2) − Mi(t1, v1)

)}
= E

{
Mi(t1, v1)

(
Mi(t2, v2) − Mi(t2, v1)

)}
+ E

{
Mi(t1, v1)

(
Mi(t2, v1) − Mi(t1, v1)

)}
= 0.

Hence G(t1, v1) and G(t2, v2) − G(t1, v1) are independent. �

PROOF OF THEOREM 1. It is easy to check that the conditions of Lemma 1
of Sun and Wu [17] are satisfied under Condition A. It follows that W̃A(v) con-
verges weakly to a vector of continuous mean-zero Gaussian random processes,
WA(v), v ∈ [a, b]. Now we show that WA(v) has independent increments.
Let wi(t, v) = ∫ v

a

∫ t
0 A(u)[Zi(t) − s(1)(t, β(u))/s(0)(t, β(u))]Mi(dt, du). Then

W̃A(v) = n−1/2 ∑n
i=1 wi(τ, v). For a ≤ v1 ≤ v2 ≤ b, the covariance matrix of

WA(v1) and WA(v2) − WA(v1) is equal to E{wi(τ, v1)(wi(τ, v2) − wi(τ, v1))
T }.

Since Mi(t, v1) and Mi(t, v2) − Mi(t, v1), 0 ≤ t ≤ τ , are orthogonal square inte-
grable martingales, it follows that wi(t, v1) and wi(t, v2) − wi(t, v1), 0 ≤ t ≤ τ ,
are orthogonal square integrable martingales. Hence E{wi(τ, v1)(wi(τ, v2) −
wi(τ, v1))

T } = 0. So WA(v), v ∈ [a, b], is a vector of mean-zero Gaussian ran-
dom processes with independent increments.

Further, the covariance matrix of WA(v) is

E{wi(τ, v)(wi(τ, v))T }

= E

{∫ v

a

∫ τ

0
A(u)

[
Zi(t) − s(1)(t, β(u))

s(0)(t, β(u))

]⊗2

A(u)Ni(dt, du)

}

= E

{∫ v

a

∫ τ

0
A(u)

[
Zi(t) − s(1)(t, β(u))

s(0)(t, β(u))

]⊗2

× A(u)y(t |Zi(t))λ(t, u|Zi(t)) dt du

}

=
∫ v

a
A(u)E

{∫ τ

0

[
Zi(t) − s(1)(t, β(u))

s(0)(t, β(u))

]⊗2

y(t |Zi(t))λ(t, u|Zi(t)) dt

}
× A(u)du

=
∫ v

a
A(u)
(u)A(u)du.

This completes the proof of Theorem 1. �

PROOF OF THEOREM 2. We shall prove Theorem 2 by verifying the condi-
tions of Lemma A.1.
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Let

ηn(u, θ) = n−1
n∑

i=1

∫ u

0

∫ τ

0

[
θT Zi(t) − log

(
S(0)(t, θ)

)]
Ni(dt, du),

ξn(u, θ) = n−1
n∑

i=1

∫ u

0

∫ τ

0

[
θT Zi(t) − log

(
s(0)(t, θ)

)]
Ni(dt, du),

Qn(v, θ) = n−1l(v, θ) + n−1 logn

∫ 1

0
Kh(u − v)N(τ, du).

Then by Condition A, ηn(v, θ) = ξn(v, θ) + Op(n−1/2) and

Qn(v, θ) =
∫ 1

0
Kh(u − v)ηn(du, θ)

=
∫ 1

0
Kh(u − v)ξn(du, θ) + Op(n−1/2h−1),

uniformly in (v, θ) ∈ [0,1] × [−M,M], for M > 0. By application of the
Glivenko–Cantelli and Donsker theorems, similarly to the proofs of Lemma A.2
and Theorem 1, ξn(v, θ) = ξ(v, θ) + Op(n−1/2), uniformly in (v, θ) ∈ [0,1] ×
[−M,M], with

ξ(v, θ) = E

[∫ u

0

∫ τ

0

[
θT Zi(t) − log

(
s(0)(t, θ)

)]
Ni(dt, du)

]
.

It follows that Qn(v, θ) = Q(v, θ)+Op(n−1/2h−1), uniformly in (v, θ) ∈ [a, b]×
[−M,M], where

Q(v, θ) = E

[∫ τ

0

[
θT Zi(t) − log

(
s(0)(t, θ)

)]
λ0(t, v) exp(βT (v)Zi(t))Yi(t) dt

]
.

Now we show that β(v) is the well-separated point of maximum of Q(v, θ) for
v ∈ [0,1]. Note that

∂Q(v, θ)/∂θ = E

[∫ τ

0

[
Zi(t) − s(1)(t, θ)

s(0)(t, θ)

]
λ0(t, v) exp(βT (v)Zi(t))Yi(t) dt

]

∂2Q(v, θ)/∂θ2 = −E

[∫ τ

0

{
s(2)(t, θ)

s(0)(t, θ)
−

(
s(1)(t, θ)

s(0)(t, θ)

)⊗2}

× λ0(t, v) exp(βT (v)Zi(t))Yi(t) dt

]
.

We have ∂Q(v,β(v))/∂θ = 0, and for every ε > 0 there exists an η > 0
such that sup‖θ−β(v)‖>ε Q(v, θ) < Q(v,β(v)) − η for v ∈ [a, b], under con-

dition (A.3), by Taylor expansion and continuity. Further, since Qn(v, θ)
P−→
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Q(v, θ), ∂Qn(v, θ)/∂θ
P−→ ∂Q(v, θ)/∂θ , and ∂2Qn(v, θ)/∂θ2 P−→ ∂2Q(v, θ)/

∂θ2 uniformly in (v, θ) ∈ [a, b] × [−M,M], and −M̃ < β(v) < M̃ for a ≤ v ≤ b

for some M̃ < M , we have for every α > 0 there exists an n0 such that P(−M ≤
β̂(v) ≤ M,a ≤ v ≤ b) > 1 − α for n ≥ n0.

Therefore, for every ε > 0,

P

(
sup

a≤v≤b

‖β̂(v) − β(v)‖ > ε

)

≤ α + P

(
sup

a≤v≤b

‖β̂(v) − β(v)‖ > ε,−M ≤ β̂(v) ≤ M,a ≤ v ≤ b

)
→ α

as n → ∞, by the previous checking of the conditions of Lemma A.1 together with
Qn(v, β̂(v)) ≥ Qn(v,β(v)). Since α is arbitrary, we have P(supa≤v≤b ‖β̂(v) −
β(v)‖ > ε) → 0. �

PROOF OF THEOREM 3. In the proof of this theorem, we set β = β(v) for
simplicity. Note that under Condition A, using a second-order Taylor expansion
for λ(t, u|Zi(t)) in the neighborhood of v, we have

n−1/2

∣∣∣∣∣
n∑

i=1

∫ 1

0

∫ τ

0
Kh(u − v)

[
Zi(t) − S(1)(t, β)

S(0)(t, β)

]
Yi(t)

× [λ(t, v|Zi(t)) − λ(t, u|Zi(t))]dt du

∣∣∣∣∣
= Op(n1/2h2),

uniformly in v ∈ [0,1]. It follows that

n−1/2U(v,β) = n−1/2
n∑

i=1

∫ 1

0

∫ τ

0
Kh(u − v)

[
Zi(t) − S(1)(t, β)

S(0)(t, β)

]
× [Ni(dt, du) − Yi(t)λ(t, v|Zi(t)) dt du]

= n−1/2
n∑

i=1

∫ 1

0

∫ τ

0
Kh(u − v)

[
Zi(t) − S(1)(t, β)

S(0)(t, β)

]
Mi(dt, du)

+ Op(n1/2h2),

uniformly in v ∈ [0,1].
Next, we show that for each v, n−1/2h1/2U(v,β) converges weakly to a nor-

mal distribution. By Lemma A.2, n−1/2M(t, v) converges weakly to a mean-zero
Gaussian process. By Condition A, ‖S(j)(t, β) − s(j)(t, β)‖ = op(n−1/2+δ), uni-
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formly in t for j = 0,1, for 0 < δ < 1/2. Note that n−1/2+δh−1/2 = o(1) for
δ = 1/4 as nh2 → ∞. We have h1/2Kh(u − v)‖S(j)(t, β) − s(j)(t, β)‖ goes in
probability to zero. Applying Lemma 2 of Gilbert, McKeague and Sun [5], we
have

n−1/2h1/2U(β(v))

= n−1/2h1/2
n∑

i=1

∫ 1

0

∫ τ

0
Kh(u − v)

[
Zi(t) − s(1)(t, β)

s(0)(t, β)

]
× Mi(dt, du) + Op(n1/2h5/2) + op(1)

(16)

= n−1/2h1/2
n∑

i=1

∫ 1

0

∫ τ

0
Kh(u − v)

[
Zi(t) − s(1)(t, β(u))

s(0)(t, β(u))

]
× Mi(dt, du) + Op(n1/2h5/2) + op(1)

= h1/2
∫ 1

0
Kh(u − v)W̃I (du) + Op(n1/2h5/2) + op(1),

where W̃I (v) is defined in (6) with A = I and a = 0.

Since W̃I (v)
D−→ WI(v) by Theorem 1, by the almost sure representation the-

orem ([16], page 47), there exist W̃ ∗
I (v) and W ∗

I (v) on some probability space
that have the same distributions and sample paths as W̃I (v) and WI(v), respec-
tively, such that W̃ ∗

I (v)
a.s.−→ W ∗

I (v) uniformly in v ∈ [0,1]. Hence
∫ 1

0 Kh(u −
v) W̃ ∗

I (du) = ∫ 1
0 Kh(u−v)W ∗

I (du)+Op(n−1/2h−1) by integration by parts since
K(·) has bounded variation. It follows that

h1/2
∫ 1

0
Kh(u − v)W̃I (du)

D= h1/2
∫ 1

0
Kh(u − v) W̃ ∗

I (du)

= h1/2
∫ 1

0
Kh(u − v)W ∗

I (du) + Op(n−1/2h−1/2).

Since W ∗
I (v) is a Gaussian martingale with covariance matrix of

∫ v
0 
(u)du,

and h1/2 ∫ 1
0 Kh(u − v)W ∗

I (du) is a mean-zero Gaussian random vector with co-
variance matrix equal to h

∫ 1
0 K2

h(u − v)
(u)du → ν0
(v) as h → 0. Hence,

h1/2 ∫ 1
0 Kh(u − v)W̃I (du)

D−→ N(0, ν0
(v)) as h → 0, nh → ∞. By the Slut-
sky theorem, n−1/2h1/2U(v,β) converges weakly to N(0, ν0
(v)) as nh2 → ∞
and nh5 → 0.

Note that U(β̂(v)) − U(β(v)) = l′′β(v,β∗(v))(β̂(v) − β(v)), where β∗(v) is on

the line segment between β̂(v) and β(v). By Condition A and the uniform consis-
tency of β̂(v) on v ∈ [a, b] ⊂ (0,1), we have n−1l′′β(v,β∗(v)) = −
(v) + op(1),
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uniformly in v ∈ [a, b] for 0 < δ < 1/2. Hence,

n1/2h1/2(
β̂(v) − β(v)

) = −(
l′′β(v,β∗(v))/n

)−1
n−1/2h1/2U(β(v))

(17)
= (
(v))−1n−1/2h1/2U(β(v)) + op(1),

uniformly in v ∈ [a, b]. It follows that (nh)1/2(β̂(v) − β(v))
D−→ N(0, ν0
(v)−1)

as nh2 → ∞ and nh5 → 0. �

PROOF OF THEOREM 4. From (16) and the first line of (17), we have, for
v ∈ [a, b],∫ v

a
n1/2(

β̂(u) − β(u)
)
du = −

∫ v

a
(
(u))−1

∫ 1

0
Kh(x − u)W̃I (dx) du + op(1).

Exchanging the order of integration and by the compact support of the kernel func-
tion K(·) on [−1,1], we have∫ v

a
n1/2(

β̂(u) − β(u)
)
du

= −
∫ 1

0

[∫ v

a
(
(u))−1Kh(x − u)du

]
W̃I (dx) + op(1)

= −
∫ v−h

a+h

[∫ v

a
(
(u))−1Kh(x − u)du

]
W̃I (dx)(18)

−
∫ a+h

a−h

[∫ v

a
(
(u))−1Kh(x − u)du

]
W̃I (dx)

−
∫ v+h

v−h

[∫ v

a
(
(u))−1Kh(x − u)du

]
W̃I (dx) + op(1).

By Theorem 1, the process W̃I (x) converges weakly to a mean-zero Gaussian
process with continuous paths. Under the assumption (A.4),

∫ v
a (
(u))−1Kh(x −

u)du has bounded variation and converges uniformly to 
(x)−1 for x ∈ (a +
h, v − h). By Lemma 2 of Gilbert, McKeague and Sun [5], the first term in (18) is
− ∫ v

a (
(x))−1W̃I (dx)+op(1). Similar arguments lead to the second and the third
terms in (18) to be op(1). Hence∫ v

a
n1/2(

β̂(u) − β(u)
)
du = −

∫ v

a
(
(x))−1W̃I (dx) + op(1)

= −W̃
−1(v) + op(1),

which converges weakly to a p-dimensional mean-zero Gaussian martingale,
W
(v)−1(v), with continuous paths. The covariance matrix of W
(v)−1(v) equals
to Cov(W
−1(v)) = ∫ v

a 
(u)−1
(u)
(u)−1 du = ∫ v
a 
(u)−1 du. �
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