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COVARIANCE REGULARIZATION BY THRESHOLDING

BY PETER J. BICKEL1 AND ELIZAVETA LEVINA2

University of California, Berkeley and University of Michigan

This paper considers regularizing a covariance matrix of p variables
estimated from n observations, by hard thresholding. We show that the
thresholded estimate is consistent in the operator norm as long as the true
covariance matrix is sparse in a suitable sense, the variables are Gaussian or
sub-Gaussian, and (logp)/n → 0, and obtain explicit rates. The results are
uniform over families of covariance matrices which satisfy a fairly natural no-
tion of sparsity. We discuss an intuitive resampling scheme for threshold se-
lection and prove a general cross-validation result that justifies this approach.
We also compare thresholding to other covariance estimators in simulations
and on an example from climate data.

1. Introduction. Estimation of covariance matrices is important in a number
of areas of statistical analysis, including dimension reduction by principal com-
ponent analysis (PCA), classification by linear or quadratic discriminant analysis
(LDA and QDA), establishing independence and conditional independence rela-
tions in the context of graphical models, and setting confidence intervals on linear
functions of the means of the components. In recent years, many application areas
where these tools are used have been dealing with very high-dimensional datasets,
and sample sizes can be very small relative to dimension. Examples include ge-
netic data, brain imaging, spectroscopic imaging, climate data and many others.

It is well known by now that the empirical covariance matrix for samples of
size n from a p-variate Gaussian distribution, Np(μ,�p), is not a good estimator
of the population covariance if p is large. Many results in random matrix theory
illustrate this, from the classical Marčenko–Pastur law [29] to the more recent
work of Johnstone and his students on the theory of the largest eigenvalues [12,
23, 30] and associated eigenvectors [24]. However, with the exception of a method
for estimating the covariance spectrum [11], these probabilistic results do not offer
alternatives to the sample covariance matrix.

Alternative estimators for large covariance matrices have therefore attracted a
lot of attention recently. Two broad classes of covariance estimators have emerged:
those that rely on a natural ordering among variables, and assume that variables
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far apart in the ordering are only weakly correlated, and those invariant to vari-
able permutations. The first class includes regularizing the covariance matrix by
banding or tapering [2, 3, 17], which we will discuss below. It also includes esti-
mators based on regularizing the Cholesky factor of the inverse covariance matrix.
These methods use the fact that the entries of the Cholesky factor have a regression
interpretation, which allows application of regression regularization tools such as
the lasso and ridge penalties [21], or the nested lasso penalty [28] specifically de-
signed for the ordered variables situation. Banding the Cholesky factor has also
been proposed [3, 34]. These estimators are appropriate for a number of applica-
tions with ordered data (time series, spectroscopy, climate data). For climate appli-
cations and other spatial data, since there is no total ordering on the plane, applying
the Cholesky factor methodology is problematic; but as long as there is an appro-
priate metric on variable indexes (sometimes, simple geographical distance can be
used), banding or tapering the covariance matrix can be applied.

However, there are many applications, for example, gene expression arrays,
where there is no notion of distance between variables at all. These applications
require estimators invariant under variable permutations. Shrinkage estimators are
in this category and have been proposed early on [7, 20]. More recently, Ledoit
and Wolf [26] proposed an estimator where the optimal amount of shrinkage is
estimated from data. Shrinkage estimators shrink the overdispersed sample covari-
ance eigenvalues, but they do not change the eigenvectors, which are also incon-
sistent [24], and do not result in sparse estimators. Several recent papers [5, 31, 35]
construct a sparse permutation-invariant estimate of the inverse of the covariance
matrix, also known as the concentration or precision matrix. Sparse concentration
matrices are of interest in graphical models, since zero partial correlations imply
a graph structure. The common approach of [5, 31, 35] is to add an L1 (lasso)
penalty on the entries of the concentration matrix to the normal likelihood, which
results in shrinking some of the elements of the inverse to zero. In [31], it was
shown that this method has a rate of convergence that is driven by (logp)/n and
the sparsity of the truth. Computing this estimator is nontrivial for high dimen-
sions and can be achieved either via a semidefinite programming algorithm [5, 35]
or by using the Cholesky decomposition to reparametrize the concentration ma-
trix [31], but all of these are computationally intensive. A faster algorithm that
employs the lasso was proposed by Friedman, Hastie and Tibshirani [16]. This ap-
proach has also been extended to more general penalties like SCAD [15] by Lam
and Fan [25] and Fan, Fan and Lv [14]. In specific applications, there have been
other permutation-invariant approaches that use different notions of sparsity: Zou,
Hastie and Tibshirani [36] apply the lasso penalty to loadings in PCA to achieve
sparse representation; d’Aspremont et al. [6] compute sparse principal components
by semidefinite programming; Johnstone and Lu [24] regularize PCA by moving
to a sparse basis and thresholding; and Fan, Fan and Lv [13] impose sparsity on the
covariance via a factor model, which is often appropriate in finance applications.
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In this paper, we propose thresholding of the sample covariance matrix as a sim-
ple and permutation-invariant method of covariance regularization. This idea has
been simultaneously and independently developed by El Karoui [10], who studied
it under a special notion of sparsity called β-sparsity (see details in Section 2.4).
Here we develop a natural permutation-invariant notion of sparsity which, though
more specialized than El Karoui’s, seems easier to analyze and parallels the treat-
ment in [3] which defines a class of models where banding is appropriate. Bickel
and Levina [3] showed that, uniformly over the class of approximately “bandable”
matrices, the banded estimator is consistent in the operator norm (also known as
the matrix 2-norm, or spectral norm) for Gaussian data as long as (logp)/n → 0.

Here we show consistency of the thresholded estimator in the operator norm,
uniformly over the class of matrices that satisfy our notion of sparsity, as long
as (logp)/n → 0, and obtain explicit rates of convergence. There are various ar-
guments to show that convergence in the operator norm implies convergence of
eigenvalues and eigenvectors [3, 10], so this norm is particularly appropriate for
PCA applications. The rate we obtain is slightly worse than the rate of banding
when the variables are ordered, but the difference is not sharp. This is expected,
since in the situation when variables are ordered, banding takes advantage of the
underlying true structure. Thresholding, on the other hand, is applicable to many
more situations. In fact, our treatment is in many respects similar to the pioneer-
ing work on thresholding of Donoho and Johnstone [8] and the recent work of
Johnstone and Silverman [22] and Abramovich et al. [1].

The rest of this paper is organized as follows. In Section 2 we introduce the
thresholding estimator and our notion of sparsity, prove the convergence result
and compare to results of El Karoui (Section 2.4) and to banding (Section 2.5). In
Section 3, we discuss a cross-validation approach to threshold selection, which is
novel in this context, and prove a cross-validation result of general interest. Sec-
tion 4 gives simulations comparing several permutation-invariant estimators and
banding. Section 5 gives an example of thresholding estimator applied to climate
data and Section 6 gives a brief discussion. The Appendix contains more technical
proofs.

2. Asymptotic results for thresholding. We start by setting up notation. We
write λmax(M) = λ1(M) ≥ · · · ≥ λp(M) = λmin(M) for the eigenvalues of a ma-
trix M . Following the notation of [3], we define, for any 0 ≤ r, s ≤ ∞ and a p × p

matrix M ,

‖M‖(r,s) ≡ sup{‖Mx‖s :‖x‖r = 1},(1)

where ‖x‖r
r = ∑p

j=1 |xj |r . In particular, we write ‖M‖ = ‖M‖(2,2) for the operator
norm, which for a symmetric matrix is given by

‖M‖ = max
1≤j≤p

|λj (M)|.
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For symmetric matrices, we have (see, e.g., [18])

‖M‖ ≤ (‖M‖(1,1)‖M‖(∞,∞)

)1/2 = ‖M‖(1,1) = max
j

∑
i

|mij |.(2)

We also use the Frobenius matrix norm,

‖M‖2
F = ∑

i,j

m2
ij = tr(MMT ).

We define the thresholding operator by

Ts(M) = [mij 1(|mij | ≥ s)],(3)

which we refer to as M thresholded at s. Note that Ts preserves symmetry and is
invariant under permutations of variable labels, but does not necessarily preserve
positive definiteness. However, if

‖Ts − T0‖ ≤ ε and λmin(M) > ε,(4)

then Ts(M) is necessarily positive definite, since for all vectors v with ‖v‖2 = 1
we have vT TsMv ≥ vT Mv − ε ≥ λmin(M) − ε > 0.

2.1. A uniformity class of covariance matrices. Recall that the banding oper-
ator was defined in [3] as Bk(M) = [mij 1(|i − j | ≤ k)]. The uniformity class of
“approximately bandable” covariance matrices is defined by

U(ε0, α,C) =
{
� : max

j

∑
i

{|σij | : |i − j | > k} ≤ Ck−α for all k > 0,

(5)

and 0 < ε0 ≤ λmin(�) ≤ λmax(�) ≤ 1/ε0

}
.

Here we define the uniformity class of covariance matrices invariant under permu-
tations by

Uτ (q, c0(p),M) =
{
� :σii ≤ M,

p∑
j=1

|σij |q ≤ c0(p), for all i

}
,

for 0 ≤ q < 1. Thus, if q = 0,

Uτ (0, c0(p),M) =
{
� :σii ≤ M,

p∑
j=1

1(σij �= 0) ≤ c0(p)

}
,

a class of sparse matrices. We will mainly write c0 for c0(p) in the future. Note
that

λmax(�) ≤ max
i

∑
j

|σij | ≤ M1−qc0(p),
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by the bound (2). Thus, if we define,

Uτ (q, c0(p),M,ε0) = {� :� ∈ Uτ (q, c0(p),M) and λmin(�) ≥ ε0 > 0},
we have a class analogous to (5).

Naturally, there is a class of covariance matrices that satisfies both banding and
thresholding conditions. Define a subclass of U(ε0, α,C) by

V(ε0, α,C) = {
� : |σij | ≤ C|i − j |−(α+1), for all i, j : |i − j | ≥ 1,

and 0 < ε0 ≤ λmin(�) ≤ λmax(�) ≤ 1/ε0
}
.

for α > 0. Evidently,

V(ε,α,C) ⊂ U(ε0, α,C1)

for C1 ≤ C(1 + 1/α).
On the other hand, � ∈ V(ε0, α,C) implies

∑
j

|σij |q ≤ ε
−q
0 + C

(α + 1)q

(α + 1)q − 1
,

so that for a suitable choice of c0 and M ,

V(ε0, α,C) ⊂ Uτ (q, c0,M)

for q > 1
α+1 .

2.2. Main result. Suppose we observe n i.i.d. p-dimensional observations
X1, . . . ,Xn distributed according to a distribution F , with EX = 0 (without loss
of generality), and E(XXT ) = �. We define the empirical (sample) covariance
matrix by

�̂ = 1

n

n∑
k=1

(Xk − X̄)(Xk − X̄)T ,(6)

where X̄ = n−1 ∑n
k=1 Xk , and write �̂ = [σ̂ij ].

We have the following result which parallels the banding result (Theorem 1) of
Bickel and Levina [3].

THEOREM 1. Suppose F is Gaussian. Then, uniformly on Uτ (q, c0(p),M),
for sufficiently large M ′, if

tn = M ′
√

logp

n
(7)

and logp
n

= o(1), then

‖Ttn(�̂) − �‖ = OP

(
c0(p)

(
logp

n

)(1−q)/2)
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and uniformly on Uτ (q, c0(p),M,ε0),

‖(Ttn(�̂))−1 − �−1‖ = OP

(
c0(p)

(
logp

n

)(1−q)/2)
.

PROOF. Recall that, without loss of generality, we assumed EX = 0. Begin
with the decomposition,

�̂ = �̂0 − X̄X̄T ,(8)

where

�̂0 ≡ [σ̂ 0
ij ] = 1

n

n∑
k=1

XkXT
k .

Note that, by (8),

max
i,j

|σ̂ij − σij | ≤ max
i,j

|σ̂ 0
ij − σij | + max

i,j
|X̄iX̄j |.(9)

By a result of Saulis and Statulevičius [32] adapted for this context in Lemma 3
of [3], and σii ≤ M for all i,

P

[
max
i,j

|σ̂ 0
ij − σij | ≥ t

]
≤ p2C1e

−C2nt2
,(10)

for |t | < δ, where C1, C2 and δ are constants depending only on M . In particu-
lar, (10) holds if t = o(1).

For the second term in (9), we have, by the union sum inequality, the Gaussian
tail inequality and σii ≤ M for all i,

P

[
max

i
|X̄i |2 ≥ t

]
≤ pC3e

−C4nt .(11)

Combining (10) and (11), we see that if logp
n

→ 0 and t = tn is given by (7),
then for M ′ sufficiently large,

max
i,j

|σ̂ij − σij | = OP

(√
logp

n

)
.(12)

We now recap an argument of Donoho and Johnstone [8]. Bound

‖Tt (�̂) − �‖ ≤ ‖Tt (�) − �‖ + ‖Tt (�̂) − Tt (�)‖.
The first term above is bounded by

max
i

p∑
j=1

|σij |1(|σij | ≤ t) ≤ t1−qc0(p).(13)
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On the other hand,

‖Tt (�̂) − Tt (�)‖

≤ max
i

p∑
j=1

|σ̂ij |1(|σ̂ij | ≥ t, |σij | < t)

+ max
i

p∑
j=1

|σij |1(|σ̂ij | < t, |σij | ≥ t)(14)

+ max
i

p∑
j=1

|σ̂ij − σij |1(|σ̂ij | ≥ t, |σij | ≥ t)

= I + II + III.

Using (12), we have

III ≤ max
i,j

|σ̂ij − σij |max
i

p∑
j=1

|σij |q t−q = OP

(
c0(p)t−q

√
logp

n

)
.

To bound term I, write

I ≤ max
i

p∑
j=1

|σ̂ij − σij |1(|σ̂ij | ≥ t, |σij | < t) + max
i

p∑
j=1

|σij |1(|σij | < t)

(15)
≤ IV + V.

By (13),

V ≤ t1−qc0(p).(16)

Now take γ ∈ (0,1). Then,

IV ≤ max
i

p∑
j=1

|σ̂ij − σij |1(|σ̂ij | ≥ t, |σij | ≤ γ t)

+ max
i

p∑
j=1

|σ̂ij − σij |1(|σ̂ij | > t, γ t < |σij | < t)(17)

≤ max
i,j

|σ̂ij − σij |max
i

Ni(1 − γ ) + c0(p)(γ t)−q max
i,j

|σ̂ij − σij |,

where Ni(a) ≡ ∑p
j=1 1(|σ̂ij − σij | > at). Note that, for some δ > 0,

P

[
max

i
Ni(1 − γ ) > 0

]
= P

[
max
i,j

|σ̂ij − σij | > (1 − γ )t

]
(18)

≤ p2e−nδ(1−γ )2t2
,
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if t = o(1), uniformly on U. By (18) and (16), and 0 < γ < 1, if

2 logp − nδt2 → −∞,(19)

then

IV = OP

(
c0(p)t−q

√
logp

n

)
(20)

and, by (9) and (13),

I = OP

(
c0(p)t−q

√
logp

n
+ c0(p)t1−q

)
.(21)

For term II, we have

II ≤ max
i

p∑
j=1

[|σ̂ij − σij | + |σ̂ij |]1(|σ̂ij | < t, |σij | ≥ t)

≤ max
i,j

|σ̂ij − σij |
p∑

j=1

1(|σij | ≥ t) + t max
i

p∑
j=1

1(|σij | ≥ t)(22)

= OP

(
c0(p)t−q

√
logp

n
+ c0(p)t1−q

)
.

Combining (21) and (22) and choosing t as in (7) establishes the first claim of the
theorem. The second claim follows since

‖[Ttn(�̂)]−1 − �−1‖ = �P (‖Ttn(�̂) − �‖)
uniformly on Uτ (q, c0(p),M,ε0), where A = �P (B) means A = OP (B) and
B = OP (A). �

THEOREM 2. Suppose F is Gaussian. Then, uniformly on Uτ (q, c0(p),M),

if t = M ′
√

logp
n

and M ′ is sufficiently large,

1

p
‖Tt (�̂) − �‖2

F = OP

(
c0(p)

(
logp

n

)1−q/2)
.(23)

An analogous result holds for the inverse on Uτ (q, c0(p),M,ε0). The proof of
Theorem 2 is similar to the proof of Theorem 1 and can be found in the Appendix.

2.3. The non-Gaussian case. We consider two cases here. If, for some η > 0,

Ee
tX2

ij ≤ K < ∞ for all |t | ≤ ηj , for all i, j,
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then the proof goes through verbatim, since result (10) still holds. The bound on
maxi |X̄i |2 will always be at least the squared rate of maxi,j |σ̂ij − σij |, hence we
do not need normality for (11).

In the second case, if we have, for some γ > 0,

E|Xij |2(1+γ ) ≤ K for all i, j,

then by Markov’s inequality

P [|σ̂ij − σij | ≥ t] ≤ KC(γ )
n−(1+γ )/2

t1+γ
.(24)

Thus the bound (10) becomes

p2KC(γ )
n−(1+γ )/2

t1+γ

and hence,

max
i,j

|σ̂ 0
ij − σij | = OP

(
p2/(1+γ )

n1/2

)
.

Therefore, taking tn = M
p2/(1+γ )

n1/2 , we find that

‖Ttn(�̂) − �‖ = OP

(
c0(p)

(
p2/(1+γ )

n1/2

)1−q)
,(25)

which is, we expect, minimax though this needs to be checked.

2.4. Comparison to thresholding results of El Karoui. El Karoui [10] shows
as a special case that if:

(i) E|Xj |r < ∞ for all r , 1 ≤ j ≤ p,
(ii) σjj ≤ M < ∞ for all j ,

(iii) if σij �= 0, |σij | > Cn−α0,0 < α0 < 1
2 − δ0 < 1

2 ,
(iv) � is β-sparse, β = 1

2 − η, η > 0,
(v) p

n
→ c ∈ (0,∞),

then, if tn = Cn−α , α = 1
2 − δ0 > α0,

‖Ttn(�̂) − �‖ a.s.−→0.(26)

El Karoui’s notion of β-sparsity is such that our case q = 0 is β-sparse with
c0(p) = Kpβ . Our results yield a rate of

OP

(
pβ+2/(1+γ )

n1/2

)

for γ arbitrarily large. Since β < 1
2 by assumption and p � n we see that our

result implies (26) under (i), (ii), (iv), (v) and our notion of sparsity. Thus, our
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result is stronger than his in the all moments case, again under our stronger notion
of sparsity. El Karoui’s full result, in fact, couples a maximal value of r in (i) with
the largest possible value of β . Unfortunately, this coupling involves (iii) which
we do not require. Nevertheless, his result implies the corresponding consistency
results of ours, if (iii) is ignored, when only existence of a finite set of moments is
assumed. However, according to El Karoui (personal communication), (iii) is not
needed for (26) in the case when our sparsity condition holds.

2.5. Comparison to banding results of Bickel and Levina. Comparison is read-
ily possible on V(ε0, α,C). By Theorem 1 of [3] the best rate achievable using
banding is

OP

((
logp

n

)α/(2(α+1)))
.

On the other hand, by our Theorem 1, thresholding yields

OP

((
logp

n

)(1−q)/2)

for q > 1
α+1 . Comparing exponents, we see that banding is slightly better in the

situation where labels are meaningful, since we must have

1 − q <
α

α + 1
.

However, since 1 − q can be arbitrarily close to α
α+1 the difference is not sharp.

Not surprisingly, as α → ∞, the genuinely sparse case, the bounds both approach
(

logp
n

)1/2.

3. Choice of threshold. The question of threshold selection seems to be hard
to answer analytically. In fact, the σ̂ij have variances which depend on the distri-
bution of (Xi,Xj ) through higher-order moments so it may in fact make sense to
threshold differentially. We conjecture that this would not make much difference
if we assume second and fourth moments bounded above and below. Ignoring this
issue, we propose a cross-validation method analogous to the one used by Bickel
and Levina [3] but made using the Frobenius metric which enables us to partly
analyze it.

3.1. Method. Split the sample randomly into two pieces of size n1 and n2
where a choice to be “justified” theoretically is n1 = n(1 − 1

logn
), n2 = n

logn
and

repeat this N times. Let �̂1,ν , �̂2,ν be the empirical covariance matrices based on
the n1 and n2 observations, respectively, from the νth split. Form

R̂(s) = 1

N

N∑
ν=1

‖Ts(�̂1,ν) − �̂2,ν‖2
F(27)
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and choose ŝ to minimize R̂(s) (in practice for s ≥ εn → 0, εn � logp
n

). We will
show that, under the conditions of Theorem 2,

1

p
‖Tŝ(�̂) − �‖2

F = OP

[(
logp

n

)1−q/2

c0(p)

]
,(28)

uniformly on Uτ (q, c0(p),M) for q > 0. Claim (28) is weaker than the desired

‖Tŝ(�̂) − �‖2
(2,2) = OP

[(
logp

n

)1−q

c0(p)

]
,(29)

in terms of the norm, though the left-hand side of (28), the average of a set of eigen-
values, can be viewed as a reasonable proxy for the operator norm, the maximum
of the same set of eigenvalues.

We begin with two essential technical results of independent interest.

3.2. An inequality. We note an inequality derivable from a classic one of
Pinelis—see [33], for instance.

PROPOSITION 1. Let U1, . . . ,Un be i.i.d. p-variate vectors with E|U1|2 ≤ K ,
EU1 = 0. Let v1, . . . ,vJ be fixed p-variate vectors of length 1. Define for x ∈ Rp

‖x‖v = max
1≤j≤J

|vT
j x|.

Then,

E

∥∥∥∥∥
n∑

i=1

Ui

∥∥∥∥∥
2

v

≤ Cn logJE‖U1‖2
v,(30)

where C is an absolute constant.

PROOF. By symmetrization,

E

∥∥∥∥∥
n∑

i=1

Ui

∥∥∥∥∥
2

v

≤ 2E max
j

(
n∑

i=1

εi |(Ui − U′
i )

T vj |
)2

,

where U′
i are i.i.d. as Ui and independent of Ui , and {εi} are ±1 with probability

1/2 and independent of |(Ui − U′
i )

T vj |. Let

Wij = |(Ui − U′
i )

T vj |, aij = Wij

(
∑n

i=1 W 2
ij )

1/2
.
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Then,

E max
1≤j≤J

(
n∑

i=1

εiWij

)2

≤ E

{
E

[
max

1≤j≤J

(
n∑

i=1

aij εi

)2∣∣∣{Wij : 1 ≤ i ≤ n,1 ≤ j ≤ J }
]

max
1≤j≤J

n∑
i=1

W 2
ij

}

≤ Cn logJE max
1≤j≤J

n∑
i=1

W 2
ij ,

by Pinelis’ inequality [33]. Thus

E max
1≤j≤J

(
n∑

i=1

εiWij

)2

≤ Cn logJE max
1≤j≤J

(
(Ui − U′

i)
T vj

)2

≤ 2Cn logJE max
1≤j≤J

(UT
1 vj )

2. �

3.3. A general result on V -fold cross-validation. We will prove our result for
N = 1 in (27). The nature of our argument in Theorem 3 is such that it is fairly
easy to see that it applies to each term of the sum in (27) and thus holds not just
for the “sample splitting” (N = 1) procedure, but also for the general 2-fold cross-
validation procedure that is given by (27), and in fact for more general V -fold
cross-validation procedures.

Let W1, . . . ,Wn+B be i.i.d. Q-variate vectors with distribution P , with EP W ≡
μ(P ). Let μ̂j , 1 ≤ j ≤ J be estimates of μ based on W1, . . . ,Wn. For conve-

nience, in this section we write |x|2 = ‖x‖2
2 = ∑Q

j=1 x2
j and (x,y) = xT y. Let

L(μ,d) = |μ − d|2.
The oracle estimate μ̂o is defined by

μ̂o ≡ arg min
j

|μ(P ) − μ̂j |2.

The sample splitting estimate μ̂c is defined as follows. Let

W̄B = 1

B

B∑
j=1

Wn+j .

Then,

μ̂c ≡ arg min
j

|W̄B − μ̂j |2.

Here is our basic result which has in some form appeared in Gyorfi et al. ([19],
Chapter 7, Theorem 7.1, page 101), Bickel, Ritov and Zakai [4] and Dudoit and
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van der Laan [9]. The major public proof in [19] appears to be in error and does not
directly apply to our case so we give the proof of our statement for completeness.

THEOREM 3. Suppose:

(A1) |μ̂o − μ(P )|2 = �p(rn);
(A2) EP max1≤j≤J |(vj ,W1 − μ)|2 ≤ Cρ(J ) for any set v1, . . . ,vJ of unit vec-

tors in R
Q;

(A3) ρ(Jn)
logJn

Bn
= o(rn).

Then,

|μ̂c − μ(P )|2 = |μ̂o − μ(P )|2(
1 + oP (1)

) = �P (rn),(31)

where A = �P (B) means that A = OP (B) and B = OP (A).

We identify suitable Jn and Bn in our discussion of Theorem 4.

PROOF OF THEOREM 3. By definition, writing μ ≡ μ(P ),

|μ̂c − W̄B |2 ≤ |μ̂o − W̄B |2,(32)

which is equivalent to

2(μ̂c − μ̂0
,W̄B − μ) ≥ |μ̂c − μ|2 − |μ̂o − μ|2.(33)

But,

|(μ̂c − μ̂o
,W̄B − μ)| ≤ |(μ̂c − μ,W̄B − μ)| + |(μ̂o − μ,W̄B − μ)|.(34)

Now, let

ν̂j = μ̂j − μ

|μ̂j − μ| .

Then we have

|(μ̂c − μ,W̄B − μ)| ≤ |μ̂c − μ| max
1≤j≤J

|(ν̂j ,W̄B − μ)|,(35)

and similarly for the other term. Now, by Proposition 1 and assumption (A2),

E max
1≤j≤J

|(ν̂j ,W̄B − μ)|2 ≤ C
logJ

B
ρ(J ),(36)

where C is used generically. Therefore, after some algebra and Cauchy–Schwarz,
by (32),

|μ̂c − μ|2 ≤ OP

(
log1/2 J

B1/2 ρ1/2(J )

)
(|μ̂c − μ| + |μ̂o − μ|) + |μ̂o − μ|2.(37)
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Letting |μ̂c − μ|2 = an, we can rewrite (33) as

an ≤ C
log1/2 J

B1/2 ρ1/2(J )(a1/2
n + r1/2

n ) + rn,(38)

with probability 1 − ε(C), with ε(C) → 0 as C → ∞. Using (iii),

an ≤ a1/2
n oP (r1/2

n ) + rn
(
1 + oP (1)

)
.

But by definition,

an ≥ rn

and hence,

a1/2
n ≤ oP (r1/2

n ) + r1/2
n

(
1 + oP (1)

)
and the theorem follows. �

We proceed to show the relevance of Theorem 3 in our context. As we indicated,
it is enough to consider N = 1, and for convenience write the observations as

X1, . . . ,Xm, . . . ,Xm+B,

where n = m + B . Form �̂1 and �̂2, the sample covariances of X1, . . . ,Xm and
Xm+1, . . . ,Xm+B , respectively, and the estimates To(�̂), Tŝ(�̂) corresponding to
the oracle and statistician. By Theorem 2, it is clear that for all � ∈ Uτ ,

‖To(�̂) − �‖2
F = OP

(
c0(p)p

(
logp

n

)1−q/2)
(39)

and the same holds for To(�̂
0), the oracle estimate applied to the covariance matrix

computed with known means.
Let the optimizing ŝ and the oracle s be, in fact, obtained by searching over

a grid {j
√

logp
n

: 0 ≤ j ≤ Jn}. For selected � ∈ Uτ , OP in (39) can be turned

into �P . To see this, consider, for example, σii = 1, σij = ε|i − j |−(α+1) for
i �= j . For ε > 0 sufficiently small, this matrix is positive definite and we can
take the right-hand side of (39) to be rn ≡ Kc0(p)p(

logp
n

)1−q/2 for some K .

For t = M ′
√

logp
n

and M ′ sufficiently large, we know that (42) holds as an iden-
tity, which yields a contribution of at least rn. The remaining terms in the risk
for Tt (�̂) can only increase it. The same holds for �̂0. For � such as this with
inft ‖Tt (�̂) − �‖2

F = inft ‖Tt (�̂
0) − �‖2

F = rn, we can state the following theo-
rem. For simplicity of notation, in what follows we assume c0(p) ≡ c0 < ∞. The
general case follows by simply rescaling �̂ by c0(p).
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THEOREM 4. Suppose Xi are Gaussian, � ∈ Uτ (q, c0(p),M), and OP =
�P in (39). Then, if Bn = nε(n,p), (logJ )3 = o(nq/2c0(p)(logp)1−q/2ε(n,p)),
then

‖Tŝ(�̂) − �‖F = ‖To(�̂) − �‖F

(
1 + oP (1)

)
.(40)

Thus, sup{‖Tŝ(�̂) − �‖2
F :� ∈ Uτ (q, c0(p),M)} = Kc0(p)p(

logp
n

)1−q/2, which
is the optimal rate for the oracle as well.

The proof of Theorem 4, which consists of several lemmas that allow us to apply
the general Theorem 3, is given in the Appendix.

NOTES. 1. Evidently, with ε(n,p) ∼ (logn)−1 we can take J ∼ nκ , for any
κ < ∞ if q > 0, and if p ∼ nδ , even if q = 0.

2. Similar results can be obtained for banding.
3. The assumption of Gaussianity can be relaxed. By applying Corollary

4.10 from Ledoux [27], we can include distributions F of X = Aε, where ε =
(ε1, . . . , εp)T and the εj are i.i.d. |εj | ≤ c < ∞ (thanks to N. El Karoui for point-
ing this out).

4. Simulation results. The simulation results we present focus on comparing
banding, thresholding, and two more permutation-invariant estimators: the sample
covariance and the shrinkage estimator of Ledoit and Wolf [26]. We consider the
AR(1) population covariance model,

� = [σij ] = [
ρ|i−j |](41)

with ρ = 0.7. The value of 0.7 was chosen so that the matrix is not very sparse
(as would be the case with ρ ≤ 0.5) but does have a fair number of very small
entries (which would not be the case with ρ close to 1). For banding, we show
results for the variables in their “correct” order, and permuted at random. All other
estimators are invariant to variable permutations, so their results are the same for
both of these scenarios. We consider three values of p = 30,100,200 and the
sample size is fixed at n = 100.

Table 1 shows average losses and standard deviations over 100 replications,
as measured by three different matrix norms (matrix 1-norm which we denote
‖ · ‖(1,1), operator and Frobenius norms). We also report the absolute difference in
the largest eigenvalue, |λmax(�̂) − λmax(�)|, and the absolute value of the cosine
of the angle between the estimated and true eigenvectors corresponding to the
first eigenvalue. This assesses how accurate each of the estimators would be in
estimating the first principal component.

The results in Table 1 show what one would expect: when banding is given the
correct order of variables, it performs better than thresholding, since it is taking
advantage of the underlying structure. When banding is given the variables in the
wrong order, it performs poorly, often worse than the sample covariance matrix,
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TABLE 1
Averages and standard errors over 100 replications of performance measures for AR(1) with

ρ = 0.7

p Sample Ledoit–Wolf Banding Banding perm. Thresholding

Matrix 1-norm

30 3.87(0.07) 3.36(0.05) 2.54(0.05) 3.85(0.07) 3.28(0.05)

100 11.46(0.09) 7.99(0.05) 3.13(0.04) 5.05(0.01) 4.61(0.04)

200 22.00(0.14) 11.82(0.06) 3.34(0.03) 5.09(0.01) 4.99(0.01)

Operator norm

30 1.95(0.04) 1.69(0.03) 1.38(0.03) 1.92(0.04) 1.90(0.04)

100 4.16(0.05) 3.06(0.02) 1.68(0.02) 4.63(0.003) 3.15(0.03)

200 6.68(0.06) 3.80(0.01) 1.80(0.02) 4.67(0.002) 3.64(0.02)

Frobenius norm

30 3.19(0.04) 2.89(0.03) 2.42(0.03) 3.21(0.04) 3.42(0.03)

100 10.23(0.04) 8.16(0.02) 4.60(0.02) 13.80(0.001) 8.73(0.03)

200 20.24(0.05) 14.02(0.02) 6.61(0.03) 19.61(0.001) 13.79(0.03)

Abs. difference between true and estimated largest eigenvalue

30 0.91(0.06) 0.46(0.04) 0.52(0.04) 0.84(0.06) 0.74(0.05)

100 2.86(0.06) 0.43(0.03) 0.38(0.03) 4.24(0.01) 1.07(0.05)

200 5.21(0.07) 0.42(0.03) 0.31(0.02) 4.23(0.01) 1.15(0.04)

Abs. cosine of the angle between true and estimated 1st PC

30 0.77(0.03) 0.77(0.03) 0.81(0.01) 0.76(0.03) 0.70(0.02)

100 0.37(0.02) 0.37(0.02) 0.42(0.02) 0.10(0.004) 0.28(0.01)

200 0.27(0.02) 0.27(0.02) 0.26(0.01) 0.06(0.003) 0.18(0.01)

and then thresholding is a much better choice. The Ledoit–Wolf estimator performs
worse than thresholding by most measures, although it does well on estimating the
largest eigenvalue. Note that the eigenvectors of the Ledoit–Wolf estimator are
equal to the sample covariance eigenvectors.

Table 2 shows the band width selected by the cross-validation procedure on
correct and permuted orderings, and the threshold selection. Note that banding in
permuted order always selects a diagonal model for both p = 100 and p = 200,

TABLE 2
Averages and standard errors over 100 replications of selected band width and threshold

p Banding k Banding perm. k Threshold t

30 4.36(0.07) 24.57(0.14) 0.33(0.004)
100 4.27(0.05) 0.00(0) 0.49(0.002)
200 4.22(0.04) 0.00(0) 0.55(0.001)
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and keeps almost all the entries at p = 30, both of which result in bad estimators.
The selected threshold increases with dimension, which is expected since in higher
dimensions one would need to regularize more. The selected band width also goes
down with dimension (the decrease on our range of p’s is not very large, but results
over a wider range of dimensions in [3] show the same pattern more clearly).

Figure 1 shows scree plots of the true eigenvalues and means, 2.5% and 97.5%
percentiles of the estimates over 100 replications for p = 100. Interestingly, the
results show that the sample covariance is very bad at estimating the leading eigen-
values, but better than thresholding on the middle part of the spectrum. The leading
eigenvalues, however, are more important in applications like PCA. The Ledoit–
Wolf estimator does better on eigenvalues than on overall loss measures in Table 1.
Banding in the correct order appears to do best on estimating the spectrum. For il-
lustration purposes, scree plots from a single randomly selected realization are
shown in Figure 2.

5. Climate data example. In this section, we illustrate the performance of
the thresholded covariance estimator by applying it to climate data. The data are
monthly mean temperatures recorded from January 1850 to June 2006; only the
January data were used in the analysis below (157 observations). The region cov-
ered by the total of 2592 recording stations extends from −177.5 to 177.5 degrees
longitude, and from −87.5 to 87.5 latitude. Not all the stations were in place for
the entire period of 157 years; we do not impute the missing data in any way,
but instead simply calculate spatial covariance from all the years available for any
given pair of stations.

EOFs (empirical orthogonal functions) are frequently used in spatio-temporal
statistics to represent patterns in spatial data. They are simply the principal com-
ponents of the spatial covariance matrix, where observations over time are used as
replications to calculate covariance between different spatial locations. EOFs are
typically represented by spatial contour plots, which provide a visual illustration
of which regions contribute the most to which principal components.

The plots in Figures 3 and 4 show the contour plots of the first four EOFs ob-
tained, respectively, from the spatial sample covariance matrix (regular PCA), and
from the thresholded spatial covariance matrix. We see that with thresholding, the
first EOF essentially corresponds to Eurasia, and the second to North America,
which the climate scientists agree should be separate. The regular PCA does not
separate the continents. Ideal separation would be achieved if the estimator was
block-diagonal (no nonzero correlations between North America and Eurasia). The
thresholding estimator is in fact not block-diagonal, but does set enough correla-
tions to zero to achieve effective separation of two continents in the EOFs. We
also note that in this case the thresholding estimator does have some small nega-
tive eigenvalues, but they correspond to a negligible fraction of variance.

6. Summary and discussion. We have proposed and analyzed a regulariza-
tion by thresholding approach to estimation of large covariance matrices. One of its
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FIG. 1. Scree plots: the mean estimated eigenvalues, their 2.5% and 97.5% percentiles, and the
truth.
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FIG. 2. Scree plot of single realization.

biggest advantages is its simplicity—hard thresholding carries no computational
burden, unlike many other methods for covariance regularization. A potential dis-
advantage is the loss of positive definiteness—but since we show that for a suitably
sparse class of matrices the estimator is consistent as long as (logp)/n → 0, the
estimator will be positive definite with probability tending to 1. We show consis-
tency in the operator norm, which guarantees consistency for principal compo-
nents, hence we expect that PCA will be one of the most important applications of
the method.

We have also provided theoretical justification for the cross-validation approach
to selecting the threshold. While it was formulated in the context of hard thresh-
olding, the general result is much more widely applicable; in particular, it applies
to other covariance estimation methods that depend on selecting the tuning para-
meter, such as [3, 21, 28, 31] and others.

APPENDIX: ADDITIONAL PROOFS

PROOF OF THEOREM 2. The proof is essentially the same as for Theorem 1.
We need to bound ∑

a,b

(
σ̂ab1(|σ̂ab| ≥ t) − σab

)2
.
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FIG. 3. First two EOFs for the January temperature data obtained from regular PCA.

As before, ∑
a,b

σ 2
ab1(|σab| < t) ≤ t2−qpc0(p).(42)



COVARIANCE THRESHOLDING 2597

FIG. 4. First two EOFs for the January temperature data obtained from PCA on the thresholded
covariance matrix.
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Similarly, for instance, the analogue of term III is

∑
a,b

(σ̂ab − σab)
21(|σ̂ab| ≥ t, |σab| ≥ t) ≤ t−qpc0(p)

logp

n

(
1 + oP (1)

)
(43)

= OP

(
pc0(p)

(
logp

n

)1−q/2)
.

The only new type of term arises in the analogue of term I. Note that∑
a,b

σ̂ 2
ab1(|σ̂ab| ≥ t, |σab| < t)

≤ pc0(p)t2−q + ∑
a,b

|σ̂ 2
ab − σ 2

ab|1(|σ̂ab| ≥ t, |σab| < t).

The second term is bounded by

�a,b|σ̂ 2
ab − σ 2

ab|1
(
t ≤ |σ̂ab| ≤ (1 + ε)t, |σab| < t

)
(44)

+ �a,b|σ̂ 2
ab − σ 2

ab|1
(|σ̂ab| > (1 + ε)t, |σab| < t

)
.

The second term in (44) is 0 with probability tending to 1. The first is bounded by

�a,b|σ̂ 2
ab − σ 2

ab|1
(
t ≤ |σ̂ab| ≤ (1 + ε)t, |σab| ≤ γ1t

)
(45)

+ �a,b|σ̂ 2
ab − σ 2

ab|1
(
t ≤ |σ̂ab| ≤ (1 + ε)t, γ1t < |σab| < t

)
,

where γ1 ∈ (0,1). Again, the first term in (45) is 0 with probability tending to 1
and the second is bounded by

(1 + ε)t2c0(p)pγ
−q
1 t−q

since

max
a,b

|σ̂ 2
ab − σ 2

ab| ≤ max
a,b

|σ̂ab + σab|max
a,b

|σ̂ab − σab|.

The theorem follows by putting (42), (43) and the other remainder terms to-
gether. It is clear from the argument that, by restricting the result from the class
Uτ (q, c0(p),M) to properly chosen �’s, we can change OP into �P . �

We need the following lemmas to apply Theorem 3 to the special case of Theo-
rem 4. Let

Wi ≡ {[
X(i)

a X
(i)
b

]
,1 ≤ a, b ≤ p

}
where Xi ≡ (X

(i)
1 , . . . ,X

(i)
p )T , so that Q = p2.
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LEMMA A.1. Suppose � ∈ Uτ (q, c0,M), V = [vab] is symmetric p × p,
‖V ‖F = 1 and F is Gaussian. Then,

Var

(∑
a,b

vabX
(1)
a X

(1)
b

)
≤ pC1(q, c0,M),

E

(∑
a,b

vabX̄aX̄b

)2

≤ p

B2 C2(q, c0,M).

PROOF. By Wick’s theorem, E(XaXbXcXd) = σabσcd + σacσbd + σadσbc.
Then for any V = [vab] as above,

E

(∑
a,b

vab

(
X(1)

a X
(1)
b − σab

))2

= ∑
a,b,c,d

vabvcd(σacσbd + σadσbc).(46)

The two terms are equal because vab = vba . Consider the first term. Write∣∣∣∣∣
∑

a,b,c,d

vabvcdσacσbd

∣∣∣∣∣ =
∣∣∣∣∣
∑
a,d

(∑
c

σacvcd

)(∑
b

σbdvab

)∣∣∣∣∣
≤ ∑

a,d

(∑
c

σ 2
ac

)1/2(∑
c

v2
cd

)1/2(∑
b

σ 2
bd

)1/2(∑
b

v2
ab

)1/2

≤ M2−qc0

(∑
a

(∑
b

v2
ab

)1/2)2

≤ M2−qc0p,

where we used ∑
c

σ 2
ac ≤ max

a,c
|σac|2−q

∑
c

|σac|q ≤ M2−qc0.

Similarly,

E

(∑
a,b

vabX̄aX̄b

)2

= 1

B4 E

( ∑
a,b,c,d,j,k,l,m

vabvcdX(j)
a X

(k)
b X(l)

c X
(m)
d

)

= 1

B3

∑
a,b,c,d

vabvcd(σacσbd + σadσbc) + 1

B2

∑
a,b,c,d

vabvcdσabσcd .

The first term is the same as (46). The second term is(∑
a,b

vabσab

)2

≤
(∑

a

(∑
b

σ 2
ab

)1/2(∑
b

v2
ab

)1/2)2

≤ M2−qpc0
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and Lemma A.1 follows. �

LEMMA A.2. Suppose � ∈ Uτ (q, c0,M), V is symmetric p × p, ‖V ‖F = 1,
�̂0

1 = [XaX
T
b ] and F is Gaussian. Let � = P�P T be the eigendecomposition of

�, and |γ1| ≥ |γ2| ≥ · · · be the eigenvalues of

S = �1/2P T V P�1/2.

Then,

P

[
p−1/2

∣∣∣∣∣tr(V �̂0
1) −

p∑
j=1

γj

∣∣∣∣∣ ≥ t

]
≤ Ke−δt (1+o(1))(47)

for t → ∞, K = K(q, c0,M) > 0, δ = δ(q, c0,M) > 0.

PROOF. Let Z ∼ Np(0, Ip×p) and write

tr(V �̂0
1) = tr(V P�1/2ZZT �1/2P T ) = ZT SZ ∼

p∑
j=1

γjZ
2
j .(48)

By Lemma A.1,
p∑

j=1

γ 2
j = 1

2 Var(tr(V �̂0
1)) ≤ pC(q, c0,M).(49)

Let γ̃j = γjp
−1/2. In view of (48), to prove the right tail bound in (47) it is enough

to show

P

[ p∑
j=1

γ̃j (Z
2
j − 1) ≥ t

]
≤ Ke−δt (1+o(1))

for t → ∞ if
p∑

j=1

γ̃ 2
j ≤ C(q, c0,M).(50)

Suppose first that all the γj are positive and γ1 > γ2. By the general form of
Markov’s inequality,

P

[ p∑
j=1

γ̃j (Z
2
j − 1) ≥ t

]
≤ inf

s

{
exp

(
−st −

p∑
j=1

γ̃j s

) p∏
j=1

Ee
sγ̃jZ2

j

}
.(51)

The log of the function on the right-hand side of (51) is

−st +
p∑

j=1

[−γ̃j s − 1
2 log(1 − 2γ̃j s)

]
.(52)
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The minimizer satisfies

t =
p∑

j=1

[γ̃j (1 − 2γ̃j s)
−1 − γ̃j ] = 2s

p∑
j=1

γ̃ 2
j (1 − 2γ̃j s)

−1

(53)

= 2sγ̃ 2
1 (1 − 2γ̃1s)

−1

(
1 +

p∑
j=2

(
γ̃j

γ̃1

)2

(1 − 2γ̃1s)(1 − 2γ̃j s)
−1

)
.

Write ω ≡ 1 − 2γ̃1s. Substituting into (53) and expanding:

t = γ̃1(1 − ω)

ω

(
1 +

p∑
j=2

γ̃ 2
j

(
1 − γ̃j

γ̃1

)−1

[ω + O(ω2)]
)
.(54)

Now write w ≡ ω0 + �/t , where ω0t = γ̃1(1 − ω0), and use ω0 = (γ̃1/t) +
O(t−2). Substituting into (54) and solving for �, we obtain after some computa-
tion,

� = t−1
p∑

j=2

γ̃ 2
j

(
1 − γ̃j

γ̃1

)−1

+ O(t−2).

Note that t� is bounded by (50). Substituting back into (52) we finally obtain
the bound

e(−t/(2γ̃1))(1+o(1)).

If γ1 has multiplicity m > 1, we can argue as above after pulling out (1 −
2γ̃1)

−m/2 first. If the multiplicity of γ1 is 1 but γ̃1 − γ̃j → 0, the number of such
terms is bounded above by (50) unless γ̃1 itself tends to 0 and we can argue as if
all such γ̃j are equal. Note also, that by (50) mγ̃ 2

1 is bounded unless γ1 → 0. But
in that case we can obtain a better bound than (47) by applying Theorem 3.1 of
Saulis and Statulevičius [32].

Finally, if not all the γj are positive, we break up

p∑
j=1

γ̃j (Z
2
j − 1) =

p∑
j=1

γ̃ +
j (Z2

j − 1) −
p∑

j=1

γ̃ −
j (Z2

j − 1),

and compute the bound for each summand. A similar but easier argument and a
better bound hold for P [∑p

j=1 γ̃j (Z
2
j − 1) ≤ −t]. The lemma follows. �

LEMMA A.3. Under the conditions of Lemma A.2 for � and each Vj ,

ρ(J ) ≤ C(q, c0,M)(logJ )2p.(55)
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PROOF. By Lemma A.2,

P

[
p−1/2 max

1≤j≤J

∣∣∣∣∣tr(Vj �̂
0
1) −

p∑
k=1

γjk

∣∣∣∣∣ ≥ t

]

(56)
≤ 1(0 ≤ t ≤ x) + JKe−δt1(t > x)

by applying the union sum inequality for t ≥ x → ∞. Integrating, we get

p−1E max
1≤j≤J

(
tr(Vj �̂

0
1) −

p∑
k=1

γjk

)2

≤ x2 + JK

∫ ∞
x2

e−√
tδ dt

= x2 + JK

∫ ∞
x

ve−vδ dv

= x2 + JK(xe−xδ + δ−1e−xδ).

Minimizing over x, we get that as J → ∞, the minimizer satisfies

x = A logJ
(
1 + o(1)

)
for A(C,K) < ∞. Then,

p−1E max
1≤j≤J

(
tr(Vj �̂

0
1) −

p∑
k=1

γjk

)2

≤ C(logJ )2

and Lemma A.3 follows. �

A similar argument shows that under the conditions of Lemmas A.1 and A.2

E max
1≤j≤J

tr
[
Vj

(
X̄X̄T − 1

B
�

)]2

≤ B−2C3(q, c0,M)p(logJ )2.(57)

PROOF OF THEOREM 4. We use Lemma A.3 to bound ρ(J ) and first ob-
tain the equivalent of (40) for �̂0 by plugging in ρ(J ) ≤ C(logJ )2p. Take
rn = Kp(

logp
n

)1−q/2, B , J as in the statement of Theorem 4, and check that the
conditions of Theorem 3 are satisfied when applied to {Wi} and the J thresholding
estimates that we optimize over for estimating E(W1) = �.

The argument for �̂ requires us to return to (35) with W̄B − μ replaced by
W̄B − X̄BX̄T

B . By (57), (36) holds with this replacement on the left-hand side, and
ρ(J ) ≤ C(logJ )2pB−2. The analogue of Theorem 3 holds for this special case
and Theorem 4 follows. �
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