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AN ALGORITHMIC AND A GEOMETRIC CHARACTERIZATION
OF COARSENING AT RANDOM

BY RICHARD D. GILL1 AND PETER D. GRÜNWALD2,3

Leiden University and CWI

We show that the class of conditional distributions satisfying the coarsen-
ing at random (CAR) property for discrete data has a simple and robust algo-
rithmic description based on randomized uniform multicovers: combinatorial
objects generalizing the notion of partition of a set. However, the complexity
of a given CAR mechanism can be large: the maximal “height” of the needed
multicovers can be exponential in the number of points in the sample space.
The results stem from a geometric interpretation of the set of CAR distribu-
tions as a convex polytope and a characterization of its extreme points. The
hierarchy of CAR models defined in this way could be useful in parsimonious
statistical modeling of CAR mechanisms, though the results also raise doubts
in applied work as to the meaningfulness of the CAR assumption in its full
generality.

1. Introduction. In statistical practice one is often presented with incomplete,
or more generally, coarse data. To properly model such data, one needs to take into
account the mechanism by which the data are coarsened. In practice the details of
this coarsening mechanism are often unknown or computationally expensive to
model. Therefore, it is of interest to determine conditions under which this mech-
anism can be safely ignored. The “coarsening at random” (CAR) assumption is
the weakest condition giving this guarantee. It was identified by Heitjan and Ru-
bin (1991). More recently, Grünwald and Halpern (2003) and Jaeger (2005b) have
stressed that the importance of CAR is not restricted to statistical applications:
when updating a probability distribution based on new information in learning, ar-
tificial intelligence, or other scientific applications, it precisely characterizes when
one can ignore the distinction between the fact that an event has been observed, and
the fact that an event has happened, thereby considerably simplifying the update
process.
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Thus, both in statistical inference with coarsened data and for probability updat-
ing in learning algorithms, it is attractive to be able to make the CAR assumption.
In order to be able to judge whether or not the assumption is warranted, it is im-
portant to fully understand its meaning. Here we approach this problem by giving
two intimately related characterizations of the CAR assumption. First, we show
that the set of all CAR mechanisms for a given finite sample space can be seen
as a convex polytope. Each CAR mechanism is a mixture of CAR mechanisms
which correspond to the vertices of the polytope. Our first main result, Theorem 1,
characterizes these vertices. Our second result, which follows easily from the first,
complements this geometric view with an algorithmic one. We show that a sim-
ple probabilistic algorithm can simulate any possible CAR mechanism, and only
CAR mechanisms. Prompted by Gill, van der Laan and Robins (1997), earlier au-
thors [Grünwald and Halpern (2003) and Jaeger (2005b)] have also searched for
such constructions, calling them procedural models for CAR. Yet the procedural
models proposed so far are not quite satisfactory, because in all cases,

1. The procedural model depends on parameters which have to be fine-tuned in
order to guarantee the CAR property; or equivalently,

2. A small perturbation in the parameters can destroy the CAR property.

This “frailty” or lack of robustness is an indication that such procedures may
not occur naturally. In fact Jaeger (2005b), Theorem 4.17, shows that the only
CAR mechanisms which a robust procedure can generate must be of a special type
known as “coarsening completely at random,” CCAR.

Here we present a natural way to generate all CAR mechanisms, and only CAR
mechanisms, that does not require fine-tuning of parameters. Our algorithm works
for arbitrary finite sample spaces. It is based on a generalization of the notion of a
partition of a set which we call a uniform multicover, or just multicover for short.

Superficially, its existence would have to contradict Jaeger’s theorem mentioned
above. But of course, a proven theorem does not allow any contradictions. The dif-
ference lies in the notion we use of robustness and of its negation, frailty. Our result
can be seen as criticism of Jaeger’s notion of robustness, even though this does at
first sight seem appealing and natural. By parameterizing CAR distributions in a
different manner, we obtain a representation in which CAR can be generated with-
out parameter tuning. In a nut-shell: we consider a discrete uniform distribution to
be a robust and natural object. Jaeger considers it to be an easily perturbed object.

We emphasize that the body of Jaeger’s work remains highly relevant; this is
just one of a number of important results he has obtained, and we, too, come to
the conclusion that CAR mechanisms which are not CCAR will be very rare in
practice. For instance, our final result, Theorem 3, shows that, although no fine-
tuning is needed, the complexity (defined in terms of the “height” of multicovers)
of the CAR mechanisms generated by our algorithm can grow exponentially in the
size of the sample space.
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The paper is organized as follows. In Section 2 we briefly introduce coarsening
at random and other preliminaries. In Section 3 we give our geometric interpreta-
tion of CAR distributions (Theorem 1). In Section 4 we define uniform multicovers
and use these to define our procedural CAR model. We show that it generates all
and only CAR mechanisms (Theorem 2). In Section 5 we discuss our CAR model
in detail. We show (Theorem 3) that it gives rise to an exponential lower bound
on the height of the multicovers needed in Theorem 2. The proofs are given in the
final section.

2. Preliminaries. Let E be a finite nonempty set, containing n elements.
A coarsening mechanism is a probabilistic rule which replaces any point x in E

with a subset A of E containing x. Thus a coarsening mechanism is specified by
a collection of (conditional) probabilities πx

A such that for all x,
∑

A�x πx
A = 1.

Intuitively, x is generated by some process which for simplicity we will refer to
as “Nature.” But rather than observing x directly, the statistician observes a coars-
ening of x, that is, a set A containing x. We call x the underlying outcome and
A the corresponding observation. The coarsening mechanism determines the A

that is observed given x; πx
A is the probability of observing the set A with A � x,

given that Nature has generated x. We define the support of such a coarsening
mechanism as the set of A ⊆ E for which πx

A > 0 for some x ∈ E.
A coarsening mechanism satisfies the CAR (coarsening at random) property if

and only if for all x, x′ ∈ A,

πx
A = πx′

A = πA, say.(2.1)

Intuitively, this means that the probability of observing A is the same for all x

that are contained in A: the coarsening is done “at random,” independently of
the underlying x. We note that (2.1) is the definition of CAR employed by Gill,
van der Laan and Robins (1997). It is called “strong CAR” by Jaeger (2005a). The
definition is explained in detail by Gill, van der Laan and Robins (1997) and Jaeger
(2005a); motivation, practical relevance and applications of the CAR property are
discussed extensively by Gill, van der Laan and Robins (1997) and Grünwald and
Halpern (2003).

Definition (2.1) shows that a CAR mechanism is specified by a collection of
probabilities πA indexed by the nonempty subsets A of E satisfying

∑
A�x

πA = 1 ∀x ∈ E.(2.2)

We can therefore represent a CAR mechanism by the vector π = (πA : ∅ ⊂ A ⊆
E), where we assume the subsets A to be ordered in some standard manner. For
a given finite set of CAR mechanisms π1, . . . ,πp , and any probability vector λ =
(λ1, . . . , λp), we define their mixture π ′ = λ1π1 + · · · + λpπp . The following two
observations are immediate:
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1. For each partition of E, there is a unique CAR mechanism that has exactly that
partition as its support (for each set A in the partition, πx

A = πA = 1, for all
x ∈ A).

2. Each finite mixture of CAR mechanisms again represents a CAR mechanism.

These two observations suggest a simple procedural CAR model: Fix some in-
teger p > 0 and pick p (arbitrary) partitions E1, . . . ,Ep of E. Each of these in-
duces a unique corresponding CAR mechanism. Now fix an arbitrary distribution
λ = λ1, . . . , λp on E1, . . . ,Ep . The coarsened data are now generated by first, in-
dependently of the underlying x, selecting one of the p partitions according to the
distribution λ. Then, within the chosen partition, the unique A is generated which
contains the underlying x. One can think of each partition as a “sensor” with the
help of which the data are observed. The procedure amounts to selecting a sen-
sor completely at random, independently of the underlying x generated by Nature.
This procedural CAR model is called the CARGEN procedure by Grünwald and
Halpern (2003). The “parameters” of this procedure are the number of partitions p,
the partitions E1, . . . ,Ep and the distribution λ. Clearly, for every setting of the pa-
rameters, the resulting algorithm defines a CAR mechanism. One may be tempted
to think that, by an appropriate setting of the parameters, all CAR mechanisms
can be simulated by CARGEN, but the following example shows that this is not
the case:

EXAMPLE 1 [Gill, van der Laan and Robins (1997)]. Let E = {1,2,3},
A12 = {1,2},A23 = {2,3} and A31 = {3,1}. Consider the coarsening mechanism
π∗ defined by

π∗1
A12

= π∗2
A12

= π∗2
A23

= π∗3
A23

= π∗3
A31

= π∗1
A31

= 1
2 ,(2.3)

and π∗x
A = 0 for all other x ∈ E,A ⊆ E. By (2.1) it is immediately seen that this

is a CAR mechanism. But because the support of the mechanism is not a union of
partitions of E, it cannot be simulated by the CARGEN procedure.

The example shows that the CARGEN procedure is incomplete: there exist CAR
mechanisms which cannot be represented by any parameter setting of CARGEN.
The question is now whether there exist “natural” procedural CAR models which
are complete. In previous work, two candidates for such models were proposed:
Grünwald and Halpern’s (2003) CARGEN∗ (an extension of CARGEN described
above) and Jaeger’s (2005b) Propose-and-Test model. Both of these suffer from the
frailty property mentioned in the Introduction: rather than producing CAR mecha-
nisms for all parameter settings, the parameters need to be fine-tuned. In previous
work, one other procedural model has been proposed which, like CARGEN, pro-
duces CAR mechanisms for all settings of its parameters. However, as shown by
Jaeger (2005b), this randomized monotone coarsening model [Gill, van der Laan
and Robins (1997)] is in fact equivalent to CARGEN: both can simulate exactly the
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set of “coarsening completely at random” (CCAR) mechanisms. In fact, [Jaeger
(2005b), Theorem 4.17] shows that any CAR mechanism that is not CCAR is, in
a certain sense, nonrobust. For the details of Jaeger’s definition of robustness we
refer to Jaeger (2005b). Briefly, he supposes that a CAR mechanism involves an
auxiliary randomization, and defines robustness in terms of robustness to changes
in the distribution of the auxiliary variable.

Jaeger’s result suggests that there exists no procedural CAR model that is both
complete and does not require any parameter tuning. Yet in Section 4, we exhibit a
simple extension of the CARGEN procedure which achieves exactly this, as long
as we are able to sample from a uniform distribution. The procedural model will
be based on a geometric interpretation of CAR which we present below.

3. A geometric view of CAR. We have already indicated that a finite mixture
of CAR mechanisms π is itself a CAR mechanism. Hence, for a given finite sample
space E the set of all CAR mechanisms defined with respect to E forms a convex
body in Euclidean space. In Theorem 1 we show that this body is a polytope with
a finite number of extreme points, the vertices of the polytope. In order to charac-
terize these extreme points, we first note that the support of a CAR mechanism is
always a cover of E. With any cover of E we associate its incidence matrix: the
matrix M with rows indexed by x ∈ E, columns indexed by A in the support, and
elements 1{x∈A}. An incidence matrix of a cover is a matrix of 0’s and 1’s with
at least one 1 in every row and column. We now use these incidence matrices to
define extreme CAR mechanisms in an algebraic way. Theorem 1 below states that
these CAR mechanisms are also extreme points in the geometric sense, justifying
our terminology.

In the sequel, vectors are always column vectors, even if we lazily list the ele-
ments in a row. 0 and 1 denote vectors of 0’s and 1’s, respectively, whose length
depends on the context.

Take the incidence matrix M of an arbitrary cover (A1, . . . ,Am) of E. If the
equation Mz = 1 has a nonnegative solution, then this solution z = (z1, . . . , zm)

represents a CAR mechanism π , where for any Aj appearing in the cover, zj =
πAj

, and for any A not appearing in the cover, πA = 0 [see also Grünwald and
Halpern (2003), who explain this in detail]. We call π a CAR mechanism corre-
sponding to M .

DEFINITION 1. We call π an extreme CAR mechanism if it corresponds to an
incidence matrix M of a cover (A1, . . . ,Am) such that Mz = 1 has a unique, and
strictly positive, solution.

By definition, a CAR mechanism is extreme if and only if it is the only CAR
mechanism with the same support. It is easily checked that the mechanism π∗ of
Example 1 is an example of an extreme CAR mechanism: it is the only CAR mech-
anism with support A12,A23,A31. The uniqueness also implies that the support of
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an extreme CAR mechanism cannot have more than n elements (the size of E). It
is clear that the number of extreme CAR mechanisms, for given E, is finite. We
can find them all by enumerating and testing all covers of E with m ≤ n elements.

THEOREM 1. Every CAR mechanism is a mixture of extreme CAR mecha-
nisms.

In other words, all CAR mechanisms can be represented by randomly choosing,
independently of x, one of a finite set of extreme CAR mechanisms. In the next
section, we show that all such extreme mechanisms are of a simple and natural
form. This will lead to Theorem 2, a direct corollary of Theorem 1, giving an
algorithmic characterization of CAR.

4. An algorithmic view of CAR. Our procedure is based on the notion of a
uniform multicover, which we now define. A k-multicover of E, or just k-cover for
short, is a collection of nonempty subsets of E, allowing multiplicities, such that
for each x ∈ E, precisely k of the sets (some of which may be the same) contain x.
Thus a 1-cover is an ordinary partition of E. By a uniform multicover we mean a
k-cover for some k ≥ 1. The height of a uniform multicover is its value of k. The
support of a multicover is the set of subsets of E in the multicover.

A k-cover is specified by its support and by the multiplicity of each set in its
support. Thus, to each nonempty subset A of E there corresponds a nonnegative
integer nA such that nA = 0 if A is absent from the k-cover; otherwise nA > 0 is
the multiplicity of A in the k-cover. The nA have to satisfy∑

A�x

nA = k ∀x ∈ E.(4.1)

For a given k-cover we can now define a CAR mechanism by setting

πA = nA/k ∀A ⊆ E.(4.2)

The algorithmic interpretation is as follows: Nature generates some x ∈ E. The
coarsening mechanism investigates which A in the uniform multicover contain x.
There are exactly k such A, including multiplicities, whatever x. We choose one
of these uniformly at random, that is, each A with x ∈ A is chosen with probabil-
ity 1/k.

Conversely, any CAR mechanism for which all the CAR probabilities πA are
rational numbers is generated by a k-cover with k equal to the lowest common
multiple of the denominators of the πA. We call CAR mechanisms obtained in this
way rational. The rational CAR mechanisms are precisely the CAR mechanisms
generated by a uniform multicover. Note that if k and all nA share a common factor,
we can divide by this factor without changing the πA. We consider such multicov-
ers as equivalent and take the multicover with the smallest k as representative of
the class. In this way, each rational CAR mechanism corresponds to exactly one
uniform multicover, and vice versa. We can make the connection to Theorem 1 by
noting that
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FACT 1. Every extreme CAR mechanism is rational. Thus, it is generated by a
uniform multicover.

This follows directly from the fact that the matrix M in Definition 1 is a 0/1-
matrix and the solution of Mz = 1 is unique.

As stated above, for each rational CAR mechanism there is a unique uniform
multicover which generates it. We can thus define an “extreme multicover” as a
uniform multicover that generates an extreme CAR mechanism. Using Theorem 1,
it is easily shown that extreme multicovers are just those uniform multicovers that
do not contain a subset that is also a uniform multicover (we omit the details of the
reasoning).

We may now define a procedural CAR model by first fixing a finite number
p of arbitrary uniform multicovers C1, . . . ,Cp . We then fix an arbitrary distrib-
ution λ = (λ1, . . . , λp) on C1, . . . ,Cp . The coarsened data are now generated by
first, independently of the underlying x, selecting one of the p uniform multicov-
ers according to the distribution λ. Suppose we have chosen multicover Cj with
height kj . Then among the kj sets in Cj which contain x, we choose one uniformly
at random, with probability 1/kj . This procedural CAR model is a simple exten-
sion of CARGEN (Section 2), where the role of partitions is taken over by the more
general uniform multicovers. Like CARGEN, it simulates a CAR mechanism for
all parameter settings; no fine-tuning is needed. Theorem 2(ii) below (a corollary
of Theorem 1) states that by appropriately setting the parameters, we can simulate
all CAR mechanisms. Before presenting the theorem, we continue our example.

EXAMPLE 2 (Example 1 continued). The collection C = {A12,A23,A31} is
a uniform multicover of E with height 2. Consider a simple instantiation of the
procedural CAR model we described above, with just one multicover C = C1, so
that λ = (1). For each x chosen by Nature, there will be exactly two elements of C
which contain x. We select between these with probability 1/2. It is immediately
clear that this algorithm simulates the CAR mechanism π∗ described in Exam-
ple 1. An implementation of this mechanism requires a fair coin toss. If the coin
is biased the CAR property can be lost. Relatedly, the mechanism is not robust in
Jaeger’s sense.

THEOREM 2. (i) Every CAR mechanism can be arbitrarily well approximated
by a rational CAR mechanism, that is, for all CAR mechanisms π , all ε > 0, there
exists a rational CAR mechanism π ′ such that ‖π − π ′‖ < ε.

(ii) Every CAR mechanism is exactly equal to a finite mixture of extreme (and
hence rational) CAR mechanisms.

We extensively discuss this theorem in the next section.
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5. Discussion. Theorem 2 shows that there is an easy probabilistic algorithm
which approximates each CAR mechanism arbitrarily well, and that a randomized
version of the algorithm reproduces each one exactly. Since the rational numbers
form a dense subset of the reals, Theorem 2(i) is, in a sense, trivial. The real in-
novation is part (ii), which shows that each CAR distribution can be represented
exactly as a mixture of a finite set of candidate rational mechanisms.

No fine-tuning of parameters is required to ensure the CAR properties so the
algorithms do have a robustness property. We just need to be able to choose uni-
formly at random from a finite set. Of course, if one perturbs the uniform distri-
bution over the k sets containing a point x, one will in general destroy the CAR
property—this is the reason that our result does not contradict Jaeger’s (2005b),
Theorem 4.17. For this reason, some readers may not want to call the procedure
“robust.” However, the (weaker) claim that the algorithm requires no parameter
tuning seems indisputable: we can hardly think of implementing a uniform distrib-
ution as “parameter tuning.” Unlike the parameters in earlier complete procedural
CAR models, which could vary from situation to situation and were hard to de-
termine, the uniform distribution is universal and easy to determine. If the device
we use to generate a uniform distribution does not work perfectly, our procedural
model will slightly violate CAR, hence one might perhaps say it is “nonrobust”;
but devices used to generate a uniform distribution (coins, dice) exist, and usually
do not arise as fine-tuned versions of devices that can generate a whole range of
distributions; hence one cannot say that our model requires “fine-tuning.”

The reason that earlier complete procedural CAR models did require parameter
tuning was that their parameters had to satisfy complicated constraints [see, e.g.,
Example 4.7 in Jaeger (2005b)]. As remarked by M. Jaeger, we do pay a price for
avoiding these parameter constraints: we now have complicated constraints (4.1)
on multiplicities of sets appearing in multicovers. Such constraints are arguably
more natural than constraints on continuous-valued parameters, at least as long as
the multicovers involved are not too complex. Unfortunately, in order to span all
CAR mechanisms, we sometimes need highly complex multicovers, as we show
below. This limits the importance of our procedural model, as we discuss further
below.

We can measure the complexity of multicovers in terms of their height. Since
the row rank of M equals its (full) column rank, m, we can delete rows obtaining
an m×m nonsingular matrix M0. Deleting the corresponding rows from 1 also, we
obtain z = M−1

0 1. It follows by the standard expression of matrix inverse in terms
of determinants that the value of k appearing in (4.2) is bounded by m!. Hence, the
height of the extreme multicovers that can be defined on a sample space of size
|E| = n is upper bounded by n!. But is this too pessimistic? Unfortunately not,
or at least, not significantly: our next and last theorem gives an exponential lower
bound on the maximal height of an extreme multicover. It turns out that this grows
at least as fast as the celebrated Fibonacci numbers, defined as F1 = 1,F2 = 1, and
for j ≥ 3, Fj = Fj−1 + Fj−2.
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Theorem 3 below considers n × n matrices Sn inductively defined as follows:
S1 = (1). For odd n, Sn+1 is constructed from Sn by setting

Sn+1 =
(

1 0�
0 Sn

)
.

For even n, Sn+1 is constructed from Sn by setting

Sn+1 =
(

0 1�
1 Sn

)
.

This is easier than it seems: the pattern should be obvious from the example n = 9,
shown in Figure 1.

THEOREM 3. For odd n > 0, the equation Snz = 1 has the unique solution

z =
(

Fn−1

Fn

,
Fn−2

Fn

, . . . ,
F2

Fn

,
F1

Fn

,
1

Fn

)
,

so that Sn represents an extreme point for sample spaces with size |E| = n, with
height k = Fn.

The theorem implies that the maximal height of an extreme multicover grows
exponentially fast with n; also, the maximal needed multiplicity of a set in an
extreme multicover grows exponentially fast with n. We interpret this result as
follows.

Uniform multicovers are important in two ways:

1. They lead to an attractive algorithmic characterization of CAR that requires no
fine-tuning of parameters (Theorem 2).

2. They induce a hierarchy of CAR models that could be of use in statistical ap-
plications. We elaborate on this below.

Yet apart from these applications, the importance of uniform multicovers in un-
derstanding CAR is limited—the maximal needed height of the multicover grows

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 1 1 1 1 1 1
1 1 0 0 0 0 0 0 0
1 0 0 1 1 1 1 1 1
1 0 1 1 0 0 0 0 0
1 0 1 0 0 1 1 1 1
1 0 1 0 1 1 0 0 0
1 0 1 0 1 0 0 1 1
1 0 1 0 1 0 1 1 0
1 0 1 0 1 0 1 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

FIG. 1. The matrix S9, an example of the matrices Sn figuring in Theorem 3.
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exponentially fast with n, so though the idea of the algorithm is simple, its detailed
specification can be complex. Thus, we can say neither that our characterization
provides a truly simple description of every CAR mechanism, nor that our mul-
ticover CAR mechanisms always correspond to some “natural” process. While it
seems reasonable to suppose that low-height multicovers may be good models for
some processes occurring in nature, the same cannot be said for exponentially high
multicovers, and our Theorem 3 does show that we need to take these into account.

Jaeger’s (2005b) robustness Theorem 4.17 suggests that the CAR mechanisms
occurring in nature are those generated by randomized 1-covers. Our character-
ization nuances this somewhat, suggesting that in some situations k-covers for
small k > 1 may also be reasonable models. Indeed, the hierarchy of CAR mecha-
nisms induced by our algorithm suggests a statistical estimation procedure for par-
simoniously estimating CAR mechanisms and their parameters. Such a procedure
would penalize the fit of a proposed CAR mechanism to the data. The penalization
would be some function of the number of extreme multicovers needed to express
the mechanism, and the height of each of these. Alternatively one could use just
one multicover, not necessarily extreme, and penalize its height. This could be
done either explicitly, by adding a regularization term to the likelihood, or implic-
itly, by the use of suitable Bayesian priors.

Such procedures could be useful in practice if one seriously believed that the
data are CAR but quite possibly, not CCAR. One could hope in this way to com-
bine the advantages of asymptotic validity and even go for asymptotic efficiency,
with good small sample behavior. However, our results can also be read in a differ-
ent way. Though we found an appealing way to model CAR, it remains the fact that
there do not seem to be so many good reasons in practice, in general, to assume
CAR but not CCAR. Therefore, if one is prepared to assume CAR, one is likely to
be also prepared to assume CCAR. Though the distinction concerns a “nuisance”
part of the model, and indeed, in likelihood approaches is invisible by the likeli-
hood factorization implied by CAR, one can capitalize on the extra knowledge, for
instance, in order to obtain better small sample properties of estimators, at the cost
of loss of asymptotic efficiency.

A final view is that the extra generality obtained by relaxing CCAR to CAR is
illusory. If one does not believe in CAR, one has no option but to start modeling
and estimating the coarsening mechanism. Jaeger (2006a, 2006b) has made some
proposals in this direction which seem promising. Another possibility, so far not
explored, is to use the notion of relative rather than absolute CAR introduced by
Gill, van der Laan and Robins (1997). The point of CAR is that, in likelihood in-
ference, one can analyze coarsened data as if the coarsening mechanism had been
fixed in advance as any particular CAR mechanism, and specifically therefore, as if
coarsening by an independently fixed-in-advance partitioning of the sample space.
Relative CAR means CAR relative to some other specific (non-CAR) coarsening
mechanism: the likelihood factors; the interesting part is the same as if the data had
been coarsened by the reference coarsening model; the nuisance part can be used
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for inference concerning which coarsening mechanism has generated the data, out
of the mechanisms in the family implied by the reference mechanism. It would be
interesting to explore this possibility in more detail.

6. Proofs.

6.1. Proof of Theorem 1. We show below that the set of all CAR mechanisms
forms a convex polytope and characterize the extreme points in terms of linear
algebra, corresponding to Definition 1.

A CAR mechanism is a collection of numbers πA indexed by the nonempty sub-
sets A of a finite set E. They must satisfy two sets of constraints: the inequalities
πA ≥ 0 for each A, and the equalities

∑
A�x πA = 1 for each x, both of which are

obviously linear. Together the constraints imply that πA ≤ 1 for all A. Collecting
the πA into a vector π , we see that the set of all π is a convex, compact poly-
tope since it is bounded and is the intersection of a finite number of closed half-
spaces (one for each inequality constraint) and hyperplanes (one for each equality
constraint). Hence each π is a convex combination of the extreme points of the
polytope, of which there are a finite number in total.

The polytope lives in the affine subspace of all vectors π satisfying the equality
constraints

∑
A�x πA = 1 for each x. Since π has 2|E| −1 components (the number

of nonempty subsets of E) and there are |E| constraints, it follows that the dimen-
sion of this affine subspace is 2|E| − 1 − |E|. The polytope is just the intersection
of that affine subspace with the positive orthant. Within the affine subspace, each
face of the polytope corresponds to one of the hyperplanes πA = 0. Each vertex of
the polytope is the unique meeting point of a number of faces; one for each A such
that πA = 0. Thus to each vertex is associated a collection of subsets A such that
if we set the corresponding πA equal to 0 in the equations

∑
A�x πA = 1 for all x,

there is a unique and strictly positive solution in the remaining πA. Conversely,
any such collection of A defines a vertex.

The subsets A not in the collection define the support of the extreme CAR mech-
anism π under consideration. Let M be its incidence matrix: the matrix of zeros
and ones with rows indexed by elements x ∈ E, columns indexed by A in the sup-
port, and with entries 1{x∈A}. Write π0 for the vector of πA for A in the support. In
matrix form, the equations which must have a unique and positive solution z = π0
can be written

Mz = 1,(6.1)

and we have proved that there is a one-to-one correspondence between vertices of
the polytope and incidence matrices M of covers of E such that this equation has
a unique and positive solution. As we argued in Section 4, if the solution is unique
it has to be rational.

Combining these facts, extreme points of the polytope of CAR mechanisms
correspond to covers of E whose incidence matrix M is such that Mz = 1 has a
unique solution, and the solution is strictly positive.
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REMARK. A condition equivalent to Mz = 1 having a unique positive solu-
tion [Farkas’s lemma in the theory of linear programming Schrijver (1986), Chap-
ter 7] is that M has full column rank, and, if y is such that (a) y�M ≥ 0, then
(b) y�1 ≥ 0, with equality in (b) implying equality in (a). By arguments from in-
teger programming [see again Schrijver (1986)] one may restrict here to vectors y
of integers. Jaeger (2005b) gives a version of this condition for the existence of a
CAR mechanism with given support—he does not demand full rank since he does
not ask for uniqueness. Though more combinatorial in nature, this version of the
condition for extremality does not seem to be much more useful, except perhaps
for helping one to show that certain covers do not lead to solutions.

6.2. Proof of Theorem 2. Theorem 2 is, in fact, a direct corollary of Theo-
rem 1. Namely, each extreme point is rational and therefore corresponds to a uni-
form multicover. Every point in a polytope can be written as a mixture of its ex-
treme points. This gives us item (ii). Item (i) follows by considering the rational
convex combinations of the extremes, which lie dense in all convex combinations.

6.3. Proof of Theorem 3. We prove the theorem by induction on n. For n = 1,
the result trivially holds. Now suppose the result holds for Sn−1, for some even
n > 1. Thus, Sn−1q = 1 has a unique solution

q = (q1, . . . , qn−1) =
(

Fn−2

Fn−1
,
Fn−3

Fn−1
, . . . ,

F2

Fn−1
,

F1

Fn−1
,

1

Fn−1

)
.(6.2)

We prove the theorem by showing that this implies that

Sn+1r = 1(6.3)

has the unique solution

r = (r1, . . . , rn+1) =
(

Fn

Fn+1
,
Fn−1

Fn+1
, . . . ,

F2

Fn+1
,

F1

Fn+1
,

1

Fn+1

)
.(6.4)

To prove (6.4), note first that to each row of (6.3) corresponds a linear equation.
Writing the equations corresponding to the first two rows explicitly and the equa-
tions corresponding to rows 3 to n + 1 in matrix form, and reordering terms, we
see that (6.3) is equivalent to

r2 = 1 −
n+1∑
i=3

ri,(6.5)

r2 = 1 − r1,(6.6)

Sn−1(r3, . . . , rn+1)
T = 1 − r1,(6.7)

where, by our inductive assumption, the last equality implies

(r3, . . . , rn+1) = (1 − r1)(q1, . . . , qi),(6.8)
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and in particular

n+1∑
i=3

ri = (1 − r1)

n−1∑
i=1

qi.(6.9)

Combining (6.6) with (6.5), we get r1 = ∑n−1
i=3 ri . Plugging this into (6.9) gives

r1

1 − r1
=

n−1∑
i=1

qi(6.10)

where qi are given by (6.2). We claim this has the unique solution r1 = Fn/Fn+1.
To see this, note the following basic fact which follows immediately from repeat-
edly substituting the definition Fn = Fn−1 + Fn−2 on the left in (6.11):

FACT 2. For odd n > 0,

Fn =
n−2∑
i=1

Fj + 1.(6.11)

The fact implies that the right-hand side of (6.10) is equal to Fn/Fn−2. Plug-
ging in our proposed solution r1 = Fn/Fn+1, the left-hand side of (6.10) becomes
Fn/(Fn+1 − Fn) = Fn/Fn−2, so that (6.10) holds. This shows that r1 is indeed
given by Fn/Fn+1. By (6.6) it now follows that r2 = Fn−1/Fn+1, and, by (6.8), that
for j ∈ {3, . . . , n + 1}, rj = qj−2/r2 = sj /Fn+1, where (s1, s2, . . . , sn−2, sn−1) =
(Fn−2,Fn−3, . . . ,F1,1). This shows that (6.4) is the unique solution of Sn+1r = 1,
and thus completes the induction step. The theorem is proved.
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