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ANALYSIS OF VARIANCE, COEFFICIENT OF DETERMINATION
AND F -TEST FOR LOCAL POLYNOMIAL REGRESSION

BY LI-SHAN HUANG1 AND JIANWEI CHEN

University of Rochester and San Diego State University

This paper provides ANOVA inference for nonparametric local polyno-
mial regression (LPR) in analogy with ANOVA tools for the classical linear
regression model. A surprisingly simple and exact local ANOVA decompo-
sition is established, and a local R-squared quantity is defined to measure
the proportion of local variation explained by fitting LPR. A global ANOVA
decomposition is obtained by integrating local counterparts, and a global
R-squared and a symmetric projection matrix are defined. We show that the
proposed projection matrix is asymptotically idempotent and asymptotically
orthogonal to its complement, naturally leading to an F -test for testing for
no effect. A by-product result is that the asymptotic bias of the “projected”
response based on local linear regression is of quartic order of the band-
width. Numerical results illustrate the behaviors of the proposed R-squared
and F -test. The ANOVA methodology is also extended to varying coefficient
models.

1. Introduction. Nonparametric regression methods such as local polynomial
regression (LPR) (Fan and Gijbels [9], Wand and Jones [26]), smoothing splines
(Eubank [8]) and penalized splines (Ruppert, Wand and Carroll [23]) are widely
used to explore unknown trends in data analysis. Given the popularity of these
methods, a set of analysis of variance (ANOVA) inference tools, analogous to those
of linear models, will be very useful in providing interpretability for nonparametric
curves. In this paper, we aim to develop ANOVA inference for LPR. Some of the
work in this paper was motivated by the authors’ consulting project experiences,
where clients presented with a nonparametric smooth curve would frequently ask if
there would be an ANOVA table explicitly summarizing the fitted curve by sums
of squares, degrees of freedom, and an F -test for no effect. In addition, we are
interested in exploring a geometric representation and establishing a projection
view for LPR.

Consider a simple bivariate case: data (Xi, Yi), i = 1, . . . , n, are drawn from the
model

Y = m(X) + σ(X)ε,(1.1)
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where X and ε are independent, and ε has a mean 0 and unit variance. Typically
one is interested in estimating the conditional mean, m(x) = E(Y |X = x), while
the conditional variance is σ 2(x) = Var(Y |X = x). The theoretical ANOVA de-
composition for (1.1) is

Var(Y ) =
∫

(m(x) − μy)
2f (x) dx +

∫
σ 2(x)f (x) dx,(1.2)

where f (x) is the underlying density function for X1, . . . ,Xn, and μy denotes the
unconditional expected value of Y . Below we review briefly some related work on
ANOVA inference for nonparametric regression.

In LPR literature, we are not aware of a sample ANOVA decomposition
for (1.2). A commonly used residual sum of squares (RSS) is

∑n
i=1(Yi − m̂(Xi))

2,
where m̂(Xi) denotes a nonparametric estimate for m(Xi), i = 1, . . . , n, but RSS
is not associated with a valid ANOVA decomposition, in the sense that generally∑n

i=1(Yi − Ȳ )2 �= ∑n
i=1(m̂(Xi) − Ȳ )2 + ∑n

i=1(Yi − m̂(Xi))
2, where Ȳ is the sam-

ple mean of Yi’s. Ramil-Novo and González-Manteiga [22] established an ANOVA
decomposition for smoothing splines with a bias term. An ANOVA-related quan-
tity is the R-squared, or the coefficient of determination. Theoretically, it measures
η2 = 1 − E(Var(Y |X))/Var(Y ) = Var(E(Y |X))/Var(Y ). Doksum and Samarov
[5] suggested an estimate

R2
ρ = [n−1 ∑

i (m̂(Xi) − m̄)(Yi − Ȳ )]2

[n−1 ∑
i (m̂(Xi) − m̄)2][n−1 ∑

i (Yi − Ȳ )2] ,(1.3)

where m̄ = n−1 ∑
i m̂(Xi). However, the correlation-based R2

ρ does not possess an
ANOVA structure. For a local version of the R-squared measure, see Bjerve and
Doksum [3], Doksum et al. [4] and Doksum and Froda [6]. An attempt to provide
an analogous projection matrix is the so-called “smoother matrix” S, n × n, so
that Sy = m̂ with y = (Y1, . . . , Yn)

T and m̂ = (m̂(X1), . . . , m̂(Xn))
T . See, for ex-

ample, Hastie and Tibshirani [13]. However, S lacks for properties of a projection
matrix; it is non-idempotent and nonsymmetric in the case of local linear regres-
sion. Another essential ANOVA element is the degree of freedom (DF). Hastie
and Tibshirani [13] discussed three versions: tr(S), tr(ST S) and tr(2S − ST S),
where “tr” denotes the trace of a matrix. Zhang [27] gave asymptotic expres-
sions on DF for LPR. On testing for no effect, Azzalini, Bowman and Hardle
[1], Hastie and Tibshirani [13] and Azzalini and Bowman [2] introduced tests with
the F -type form of test statistics based on RSS. Fan, Zhang and Zhang [10] es-
tablished the generalized likelihood ratio test with an F -type test statistic and an
asymptotic chi-square distribution. Other F -flavor tests include Gijbels and Rous-
son [12].

From the discussion above, we believe that there is a need to further investigate
an ANOVA framework for LPR. Our focus on LPR arises naturally since it is a
“local” least squares technique. A surprisingly simple local ANOVA decomposi-
tion is established in Section 2, leading naturally to defining a local R-squared.
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Then by integrating local counterparts, a global ANOVA decomposition is estab-
lished, from which a global R-squared and a symmetric matrix H ∗, like a projec-
tion matrix, are defined. We note that the proposed global SSE (sum of squares
due to error) is the same as the “smooth backfitting” error given in Mammen, Lin-
ton and Nielsen [19] and Nielsen and Sperlich [20] for estimation under general-
ized additive models (Hastie and Tibshirani [13]). We show that when conditioned
on {X1, . . . ,Xn}, H ∗ is asymptotically idempotent and H ∗ and its complement
(I − H ∗) are asymptotically orthogonal, leading naturally to an F -test for testing
no effect. A by-product is that the conditional bias of the “projected” response H ∗y
based on local linear regression is of order h4, with h the bandwidth. To show that
the ANOVA framework can be extended to the multivariate case, expressions of
local and global ANOVA decomposition are derived for varying coefficient mod-
els (VCM) (Hastie and Tibshirani [14]) in Section 3. Section 4 contains numerical
results on the performance of the proposed global R-squared and the F -test for no
effect. In summary, our results are under one framework containing all essential
ANOVA elements: (i) a local exact ANOVA decomposition, (ii) a local R-squared,
(iii) a global ANOVA decomposition, (iv) a global R-squared, (v) an asymptotic
projection matrix H ∗, (vi) nonparametric degree of freedom defined by tr(H ∗)
and (vii) an F -test for testing no effect. The results also give new insights of LPR
being a “calculus” extension of classical polynomial models and provide a new
geometric view on LPR highlighted by H ∗. Extension of the ANOVA inference to
partially linear models, generalized additive models and semiparametric models is
in progress.

2. ANOVA for local polynomial regression. We begin by introducing
LPR (Fan and Gijbels [9], Wand and Jones [26]) under (1.1). Assume that lo-
cally for data Xi’s in a neighborhood of x, m(Xi) can be approximated by
m(x) + m′(x)(Xi − x) + · · · + m(p)(x)(Xi − x)p/p!, based on a Taylor ex-
pansion. Then this local trend is fitted by weighted least squares as the follow-
ing:

min
β

n−1
n∑

i=1

(
Yi −

p∑
j=0

βj (Xi − x)j

)2

Kh(Xi − x),(2.1)

where β = (β0, . . . , βp)T , Kh(·) = K(·/h)/h, and the dependence of β on x and
h is suppressed. The function K(·) is a nonnegative weight function, typically a
symmetric probability density function, and h is the smoothing parameter, deter-
mining the neighborhood size for local fitting. Let β̂ = (β̂0, . . . , β̂p)T denote the
solution to (2.1). It is clear that β̂0 estimates m(x) of interest and j !β̂j estimates
the j th derivative m(j)(x), j = 1, . . . , p. For convenience of developing ANOVA
inference in this paper, we define a local SSE as the resulting (2.1) divided by the
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sum of local weights:

SSEp(x;h) = n−1 ∑n
i=1(Yi − ∑p

j=0 β̂j (Xi − x)j )2Kh(Xi − x)

n−1 ∑n
i=1 Kh(Xi − x)

.(2.2)

The denominator of (2.2) is the kernel density estimator f̂ (x;h) (Silverman [24])
for f (x). Similar treatment can be found in Qiu [21], so that SSEp(x;h) esti-
mates σ 2(x). We note that (2.2) is equivalent to the SSE for weighted least squares
regression given in Draper and Smith [7].

Recall that in the linear regression setting, the sample ANOVA decomposition
is given as SST ≡ n−1 ∑

i (Yi − Ȳ )2 = n−1 ∑
i (Ŷi − Ȳ )2 + n−1 ∑

i (Yi − Ŷi)
2 ≡

SSR + SSE, where Ŷi ’s denote fitted values for Yi’s from a linear model, SST the
corrected sum of squares for Yi ’s, and SSR the sum of squares due to regression.
In the literature of weighted least squares regression (e.g., Draper and Smith [7])
with weight wi assigned to (Xi, Yi), the sample ANOVA decomposition is∑

i

(Yi − Ȳw)2wi = ∑
i

(Ŷi,w − Ȳw)2wi + ∑
i

(Yi − Ŷi,w)2wi,(2.3)

where Ȳw = ∑
i Yiwi/

∑
i wi and Ŷi,w is the resulting fitted value for Yi .

2.1. Local ANOVA decomposition and a pointwise R-squared. The local least
squares feature of LPR leads us to consider whether an analogous local (pointwise)
ANOVA decomposition exists. We note that it is not suitable to adopt (2.3) directly.
By forcing a local fit of Ȳ , we obtain a finite-sample and exact local ANOVA
decomposition in Theorem 1 for LPR. In addition to SSEp(x;h) in (2.2), local
SST and local SSR are defined as follows:

SST(x;h) = n−1 ∑n
i=1(Yi − Ȳ )2Kh(Xi − x)

f̂ (x;h)
,

(2.4)

SSRp(x;h) = n−1 ∑n
i=1(

∑p
j=0 β̂j (Xi − x)j − Ȳ )2Kh(Xi − x)

f̂ (x;h)
.

Note that both SSEp(x;h) and SSRp(x;h) use all the fitted parameters β̂j ’s, in
contrast to RSS using only β̂0.

THEOREM 1. An exact and finite-sample ANOVA decomposition is obtained
for local polynomial fitting at a grid point x in the range of Xi’s:

SST(x;h) = SSEp(x;h) + SSRp(x;h).(2.5)

In addition, SSE1(x;h) for local linear regression (p = 1) is related to the
weighted least squared error of the Nadaraya–Watson estimator (p = 0), as given
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below:

SSE1(x;h) = n−1 ∑
(Yi − m̂NW (x))2Kh(Xi − x)

f̂ (x;h)
(2.6)

− β̂2
1
n−1 ∑

(Xi − X̄k)
2Kh(Xi − x)

f̂ (x;h)
,

where m̂NW (x) = n−1 ∑
i Kh(Xi − x)Yi/f̂ (x;h) and X̄k = n−1 ∑

i XiKh(Xi −
x)/f̂ (x;h).

The proof of Theorem 1 is mainly algebraic and hence is omitted; (2.6) is sim-
ply (2.3). The “exact” expression (2.5) is very attractive and has an appealing inter-
pretation of comparing the local fit with the simple no-effect Ȳ in the same local
scale. It is easy to see that SSRp(x;h) estimates (m(x) − μy)

2 and SSEp(x;h)

estimates σ 2(x).
Based on (2.5), we define a local (pointwise) R-squared at x as follows:

R2
p(x;h) = 1 − SSEp(x;h)

SST(x;h)
= SSRp(x;h)

SST(x;h)
.(2.7)

From Theorem 1, R2
p(x;h) is always between 0 and 1, and R2

1(x;h) for local lin-

ear regression is always greater than R2
0(x;h) for the Nadaraya–Watson estimator

with the same bandwidth and kernel function. A plot of R2
p(x;h) versus x will give

an idea of the quality of estimation at different regions of data. R2
p(x;h) is a mea-

sure for the proportion of local variation explained by the local polynomial fit. We
note that R2

p(x;h) is invariant with respect to linear transformations of Yi’s, and
will be invariant for linear transformations of Xi’s (aXi + b) if the bandwidth is
taken proportional to the transformation, ah, accordingly. The classical R-squared
for polynomial models can be viewed as a special case of (2.7), when using the uni-
form kernel at only one grid point X̄. Thus LPR, fitting local polynomials across
data, is like a calculus extension of classical polynomial models.

2.2. Global ANOVA decomposition and coefficient of determination. We now
turn to developing a global ANOVA decomposition. It is convenient to introduce
some conditions here.

CONDITIONS (A).

(A1) The design density f (x) is bounded away from 0 and ∞, and f (x) has a
continuous second derivative on a compact support.

(A2) The kernel K(·) is a Lipschitz continuous, bounded and symmetric proba-
bility density function, having a support on a compact interval, say [−1,1].

(A3) The error ε is from a symmetric distribution with mean 0, variance 1, and a
finite fourth moment.
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(A4) The (p + 1)st derivative of m(·) exists.
(A5) The conditional variance σ 2(·) is bounded and continuous.

Based on (2.5), a global ANOVA decomposition can be established by integrat-
ing local counterparts in (2.5):

SST(h) =
∫

SST(x;h)f̂ (x;h)dx,

SSEp(h) =
∫

SSEp(x;h)f̂ (x;h)dx,(2.8)

SSRp(h) =
∫

SSRp(x;h)f̂ (x;h)dx.

Then a global ANOVA decomposition is

SST = SSEp(h) + SSRp(h),(2.9)

which corresponds to the theoretical version (1.2). Since
∫

Kh(Xi − x)dx = 1
under Conditions (A1) and (A2),

∫
SST(x;h)f̂ (x;h)dx = n−1 ∑n

i=1(Yi − Ȳ )2 =
SST in (2.9). We then define a global R-squared as

R2
p(h) = 1 − SSEp(h)

SST
= SSRp(h)

SST
,(2.10)

and we name it the “ANOVA” R-squared. We further investigate some asymptotic
properties of R2

p(h). For simplicity, we focus on the case of an odd degree, for
example, p = 1, in Theorem 2. A by-product is that SSE(h) is a

√
n-consistent

estimate for σ 2 when assuming homoscedasticity.

THEOREM 2. Assume that as n → ∞, h = h(n) → 0. When fitting LPR with
an odd p, under Conditions (A) with nh2p+2 → 0 and nh2 → ∞:

(a) The asymptotic conditional bias of R2
p(h) is

−h2 μ2

2σ 2
y

∫
σ 2(x)f ′′(x) dx

(
1 + oP (1)

)
.

(b) The asymptotic conditional variance of R2
p(h) is

n−1
(

Var(ε2)

σ 4
y

E(σ 4(X))

(∫
K∗

0 (v) dv

)
+ (m4 − σ 4

y )(E(σ 2(X)))2

σ 8
y

)

× (
1 + oP (1)

)
,

where σ 2
y is the variance of Y , m4 = E{(Y − μy)

4} is the fourth central moment
of Y , and K∗

0 (v) = ∫
K(u)K(v − u)du denotes the convolution of K and itself.
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(c) Under the homoscedastic assumption and conditioned on {X1, . . . ,Xn},
R2

p(h) converges in distribution to a normal distribution with the above asymp-
totic conditional bias and variance.

(d) Under the assumptions in (c), SSEp(h) is a
√

n-consistent estimate for σ 2.
Its asymptotic conditional bias is oP (n−1/2) if

∫
f ′′(x) dx = 0 and its asymptotic

conditional variance n−1σ 4(
∫

K∗
0 (v) dv)(1 + oP (1)).

Theorem 2 is a special case of Theorem 6 in Section 3, and hence the proof of
Theorem 6 (in the Appendix) is applicable to Theorem 2. The condition on the
bandwidth in Theorem 2 becomes h = o(n−1/4) and n−1/2 = o(h) for the case of
p = 1. It is known that the optimal bandwidth for estimating m(·) with p = 1 is of
order n−1/5 (e.g., Fan and Gijbels [9]). It is not surprising that we need a smaller
bandwidth than the rate of n−1/5 to obtain a

√
n-consistent estimate for σ 2.

2.3. Asymptotic projection matrix. Under Conditions (A1) and (A2), SSEp(h)

and SSRp(h) can be rewritten as

SSEp(h) = n−1

{∑
i

Y 2
i −

∫ ∑
i

(∑
j

β̂j (x)(Xi − x)j

)2

Kh(Xi − x)dx

}
,

SSRp(h) = n−1

{∫ ∑
i

(∑
j

β̂j (x)(Xi − x)j

)2

Kh(Xi − x)dx − nȲ 2

}
,

and in a matrix expression,

SSEp(h) = n−1yT (I − H ∗)y, SSRp(h) = n−1yT (H ∗ − L)y,(2.11)

where L is an n×n matrix with entries 1/n. In this subsection, we further explore
if H ∗ behaves like a projection matrix. The H ∗ matrix can be written as H ∗ =∫

WHf̂ (x;h)dx, where W is a diagonal matrix with entries Kh(Xi −x)/f̂ (x;h),
H = X(XT WX)−1XT W is the local projection matrix for (2.1) with X the design
matrix for (2.1), and the integration is performed element by element in the result-
ing matrix product. H ∗ depends on the data points Xi ’s, kernel function K and
the bandwidth h. Under Conditions (A1) and (A2), H ∗1 = 1, where 1 denotes an
n-vector of 1’s. Therefore the projected response H ∗y = y∗ is a vector with each
element Y ∗

i being a weighted average of Yi’s. The matrix H ∗ is clearly a symmet-
ric matrix, but it is not idempotent. Given this fact, we take a step back to explore
if H ∗ is asymptotically idempotent when conditioned on {X1, . . . ,Xn}.

The authors are not aware of standard criteria of asymptotic idempotency. Be-
low we define a criterion for asymptotic idempotency and asymptotic orthogonal-
ity in a nonparametric regression setting:

DEFINITION. 1. Conditioned on {X1, . . . ,Xn}, an n × n matrix An is asymp-
totically idempotent, if for any random n-vector response y with finite expected
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value, E{(An −A2
n)y|X1, . . . ,Xn} tends to a zero vector in probability as n → ∞,

that is, each element of E{(An −A2
n)y|X1, . . . ,Xn} is asymptotically zero in prob-

ability as n → ∞.
2. Conditioned on {X1, . . . ,Xn}, for two n × n matrices An and Bn, they

are asymptotically orthogonal, if for any random n-vector response y with fi-
nite expected value, E{AnBny|X1, . . . ,Xn} tends to a zero vector in probability
as n → ∞, that is, each element of E{AnBny|X1, . . . ,Xn} is asymptotically zero
in probability as n → ∞.

Denote the multiplier for hp+1 (p odd) or hp+2 (p even) in the first-order
term for the conditional bias of β̂0(x;h,p) as b0,p(x) (see Wand and Jones [26],

page 125). The following theorem gives the rate of each element in (H ∗ − H ∗2
)y.

THEOREM 3. Under Conditions (A), suppose local polynomial regression of
order p is fitted to data. The bandwidth h → 0 and nh → ∞, as n → ∞.

(a) For p �= 1, the asymptotic conditional bias of Y ∗
i , E{Y ∗

i − m(Xi)|X1, . . . ,

Xn}, for i = 1, . . . , n, is at most{
O(hp+1)

(
1 + oP (1)

)
, p is odd;

O(hp+2)
(
1 + oP (1)

)
, p is even.

(2.12)

(b) For p = 1, the asymptotic conditional bias of Y ∗
i , i = 1, . . . , n, is of or-

der h4; more explicitly

h4
(

μ2
2 − μ4

4

){
m(4)(Xi) + 2m(3)(Xi)

f ′(Xi)

f (Xi)
+ m(2)(Xi)

f ′′(Xi)

f (Xi)

}
(2.13)

+ oP (h4).

(c) Each element in E{(H ∗−H ∗2
)y|X1, . . . ,Xn} is at most of order O(hp+1)×

(1 + oP (1)) for an odd p with p ≥ 3, at most O(hp+2)(1 + oP (1)) if p is even,
and O(h4)(1 + oP (1)) when p = 1. Thus, conditioned on {X1, . . . ,Xn}, H ∗ is
asymptotically idempotent and asymptotically a projection matrix.

(d) For local linear regression, the asymptotic conditional variance of Y ∗
i re-

tains the order of n−1h−1:

Var{Y ∗
i |X1, . . . ,Xn} = n−1h−1(

1 + oP (1)
)
κ0σ

2/f (Xi),(2.14)

where κ0 = ∫
K∗2

0 (v) dv − 2
μ2

∫
K∗

0 (v)K∗
1 (v) dv + 1

μ2
2

∫
K∗2

1 (v) dv with K∗
1 (·) the

convolution of uK(u) and itself.

Theorem 3(b) implies that using the matrix H ∗, one can achieve a surprising
bias reduction effect for local linear regression, from the order of h2 to h4. While
achieving bias reduction, the asymptotic conditional variance of Y ∗

i increases in
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the case of local linear regression. We calculate the constant term in (2.14) for the
Epanechnikov and Gaussian kernel functions, and the ratios of the constant factors
of Y ∗

i and local linear estimator β̂0(Xi) are 1.38 and 1.10, respectively. It is of
interest to know the form of y∗,

H ∗y =

⎛
⎜⎜⎜⎝

∫ (
β̂0(x) + · · · + β̂p(x)(X1 − x)p

)
Kh(X1 − x)dx

...∫ (
β̂0(x) + · · · + β̂p(x)(Xn − x)p

)
Kh(Xn − x)dx

⎞
⎟⎟⎟⎠ .(2.15)

The projection H ∗y uses all the fitted β̂j (x)’s through integration and the gain
is reduction in the asymptotic bias. It is in contrast with β̂0(Xi), which fits local
polynomial at Xi and throws away other fitted parameters when p ≥ 1.

2.4. An F-test for testing no effect. Results in Theorem 3 naturally lead us to
consider an F -test for testing no effect. The next theorem proposes an F -test that
inherits properties of the classical F -tests.

THEOREM 4. Under the conditions in Theorem 3 and conditioned on
{X1, . . . ,Xn}:

(a) (I − H ∗) and (H ∗ − L) are asymptotically orthogonal, in the sense that

E{(I − H ∗)(H ∗ − L)y|X1, . . . ,Xn} = E{(H ∗ − H ∗2
)y|X1, . . . ,Xn},

which tends to a zero vector in probability.
(b) Under the simple homoscedastic assumption, an F-statistic is formed as

F = SSRp/(tr(H ∗) − 1)

SSEp/(n − tr(H ∗))
,(2.16)

where tr(H ∗) is the trace of H ∗. Conditioned on {X1, . . . ,Xn}, with the normal er-
ror assumption, the F -statistic (2.16) is asymptotically F -distributed with degrees
of freedom (tr(H ∗) − 1, n − tr(H ∗)).

(c) The conditional trace of H ∗ for local linear regression is asymptotically

tr(H ∗) = h−1|�|(ν0 + ν2/μ2)
(
1 + oP (1)

)
,(2.17)

where |�| denotes the range of Xi’s and νj = ∫
ujK2(u) du.

We remark that when a local pth polynomial approximation is exact, E{(H ∗ −
H ∗2

)y|X1, . . . ,Xn} = 0, that is, H ∗ is idempotent and the resulting F -statistic
(2.16) has an exact F -distribution as in the classical settings. Based on (2.8) and
Theorems 3 and 4, an ANOVA table for LPR is given in Table 1. It has been shown
in Theorem 2(d) that SSEp(h) is a

√
n-consistent estimate for σ 2 when the error

variance is homoscedastic. Table 1 shows that MSEp(h) = SSEp(h) n
n−tr(H ∗) is an
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TABLE 1
ANOVA table for local polynomial regression

Source Degree of freedom Sum of squares Mean squares F

Regression tr(H∗) − 1 SSRp = n−1yT (H∗ − L)y MSRp = nSSRp

(tr(H ∗)−1)

MSRp

MSEp

Residual n − tr(H∗) SSEp = n−1yT (I − H∗)y MSEp = n×SSEp

(n−tr(H ∗))
Total (n − 1) SST = n−1yT (I − L)y

unbiased estimate for σ 2 in finite-sample settings, which is similar to the classical
MSE in linear models. With the ANOVA table, an analogous adjusted R-squared
may be defined as

R2
p,adj (h) = 1 − SSEp(h)/(n − tr(H ∗))

SST/(n − 1)
.(2.18)

3. Extension to varying coefficient models. In this section, we extend the
ANOVA decomposition to VCM, illustrating that the ANOVA framework can be
extended to the multivariate case. Though there is no room in this paper for a
full discussion of VCM, we develop expressions for local and global ANOVA
decomposition and the ANOVA R-squared in this section.

The VCM assumes the following conditional linear structure:

Y =
d∑

k=1

ak(U)Xk + σ(U)ε,(3.1)

where X1, . . . ,Xd , d ≥ 1, are the covariates with X1 = 1, a(U) = (a1(U), . . . ,

ad(U))T is the functional coefficient vector, U and ε are independent, and ε has a
mean 0 and unit variance. Specifically, when d = 1, model (3.1) is reduced to the
bivariate nonparametric model (1.1). On the other hand, if the varying coefficients
are constants, that is, ak(U) = ak , k = 1, . . . , d , the model is the multivariate linear
model. Based on (3.1), the theoretical ANOVA decomposition is

Var(Y ) = Var
(
E(Y |U,X1, . . . ,Xd)

) + E
(
Var(Y |U,X1, . . . ,Xd)

)
(3.2)

=
∫ (

a(u)T x − μy

)2
f (x|u)g(u)dxdu +

∫
σ 2(u)g(u)du,

where g(u) denotes the underlying density function for U , and f (x|u) the under-
lying conditional density function of x = (X1, . . . ,Xd)T given u.

Hoover et al. [15] and Fan and Zhang [11] applied LPR to estimate the
varying-coefficient function vector a(U). Assume that the (p + 1)st-order deriva-
tive of a(U) exists, and data (Ui,Xi1, . . . ,Xid, Yi), i = 1, . . . , n, are drawn from
model (3.1). Based on a Taylor expansion, ak(Ui), i = 1, . . . , n, k = 1, . . . , d ,
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is approximated by βk,0(u) + βk,1(u)(Ui − u) + · · · + βk,p(u)(Ui − u)p , for
Ui in a neighborhood of a grid point u. Then local polynomial estimator β̂k =
(β̂k,0, . . . , β̂k,p)T , k = 1, . . . , d , for VCM can be obtained by the following locally
weighted least squares equation:

min
β

n−1
n∑

i=1

(
Yi −

d∑
k=1

p∑
j=0

βk,j (Ui − u)jXik

)2

Kh(Ui − u)/ĝ(u;h),(3.3)

where β = (β1,0, . . . , β1,p, . . . , βd,0, . . . , βd,p)T , and ĝ(u;h) = n−1 ×∑n
i=1 Kh(Ui − u) denotes the kernel density estimate for g(u). For convenience,

(3.3) and its solution are expressed in a matrix form. Let

Xu =
⎛
⎜⎝

X11 · · · X11(U1 − u)p · · · X1d · · · X1d(U1 − u)p

...
. . .

...
. . .

...
. . .

...

Xn1 · · · Xn1(Un − u)p · · · Xnd · · · Xnd(Un − u)p

⎞
⎟⎠

n×(p+1)d

,

and Wu be an n × n diagonal matrix of weights with ith element Kh(Ui −
u)/ĝ(u;h). Then the solution to (3.3) can be expressed as β̂(u) = (XT

u WuXu)
−1 ×

XT
u Wuy, and the local polynomial estimator for a(u) is

â(u) = (Id ⊗ e(p+1),1)(XT
u WuXu)

−1XT
u Wuy,

where ⊗ denotes the Kronecker product and e(p+1),k is a (p+1)-dimension vector
with 1 on the kth position and 0 elsewhere, and â(u) = (β̂1,0(u), . . . , β̂d,0(u))T .

Similarly to the bivariate case, Theorem 5 gives the local finite-sample ANOVA
decomposition for VCM.

THEOREM 5. Under model (3.1), an exact and finite-sample ANOVA decom-
position is obtained for local polynomial fitting at a grid point u:

SST(u;h) ≡ n−1 ∑n
i=1(Yi − Ȳ )2Kh(Ui − u)

ĝ(u;h)

= n−1 ∑n
i=1(Yi − Ŷi(u))2Kh(Ui − u)

ĝ(u;h)

+ n−1 ∑n
i=1(Ŷi(u) − Ȳ )2Kh(Ui − u)

ĝ(u;h)

≡ SSEp(u;h) + SSRp(u;h),

where Ŷi(u) = eniXu(XT
u WuXu)

−1XT
u Wuy = ∑d

k=1
∑p

j=0 β̂k,j (Ui − u)jXik with
eni an n-dimension vector with 1 at the ith position and 0 elsewhere.
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The ANOVA decomposition in Theorem 5 extends the bivariate ANOVA de-
composition (2.5) to VCM in a straightforward way. A global ANOVA decompo-
sition can be constructed by integrating the local counterparts in Theorem 5:

SST(h) = SSEp(h) + SSRp(h),(3.4)

where

SST =
∫

SST(u;h)ĝ(u;h)du = n−1yT (I − L)y,

SSEp(h) =
∫

SSEp(u;h)ĝ(u;h)du = n−1yT (I − H ∗
u )y,(3.5)

SSRp(h) =
∫

SSEp(u;h)ĝ(u;h)du = n−1yT (H ∗
u − L)y,

where H ∗
u = ∫

WuHuĝ(u;h)du is a symmetric n × n matrix with Hu = Xu(XT
u ×

WuXu)
−1XT

u Wu. The matrix expression in the right-hand side of (3.5) is derived
under Conditions (B1) below and (A2), and similarly to Section 2, SST is free of
the bandwidth. Then a global R-squared for VCM is defined as

R2
p(h) = 1 − SSEp(h)

SST
= SSRp(h)

SST
.(3.6)

To investigate the asymptotic properties of the global ANOVA R-squared (3.6),
we impose Conditions (A2), (A3), (A5), and the following technical conditions:

CONDITIONS (B).

(B1) The second derivative of the density g(u) is bounded, continuous, and square
integrable on a compact support.

(B2) The (p + 1)st derivative of aj (·), j = 1, . . . , d , exists.
(B3) EX2s

j < ∞, for some s > 2, j = 1, . . . , p.
(B4) Let γij (u) = E(XiXj |U = u), i, j = 1, . . . , d , γij (·) is continuous in a

neighborhood of u.

Now, we state the asymptotic normality for the global ANOVA R-squared (3.6)
in the following theorem and its proof is given in the Appendix.

THEOREM 6. Assume that as n → ∞, h = h(n) → 0. When fitting LPR with
an odd p, under Conditions (A2), (A3), (A5) and (B1)–(B4), with nh2p+2 → 0
and nh2 → ∞:

(a) The asymptotic conditional bias of R2
p(h) is

−h2 μ2

2σ 2
y

∫
σ 2(u)g′′(u) du

(
1 + oP (1)

)
.
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(b) The asymptotic conditional variance of R2
p(h) is

n−1
(

Var(ε2)

σ 4
y

E(σ 4(U))

(∫
K∗

0 (v) dv

)
+ (m4 − σ 4

y )(E(σ 2(U)))2

σ 8
y

)

× (
1 + oP (1)

)
.

(c) Under the homoscedastic assumption and conditioned on {X1, . . . ,Xn},
R2

p(h) converges in distribution to a normal distribution with the above asymp-
totic conditional bias and variance.

(d) Under the assumptions in (c), SSEp(h) for VCM is a
√

n-consistent estimate
for σ 2. Its asymptotic conditional bias is oP (n−1/2) if

∫
g′′(u) du = 0 and the

asymptotic conditional variance n−1σ 4(
∫

K∗
0 (v) dv)(1 + oP (1)).

Theorem 6 extends Theorem 2 to VCM. Other ANOVA results for VCM, such
as degree of freedom, testing against H0 :ak(U) = c for some k with c a constant,
and testing for overall model significance, will be derived in a separate paper.

4. Numerical results. In this section, we use computer simulations to inves-
tigate the performance of the ANOVA R-squared and the proposed F -test.

4.1. Simulation results for the ANOVA R-squared. Two examples from Dok-
sum and Froda [6] are used to compare the performance between the ANOVA
R-squared (2.10), the adjusted ANOVA R-squared (2.18), the correlation R-squar-
ed (1.3), and an empirical RSS-related R-squared R2

s = RSS/
∑

i (Yi − Ȳ )2. For
comparison only, we also include the R-squared from fitting a simple linear
model. Sample sizes of n = 50 and 200 are used with 400 simulations. Follow-
ing Doksum and Froda [6], we use a fixed bandwidth h = 0.22 (approximately
0.7 times the standard deviation of X in the examples). The purpose is to see
how the four coefficients of determination differ from one another when the same
amount of smoothing is applied. Local linear regression with the Epanechnikov
kernel K(u) = 0.75(1 − u2)I|u|≤1 is applied and 200 equally spaced grid points
on (mini Xi,maxi Xi) are used to approximate the integration for R2

1(h) and
R2

1,adj (h). No special treatment for boundary points is implemented for any of
the four nonparametric R-squared’s.

EXAMPLE 1. Bump model: Y = 2−5(X−e−100(X−0.5)2
)+σε, where X fol-

lows a Uniform(0,1) and the distribution of ε is N(0,1). X and ε are independent,
and σ = 0.5,1,2,4 results in high to low values for the true value of the coefficient
of determination. The results show that the four nonparametric R-squared’s have
similar performance for both n = 50 and n = 200, and hence the plots are omit-
ted for brevity. The values for the ANOVA R-squared is slightly smaller than R2

ρ

and R2
s ; for example, when σ = 0.5, the average R2

1 is 0.8155 (sd 0.0325), 0.8273
(sd 0.0323) for R2

ρ , and 0.8337 (sd 0.0337) for R2
s .
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EXAMPLE 2. Twisted pear model: Y = 5 + 0.1Xe(5−0.5X) + (1+0.5X)
3 σε,

where X ∼ N(1.2, (1/3)2) and ε ∼ N(0,1). X and ε are independent, and the val-
ues of σ are the same as in Example 1. The original model from Doksum and Froda
[6] did not include the constant 5. We add a nonzero constant in the model for con-
venience of performing F -tests in Section 4.2. This model represents a situation
where the relationship between X and Y is strong for small x, but then tapers off as
the noise variance increases. Figure 1 gives the boxplots for n = 50. Clearly both
the unadjusted and adjusted ANOVA R-squared’s behave much more stably than
R2

ρ and R2
s . When σ = 0.5, the values of mean (sd) are 0.9512 (0.0195), 0.9444

(0.0216), 0.8587 (0.1662) and 0.8730 (0.1752) for R2
1 , adjusted R2

1,adj, R2
ρ and R2

s ,

respectively. Both R2
ρ and R2

s have a skewed distribution for this heteroscedastic
model. Similar results can be observed for the case of σ = 1. When σ = 4, we note
that there is one negative R2

s and four negative R2
1,adj, which are not guaranteed to

lie between 0 and 1. The results for n = 200 are similar to those of n = 50 and
hence are omitted. This example demonstrates some advantages of the ANOVA
R-squared in a heteroscedastic model as compared to other nonparametric coeffi-
cients of determination.

4.2. Simulation results for the F-test of no effect. Due to boundary effects in
practice, we adopt a more conservative version of the F -statistic, defined as

F(h) = (SSRp(h)/(tr(H ∗) − 1)

(
∑

i (Yi − Ȳ )2 − SSRp(h))/(n − tr(H ∗))
,(4.1)

where SSRp(h) is estimated based on (2.8) without any boundary adjustment. Note
that in the denominator of (4.1), (

∑
i (Yi − Ȳ )2 − SSRp(h)) is used instead of

SSEp(h). Examples 1 and 2 with σ = 1 are modified as Examples 3 and 4 to
illustrate the proposed F -test. For each example, three fixed values of the band-
width are used: Example 3, h =0.15, 0.22 and 0.34, and Example 4, h =0.22,
0.34 and 0.51, with a ratio of roughly 1.5. The F -test statistic in (4.1) is calcu-
lated and its p-value is obtained using the F -distribution with degrees of freedom
(tr(H ∗)−1, n− tr(H ∗)). A significance level 0.05 is used to determine whether to
reject the null hypothesis or not. Again sample sizes n = 50 and n = 200 are used
with 400 simulations. For comparison only, we also include another F -flavor test,
the pseudo-likelihood ratio test (PLRT) for no effect by Azzalini and Bowman [2],
in which a chi-squared distribution was calibrated to obtain the p-value.

EXAMPLE 3. Consider the model: Y = 2−a×(X−e−100(X−0.5)2
)+ε, where

a = 0,0.5, . . . ,3, X ∼ Uniform(0,1) and ε ∼ N(0,1). The case of a = 0 gives the
intercept only model, while Example 1 corresponds to a = 5. Figure 2(a) illustrates
the shapes of the true regression functions. The proportions of rejection by the
F -statistic (4.1) and PLRT are plotted in Figure 2(b)–(d) as a function of a. With



ANOVA AND F -TEST FOR LPR 2099

FIG. 1. Example 2. Boxplots for 400 trials of five different R-squared’s with n = 50: (1) ANOVA
R2

1 , (2) adjusted ANOVA R2
1 , (3) R-squared from fitting a simple linear model, (4) R2

ρ (Doksum and

Samarov [5]) and (5) empirical R2
s .

a conservative (4.1), all type-I errors of the F -test are below 5% level. The PLRT
has slightly better power than the F -test when n = 50, and the two tests behave
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FIG. 2. Examples 3 and 4. (a) Plot of the true regression function curves for Example 3,
a = 0,0.5, . . . ,3; (b) the percentages of rejection for simulated data in Example 3 based on 400
simulations with h = 0.15; ANOVA F -test (solid line), PLRT (long dash line), and the short dash
line indicates the 5% significance level; + (n = 200); ◦ (n = 50); (c) same as in (b) except h = 0.22;
(d) same as in (b) except h = 0.34; (e) plot of the true regression function curves for Example 4,
a = 0,0.01, . . . ,0.06; (f)–(h): same as in (b)–(d) for Example 4 with h = 0.22, 0.34 and 0.51, re-
spectively.



ANOVA AND F -TEST FOR LPR 2101

similarly for n = 200. Both tests have better power with bandwidth increasing,
while the type-I error of the PLRT exceeds 0.05 level when h = 0.34.

EXAMPLE 4. Consider the following model: Y = 5 + aXe(5−0.5X) +
(1+0.5X)

3 ε, where a = 0,0.01, . . . ,0.06, X ∼ N(1.2(1/3)2), and ε ∼ N(0,12).
For this heteroscedastic model, a = 0 corresponds to the null hypothesis, and Ex-
ample 2 corresponds to a = 0.1. We note that neither of the two tests is formally
applicable, but we want to examine their robustness against deviations from ho-
moscedasticity. A plot of the true regression functions is given in Figure 2(e), and
the percentages of rejection over 400 simulations are given in Figure 2(f)–(h). As
in Example 3, the PLRT has slightly better power than the F -test when n = 50.
We observe a less accurate approximation of the type-I error by the PLRT when
n = 200: 7.75%, 6.5% and 6.25% for h = 0.22, 0.34 and 0.51, respectively (the
corresponding numbers are 4.5%, 4% and 4% for the F -test). This may jus-
tify PLRT’s better performance when a = 0.01 and 0.02. This example shows
that even under a heteroscedastic error structure, both tests perform reasonably
well.

5. Real data. The data from Simonoff [25] were obtained in Lake Erie, con-
taining 52 rows numbered consecutively from the northwest (row 1) to the south-
east (row 52) and the sum of yields of the harvest in 1989, 1990 and 1991, as
measured by the total number of lugs (a lug is roughly 30 pounds of grapes). Fig-
ure 3(a) shows the data and the local linear estimates at grid points 1,1.5, . . . ,52,
with the Gaussian kernel and bandwidth h = 3 (solid line) and h = 1.5 (dashed
line). The choice of bandwidth follows Simonoff [25]. The dip in yield around
rows 30–40 is possibly due to a farmhouse directly opposite those rows (Simonoff
[25]). The coefficients of determination indicate good explanatory power: when
h = 3, R2

1 , R2
ρ and R2

s are 0.8493, 0.9414, 0.8854, respectively; when h = 1.5,
0.9046, 0.9638 and 0.9297. The corresponding pointwise R-squared is shown in
Figure 3(b). The curve with h = 1.5 has a larger pointwise R2

1(x) in most locations
than that of h = 3. The local R-squared with h = 3 is only 40–50% for rows 31–34,
and above 90% for rows 12–23 and 46–52, reflecting some difference across data
in the proportion of variation explained by local linear regression. The difference
leads to the idea of using the local R-squared for variable bandwidth selection in a
future paper. The ANOVA tables for h = 3 and 1.5 are given in Tables 2 and 3. As
expected, the SSR1 of h = 1.5 is greater than that of h = 3. Both p-values of the
ANOVA F -statistic (4.1) are <10−7, indicating rejection of the null hypothesis.
The PLRT also gives very small p-values, 4.3 × 10−4 and 1.33 × 10−4 for h = 1.5
and 3, respectively. Note that due to boundary effects, SSRp(h) + SSEp(h) does
not equal the sample variance of Y . We give both quantities in the ANOVA tables
to illustrate this effect in practice.
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FIG. 3. (a) Scatterplot of total lug counts versus row for the vineyard data with local linear esti-
mates h = 3 (solid line) and h = 1.5 (dashed line). (b) Plot of the corresponding pointwise R2

1(x).

6. Discussion. Though the idea of nonparametric ANOVA inference is not
new, we believe that the work in this paper provides a unified framework with
an asymptotic geometric configuration for the first time. The proposed ANOVA
tools for LPR are easy to carry out in practice and we hope that the methodology
will be useful for data analysis. It will be interesting to explore a similar ANOVA
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TABLE 2
ANOVA table for vineyard data with bandwidth 3

Source Degree of freedom Sum of squares Mean squares F

Regression (7.5509 − 1) SSRp = 2204.6682
52

2204.6682
6.5509 F = 15.3299

Residual (52 − 7.5509) SSEp = 391.2489
52

391.2489
44.4491

Total 51 SST = 2595.9171
52

3180.4808
52

framework for other nonparametric regression methods such as penalized splines
in future studies. The ground-breaking points are the elegant local ANOVA de-
composition (2.5) and construction of global ANOVA quantities through integrat-
ing local counterparts. Thus LPR, fitting local polynomials across data, may be
viewed as a “calculus” extension of classical polynomial models. A surprising by-
product is that the projected response H ∗y has a bias of order h4, which is smaller
than the usual order h2. The proposed projection matrix H ∗ overcomes the prob-
lem of a nonsymmetric smoother matrix of local linear regression, and we show
that it has nice geometric properties that lead to a natural F -test for no-effect.
H ∗ also provides a new geometric view of LPR: for example, in the case of lo-
cal linear regression, the local fitting at x is to project y into local column space
of X and the locally projected values are β̂0(x) + β̂1(x)(Xi − x), i = 1, . . . , n;
these locally projected values at different grid points around Xi are then combined
through weighted integration to form the projected value Y ∗

i [see (2.15)]. The pro-
jection view and the geometric representation of the ANOVA quantities offer new
insights for LPR. The proposed F -test shares the property of the “Wilks phenom-
enon” with the generalized likelihood ratio test (Fan, Zhang and Zhang [10]), in
that it does not depend on nuisance parameters. The numerical results presented
in the paper show that the test statistic under the null hypothesis follows well the
asymptotic F -distribution without further calibration; one does not have to sim-
ulate the null distributions to obtain the critical value. The paper also presents a
brief multivariate extension of nonparametric ANOVA inference to VCM; more
details will be developed in a separate paper. Based on findings in this paper, sev-
eral follow-up problems are being investigated, including extension of the F -test

TABLE 3
ANOVA table for vineyard data with bandwidth 1.5

Source Degree of freedom Sum of squares Mean squares F

Regression (14.8095 − 1) SSRp = 2461.9695
52

2461.9695
13.8095 F = 8.9798

Residual (52 − 14.8095) SSEp = 259.5325
52

259.5325
36.1905

Total 51 SST = 2721.5020
52

3180.4808
52
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to test for a polynomial relationship (Huang and Su [16]), and ANOVA inference
for partial linear models and generalized additive models. We are also interested
in applying the ANOVA approach to study the bandwidth selection problem, for
example, using the local R-squared for variable bandwidth selection, and using the
classical model selection criteria of AIC and BIC with the proposed SSEp(h) and
degree of freedom tr(H ∗) for global bandwidth selection.

APPENDIX

Proofs of Theorems 3, 4 and 6 are included in this section. The following lemma
by Mack and Silverman [18] will be needed.

LEMMA A.1. Assume that E|Y 3| < ∞ and supx

∫ |y|sf (x, y) dy < ∞, where
f (x, y) denotes the joint density of (X,Y ). Let K be a bounded positive function
with a bounded support, satisfying a Lipschitz condition, and D the support for
the marginal density of X. Then

sup
x∈D

∣∣∣∣∣n−1
n∑

i=1

{Kh(Xi − x)Yi − E[Kh(Xi − x)Yi]}
∣∣∣∣∣

= OP [{nh/ log(1/h)}−1/2],
provided that n2a−1h → ∞ for some a < 1 − s−1.

PROOF OF THEOREM 3. For the ith element Y ∗
i , under Conditions (A1)

and (A2),

Y ∗
i − m(Xi) =

∫ ( p∑
j=0

(β̂j (x)(Xi − x)j

)
Kh(Xi − x)dx

−
∫

m(Xi)Kh(Xi − x)dx

=
∫ ((

β̂0(x) − β0(x)
) + · · · + (

β̂p(x) − βp(x)
)
(Xi − x)p

)
(A.1)

× Kh(Xi − x)dx

−
∫ (

βp+1(x)(Xi − x)p+1 + r(x,Xi)
)
Kh(Xi − x)dx,

where r(x,Xi) denotes the remainder terms after a (p + 1)st-order Taylor expan-
sion. By using the bias expression from Wand and Jones [26], for example, when
p is odd,

E

{∫ (
β̂0(x) − β0(x)

)
Kh(Xi − x)dx|X1, . . . ,Xn

}
= hp+1b0,p(x)

(
1 + oP (1)

)
,
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and similarly for
∫
(β̂j (x) − βj (x))(Xi − x)jKh(Xi − x)dx, j ≥ 1. With∫
βp+1(x)(Xi − x)p+1Kh(Xi − x)dx

= 1

(p + 1)!h
p+1μp+1m

(p+1)(Xi)
(
1 + oP (1)

)
,

the asymptotic conditional bias of Y ∗
i in (2.12) is obtained when p is odd. The

case for an even p follows analogously. For local linear regression in part (b),
the h2-order terms are canceled, and the asymptotic conditional bias follows from
further expansion of (A.1).

For part (c), denote the conditional bias vector of y∗ by b = H ∗m − m.
Then

E{H ∗2
y|X1, . . . ,Xn} − m = H ∗(m + b) − m = b + H ∗b.(A.2)

The rate of b = H ∗m − m is given in (2.12) and (2.13). It remains to inves-
tigate the rate of elements in H ∗ = (h∗

i,j ). The (j, k)th element of (XT WX)

matrix is sj,k(x) = ∑
i (Xi − x)j+k−2Kh(Xi − x)/f̂ (x) = nhj+k−2(μj+k−2 +

μj+k−1f
′(x)/f (x))(1 + oP (1)) by Lemma A.1, and

XT WX = nD
(
Sp + hS′

pf ′(x)/f (x) + oP (h2)
)
D,(A.3)

where D = diag(1, h, . . . , hp), Sp = (μi+j−2)1≤i,j≤(p+1) and S′
p =

(μi+j−1)1≤i,j≤(p+1). Then (XT WX)−1 = D−1S−1
p D−1(1 + oP (1)). Denote

S−1
p = (si,j ) and si,j is of order O(1). Then before integrating over x, the ith

diagonal element of WHf̂ (x) = WX(XT WX)−1XT Wf̂ (x) has a form:

n−1
p∑

l=0

p∑
k=0

(
Kh(Xi − x)

)2
(Xi − x)l+ks(k+1),lh

−(l+k)(1 + oP (1)
)
,

which is of order O(n−1h−1)(1 + oP (1)). After integration, the rate for h∗
i,i re-

mains O(n−1h−1)(1 + oP (1)). We next show that the rate of nondiagonal ele-
ments of H ∗ is of order O(n−1)(1 + oP (1)). For i �= j , the integrand for h∗

i,j

is

p∑
l=0

p∑
k=0

Kh(Xi − x)Kh(Xj − x)(Xi − x)l(Xj − x)ks(k+1),lh
−(l+k),

which is of order O(n−1)(1 + oP (1)). Then results stated in (c) follow from (A.2).
For part (d), under the homoscedastic model, Var(y∗) = H ∗2σ 2, and the condi-

tional variance of Y ∗
i is σ 2 ∑

j h∗2

i,j . When i = j , h∗2

i,i is of order O(n−2h−2)(1 +
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oP (1)). For i �= j ,

∑
j �=i

h∗2

i,j = n−1h−2
∫ {∫

K(u)K

(
Xj − Xi

h
− u

)(
1 − u

μ2

(
Xj − Xi

h
− u

))
du

}2

× f (Xj ) dXj

(
1 + oP (1)

)
= n−1h−1 1

f (Xi)

∫ {
K∗

0 (u) − K∗
1 (u)

μ2

}2

du
(
1 + oP (1)

)
.

Hence the asymptotic conditional variance of Y ∗
i is as given in (2.14). This com-

pletes the proof of Theorem 3. �

PROOF OF THEOREM 4. Theorem 4(a) follows directly from Theorem 3. For
part (b), since H ∗ is asymptotically idempotent, (H ∗ −L) is asymptotically idem-
potent given that (H ∗ − L)2 = H ∗2 − L. Therefore with the homoscedastic nor-
mality assumption under the no-effect null hypothesis, SSRp(h) has an asymptotic
χ2-distribution with degree of freedom (tr(H ∗) − 1). Similarly for SSEp(h), it
has an asymptotic χ2-distribution with a degree of freedom (n − tr(H ∗)). With
(H ∗ − L) and (I − H ∗) being asymptotic orthogonal in part (a), the test sta-
tistic F in (2.16) has an asymptotic F -distribution with a degree of freedom
(tr(H ∗) − 1, n − tr(H ∗)).

For part (c), note that tr(HT Wf̂ (x)) = tr(f̂ (x)WX(XT WX)−1XT W) =
tr((XT WX)−1XT W 2Xf̂ (x)). Using Sp in (A.3) with p = 1, and

(f̂ (x)XT W 2X) =
(

ν0/h ν2f
′(x)/f (x)

ν2f
′(x)/f (x) hν2

)(
1 + oP (1)

)
,

(2.17) is obtained. Therefore the proof of Theorem 4 is complete. �

PROOF OF THEOREM 6. We need the following notation: the error vec-
tor as e = (σ (U1)ε1, . . . , σ (Un)εn)

T , the mean vector as m = (a(U1)
T X1, . . . ,

a(Un)
T Xn)

T with Xi = (1,Xi2, . . . ,Xi,d)T , and D = Ip+1 ⊗ diag(1, . . . , hp). Let
μ = (μp+1, . . . ,μ2p+1)

T [recall μj = ∫
ujK(u)du]. It follows from (3.6) that(

R2
p(h) − η

)
(A.4)

= 1

SST

{
−(

SSEp(h) − E(σ 2(U))
) + (SST − σ 2

y )
E(σ 2(U))

σ 2
y

}
.

The first term in (A.4) can be expressed as

SSEp(h) − E(σ 2(U)) = 1

n

∫
yT (Wu − WuHu)yĝ(u) du − E(σ 2(U))

≡ I1 + I2 + I3,
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where I1 = 1
n

∫
eT (Wu − WuHu)eĝ(u) du − E(σ 2(U)), I2 = 1

n

∫
mT (Wu −

WuHu)mĝ(u) du and I3 = 2
n

∫
eT (Wu − WuHu)mĝ(u) du.

For matrix Hu, using Lemma A.1 we find that XT
u WuXu = D(� ⊗ Sp)D(1 +

oP (1)) and
∑d

k=1 a
(p+1)
k (u)XT

u Wu(X1k(U1 − u)p+1, . . . ,Xnk(Un − u)p+1)T =
D(� ⊗ μ)a(p+1)T hp+1(1 + oP (1)), where � = E{(X1, . . . ,Xd)T (X1, . . . ,Xd)|
U = u} and a(p+1) = (a

(p+1)
1 , . . . , a

(p+1)
d )T . The term I2 conditioned on {X1, . . . ,

Xn} is nonrandom and asymptotically I2 = 1
{(p+1)!}2 h2p+2g(u)(μ2p+2 − μT ST

p ×
μ2p+2)(1+oP (1)). Conditioned on {X1, . . . ,Xn}, I3 has a mean 0 and its variance
is of order h2(p+1). For I1, assuming local homoscedasticity,

I1 = 1

n

n∑
i=1

[∫
K(Ui − u)σ 2(u)ε2

i du

]
− E(σ 2(U)) + OP (n−1h−1).(A.5)

The asymptotic conditional mean and variance for I1 are

E(I1|X1, . . . ,Xn) = h2 μ2

2

∫
σ 2(u)g′′(u) du

(
1 + oP (1)

)
,

Var(I1|X1, . . . ,Xn) = n−2
∑
i

(∫
σ 2(u)Kh(Ui − u)du

)2

(A.6)

= n−1E(σ 4(U))

(∫
K∗

0 (v) dv

)(
1 + oP (1)

)
.

It is clear that under the condition nh2p+2 → 0, I1 is the dominating term
for (SSEp(h) − E(σ 2(U))). Further, the asymptotic conditional variance of I1

is dominated by (A.6) since OP (n−1h−1) in (A.5) is smaller than (A.6) un-
der the condition that nh2 → ∞. Using Theorem 8.16 in Lehmann and Casella
[17],

√
n(SST − σ 2

y ) has the asymptotic normality N(0,Var[(Y − μy)
2]). Then

from (A.4), the asymptotic conditional variance of (R2
p(h) − η2) is obtained.

Last we establish the asymptotic normality of R2
p(h) in the homoscedastic case.

Since SST → σ 2
y with probability 1, (A.4) becomes

(
R2

p(h) − η
) =

{
− 1

σ 2
y

I1
(
1 + oP (1)

) + (
SST(h) − σ 2

y

) 1

σ 4
y

}
.

I1 is a summation of i.i.d. random variables ε2
i , i = 1, . . . , n, and hence by the

central limit theorem, I1 has an asymptotic normal distribution. It is easy to show
that the covariance of I1 and SST conditioned on X1, . . . ,Xn is of smaller order
than the sum of variances of I1 and (SST −σ 2

y ). Thus, the asymptotic normality for
Rp(h) is obtained. The results in part (d) are easily seen from asymptotic normality
of I1. �
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