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A GENERAL TRIMMING APPROACH TO ROBUST
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BY LUIS A. GARCÍA-ESCUDERO, ALFONSO GORDALIZA,
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We introduce a new method for performing clustering with the aim of
fitting clusters with different scatters and weights. It is designed by allowing
to handle a proportion α of contaminating data to guarantee the robustness
of the method. As a characteristic feature, restrictions on the ratio between
the maximum and the minimum eigenvalues of the groups scatter matrices
are introduced. This makes the problem to be well defined and guarantees the
consistency of the sample solutions to the population ones.

The method covers a wide range of clustering approaches depending on
the strength of the chosen restrictions. Our proposal includes an algorithm for
approximately solving the sample problem.

1. Introduction. Many statistical practitioners view cluster analysis as a col-
lection of mostly heuristic techniques for partitioning multivariate data. This arises
from the fact that most cluster techniques are not explicitly based on a probabilis-
tic model, and could lead to the feeling that no assumption is necessary and that
the obtained results are “objective” (see the comments on page 123 in Flury [7]).
However, objectiveness is far from reality and cluster results are most of the time
strongly affected by the chosen method and its performance is very dependent on
the underlying probabilistic model which the method implicitly assumes.

For instance, when using k-means, we must keep in mind that this method is
designed for clustering spherical groups of roughly equal sizes and, thus, it is not
reliable for analyzing constellations of groups that depart strongly from this as-
sumption. So, in order to understand clustering methods and decide what is more
appropriate in a particular case, it is interesting to construct feasible models and
develop suitably tailored methods for them.

Determining appropriate models for clustering is even more important when
noisy data or outliers are present. Without specifying a model, what we understand
by an observation following an “anomalous” behavior is not clear. For instance, it
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FIG. 1. (a) Two groups with 10% of the observation discarded (trimmed points are the small cir-
cles). (b) Three groups partition with no observations discarded.

is difficult to decide when a set of very scattered observations should be considered
as an extra proper group or merely as a background noise to be discarded (see
Figure 1). Additionally, it is not obvious if a small group of tightly joined outliers
should be considered as a proper group instead of a contamination phenomenon.
Finally, note that the precise detection of the outliers is an important task due to the
serious troubles they introduce in standard clustering procedures (see, e.g., García-
Escudero and Gordaliza [12] and Hennig [19]) as well as the appealing interest that
outliers could have by themselves after explaining why they depart from general
behavior.
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Two general model-based approaches which provide a theoretically well-based
clustering criterion in presence of outliers are (see Bock [2]) the mixture modeling
and the trimming approach. To the first category belongs, say, the work by Fraley
and Raftery [8], that considers mixture fittings with the addition of a mixture com-
ponent accounting for the “noise,” or McLachlan and Peel [23] that resorts to mix-
tures of t distributions. In this paper we are concerned with the trimming approach,
previously introduced in Cuesta-Albertos, Gordaliza and Matrán [4] and followed
by recent proposals by Gallegos [9, 10] and Gallegos and Ritter [11] (see also
García-Escudero, Gordaliza and Matrán [14] and [15]). Notice that a “crisp” 0–1
approach is usually adopted in trimming approaches while some groups’ owner-
ship probabilities are generally returned by mixture modeling. Also, while mixture
modeling tries to fit the outlying observations in the model, the trimming approach
attempts to discard them completely. The methodology presented in this paper falls
within the category of trimming approach methods and all the comparisons will be
made within this category.

To know how to perform the trimming in cluster analysis is not straightfor-
ward because there exist no privileged directions for searching outlying values
and, most of the time, we even need to remove observations which fall between the
groups (“bridge” data points). The first attempt of trimming in clustering, through
an “impartial” approach, appeared in [4] as a modification of the k-means method.
Moreover, [12] shows that the impartial trimming provides better results in terms
of robustness than the consideration of different penalty functions in the k-means
method (e.g., k-medoids).

The use of trimmed k-means involves a considerable drawback because it im-
plicitly assumes the same spherical covariance matrix for the groups (as classical
k-means does). The extension in [11] through the trimmed determinant criterion al-
lows for a general expression of a common covariance matrix. Moreover, [11] also
introduces there a statistical clustering model with outliers called the spurious-
outlier model extending the usual statistical clustering setup (Mardia, Kent and
Bibby [20]) to include the presence of a proportion α of noise. This point of view
leads to the consideration of the clustering method via maximum likelihood that
we pursue in this paper.

Unfortunately, the heterogeneous robust clustering problem (where different
groups’ covariance matrices are admitted) is notably harder. The proposed objec-
tive function is now unbounded and the different “scales” complicates the global
ordering of the observations around their closest centers through Mahalanobis dis-
tances (see García-Escudero and Gordaliza [13]). This motivates that unrestricted
algorithms often find small clusters of points either grouped or almost lying in
a lower dimensional space [Figure 2(a)]. Adding some kind of restriction could
allow us to obtain more informative partitions [Figure 2(b)].

A possible way of adding restriction has been considered in Gallegos [9, 10]
by normalizing the covariances to have unit determinant in the steps followed in
the algorithms there. This idea works nicely when the groups have similar scales,
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FIG. 2. An unrestricted solution for the same data set in Figure 1 appears in (a) when k = 3 and
α = 0.1. Compare with a restricted solution, also when k = 3 and α = 0.1, in (b).

but it does not work so well when very different scales are involved. This nor-
malization can be too restrictive and it seems more adequate to incorporate the
restrictions directly in the problem statement instead of (artificially) appearing in
the algorithm.

To address these difficulties, we introduce in our proposal constraints on the
covariance matrices eigenvalues-ratio. A constant c will control the strength of the
restrictions allowing a wide range of clustering problems.

Another difficulty arises under the presence of different sizes for the underly-
ing groups. Our proposal also includes, in a successful way, the consideration of
different groups’ weights to handle this difficulty.
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Existence results for both, the sample and the population problem, as well as the
consistency of the sample maximizers to the population ones under mild assump-
tions are shown in Section 2. The proofs are sketched in the Appendix stressing on
the importance of the eigenvalue restrictions to achieve these results.

In Section 3, we propose a feasible algorithm (TCLUST) for approximately
solving the sample version of the problem. It may be seen as a classification
EM-algorithm (Celeux and Govaert [3]) where a kind of “concentration” step as
in fast-MCD algorithm (Rousseeuw and van Driessen [25]) is also applied. The
eigenvalues-ratio restrictions will be imposed by solving a restricted least squares
problem. Dykstra’s algorithm in [6] may be applied for addressing that problem.
Finally, in Section 4, we include a simulation study showing the gain provided by
the proposed method with respect to other trimming proposals.

2. Robust clustering and eigenvalues-ratio restrictions. We will consider
throughout the paper a data set {x1, . . . , xn} in the Euclidean space R

p . By
f (·;μ,�), we will denote the probability density function (p.d.f.) of the p-variate
normal distribution with mean μ and covariance matrix �.

Under the spurious-outlier model, introduced in [11], the likelihood function is
given by [

k∏
j=1

∏
i∈Rj

f (xi;μj ,�)

][∏
i /∈R

gi(xi)

]
(2.1)

with R = ⋃k
j=1 Rj and #R = n−[nα], and where the parameter k denotes the total

number of groups, Rj contains the indexes of the “regular” observations assigned
to group j and the remaining observations are considered spurious and obtained
from some gi ’s, p.d.f.s in R

p .
If � = σ 2I is chosen in (2.1), then we would be performing the trimmed

k-means method. An algorithm in the spirit of the fast-MCD (both coincide when
k = 1) is provided in [11] for approximately maximizing (2.1).

Our modification of the “spurious-outlier” model considers different scatter ma-
trices �j ’s and assumes the presence of some underlying group weights πj ’s, with∑k

j=1 πj = 1. This leads to the maximization of[
k∏

j=1

∏
i∈Rj

πjf (xi;μj ,�j )

][∏
i /∈R

gi(xi)

]
,(2.2)

with R = ⋃k
j=1 Rj and #R = n − [nα]. Additionally, restrictions on the eigenval-

ues of the �j ’s matrices will be later introduced.
As in [11], we can avoid the nonregular contribution to the previous maximiza-

tion problem when the gi’s satisfy the condition

arg max
R

max
μj ,�j

k∏
j=1

∏
i∈Rj

πjf (xi;μj ,�j ) ⊆ arg max
R

∏
i /∈⋃k

j=1 Rj

gi(xi),(2.3)
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where R stands for the set of all partitions of the indexes {1, . . . , n} onto k groups
of regular observations, R, and a group containing the nonregular ones, with
#R = n − [nα]. Note that the right-hand side in condition (2.3) only involves the
nonregular observations and does not depend on the partition of the regular ones.
Therefore, it simply means that any set of nonregular observations in every optimal
partition maximizing (2.2) could be also obtained as a subset of [nα] elements of
the sample maximizing the likelihood corresponding to the noise. This condition
easily holds under reasonable assumptions for the gi’s whenever the nonregular
observations may be seen as merely “noise.” For instance, examples for gi’s shown
in [9, 10] and [11] can be trivially considered here. We refer the interested reader
to these papers for details.

A better statement of our problem is obtained by introducing assignment func-
tions zj , j = 0,1, . . . , k. For every point x in R

p (not only the sample observations
xi ’s are classified), let us define zj (x) = 1 whenever x is assigned to the class Rj ,
j = 1, . . . , k, or z0(x) = 1 if it is being trimmed off. Through these functions, as-
suming that the gi’s may be omitted, we can raise again the problem in (2.2) to the
maximization of

n∏
i=1

[
k∏

j=1

π
zj (xi)

j f (xi;μj ,�j )
zj (xi)

]
,

where zj are 0–1 functions defined in the whole sample space verifying∑k
j=0 zj (xi) = 1 and

∑n
i=1 z0(xi) = [nα]. This statement of the problem, taking

logarithms, leads to the following general one.

Robust clustering problem: Given a probability measure P , maximize

EP

[
k∑

j=1

zj (·)(logπj + logf (·;μj ,�j )
)]

,(2.4)

in terms of the assignment functions

zj : Rp �→ {0,1} such that
k∑

j=0

zj = 1 and EP z0(·) = α,

and the parameters θ = (π1, . . . , πk,μ1, . . . ,μk,�1, . . . ,�k) corresponding to
weights πj ∈ [0,1], with

∑k
j=1 πj = 1, mean vectors μj ∈ R

p and symmetric
positively definite p × p-matrices �j , j = 1, . . . , k.

If Pn stands for the empirical measure, Pn = 1/n
∑n

i=1 δ{xi}, by replacing P

by Pn, we recover the original sample problem [notice that, perhaps, EPnz0(·) = α

cannot be exactly achieved but this familiar fact will not be important in our rea-
sonings].

Our restrictions on the eigenvalues of the covariance matrices may be seen as
an extension of those introduced by Hathaway [18] for univariate data. They avoid
the singularities introduced by the possibility of very different �j ’s.
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(ER) Eigenvalues-ratio restrictions: We fix a constant c ≥ 1 such that

Mn/mn ≤ c

for

Mn = max
j=1,...,k

max
l=1,...,p

λl(�j ) and mn = min
j=1,...,k

min
l=1,...,p

λl(�j ),

λl(�j ) being the eigenvalues of the matrices �j , l = 1, . . . , p and j = 1, . . . , k.
The set of θ ’s which obey this condition is denoted by 	c.

Note that c = 1 produces the strongest possible restriction. In this case, the pro-
posed method may be viewed as a trimmed k-means method with weights. How-
ever, the main advantage of this approach relies on the fact that the parameter c

allows us to achieve certain (controlled) freedom in how we want to handle the
different scattering of the groups.

Figures 1 and 2 show the results of the application of the proposed methodology
(by using the TCLUST algorithm described in Section 3) to a data set made up
of 3 bivariate Gaussian clusters where the most scattered one accounts for 10% of
the data. The result when k = 2, α = 0.1 and c = 5 appears in Figure 1(a). The
result there is not very dependent on c as long as the two (main) groups are not
too different in their eigenvalues once the most scattered group was trimmed off.
The values k = 3 and α = 0 are considered in Figure 1(b), with a large value for
c (c = 50) which allows for the presence of the more scattered group. The values
k = 3 and α = 0.1 were applied in Figure 2. A rather large c (unrestricted problem)
was chosen in Figure 2(a) while a small c = 1 (restricted problem) was considered
in Figure 2(b).

To exclude in the subsequent analysis those probability distributions obviously
unappropriate for the introduced approach, we will assume on the underlying dis-
tribution P the following mild condition. (It trivially holds for absolutely continu-
ous distribution or for empirical measures corresponding to a sample large enough
from an absolutely continuous distribution.)

(PR) The distribution P is not concentrated on k points after removing a proba-
bility mass equal to α.

To conclude this section, we will notably simplify our problem through an ad-
equate reformulation that leads to expressing the assignment functions zj ’s only
in terms of θ . This will also be a keystone for deriving our algorithm to solve the
sample counterpart of the problem.

Given θ ∈ 	c, we consider discriminant functions defined as

Dj(x; θ) = πjf (x;μj ,�j ) and
(2.5)

D(x; θ) = max{D1(x; θ), . . . ,Dk(x; θ)}.
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Note that these are familiar functions in the application of Bayes’ rules in dis-
criminant analysis. These functions will also serve to provide an “outlyingness”
measure of the observations.

Using previous definitions, for a given θ and a probability measure P , we con-
sider the distribution function of D(·; θ) and its corresponding α-quantile:

G(u; θ,P ) := P
(
D(·; θ) ≤ u

)
and R(θ,P ) := inf

u
{G(u; θ,P ) ≥ α}.(2.6)

With this notation, we have the following straightforward characterization for
the assignment functions:

PROPOSITION 1. The robust clustering problem can be simplified, using the
discriminant functions (2.5), to the maximization in θ of

θ �→ L(θ,P ) := EP

[
k∑

j=1

zj (·; θ) logDj(·, θ)

]
,(2.7)

where the assignment functions are obtained from θ as

zj (x; θ) = I
{
x : {D(x; θ) = Dj(x; θ)} ∩ {Dj(x; θ) ≥ R(θ,P )}}

and

z0(x; θ) = 1 −
k∑

j=1

zj (x; θ).

That is, we assign x to the class j with the largest discriminant function value
Dj(x; θ) or x is trimmed off when all the Dj(x; θ)’s [and consequently, D(x; θ)]
are smaller than R(θ,P ). (In order to break ties in the discriminant function values,
the lexicographical ordering could be applied.)

The relevant mathematical results to be considered are given in the following
propositions.

PROPOSITION 2 (Existence). If (PR) holds for distribution P , then there ex-
ists some θ ∈ 	c such that the maximum of (2.4) under (ER) is achieved.

By examining the proof of previous result, we can see that although we have
admitted weights πj = 0, this is not a drawback when taking logπj because in
this case zj (·; θ) ≡ 0 and then the set {x : zj (x; θ) = 1} is empty. The presence
of groups with zero weight does actually happen in practice. For instance, when
k = 2, c = 1, α = 0 and P is the N(0,1) distribution in the real line, we can see that
θ = (π1, π2,μ1,μ2, σ

2
1 , σ 2

1 ) = (1,0,0,μ2,1,1) is the optimal solution for every
μ2 ∈ R and c ≥ 1.

PROPOSITION 3 (Consistency). Assume that P has a strictly positive density
function and that θ0 is the unique maximum of (2.4) under (ER). If θn ∈ 	c denotes
a sample version estimator based on the empirical measure Pn, then θn → θ0 al-
most surely.



1332 L. A. GARCÍA-ESCUDERO ET AL.

REMARK 1. Notice that a uniqueness condition is needed in order to estab-
lish the consistency result. Unfortunately, this property does not always hold. For
instance, think of a symmetric mixture P in the real line with two well-separated
modes, a high trimming level and k = 1. That uniqueness property was already
needed for establishing the same consistency result for the trimmed k-means and,
even in this simpler case, the statement of general uniqueness results was diffi-
cult (see Remark 4.1 in [14]). However, as in the trimmed k-means problem, we
believe that it is quite rare to find distributions where the uniqueness fails when
dealing with “reasonable” data for clustering and when parameters k and α have
been properly chosen.

3. The TCLUST algorithm. The empirical problem presented in Section 2
has a very high computational complexity. An exact algorithm seems to be not fea-
sible even for moderate sample sizes. Thus, the existence of adequate algorithms
for approximately solving the sample problem is as important as the procedure
itself. With this in mind, we propose the TCLUST algorithm (an R-code imple-
mentation is available at http://www.eio.uva.es/~langel/software), an EM-principle
based algorithm, intended to search for approximate solutions. The EM algorithm
(Dempster, Laird and Rubin [5]) is the usual method for obtaining a solution to
the mixture likelihood problem. Here, as we follow a “crisp” approach where each
point is uniquely assigned to one cluster, a classification EM approach (Celeux and
Govaert [3]) is preferable. Moreover, as trimmed observations are allowed, the ra-
tionale behind the fast-MCD [25] and behind the trimmed k-means algorithm [15]
will also underly.

The TCLUST algorithm may be described as follows:

1. Randomly select starting values for the centers m0
j ’s, the covariance matrices

S0
j ’s and the weights of the groups p0

j ’s for j = 1, . . . , k.

2. From the θ l = (pl
1, . . . , p

l
k,m

l
1, . . . ,m

l
k, S

l
1, . . . , S

l
k) returned by the previous

iteration:
2.1. Obtain di = D(xi, θ

l) for the observations {x1, . . . , xn} and keep the set H

having the [n(1 − α)] observations with largest di ’s.
2.2. Split H into H = {H1, . . . ,Hk} with Hj = {xi ∈ H :Dj(xi, θ

l) = D(xi,

θ l)}.
2.3. Obtain the number of data points nj in Hj and their sample mean and

sample covariance matrix, mj and Sj , j = 1, . . . , k.
2.4. Consider the singular-value decomposition of Sj = U ′

jDjUj where Uj

is an orthogonal matrix and Dj = diag(
j ) is a diagonal matrix (with
diagonal elements given by the vector 
j ). If the full vector of eigenvalues

 = (
1, . . . ,
k) does not satisfy the eigenvalues-ratio restriction, obtain
(for instance) through Dykstra’s algorithm a new vector 
̃ = (
̃1, . . . , 
̃k)

obeying the (ER) restriction and with ‖
̃ − 
−1‖2 being as smaller as
possible. (
−1 denotes the vector made up by the inverse of the elements

http://www.eio.uva.es/~langel/software
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of the vector 
.) Notice that the (ER) restriction for 
 corresponds exactly
to the same (ER) restriction applied to 
−1.

2.5. Update θ l+1 by using:

• pl+1
j ←↩ nj /[n(1 − α)],

• ml+1
j ←↩ mj ,

• Sl+1
j ←↩ U ′

j D̃jUj and D̃j = diag(
̃j )
−1.

3. Perform F iterations of the process described in step 2 (moderate values for
F are usually enough) and compute the evaluation function L(θF ;Pn) using
expression (2.7).

4. Start from step 1 several times, keeping the solutions leading to minimal values
of L(θF ,Pn) and fully iterate them to choose the best one.

The computed (E-step) “a posteriori” probabilities, Dj(xi, θ
l) = pjf (xi;mj,

Sj ), are converted to a discrete classification leaving unassigned the proportion α

of observations which are the hardest to classify. It is easy to see that this leads us
to an optimal assignment. We later obtain a new θ l+1 by maximizing (M-step) the
conditional expectation. Proposition 4 guarantees that the presented algorithm can
be applied for performing this maximization. Notice that the obtention of the op-
timal scatter matrices is decomposed into the search of the corresponding optimal
eigenvalues and eigenvectors. For every choice of eigenvalues, the best eigenvec-
tors choice simply follows from those derived from the sample covariance matrices
of the observations in each group. This decomposition is somehow similar to that
considered in Gallegos’ proposal, where “shapes” and “scales” were separately
handled.

Seeing D(xi, θ
l) as an inverse outlyingness measure for the observation xi with

respect to the choice of θ l , then step 2 may be seen as a concentration step. [13]
analyzes some other attempts for extending the concentration step principle to the
heterogeneous robust clustering setup.

Recall that the random initialization scheme (step 1) and the final refinement
(step 4) will be very important as happened in the fast-MCD algorithm or in
Maronna [21]. For initializing the procedure in step 1, we have seen that simply
randomly choosing k sample data points for the centers, k identity matrices for the
covariances and the same weights for the groups (equal to 1/k) provide reasonably
starting values in most of the cases.

With respect to the eigenvalues-ratio restriction, we would need 
 = (
1, . . . ,


k) with 
j = (λ1,j , . . . , λp,j ) belonging to the cone

C = {(
1, . . . ,
k) ∈ R
p×k :λu,v − c · λr,s ≤ 0 for all (u, v) 
= (r, s)}.(3.1)

If 
 /∈ C, we must replace 
−1 by 
̃ ∈ C with minimal ‖
̃ − 
−1‖2. Dykstra’s
algorithm serves to approximately solve that restricted least squares problem as
long as C is the intersection of the several closed convex cones

Ch = {(
1, . . . ,
k) ∈ R
p×k :λu,v − c · λr,s ≤ 0} for h = (u, v, r, s),
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by resorting to iterative projections onto the individual cones Ch’s. (Notice that the
projections onto the cones Ch are very fast to obtain.) Thus, a fixed number of indi-
vidual projections may be done retaining the best attained solution after these iter-
ations and satisfying the restrictions. Alternatively, quadratic programming based
solutions (see, e.g., Goldfarb and Idnani [17]) for that constrained minimization
may be explored.

The next result formalizes the appropriateness of the TCLUST algorithm.

PROPOSITION 4. If the sets Hj = {xi : zj (xi) = 1}, j = 1, . . . , k, are kept
fixed, the maximum of (2.4) for P = Pn can be obtained through the following
steps:

(i) Fixed μj and �j , the best choice of πj is πj = nj/[n(1 − α)] where nj is
the cardinal of set Hj .

(ii) Fixed �j and the optimal values for πj given in (i), the best choice for μj

is the sample mean mj of the observations in Hj .
(iii) Fixed the eigenvalues for the matrix �j and the optimum values given in

(i) and (ii) for πj and μj , the best choice for the set of unitary eigenvectors are the
unitary eigenvectors of the sample covariance matrix Sj of the observations in Hj .

(iv) With the optimal selections made in (i), (ii) and (iii), the best choice for the
eigenvalues corresponds to the inverse of the projection of the vector containing
the inverse of the eigenvalues onto the cone C.

PROOF. Once the zj (xi) for i = 1, . . . , n and j = 0, . . . , k are known values,
the expression (2.4) can be written as

k∑
j=1

[
nj logπj + ∑

xi∈Hj

logf (xi;μj ,�j )

]
,(3.2)

and the assertions (i) and (ii) trivially hold.
Considering these optimal values for πj and μj , together with the cyclic prop-

erty of the trace, the maximization of (3.2) simplifies to the minimization of

k∑
j=1

[log |�j | + trace(�−1
j Sj )].

The matrices Sj and �j can be decomposed into Sj = U ′
jDjUj and �j =

V ′
jEjVj , where Dj = diag(
j ) and Ej = diag(�j ) are diagonal matrices with


j = (λ1,j , . . . , λp,j ) and �j = (ξ1,j , . . . , ξp,j ), and Uj and Vj are orthogonal
matrices. So, as log |�j | = log |Ej | and the eigenvalues Ej were fixed, the previ-
ous minimization problem can be further simplified to that of

k∑
j=1

trace(�−1
j Sj ) =

k∑
j=1

trace(E−1
j (UjV

′
j )

′Dj(UjV
′
j ))
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(the cyclic property of the trace is again applied). Denote Tj = UjV
′
j and rewrite

trace(E−1
j T ′

jDjTj ) = ∑
u

∑
v

λu,j

ξv,j

· t2
uv,j ,(3.3)

where tuv,j denotes the element (u, v) of the matrix Tj . Tj is an orthogonal ma-
trix, so we have that

∑
u t2

uv,j = 1 and
∑

v t2
uv,j = 1. Therefore, the minimization

of (3.3) may be seen as a linear programming problem like

min
∑
u,v

cu,v · xu,v subject to
∑
u

xu,v = 1,
∑
v

xu,v = 1 and xu,v ≥ 0,

with known coefficients cu,v [notice that λu,j /ξu,j are fixed coefficients because
λu,j depends on the data set at hand and the ξu,j are supposed known quanti-
ties in (iii)]. Although fractional solutions are possible, these solutions will never
be basic feasible ones due to the particular statement of the linear programming
problem (see, e.g., Papadimitriou and Steiglitz [24], page 249). Consequently, the
optimal solution corresponds to a “real matching” where the optimal t2

u,v are 0 or 1.
Thus, Tj is a permutation matrix product of the orthogonal matrices Uj and V ′

j . It
is quite easy to see that the columns of the matrices Uj and Vj must provide the
same set of unitary eigenvectors and, thus, the assertion (iii) is proven.

By applying (i), (ii) and (iii), we finally need to search for a vector � =
(�1, . . . ,�k) and �j = (ξ1,j , . . . , ξp,j ) minimizing

k∑
j=1

p∑
i=1

(
log ξi,j + λi,j

ξi,j

)
=

k∑
j=1

p∑
i=1

(− log λ̃i,j + λi,j · λ̃i,j ),(3.4)

with λ̃i,j = 1/ξi,j . As (3.4) is a convex function on the λ̃i,j and its unrestricted
minimum is attained when λ̃i,j = λ−1

i,j , the minimization of (3.4) under the

eigenvalues-ratio restriction possed by (3.1) leads us to the optimal choice of 
̃

with minimal ‖
̃ − 
−1‖2 and 
̃ ∈ C. �

REMARK 2. Alternative methods can be defined by imposing restrictions on
the ratio between covariance determinants instead of controlling eigenvalues. Gal-
legos [9] and [10] proposal scales the covariance matrices to have determinant
ratio equal to 1 in the algorithm. Maronna and Jacovkis [22], in the untrimmed
case α = 0, consider that normalization as the only reliable “distance” for clus-
tering multivariate data. Here, the proposed algorithm can be easily adapted for
handling restrictions of this type. In this case, the cone would be

C′ = {(σ1, . . . , σk) ∈ R
k :σu − c · σv ≤ 0 for all u 
= v},

where the factorization in step 2.4 of the previous algorithm is Sj = σj · Uj with
|Uj | = 1 and σj = |Sj |1/p . If c = 1 in C′, we would obtain an analogous to Galle-
gos’ proposal with group weights.
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Other procedures which have been used for avoiding pathological solutions in
the heterogeneous robust clustering problem are based on adding different types of
parameterizations for the covariance matrices (see, e.g., Scott and Symons [26] or
Banfield and Raftery [1]). Although that possibility has not been considered here,
we believe that similar ideas (based on relaxing those parameterizations) could be
interesting.

REMARK 3. The proper determination of parameters α, k and c is not an
easy problem in general. Users of cluster analysis methods sometimes have initial
guesses of suitable values for these parameters, but many times these are com-
pletely unknown. The careful analysis of the objective functions when moving k

and α provided useful information for choosing k and α in [15]. The objective
function for the trimmed k-means method always improves when increasing k

(see Lemma 2.2 in [4]). Here, the possible existence of groups with πj = 0 would
imply that the value of the objective function does not necessarily improve when
increasing k. However, this property could even be more interesting in order to de-
velop techniques for choosing k because a πj close to 0 suggests that an smaller k

could be needed.
Moreover, as an anonymous referee suggested to us, we can make use of

Bayes factors as in Van Aelst et al. [27] in order to know how well the obser-
vation xi is integrated in the cluster in which it was assigned. If D(1)(xi; θ) ≤
· · · ≤ D(k)(xi; θ), the Bayes factor for a nontrimmed observation xi is defined as
BF(i) = log(D(k−1)(xi; θ)/D(k)(xi; θ)). Notice that the smaller the Bayes factor is
the better is the assignment to its corresponding cluster. The existence of clusters
with many observation with large Bayes factors (close to 0) suggests that perhaps
an improper choice for c was made. Additionally, we can introduce Bayes factors
for the trimmed observations as BF(i) = log(D(k)(xi, θ)/R(θ,Pn)) to measure the
strength of the consideration of the trimmed data point xi as an outlier.

4. A simulation study. A simulation study has been carried out to compare
the performance of the proposed robust clustering method with respect to other
trimming approaches in the literature. Several data sets of size n = 2000 have
been generated. Each data set consists of three simulated p-dimensional normally
distributed clusters with centers μ1 = (0,8,0, . . . ,0)′, μ2 = (8,0,0, . . . ,0)′ and
μ3 = (−8,−8,0, . . . ,0)′ and covariance matrices

�1 = diag(1, a,1, . . . ,1),

�2 = diag(b, c,1, . . . ,1)

and

�3 =
⎛⎝ d e

e f 0

0 I

⎞⎠ .
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The constants a, b, c, d, e and f serve to control the true differences between the
eigenvalues of the groups’ covariance matrices. This leads us to the consideration
of the following cases:

(M1) (a, b, c, d, e, f ) = (1,1,1,1,0,1): Spherical equally scattered groups.
(M2) (a, b, c, d, e, f ) = (5,1,5,1,0,5): Not spherical but the same covari-

ance matrices for the groups.
(M3) (a, b, c, d, e, f ) = (5,5,1,3,−2,3): Different covariance matrices but

the same scale (equal determinant).
(M4) (a, b, c, d, e, f ) = (1,20,5,15,−10,15): Groups with different scales.
(M5) (a, b, c, d, e, f ) = (1,45,30,15,−10, 15): Groups with different scales

and two of them with a severe overlap.

We consider 1800 “regular” data points with two different group proportions. We
also generate uniformly distributed data points in a parallelogram defined by the
coordinatewise ranges of the regular data points. Using an acceptance–rejection
algorithm, only points having squared Mahalanobis distances from μ1, μ2 and μ3

(using �1, �2 and �3) greater than χ2
p,0.975 are finally considered until reaching

an amount of 200 outliers.
The following approaches searching for k = 3 groups and with a trimming pro-

portion α = 0.1 are tried:

(TkM) Trimmed k-means (specially aimed to the case M1).
(G&R) Gallegos and Ritter’s method (specially aimed to the case M2).
(G) Gallegos’ proposal (specially aimed to the case M3).
(TCLUST) The presented algorithm with an eigenvalues-ratio restriction when
c = 50.

The same number of random initializations and concentration steps are taken
for all the methods.

Table 1 shows the average proportion of misclassified observations for B = 100
independent random samples of size 2000 when p = 2 and 6 and the group weights
satisfy proportions 1:1:1 (“equal”) and 1:2:2 (“unequal”). The numbers within
parenthesis in the Table 1 show the proportion of outliers wrongly determined
as nonoutliers and vice versa.

Notice that all the methods work nicely under the underlying model in which
they are specially aimed. However, the proposed eigenvalues-ratio restriction
method is the only method which is able to cope with the mixtures with very dif-
ferent scales (mixtures M4 and M5), and it seems to be less affected in the unequal
groups’ size case. Figure 3 shows the result of these four analyzed procedures ap-
plied to the same data set generated by the simulation scheme M5 when p = 2 and
unequal weights. The TCLUST seems to be the only one that is able to distinguish
between the least and the most scattered groups even in this rather overlapped case.
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TABLE 1
Misclassification rates for the simulation study

Weights Dimen. Model TkM G&R G TCLUST

Equal p = 2 M1 0.011 (0.011) 0.011 (0.011) 0.012 (0.012) 0.012 (0.012)
M2 0.037 (0.037) 0.016 (0.016) 0.016 (0.016) 0.016 (0.016)
M3 0.036 (0.036) 0.035 (0.035) 0.015 (0.014) 0.015 (0.014)
M4 0.079 (0.057) 0.059 (0.049) 0.042 (0.031) 0.020 (0.019)
M5 0.129 (0.046) 0.131 (0.046) 0.122 (0.042) 0.043 (0.022)

p = 6 M1 0.008 (0.008) 0.008 (0.008) 0.008 (0.008) 0.009 (0.009)
M2 0.035 (0.035) 0.012 (0.012) 0.012 (0.012) 0.012 (0.012)
M3 0.032 (0.032) 0.018 (0.017) 0.011 (0.011) 0.011 (0.011)
M4 0.094 (0.072) 0.038 (0.025) 0.018 (0.016) 0.015 (0.014)
M5 0.159 (0.077) 0.119 (0.026) 0.055 (0.021) 0.035 (0.015)

Unequal p = 2 M1 0.011 (0.011) 0.011 (0.011) 0.011 (0.011) 0.011 (0.011)
M2 0.037 (0.037) 0.017 (0.017) 0.017 (0.017) 0.016 (0.016)
M3 0.036 (0.036) 0.034 (0.033) 0.015 (0.015) 0.014 (0.014)
M4 0.089 (0.059) 0.069 (0.051) 0.047 (0.032) 0.021 (0.019)
M5 0.151 (0.047) 0.166 (0.048) 0.147 (0.044) 0.047 (0.023)

p = 6 M1 0.008 (0.008) 0.009 (0.009) 0.009 (0.009) 0.009 (0.009)
M2 0.034 (0.034) 0.011 (0.011) 0.012 (0.012) 0.012 (0.012)
M3 0.033 (0.033) 0.018 (0.018) 0.012 (0.011) 0.011 (0.010)
M4 0.107 (0.074) 0.053 (0.023) 0.025 (0.017) 0.017 (0.015)
M5 0.186 (0.081) 0.166 (0.024) 0.078 (0.022) 0.039 (0.015)

APPENDIX: PROOFS OF EXISTENCE AND CONSISTENCY

A.1. Existence. The existence of solutions for our problem can be ob-
tained through a standard argument starting by considering a sequence {θn}∞n=1 =
{(πn

1 , . . . , πn
k ,μn

1, . . . ,μ
n
k,�

n
1 , . . . ,�n

k )}∞n=1 such that

lim
n→∞L(θn,P ) = sup

θ∈	c

L(θ,P ) = M > −∞(A.1)

[the boundedness from below for (A.1) can be easily obtained just considering
π1 = 1, μ1 = 0, �1 = I , and setting the other weights as 0 with arbitrary choices
of means and variances].

Since [0,1]k is a compact set, we can extract a subsequence from {θn}∞n (that
will be denoted like the original one) such that

πn
j → πj ∈ [0,1] for 1 ≤ j ≤ k,(A.2)

and satisfying for some g ∈ {0,1, . . . , k} (a relabeling could be needed) that

μn
j → μj ∈ R

p for 0 ≤ j ≤ g and min
j>g

‖μn
j‖ → ∞.(A.3)
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FIG. 3. Clustering results when k = 2 and α = 0.1 for a simulated data following the M5 scheme
in the text with p = 2 and unequal weights: Trimmed k-means (TkM); Gallegos and Ritter (G&R);
Gallegos (G) and the presented algorithm (TCLUST) with c = 50.

With respect to the scatter matrices, under (ER), we can also consider a further
subsequence verifying one (and only one) of these possibilities:

�n
j → �j for 1 ≤ j ≤ k,(A.4)

Mn = max
j=1,...,k

max
l=1,...,p

λl(�j ) → ∞(A.5)

or

mn = min
j=1,...,k

min
l=1,...,p

λl(�j ) → 0.(A.6)

LEMMA A.1. If (ER) holds and if P satisfies (PR), then only the conver-
gence (A.4) is possible.
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PROOF. We will see that (A.5) or (A.6) would imply limn→∞ L(θn,P ) =
−∞. Let λn

l,j := λl(�
n
j ) be the eigenvalues, j = 1, . . . , k and l = 1, . . . , p, of the

group covariance matrices and ‖vn
l,j‖ = 1 their associated unitary eigenvectors.

Then we have

L(θn,P ) = EP

[
k∑

j=1

zj (·; θn)

(
logπn

j − p

2
log 2π − 1

2

p∑
l=1

logλn
l,j

− 1

2

p∑
l=1

(λn
l,j )

−1(· − μn
j )

′

× vn
l,j (v

n
l,j )

′(· − μn
j )

)]
(A.7)

≤ EP

[
k∑

j=1

zj (·; θn)

(
logπn

j − p

2
log 2π

− p

2
logmn − 1

2
M−1

n ‖ · −μn
j‖2

)]
.

If we assume that Mn → ∞ holds, then mn → ∞ by (ER). Thus, we would have
that L(θn,P ) → −∞ leading to a contradiction with (A.1).

Now assume that (A.6) holds. We can guarantee by Lemma A.2 below that if P

satisfies (PR), then there exists a constant h such that

EP

[
k∑

j=1

zj (·; θn)‖ · −μn
j‖2

]
≥ h > 0.(A.8)

Since logπn
j ≤ 0, the fact that P [z1(·) + · · · + zk(·)] = 1 − α implies

L(θn,P ) ≤ (1 − α)

(
−p

2
log 2π − p

2
logmn

)

− 1

2
M−1

n EP

[
k∑

j=1

zj (·; θn)‖ · −μn
j‖2

]
.

Therefore, (ER) and (A.8) give

L(θn,P ) ≤ (1 − α)

(
−p

2
log 2π − p

2
logmn

)
− 1

2
(cmn)

−1h.(A.9)

But this upper-bound in (A.9) tends to −∞ as mn → 0. �

The following lemma has been applied in the proofs of Lemma A.1.
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LEMMA A.2. If P satisfies condition (PR), then there exists a constant h > 0
such that inequality (A.8) holds.

PROOF. The trimmed k-means problem was introduced in [4] as the search
of k points m1, . . . ,mk in R

p and a Borel set B minimizing:

min
B : P(B)≥1−α

min
m1,...,mk

1

P(B)

∫
B

inf
1≤j≤k

‖x − mj‖dP (x).(A.10)

Theorem 3.1 in [4] guarantees the existence of solutions for this problem.
Thus, (A.10) attains a minimum value that we denoted by Vα,k . Now, for every

choice of θ , we have

EP

[
k∑

j=1

zj (·; θ)‖ · −μj‖2

]
≥ EP

[
k∑

j=1

zj (·; θ) inf
1≤l≤k

‖ · −μl‖2

]
≥ (1 − α)Vα,k,

because
⋃k

j=1{x : zj (x; θ) = 1} is a Borel set having probability greater or equal
than 1 − α. Finally, we can trivially see that h := (1 − α)Vα,k > 0 whenever con-
dition (PR) holds for P . �

The next step is to show that whenever the classes in the optimal partition have
strictly positive probability masses we can guarantee the convergence of the cen-
ters μn

j . This result has also key importance in order to understand the role played
by the weights πj ’s in this approach.

LEMMA A.3. When (ER) and (PR) hold, if every πj in (A.2) verifies πj > 0
for j = 1, . . . , k, then g = k in (A.3).

PROOF. If g = 0, we can take a ball with center 0 and radius big enough
B(0,R) such that P [B(0,R)] > α. We can thus easily see that

EP

[
k∑

j=1

zj (·; θn)‖ · −μn
j‖2

]
→ ∞,

so that L(θn,P ) → −∞ from (A.7). Notice that (ER) is also here applied.
When g > 0, we prove first that

EP

[
k∑

j=g+1

zj (·; θn)

]
→ 0.(A.11)

This arises from the dominated convergence theorem taking into account that the
sequence is obviously bounded by 1 − α, and the fact that

{x : zj (x; θn) = 1} ⊆
{
x : max

j=g+1,...,k
Dj (x; θn) ≥ D1(x; θn)

}
(A.12)
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for j = g + 1, . . . , k, where the right-hand side converges toward the empty set,
when n tends to ∞, due to (A.3) and (A.4).

We can now use (A.11) in order to get

lim
n→∞ supL(θn,P ) ≤ lim

n→∞EP

[ g∑
j=1

zj (·; θn)

(
logπn

j − p

2
log 2π − 1

2
log |�n

j |

− 1

2
(· − μn

j )
′(�n

j )−1(· − μn
j )

)]

= EP

[ g∑
j=1

zj (·; θ̃ )

(
logπj − p

2
log 2π − 1

2
log |�j |

− 1

2
(· − μj)

′�−1
j (· − μj)

)]
,

where x �→ zj (x; θ̃ ) are the assignment functions which would be derived when
working with g (instead of k) populations and θ̃ being equal to a limit of the
subsequence {θ̃n}∞n=1 = {(πn

1 , . . . , πn
g ,μn

1, . . . ,μ
n
g,�

n
1 , . . . ,�n

g)}∞n=1.
As

∑g
j=1 πj < 1, the proof ends up by showing that we can change the weights

π1, . . . , πk by

π∗
j = πj∑g

j=1 πj

for 1 ≤ i ≤ g and π∗
g+1 = · · · = π∗

k = 0(A.13)

(and properly modifying the assignment functions zj ’s). This change produces a
strict decrease in the objective function, leading to a contradiction with the opti-
mality stated in (2.7). Thus, we conclude g = k. �

PROOF OF PROPOSITION 2. Taking into account previous lemmas, we have
that one of the two possibilities must hold.

(i) If πn
j → πj > 0 for 1 ≤ j ≤ k, then the choice of θ is obvious.

(ii) If πn
j → πj > 0 with πj > 0 for j ≤ g and πj = 0 for g < j ≤ k, we

can define weights πj as πj = limn→∞ πn
j for j = 1, . . . , g and πg+1 = · · · =

πk = 0, and, take μj = limn→∞ μn
j and �j = limn→∞ �n

j for j ≤ g. The other
μj ’s and �j ’s may be arbitrarily chosen (of course, satisfying the eigenvalues-
ratio restrictions). �

A.2. Consistency. Given {xn}∞n=1 an i.i.d. random sample from an underly-
ing (unknown) probability distribution P , let {θn}∞n=1 = {(πn

1 , . . . , πn
k ,μn

1, . . . ,μ
n
k,

�n
1 , . . . ,�n

k )}∞n=1 ⊂ 	c denote a sequence of sample estimators obtained by solv-
ing the problem (2.4) for the empirical measures {Pn}∞n=1 with the eigenvalue-ratio
restrictions (ER) for a fixed c ≥ 1 [from Proposition 2 such a sequence does always
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exist, for large enough n, whenever P is an absolutely continuous distribution ver-
ifying (PR)]. Notice that although similar notation to that applied in Section A.1 is
here used, the index n will now indicate the dependence on the sample size n.

The proof of the consistency combines arguments already used to prove the
existence and techniques in the modern theory of empirical processes (see, e.g.,
Van der Vaart and Wellner [28]). We limit ourselves to state the key results as
lemmas. The complete proofs can be obtained in [16].

First, we prove that there exists a compact set K ⊂ 	c such that θn ∈ K for n

large enough with probability 1. This follows from the next lemmas.

LEMMA A.4. If P is an absolutely continuous distribution [thus verifying
(PR)] then the minimum (resp. maximum) eigenvalue, mn (resp. Mn) of the ma-
trices �n

j , j = 1, . . . , k, cannot verify mn → 0 (resp. Mn → ∞).

LEMMA A.5. If P is an absolutely continuous distribution, then we can
choose empirical centers μn

j , j = 1, . . . , k, such that their norms are uniformly
bounded with probability 1.

The following lemmas, related to uniform convergences, complete our technical
needs for the final proof. The second involves R(θ;P) in (2.6).

LEMMA A.6. Given a compact set K , the class of functions

H :=
{
I[u,∞)(D(·; θ))

k∑
j=1

z∗
j (·; θ) logDj(·; θ) : θ ∈ K,u ≥ 0

}
(A.14)

is a Glivenko–Cantelli class, with z∗
j (x; θ) = I {x :D(x; θ) = Dj(x; θ)}. (All the

points in R
p are assigned to some class through the z∗

j ’s.)

LEMMA A.7. Let P be an absolutely continuous distribution with an strictly
positive density function. Then for every compact subset K , we have that

sup
θ∈K

|R(θ;Pn) − R(θ;P)| → 0, P -a.e.(A.15)

We can now prove the stated consistency result.

PROOF OF PROPOSITION 3. Let K be a compact set such that θn ∈ K for
n ≥ n0 with probability 1. The objective function in the empirical case can be
rewritten as:

L(θ,Pn) =
∫
{x:D(x,θ)≥R(θ;Pn)}

[
k∑

j=1

z∗
j (x; θ) logDj(x; θ)

]
dPn(x),
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with the z∗
j ’s introduced in Lemma A.6. Let us introduce

L̃(θ,Pn) =
∫
{x:D(x,θ)≥R(θ;P)}

[
k∑

j=1

z∗
j (x; θ) logDj(x; θ)

]
dPn(x).

We can see that

sup
θ∈K

|L(θ;Pn) − L̃(θ;Pn)| = oP (1),

by using Lemma A.7 and the fact that the integrand can be bounded from above
and below from some constants uniformly for θ in the compact set K .

Finally, we resort to the Glivenko–Cantelli property for the class of functions H
in (A.14), and apply Theorem 3.2.3 in [28] to achieve the result. �
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