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MULTIVARIATE SPACINGS BASED ON DATA DEPTH: I
CONSTRUCTION OF NONPARAMETRIC MULTIVARIATE
TOLERANCE REGIONS!
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This paper introduces and studies multivariate spacings. The spacings are
developed using the order statistics derived from data depth. Specifically, the
spacing between two consecutive order statistics is the region which bridges
the two order statistics, in the sense that the region contains all the points
whose depth values fall between the depth values of the two consecutive order
statistics. These multivariate spacings can be viewed as a data-driven realiza-
tion of the so-called “statistically equivalent blocks.” These spacings assume
a form of center-outward layers of “shells” (“rings” in the two-dimensional
case), where the shapes of the shells follow closely the underlying probabilis-
tic geometry. The properties and applications of these spacings are studied.
In particular, the spacings are used to construct tolerance regions. The con-
struction of tolerance regions is nonparametric and completely data driven,
and the resulting tolerance region reflects the true geometry of the underlying
distribution. This is different from most existing approaches which require
that the shape of the tolerance region be specified in advance. The proposed
tolerance regions are shown to meet the prescribed specifications, in terms
of B-content and B-expectation. They are also asymptotically minimal un-
der elliptical distributions. Finally, a simulation and comparison study on the
proposed tolerance regions is presented.

1. Introduction. The term “spacings” in statistics generally refers to either
the intervals (or gaps) between two consecutive order statistics or the lengths of
these intervals. Spacings have been used extensively in probability and statistics,
especially in the areas of distributional characterization, extreme value theory and
nonparametric inference. There is a rich literature on the theory and applications
of spacings. The excellent treatise by Pyke in [22] as well as the references therein
(e.g., [5] and [27]) and thereafter (e.g., [2, 4, 9, 12, 28]) all attest to the importance
of spacings. In his paper [22] Pyke wrote,

Perhaps the most significant restrictions of this paper has been our concern with one-
dimensional spacings. There are many applications in which samples are drawn from two- or
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even three-dimensional space and for which it is important to study the spacings of the observa-
tions.

Although research on spacings has continued, his call for multivariate spacings
has remained largely unanswered. The main difficulty in generalizing the univari-
ate spacings to multivariate settings is the lack of suitable ordering schemes for
multivariate observations. This paper has two goals. First, we introduce multivari-
ate spacings using the multivariate ordering derived from the notion of data depth.
Second, as an application, we apply the proposed multivariate spacings to construct
nonparametric tolerance regions.

The paper is organized as follows. Section 2 is devoted to the development of
multivariate spacings. We begin with a brief review of the univariate spacings and
of some of their properties, as well as a brief description of the subject of data depth
and the corresponding depth ordering of multivariate data. Note that the depth or-
dering is from the center-outward rather than the usual univariate linear ordering
from the smallest to the largest. For any two consecutive depth order statistics, we
define the spacing between them as the region that contains all the points in the
sample space whose depth values fall between the depth values of the two order
statistics. The multivariate spacings are the collection of these regions formed by
all pairs of consecutive order statistics. These regions generally appear as center-
outward layers of “shells” (“rings” in 9?), and the shapes of the shells follow
closely the probabilistic geometry of the underlying distribution. In Section 3 we
first provide a review of tolerance intervals for univariate data as well as the exist-
ing approaches for obtaining multivariate tolerance regions. We then describe the
construction of nonparametric tolerance regions using the proposed multivariate
spacings, and investigate the properties of the proposed tolerance regions. Specifi-
cally, we show that these tolerance regions: (1) meet the prescribed specifications
in terms of B-content and B-expectation, and (2) are asymptotically minimal un-
der a certain class of distributions which includes the elliptical family. The forma-
tion of our tolerance region is completely data driven and nonparametric, and the
resulting tolerance region has the desirable property of reflecting accurately the
underlying probabilistic geometry. In other words, the shape of our proposed tol-
erance regions is automatically determined by the given data, and does not need to
be specified in advance. Most existing approaches require pre-specification of the
shape, which can be considered arbitrary or subjective. It is also worth noting that
our tolerance region is always connected, which is more suitable in applications
such as quality control. Section 4 contains a simulation study and some compar-
isons with other existing tolerance regions. It confirms several desirable features of
our approach. Section 5 contains some concluding remarks. Most technical proofs
are collected in the Appendix.

We also observe in Section 3.1 that in using our multivariate spacings to con-
struct tolerance regions, we have in effect argued that our multivariate spacings
are an ideal realization of the so-called “statistically equivalent blocks.” This is be-
cause the realization of our multivariate spacings and their shapes are entirely data
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driven. Statistically equivalent blocks had been considered by Tukey in [24] and
several follow-up papers (see, e.g., [10]) as possible building blocks for the con-
struction for tolerance regions or tools for characterizing distributions. However,
these papers again all need to pre-specify the shapes (e.g. rectangles or circles
in M?) of the blocks.

2. Multivariate spacings derived from data depth. We begin with a brief
review of the notion of data depth and its corresponding multivariate ordering.
This multivariate ordering naturally leads to our multivariate spacings.

2.1. Data depth and center-outward ordering of multivariate data. A data
depth is a measure of “depth” of a given point with respect to a multivariate data
cloud or its underlying distribution, and it gives rise to a natural center-outward
ordering of the points in a multivariate sample. Although the actual depth value
has been used widely to develop robust multivariate inference, the depth-ordering
is less understood and still underutilized. Existing notions of data depth include:
Mahalanobis depth ([20]), half-space depth ([14, 25]), simplicial depth ([16]), pro-
jection depth ([7, 8, 23, 30]), etc. More discussion on different notions of data
depth can be found in [17, 31].

To help facilitate the coming exposition of multivariate spacings, we use the
simplicial depth to illustrate the general concept of data depth and its correspond-
ing center-outward ordering. Let {X1, ..., X,} be a random sample from the dis-
tribution F(-) € NP, p > 2. Consider the bivariate setting, p = 2. Let A(a, b, ¢)
denote the triangle with vertices a, b and c. Let I (-) be the indicator function, that
is I(A) =1 (or 0) if A occurs (or not). For the given sample {X1,..., X,;}, the
sample simplicial depth of x is defined as

~1
2.1) Drp, (x) = <’§> S I(x € AXiy, Xips Xiy)),
*

which is the fraction of the triangles generated from the sample that contain the
point x. Here (%) runs over all possible triplets of {X1, ..., X, }. A larger value of
D, (x) indicates that x falls in more triangles generated from the sample, and thus
lies deeper within the data cloud.

The above can be generalized to dimension p by counting simplices rather than
triangles, that is

-1
n
(2.2) DFn(x)=(p+1) Yo I(xesXi.....Xi, D,
()
where () runs over all possible subsets of {X1,..., X,} of size (p + 1). Here
s[Xip, ..., X,-[,H] is the closed simplex whose vertices are {X;,, ..., X,-p+1 }.
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If F is given, the simplicial depth of x w.r.t. to F is defined as Dr(x) = Pr{x €
s[Xy,..., Xps1l}, where Xy, ..., X4 are (p + 1) random observations from F'.
D (x) measures how “deep” x is w.r.t. F', and D, (x) in (2.2) is a sample estimate
of Dr(x). A fuller motivation together with the key properties of data depth can
be found in [16]. In particular, it is shown that Dg(-) is affine invariant, and that
Dp, () converges uniformly and strongly to Dr(-). The affine invariance ensures
that our proposed spacings and inference methods are coordinate free, and the
convergence of Df, to Dp allows us to approximate Dp(-) by Dp, () if F is
unknown.

For the given sample {X1, X», ..., X}, we calculate the depth values Df, (X;)’s
and then order the X;’s according to their descending depth value. Denoting by
X[ ) the sample point associated with the jth largest depth value, we then obtain
the sequence {X[1], X[2, ..., X|n]} Which is the depth order statistics of X;’s, with
X[1) being the deepest point, and X[,; most outlying. Here, a larger order is as-
sociated with a more outlying position w.r.t. the underlying distribution. Note that
the order statistics derived from depth are different from the usual order statistics
in the univariate case, since the latter are ordered from the smallest sample point to
the largest, while the former is from the middle sample point and moves outward
in all directions. Figure 1 helps demonstrate this feature of the depth ordering. The
two plots show two random samples, each of size 500, drawn respectively from the
standard bivariate normal and bivariate exponential distributions. For each plot, the
“4” marks the deepest point, and the most inner convex hull encloses the deepest
20% of the sample points. The convex hull expands outward to enclose the next
deepest 20% by each expansion. Those convex hulls determined by the decreas-
ing depth value are nested, a feature indicating that the depth ordering is from the

(a) (b)

FIG. 1. Depth contours for: (a) bivariate normal sample; (b) bivariate exponential sample.
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center outward. Note that the shape of the depth contours in those plots clearly re-
flects the underlying probabilistic geometry, relatively spherical in the normal case
and fanning upper-right triangularly in the exponential case. The nested shells-like
depth contours in Figure 1 also help illustrate the features of the multivariate spac-
ings in Section 2.3.

We give the definition of Mahalanobis depth here, since it is also used in the
simulation study later in Section 4.

DEFINITION 2.1. The Mahalanobis depth ([20]) at x with respect to F is
defined as

mDp(x) =[1+ & —pur) T (x — pr)17Y

where r and X are the mean vector and dispersion matrix of F, respectively.
The sample version of the Mahalanobis depth is obtained by replacing ;tr and X r
with their sample estimates.

Different notions of depth are capable of capturing different aspects of the prob-
abilistic geometry, and may lead to different ordering schemes. However, all the
depth orderings are essentially from the center outward. We note that all the depths
aforementioned are affine invariant, and so are their resulting orderings. The affine
invariance is a desirable feature for the construction of multivariate spacings later
in Section 2.3.

Note that geometric depths such as the half-space and the simplicial depths are
completely nonparametric and moment-free, and they capture well the underly-
ing probabilistic geometry of the data. Although the Mahalanobis depth captures
less well the underlying geometry unless the geometry happens to be elliptical, it
is computationally more feasible than geometric depths. Under elliptical distrib-
utions, the two geometric depths capture fairly well the elliptical structure in the
large sample case and are close competitors to the Mahalanobis depth. Between the
two geometric depths, the simplicial depth provides a finer ordering and produces
less ties than the half-space depth. This point has been observed in [18].

For convenience, we will use the notation D(-) to express any valid notion of
depth, unless a particular notion is to be emphasized.

Before we use depth order statistics to formulate multivariate spacings, we re-
view the univariate spacings and some of their properties.

2.2. Univariate spacings. Let X1, X»,..., X, be a random sample from a
univariate continuous distribution F which has the support (a, ). Denote by
{X111, X121, - - -, X[)} the order statistics of X;’s, namely X ) < X2 <+ < X[n).
Note that we will avoid introducing additional messy notation for differentiating
the univariate setting from the multivariate one by using the same notation X{;;
throughout the paper to indicate the jth order statistic of the sample X;’s. It will
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generally be clear from the context whether the notation is intended for the uni-
variate or for the multivariate setting. If needed, the phrase “univariate ordering”
or “depth ordering” will be used to emphasize the univariate or the multivariate
ordering.

Given the order statistics X[1] < X|2] < - - - < X[»), the univariate spacings of the
sample refer to the intervals L; = (X[j—1}, X[, i = 1,...,n+ 1, with X[o) =a
and X[,41) = b, or their lengths D; = X|;; — X[;—1). For convenience, we pro-
ceed to discuss the spacings by assuming that F follows the uniform distribution
on (0, 1) [denoted by F ~ U (0, 1)], since the probability integral transformation
F (X) transforms the given sample into a sample from U (0, 1). If F ~ U(0, 1),
then:

G D1+ Dy+---+Dys1=1,and
(i1) the density function of (D1, D3, ..., Dy41) is

n!, ifdi>0andd) +dy+---+dpy1 =1,

di,dy,...,dy11) =
. dy +1) {O, otherwise.

Thus the density function f is completely symmetrical in its arguments.

[21] and [22] have observed that the uniform spacings (D1, D, ..., Dy41) can
be viewed as exponential random variables proportional to their sum. Specifically,
assume that {Uy, Uy, ..., U,+1} is a random sample from the exponential distrib-
ution with mean 1 [denoted as Exp(1)], and let

S=U+Us+-+Uyy and Wi=U;/S, i=1,....n+1.

Then, (Wi, Wa, ..., Wy41) and (D1, D», ..., D,41) are identically distributed.
A similar property will appear during our formulation of multivariate spacings
later.

2.3. Multivariate spacings. The main difficulty in extending the univariate
spacings to higher dimensions lies in the lack of proper ordering of the multi-
variate data. Applying the center-outward ordering induced from data depth, the
multivariate spacings can be defined as follows.

Let X1,..., X, be a random sample from a continuous distribution F in )7,
p > 2. For a given data depth D(-), we calculate all Dr(X;)’s, and obtain the depth
order statistics X[1j, ..., X|n] in descending depth values. Let Z; = Dp(X;), and
Zlil = Dr(Xy)), fori =1,...,n. Note that zZW > ... > 7zl which are reverse
univariate order statistics of Z;’s. The matching indices in Z!l > ... > Z["l and
X{1], - - . » X[n) are useful for tracking depth order statistics with their depth values
in defining multivariate spacings and tolerance regions later. We now define the
multivariate spacings as follows,

(2.3) MS;={X:ZV"V>ppx)> 2z, i=1,...,n+1,
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with Z0 = sup, {Dr(x)} and Z [n+1] = 0. The corresponding sample multivariate
spacings are

mi:{X:Z[i_l]zDFn(X)>Z[i]}, i=1,...,n, and
24

M3, 11 ={X:Dp,(X) < 2"},

where 210 = sup, {Dp, (x)}, and ZW > ... > ZIn] are the reverse order statistics
of Zi=Dp (X;),i=1,...,n.

Note that the multivariate spacings here define the “gap” between two consecu-
tive depth order statistics as the shell-shape region bridging the two order statistics,
generalizing the interval linking the two consecutive order statistics in the univari-
ate spacings. Consequently, the multivariate spacings derived from depth order
statistics are center-outward layers of “shells.” Figure 2 illustrates an example of
multivariate spacings determined by a random sample of size five drawn from
the bivariate normal distribution with mean (0, 0) and covariance matrix G 1)
The five data points are denoted by circles in the plot. The Mahalanobis depth is
used to calculate depth values. The multivariate spacings include six regions, five
center-outward layered shells and the outmost region. Note that the shells clearly
reflect the elliptical shape of the underlying distribution. Plots of the multivariate
spacings for the standard bivariate normal and exponential samples using the sim-
plicial depth show layered shells with shapes similar to those of Figure 1. Again,
the shape of shells reflects the underlying geometric features.

Next, we observe a useful property regarding the coverage probabilities of the
proposed multivariate spacings.

- 09

— 0.8

— 0.7

— 0.6

0.5

0.4

0.3

FIG. 2. Multivariate spacings for a bivariate normal sample.
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THEOREM 2.1. Let X1,..., X, be a random sample from F € RNP. Assume
that the notion of data depth used in deriving the multivariate spacings (2.3) is
affine invariant. Then, the coverage probabilities of these multivariate spacings,
namely {Pp(M Sy), ..., PE(M S,11)}, follow the same distribution as the univari-
ate spacings {D1, ..., Dy11}.

PROOF. Let Z; =Dp(X;) and T; = Pr(X:Dp(X) > Z;), fori =1,...,n.
Then T;’s can be considered as a random sample drawn from U[O0, 1], as seen
in [19]. Let Tj1; < --- < Ty be the order statistics of 7;’s. It is clear that Tj;) =
Pr(X:Dp(X) > ZU). Therefore Pp(MS;) = Tjij — Tyi—1)» where Tjo; = 0 and
Tin+1) =1, and thus the theorem follows. [

3. Tolerance region based on multivariate spacings. A confidence interval
is used to provide an interval estimate for a parameter of interest with a stated con-
fidence level. In production processes or quality control, it is customary to seek
an interval that covers a certain proportion of the process distribution with a stated
confidence as an assurance for meeting the required product specification. Intervals
which fulfill this need are called tolerance intervals. In many practical situations,
the quality of a product is specified by multiple characteristics of the product. To
ensure the specifications of those multiple characteristics simultaneously, multi-
variate tolerance regions are needed. Tolerance intervals and regions are integral
parts of applications in reliability theory and quality control. They allow the control
of intended proportions of productions to meet the specified requirements. A high
percentage of the production outside this interval (or region) will result in a high
loss or rework rate. Before we describe our proposed construction of tolerance
regions, we briefly review the literature of tolerance intervals and regions.

If the underlying process distribution is known, from either the design of ex-
periment or the knowledge gained over long experience, the tolerance intervals
or regions usually can be established. For example, if the sample is drawn from
N (u, o), anormal distribution with the known mean u and variance o2, and if we
define tolerance intervals as those which contains 1008 % of the underlying distrib-
ution, then the shortest tolerance interval is simply (1 —z(1-g)/20, i +2(1-p)/20].
Here z(1_g),2 is the upper (1 — B)/2th quantile of the standard normal distribu-
tion. The constant g is referred to as the tolerance level. This development can
be extended in a straightforward manner to the setting of a p-dimensional normal
distribution with mean vector u and covariance matrix X [denoted as N(u, X)].
In this case, the corresponding smallest tolerance region can be constructed as an
ellipsoid. It follows the elliptical level sets of the underlying multivariate normal
distribution and satisfies

Ous=(X:X-wIs X -w <1},
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where ¢ is the solution of the equation

p—1
2 . _
/ V2we VPP T sin? ™ 6,y dr doy - -d6,— = B.
rist i=2
If the distribution or its parameters are unknown, the following two definitions
of tolerance regions have been considered and accepted as standard definitions,

see [11] for example. Again, let X, ..., X, be a random sample from F € )7,
p=L

DEFINITION 3.1. T(X1q,...,Xy) is called a B-content tolerance interval (or
region) at confidence level y if
(3.1) P(Pp(T(X1,...., X)) =B) =y

DEFINITION 3.2. The region T (X1, ..., X,) is called a B-expectation toler-
ance interval (or region) if
(3.2) E(Pr(T(X1....,Xy) = B-

In the univariate case, if the normality assumption holds but the parameters are
unknown, a tolerance interval can be constructed by

(3.3) (X —cS, X + ¢S],

where X and S are respectively the sample mean and standard. If Definition 3.1
(=D (A+1/mzf_g)
2

. Here

is followed, [15] shows that ¢ can be approximated by \/

Xy.n—1

XV 4—1 18 the (1 — y)th quantile of the chi-square distribution with degree of free-
dom (n — 1). When the normality assumptlon is uncertain, Wilks (in [29]) proposed
to use the order statistics, X[j] < --- < X[, to construct the following nonpara-
metric tolerance interval:

(3.4) T(X1,.... Xn) = (X Xpn—r+11),

where r is a positive integer and r < (n+ 1) /2. It has been shown that the coverage
probability of this tolerance region, namely Pr((X(r}, X{n—r+1]]), follows a Beta
distribution with parameters (n — 2r + 1) and 2r, denoted as Beta(n — 2r + 1, 2r).
Based on this observation, r can be chosen to satisfy

(3.5) P(Beta(n —2r +1,2r) > B) =y
or
(3.6) E(Beta(n —2r +1,2r)) =

to meet the requirement in Definitions 3.1 or 3.2. Note that the tolerance interval in
(3.4) is “symmetric” around the observed center point in the sense that the interval
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excludes an equal number of sample points from both tails. Wald in [26] con-
sidered a generalization of this symmetric tolerance interval, namely (X[, X[/,
where 1 < s <t < n. Clearly, this includes Wilks’ interval as a special case, if
s =r and t =n—r+ 1. Since the coverage probability of (X}, X[/]] can be shown
to follow Beta(t — s,n —t + s + 1), the desired tolerance interval for Definitions
3.1. or 3.2 can be obtained by choosing s and ¢ as the solutions of

(3.7) P(Beta(t —s,n—t+s+1)>p)=y
or
(3.8) E(Beta(t —s,n—t+s+ 1)) =B.

Note that the solution for (3.7) or (3.8) may not be unique. Different applications
may impose different additional desirable properties and thus constraints on the
choice of s and 7. One intuitively appealing and desirable property is that the tol-
erance interval (or region) be minimal.

To achieve the minimal nonparametric tolerance interval, Charterjee and Patra
in [3] proposed a large-sample approach based on nonparametric density estima-
tion, which yields asymptotically minimal tolerance intervals. The performance
of this approach depends heavily on the methods used for density estimation and
smoothing. Moreover, this approach tends to be overly conservative, as observed
in [6]. When the underlying distribution is multi-modal, the tolerance interval ob-
tained by this approach may be the union of disjoint intervals, which is not desir-
able in practice.

In the multivariate case, when F is unknown, there have been efforts to develop
nonparametric multivariate tolerance regions. For example, Wald in [26] extended
Wilks’ approach for constructing the tolerance intervals in the univariate case to
the multivariate case by sequentially adapting it for each coordinate. Under this
method, the shape of the resulting tolerance region would be limited to the hyper-
rectangles (or rectangular blocks) with faces parallel to the coordinate hyperplanes.
Tukey in [24] generalized Wald’s approach to any desired shape by introducing the
concept of “statistically equivalent blocks.” However, the construction of the sta-
tistical equivalent blocks here requires choosing a priori an ordering function and
thus can be somewhat arbitrary. Moreover, the shape of the constructed tolerance
region based on this predetermined ordering function may be difficult to inter-
pret or implement in practice. More discussion on statistically equivalent blocks is
given later in Remark 3.1.

Chatterjee and Patra’s approach for constructing asymptotically minimal tol-
erance intervals based on nonparametric density estimation is also applicable to
the multivariate case, although it has the same drawbacks mentioned in the uni-
variate case. Recently, using empirical process theory, Di Bucchianico, Einmahl
and Mushkudiani [6] succeeded in developing an important new method for con-
structing the smallest nonparametric multivariate tolerance regions. Although this
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method possesses several desirable properties, it still has the following potential
drawbacks: (i) it requires pre-specifying the shape of the tolerance region; (ii) the
obtained tolerance region may not represent well the underlying geometry of the
data; and (iii) the obtained region may not be connected. Finally, the computation
involved in finding this smallest tolerance region can be quite intensive.

The above review of nonparametric multivariate tolerance regions shows that
almost all existing approaches require specifying in advance the shape of the re-
gion. Most shapes specified, such as rectangular or elliptical, seem arbitrary and
chosen mainly for mathematical convenience. If the shape is not chosen properly,
these approaches may lead to gross misrepresentation of the underlying geometry
of the data.

Recall that the nonparametric tolerance interval proposed in the Wilks approach
[29] has the form T (X7, ..., Xn) = (X[}, X[n—r+1]]- From the point of view of
spacings, the Wilks’ tolerance interval can be easily seen as the union of some
suitable number of the univariate spacings,

n—r—+1
(3.9) T(X1,.... Xn) = (Xp1, Xp—ran] = U Li-
i=r+l1

Similarly, the proposed multivariate spacings derived in Section 2.3 can be used
to form tolerance regions in multivariate settings. We now give details on such
constructions, and discuss their properties.

3.1. Properties of tolerance regions: F is known. Consider the case where
F € )7 isknown, p > 2. Recall that X1, ..., X[, denote the depth order statistics
of the sample X;’s and that Z[!! ... Z[" are their corresponding depth values.
Recall also that Z; = Dr(X;) and ZM > ... > ZI"l Then we propose to form the
tolerance region as the union of a suitable number of the inner spacings, which can
be expressed as follows:

n
(3.10) Ozt = JMS; ={X:Dp(X) > Zz"1},
i=1
for a suitably chosen r,. Here M S;, is the ith spacing, as defined in (2.3).
Applying Theorem 2.1, the distribution of the coverage probability of the above
tolerance region can be determined immediately, as shown in the following theo-
rem.

THEOREM 3.1. The distribution of Pr(Ozi1), the coverage probability of
the tolerance region defined in (3.10), follows Beta(r,,n +1 —ry).

PROOF. Clearly, Oz, = Ui, MS;. It follows from Theorem 2.1 that
Z;”Zl Pr(MS;) and Z:”Zl D; are identically distributed. Here D;,i =1,...,n+1,
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are the uniform spacings. Recalling the construction of the uniform spacings using
exponential random variables given in Section 2.2, we see then

n n n+1
PF(OZ[VH])v ZDla and ZUl/ZU’
i=1 i=1 j=1
all have the same distribution. Here U1, Us, ..., U, are i.i.d. exponential random

variables with mean 1, Exp(1). Since Exp(1) can also be viewed as the Gamma
random variable Gamma(l, 1), Z:”: 1 Ui/ Z;ﬁl U; can be easily shown to follow
Beta(r,,n+1—1r,). O

To finalize constructing the proposed tolerance region in (3.10), we need to iden-
tify a suitable r,, which can satisfy Definitions 3.1 or 3.2. Following Theorem 3.1,
this is equivalent to finding r, to meet the following criteria,

(3.11) P(Beta(ry,n+1—r,)>p) =y
or
(3.12) E(Beta(rp,n+1—ry)) = .

For (3.12), r, can be easily solved as
m=m+1)8B,

since E (Beta(a, b)) = aaﬂ. For (3.11), it is not easy to find an analytical solution.
Alternatively, we can obtain an approximation of the solution using the asymptotic
result stated in Theorem 3.2 below.

REMARK 3.1 (Multivariate spacings as statistically equivalent blocks). For a
multivariate sample of size n, Tukey (in [24]) considered a partition of the sample
space into n + 1 disjoint blocks as statistically equivalent blocks if the followings
are satisfied:

(a) the coverages of the (n + 1) blocks add up to 1;

(b) the joint distribution of the coverages of the (n + 1) blocks are completely
symmetrical;

(c) if the coverages of the (n 4 1) blocks are taken as barycentric coordinates
on an n-simplex, the distribution over the simplex is uniform;

(d) the sum of the coverages of any k preselected blocks of the (n + 1) follows
Beta(k,n —k +1).

From the proof of Theorem 3.1, we can see that our multivariate spacings
{MSy, ..., MS, 11} satisfy the above conditions and can be viewed as statistically
equivalent blocks. Note that the blocks as in our multivariate spacings are automat-
ically determined by the given data. In contrast, the statistically equivalent blocks
considered in [24] and other follow-ups all need to decide on the shape of the
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blocks before forming the blocks. Therefore, we view our multivariate spacings
as an ideal data driven realization of statistically equivalent blocks. Moreover, the
inherited property of data depth allows our statistical equivalent blocks to follow
more closely the data structure and also be completely nonparametric.

THEOREM 3.2. Asn — 0o, if r, satisfies

V(™ - p) > & B0 p),

where &, is the y-quantile of the standard normal distribution [i.e., ®(§,) = y],
then

P(PF(OZ[r,,]) > ,3) — Y.

PROOF. Recall that Y; = Pr(X:Dp(X) > Z;), i = 1,...,n, with the order
statistics Y[1] < -+ < Y[,). Letw, =#{i : Y; < B}. Then we obtain P (Pr (O zirm1) >
B) = P(w, <ry). Furthermore, since Y;’s can be viewed as an i.i.d. sample from
U|0, 1], w, follows the binomial distribution with parameter (n, 8). Therefore, as
n — oo, we have

P(Pr(Ozim1) = B) = P(wp <r1n) > @(%) —y. -

3.2. Properties of tolerance regions: F is unknown. If F is unknown, the tol-
erance region is then constructed from the sample spacings in a similar fashion
as in (3.10). More specifically, recall that Z = Dpf,(X;),i=1,...,n, and that
ZW > ... > 71 are the descending estimated depth values corresponding to the
depth order statistics X{ij, ..., X[,]. The tolerance region is then the union of a
suitable number of the inner sample spacings. More precisely, the proposed toler-
ance region can be expressed as

I'n
(3.13) b = U MSi ={X:Dg,(X) > ZI"},
i=1
where MS; is the ith sample spacing, as defined in (2.4).
To establish the asymptotic properties for 0”2 i,y Which are analogous to those
for Oz, we require the followings on the data depth D, (-) used in the derivation
of the spacings.

(i) If F is absolutely continuous, then D, (x) is uniformly consistent almost
surely, that is, as n — o0,

(3.14) dp =sup|Dp, (x) — Dp(x)| = 0 a.s.
X
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(i1) If F is an elliptic distribution with the location-scatter parameter (i, %)
(i.e., its density assumes the form f(x) = |Z|72g((x — u)’T ™' (x — w))), then
its elliptic contour can be expressed as e(x) = (x — u)’ >~ 1(x — w). In this case,
the level sets (or contours) of D g (x) are also in the form of {x : e(x) = c} for some
e(x). Furthermore, D (x) is a strictly monotone function of ¢, which implies that
for any ¢ > 0,

(3.15) P(X:Dp(X)=c)=0.

The discussion of (i) and (ii) under the simplicial depth can be found in [16].
Further discussions of depth contours can be found in [13, 17] and [31]. Under the
assumptions (i) and (ii), we now present the main results of the section.

THEOREM 3.3. Assume that conditions (1) and (ii) hold for the depth Dp (-)

used in deriving the spacings. For any & > 0, if the sequences r(,. 1], '[n;2] and (.3
(I <rpyjy <n,j=1,2,3) satisfy, as n — o0,

(M — (g e)) > &, B0 ).
N ) B AT}

[n;3]
a1l B,
then
nll)ngOP(PF( %[r[n;l]]) = 'B) = Vs
Jlim P(Prp(0%,,1) = B) <7
and

lim E(PF(OnZ[r[,,;3]])) = ﬁ

n—oo

The proof of Theorem 3.3 is somewhat involved and is given in the Appendix.

REMARK 3.2. Since ¢ in Theorem 3.3 can be arbitrarily small, to obtain r,
satisfying P(PF(O”ZM) > B) = y, we may in practice simply take ¢ = 0 and

calculate r;, by solving
rn=np +&,/nB(l - p).

If r,, is not an integer, we use |r, | or [r,], depending on which of the following is
closer to y,

P(Beta(lry),n+1—|r,])>pB) and P(Beta([r,],n+1—[r,]) > B).
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3.3. Asymptotic minimum property. So far, we have justified the proposed tol-
erance regions according to Definitions 3.1 and 3.2. Next, we will show that under
a certain class of distributions (including elliptical distributions), the proposed tol-
erance regions are asymptotically minimal. This property is clearly desirable.

Asymptotically minimal tolerance regions were first considered in [3] by Chat-
terjee and Patra. Assume that the sample X, X, ..., X, is drawn from F(-) € )H?
which has a density function f(-). Let A(-) denote the p-dimensional Lebesgue
measure. Consider the set:

G () = Pr(f(X) <v).

Assume that all levels set of f have Lebesgue measures zero, namely A{x: f(x) =
v} = 0 for any v. Chatterjee and Patra considered the following B-content tolerance
region formed by density level sets:

(3.16) Rpp=1{x:f(x)>&r1-p}

where & 7,1_g is the (1 — B)-quantile of the random variable f(X). In other words,
& r1-p is a solution of G s(v) = 1 — B. It can be shown that

Pr(Ryp) =B,

and that, among all subsets whose probability content with respect to F is at
least B, the subset R g is minimal in the sense of having the smallest Lebesgue
measure.

DEFINITION 3.3. A sequence of B-content tolerance regions {S,} is called
asymptotically minimal if
AMS,ARfp) 250 asn— oo

Here (A A B) indicates the symmetric difference between sets A and B.

In the finite sample case, [3] replaced f with a density estimate to obtain a
sample tolerance region, and showed the asymptotic minimum property. Clearly,
the quality of the obtained tolerance region depends on the density estimation ap-
proach used.

Under the approach with data depth D(-), we consider

Gp(v) = Pr(Dr(X) <v).

Denote by n1_g the (1 — B)-quantile of the random variable D (X). In other
words,

Gp(ni—g) = Pr(Dp(X) <mi—p)=1-B.
Clearly,
(3.17) Rp g ={X:Dp(X)>ni-g},

is the true depth-based B-content tolerance region. Definition 3.3 can then be mod-
ified for the approach using depth D(-) as:
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DEFINITION 3.4. A sequence of B-content tolerance regions {S,} is called
asymptotically minimal w.r.t. the depth function D(-) if

AMSiARp g) >0 asn— oc.

In the next two theorems we show that our proposed tolerance regions O 71
and O"Z ) are asymptotically minimal w.r.t. the chosen depth.

THEOREM 3.4. If condition (3.15) holds for the underlying depth D(-), O 7
and 0”2 i) e asymptotically minimal w.r.t. D(-). Specifically, for ry satisfying

Vi(2 ) > 60— B

we have

AM(Oz1ARD,g) 2,0 and A(0%, ARp p) 2.0

n
Z[Vn
The proof of this theorem is given in the Appendix.
Note that, for elliptical distributions, condition (3.15) holds for all the depth
notions mentioned in Section 2.1, and thus

Rpp={X:Dp(X)>m-g}={x:f(x)>&r1-p} = Ryp.

Consequently, Theorem 3.4 leads to the corollary below which implies that our
proposed tolerance regions are asymptotically minimal under elliptical distribu-
tions.

COROLLARY 3.1. For elliptical distributions, we have, under condition
(3.15),as n — 0,

A.(Oz[rn]ARf’ﬁ) BN 0,

n p
)“(Ojlrn] ARﬁlg) —> 0.

4. Simulation and comparison studies. In this section, we present some
simulation studies to illustrate the performance of our tolerance regions O i, and
0% ;- The simulation procedure is outlined in the following steps. Assume that F
is absolutely continuous.

Step 1. Generate a random sample {X1, X», ..., X, } from F. Calculate the depths
of X;’s with respect to the data cloud and identify the r,th largest depth
(i.e. ZU"1) as the threshold for forming our tolerance region, where

. np + /n&, /B — p), if (3.1) is required,
"+ D8, if (3.2) is required.



MULTIVARIATE SPACINGS AND TOLERANCE REGION 1315

Step 2. Generate another random sample, {X], X3, ..., X;}, from F. Calculate
the depth of X with respect to the original samples, {X{, X2, ..., X},
and obtain the proportion of X7’s which assume depth value greater than
the threshold obtained in Step 1. This proportion is denoted as 5.

Step 3. Repeat Step 2 m times and use the average of the m f’s obtained in this
manner as an approximate of PF(O’Z[ })- Denote this average by B. It
a B-content tolerance region in (3.1) is sought, we check whether or not
B > B. Let Lig. py be 1 if the event {8 > B} occurs, and 0 otherwise. If a

B-expectation tolerance region in (3.2) is sought, we simply record the f.

Step 4. Repeat Steps 1-3 sufficiently many, say M, times. For a 8-content toler-
ance region, we estimate the confidence level y by p = >, I B=p1/ M.
For a B-expectation tolerance reglon we estimate S simply by the average
of the M B’s, namely ,3 Zl_l Bi/M.

Throughout our simulation study, we set 8 =90%, y = 95%, m = 100, M =
1000 and n = 300 and 1000. The simplicial depth is used to calculate all depth
values unless specified otherwise. The results are presented in Table 1. From Ta-
ble 1, we can see that all the estimates are fairly close to the nominal levels. We
also present in Table 1, within brackets, the simulation results using the approach
given in [6] by Di Bucchianico, Einmahl and Mushkudiani. The coverage from this
approach is consistently lower than the nominal value, and also, generally speak-
ing, the difference between the achieved and nominal coverage is larger than that
of ours. Thus, our proposed tolerance region is better in terms of achieving the
desired tolerance level. Moreover, as observed in [6], if the dimension of the un-
derlying distribution increases, the approach there needs an adjustment to reflect
such a change in the target nominal value to prevent the achieved coverage from
falling too much below. The adjustment suggested in [6] seems somewhat ad hoc.
Adding all these observations to the fact that our approach does not require addi-
tional assumptions (e.g., shape of the tolerance region), our approach clearly yields
more favorable nonparametric multivariate tolerance regions.

TABLE 1

The achieved confidence levels of the proposed B-content and B-expectation tolerance regions when
Y =95% and B =90%

v B
F n =300 n=1000 n =300 n=1000
Bivariate Normal 0.954 0.949 0.90131 [0.877] 0.90005 [0.887]
Bivariate Cauchy 0.963 0.961 0.90036 [0.862] 0.90061 [0.863]
Bivariate Exponential 0.941 0.943 0.90043 [0.885] 0.89985 [0.890]

Results in [] are obtained using approach in [6].
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(a) (b)

FI1G. 3.  Tolerance region for: (a) a bivariate normal sample; (b) a bivariate exponential sample.

To help visualize the outcome of our constructions, we present further in Fig-
ure 3 our proposed tolerance region for bivariate normal and exponential distrib-
utions. Under each distribution, the sample size is 500 and the tolerance regions
shown are aiming for nominal values 8 = 90% and y = 95%. Note that since there
is no explicit formula for the simplicial depth, there is no explicit expression for
the proposed tolerance region 0”2 ) = {X:Dpg,(X) > Z [}, (Here r,, is to be de-
termined according to Remark 3.2.) In practice, we can simply present the convex
hull spanning all the sample points which achieve higher depth value than Zlrnl ag
the estimated tolerance region. The algorithm provided in [1] can help determine
such convex hulls.

As seen from the plots, our tolerance regions can capture the underlying geo-
metric shapes of the data. For the bivariate normal distribution, the region has the
elliptical shape. For the bivariate exponential distribution, the region has a trian-
gular shape fanning upper-right. Overall, our tolerance region focuses more on the
central part of the data and also follows the expansion of the probability mass.
For example, for the bivariate exponential distribution, our tolerance region does
not include the observations near the origin, since their positions are relatively
outlying with respect to the center of the distribution. In contrast, the tolerance re-
gion obtained by using the method proposed in [6] must include those observations
since they have high density. However, these observations may not be acceptable in
practice, since they may be considered extreme according to the underlying distri-
bution. This point can be made more pronounced by incurring a small perturbation
to create a thinning gap between the points near the origin and the rest of the data.
Therefore, the design of our tolerance region in representing a central region of the
data is naturally built to prevent the region from including observations which are
likely to be extreme.
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As discussed in Section 3.1, when the underlying distribution F is known, we
can construct the tolerance region which satisfies exactly the preset requirement
in (3.1) or (3.2). When F is unknown, we propose a method for constructing the
tolerance region based on the sample only and develop their asymptotic properties.
From the asymptotic point of view, the proposed method also satisfies the preset
requirement. To assess the performance of this proposed tolerance region in the
setting of a finite sample size, we conduct another simulation study. In the same
bivariate normal setting as above, we use the Mahalanobis depth to construct the
tolerance regions separately under F' is known and F' is unknown. One advantage
in using the Mahalanobis depth is that it has a closed form for both population
and sample versions, and thus we can obtain the exact proposed tolerance regions.
Figure 4 shows the two tolerance regions. The dashed ellipse is the one when F
is known, which is the true tolerance region. The solid ellipse is the proposed
tolerance region when F is unknown. The two regions almost coincide with each
other, which clearly implies that the finite sample performance of the proposed
tolerance region is quite satisfactory. The convex hull in Figure 4 is formed by
only the sample points which have higher depth value than Z1, (This generally
reduces tremendously the computational effort, and is more practical, especially
when the depth itself does not have a simple closed form.) It is not surprising that
the convex hull is located inside the solid ellipse. Note that difference between
these two regions is not significant. Therefore, although the convex hull formed
by those central points is not the exact proposed tolerance region, it is presented

FI1G. 4. Tolerance regions for a bivariate normal sample: unknown F vs. known F'.
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here to show that it can be a viable alternative that provides a practical solution.
To use the tolerance region in terms of certifying specifications, we determine
whether a new observation is in the tolerance region by first calculating its depth
with respect to the given sample and then simply comparing the depth value to the
threshold Z!"»!. This is a relatively straightforward task in practice.

5. Concluding remarks and future research. In this paper, we introduced
multivariate spacings based on the ordering derived from data depth. They sat-
isfy all properties one would expect of a notion of spacings. Moreover, they are
nonparametric and they reflect well the geometry of the underlying distribution.
We show how to use these spacings to construct tolerance regions for multivariate
distributions. The construction of our tolerance regions can be viewed as a multi-
dimensional generalization of the Wilks’ method.

Given that our spacings are derived from data depth, the resulting tolerance
regions are always connected and naturally located in the “central” region of the
data set. This is an important property in applications: in practice, specifications
of products are not given in disconnected patches and a single production line
is generally designed to produce continuous measurement around a target value.
The connected tolerance region ensures that the capability of production processes
can be achieved. This point was also discussed and illustrated with Figure 3 in
Section 4.

One important direction for the applications of univariate spacings is nonpara-
metric inference. It includes many existing rank tests and goodness-of-fit tests.
A survey of these tests as well as relevant references can be found in [22]. In forth-
coming papers, we shall explore our multivariate spacings in the development of
nonparametric inference. We generalize many of the existing approaches on uni-
variate spacings. We also study multivariate distributional characterizations using
our multivariate spacings.

APPENDIX

PROOF OF THEOREM 3.3. To prove Theorem 3.3, we need the following two
lemmas.

LEMMA A.1. Forany r, |ZV) — ZU)| < d, = sup, | DF, (x) — Df(x)| = 0,
a.s.
PROOF. From the definition of d,, we have
Zi — Zil = |DF,(X;) — Dp(X))| <dp,  i=1,....n.
Then for any r,
#i: 2 <2 —d)) <#{i: 2 < 2 <.

Therefore, Z0rn d, < 7", Similarly, we can show that Z rl — g, < 71 The
claim of the lemma thus follows. [
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LEMMA A.2. Suppose that a, and by, are two sequences of random variables
such that for some random variable a taking values on [0, co], and a, — a and
b, — a on a positive measure subset of the sample space, say S, as n — 0o. Then
under the assumptions (1)—(ii),

Pr{O; AOp,} — 0 a.s. on the set S,

where Ogn ={x:Dp,(x) > ay}, Op, ={x:Dp(x) > by}, and AAB = (AU B) \
(AN B).

Lemma A.2 with proof is given in [13].

We now proceed with the proof of Theorem 3.3. Assume that %" — ¢q, as
n — oo, then the consistency property of a sample quantile shows that Z"»] — Ng>
a.s., where 7, is the upper gth quantile of Z = Dp(X). Clearly, Lemma A.1
immediately implies ZU"! — 7, a:s. Let a, = ZU»! and b, = Z"]. Following
Lemma A.2, we have

(Al) PF(OnZ[rn]AOZ["n]) —0 a.s.
Denote A, = Pr(0%, ). By = Pr(0%,  AO) and Cy = Pr(O 7). Then

P(Cyr=P)
<P(Ap+ B, = B)
=PAn+B,=2BNBy<e)+P(An+B,>=BNB,>¢) Ve>0
<P(Ap=B—¢e)+ P(B,>¢).

From (A.1), we have, as n — o0,

P(B,>¢)—0
and
Jim P(Cy 2 ) < lim P(A,=p—e)  Ve>0.
Therefore,

lim P(A,= )= lim P(C,=f+e)  Ve>0.
If r,, satisfies
T'n .
("= p4e)) > & JBU-p) and lim PCyzpre) .
then

Jim P(A, =)=,
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Similarly, we have
P(Anzp)=P(Cr+Byz2p)<P(Cr=p—¢e)+ P(B,>e¢),
and thus
Jim P(A, > p) < lim P(C,>p—¢e)  Ve>0.

If r,, satisfies

Vi(" g -e)) > & [BA=p) and  lim PC,=p-e) =y

then lim,,, oo P(A, > B) <.
Regarding the B-expectation tolerance region, we now have, following (A.1),

B,— 0 a.s. as n — oo.

Since B, < 1, B, is uniformly integrable. Thus lim,_ . E(B,) = 0. Since
E(A,) < E(C, + By) < E(Cy,) + E(By), if r, satisfies that n:ﬁl — B, then
lim,— 0 E(Cy) = B, and

(A.2) limsup E(A,) < B.

n—oo

Similarly, E(C,) < E(A, + B,) < E(A,) + E(B;). Then we have
(A3) B < liminf E(A,).
n—oo

Combining (A.2) and (A.3), we obtain lim,_,» E(A,) = B, and hence the proof
of Theorem 3.3. [

PROOF OF THEOREM 3.4. Since ’7" — B,
Gp(Z") = Pp(Dp(X) < ZI") > 1-8
which implies
(A.4) Znl Ly gy .
Moreover, the following
Ozm1ARp g
={X:Dp(X) > Z"), Dp(X) < m1-p}
U{X:Dp(X) < Z") Dp(X) > n1_p)
C{X:m—p—|Z" —ni_pg| < Dp(X) <m—p+ |2 = n1_g}
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immediately implies that
X(Oz[rn]ARD,'B)
(AS5)  =MX:imopg—|Z" =gl < Dr(X) <m_p+|Z" —n1pl}

=6(|12""1 — m_g)),
where §(u) = MX:n1—p —u < Dp(X) < n1—g + u}. By assumption (3.15),
3(0) =AM{X:Dp(X) =n1-pg} =0. Also §(u) is right continuous at 0 because of
the continuity of D (x). Therefore, (A.4) implies that 8(|ZUn! — p;_g)) -5 0.

Following (A.5), we finally obtain (O 4in1 ARp, g) — 0.
The rest of the proof regarding OEM can be derived similarly. Following
Lemma A.1 and the definition of d,,, we obtain

Og[rn]ARD,,B

={X:Dp,(X)> 2" Dp(X) <m_p)
U{X:DE,(X) < Z"), Dp(X) > m1_p}
C{X:Dp(X)> Z" —2d,, Dp(X) < ni_p}
U{X:Dp(X) < Z" +2d,, Dp(X) > n1_g}
C{X:m—p—|Z" —ni_g| — 24,
<Dp(X) <ni—p + |2 —n1_p| +2d,}.
Finally, since Z] -2 n—p and dy, 2,0, we have
)‘(OglmJARD,ﬂ)
<MX:m_p— 2" — 1| - 24,
<Dp(X) <ni—g + |2 —n1_g| +2d,)
=5(1Z") — | + 2dy)
p

— 0.

This completes the proof. [
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