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DATA-DRIVEN SOBOLEV TESTS OF UNIFORMITY ON COMPACT
RIEMANNIAN MANIFOLDS

BY P. E. JUPP

University of St. Andrews

Data-driven versions of Sobolev tests of uniformity on compact Rie-
mannian manifolds are proposed. These tests are invariant under isometries
and are consistent against all alternatives. The large-sample asymptotic null
distributions are given.

1. Introduction. A fundamental hypothesis in directional statistics is that of
uniformity of a distribution on a compact Riemannian manifold, such as the circle,
sphere or rotation group. An important large class of tests of uniformity consists
of Giné’s [7] Sobolev tests. Each Sobolev test is specified by a sequence a1, a2, . . .

of real numbers satisfying a suitable square-summability condition, which is given
in (2.1) below. Sobolev tests for which only a few ak are nonzero are often simple
to calculate, whereas those for which all ak are nonzero are consistent against all
alternatives. The vastness of the class of Sobolev tests presents a problem, as the
statistician needs to choose the sequence a1, a2, . . . . This paper solves the problem
by providing a simple data-driven version of Sobolev tests of uniformity on arbi-
trary compact connected Riemannian manifolds, in which the sequence a1, a2, . . .

is not chosen in advance, but is specified automatically by the data. These data-
driven tests are invariant under isometries and consistent against all alternatives.

The construction of the data-driven tests is based on the fact that Sobolev tests
of uniformity can be regarded as weighted score tests of uniformity within some of
the canonical exponential models introduced by Beran [1]. Thus, they are analo-
gous to Neyman’s [21] smooth tests of uniformity on the unit interval. Data-driven
versions of Neyman’s smooth tests were introduced by Ledwina [18] and refined in
Inglot, Kallenberg and Ledwina [12] and Kallenberg and Ledwina [16, 17]. Con-
sistency and other desirable properties of these tests were established by Kallen-
berg and Ledwina [15], Inglot, Kallenberg and Ledwina [12], Inglot [11] and In-
glot and Ledwina [13, 14]. By suitable adaptation of the version of Ledwina’s test
considered in [12, 16] and [17], Bogdan, Bogdan and Futschik [2] obtained a data-
driven test of uniformity on the circle. The data-driven tests presented in this paper
generalize those of Bogdan et al. from the circle to arbitrary compact Riemannian
manifolds.
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In Section 2, the construction of Sobolev tests of uniformity is reviewed and
the data-driven versions are introduced. Results on consistency and other large-
sample asymptotic properties are given in Section 3. Section 4 gives details in the
important cases in which the sample space is a sphere, a projective space or the
rotation group SO(3). Some simulation results are reported in Section 5.

An outline of the requisite differential geometry can be found in Section 2 of
[7] or the Appendix of [9]. More detailed accounts are given in [8] and [3].

2. Data-driven Sobolev tests of uniformity.

2.1. Sobolev tests of uniformity. Let M be a compact connected Riemannian
manifold without boundary. The Riemannian metric determines the uniform prob-
ability measure μ on M . The intuitive idea behind Giné’s [7] Sobolev tests of
uniformity is to map the manifold M into the Hilbert space L2(M,μ) of square-
integrable real-valued functions on M by a function t :M → L2(M,μ) such that if
x is uniformly distributed then E[t(x)] = 0, and to reject uniformity if the sample
mean of t(x) is “far” from 0.

The standard way of constructing such mappings t is due to Giné [7] and is
based on the eigenfunctions of the Laplacian operator on M acting on smooth
real-valued functions on M . For k ≥ 1, let Ek denote the space of eigenfunctions
corresponding to λk , the kth nonzero eigenvalue, and put dk = dim Ek . Then there
is a well-defined map, tk of M into Ek given by

tk(x) =
dk∑

i=1

fi(x)fi,

where {fi : 1 ≤ i ≤ dk} is any orthonormal basis of Ek . If a1, a2, . . . is a sequence
of real numbers such that

∞∑
k=1

a2
k dk < ∞(2.1)

then

x �→ t(x) =
∞∑

k=1

aktk(x)(2.2)

defines a mapping t of M into L2(M,μ). The resulting Sobolev statistic evaluated
on observations x1, . . . , xn on M is

Tn = 1

n

∥∥∥∥∥
n∑

i=1

t(xi)

∥∥∥∥∥
2

= 1

n

n∑
i=1

n∑
j=1

〈t(xi), t(xj )〉,

where 〈, 〉 denotes the inner product on L2(M,μ) given by

〈f,g〉 =
∫
M

f (x)g(x) dμ(x).

The corresponding Sobolev test rejects uniformity for large values of Tn.
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2.2. Score tests of uniformity. Any vector (θ1, . . . , θk) in
⊕k

j=1 Ej determines
a distribution on M with density (with respect to the uniform distribution)

f (x; θ1, . . . , θk) = exp

{
k∑

j=1

〈θ j , tj (x)〉 − κ(θ1, . . . , θk)

}
,(2.3)

where κ(θ1, . . . , θk) is a log normalizing constant. The class of such distributions
was introduced by Beran [1]. The quadratic score statistic Sk in the score test of
uniformity (i.e., θ j = 0 for j = 1, . . . , k) in the exponential model (2.3) is

Sk = n

∥∥∥∥∥1

n

n∑
i=1

t(k)(xi)

∥∥∥∥∥
2

,(2.4)

where t(k) is t defined by (2.2) with

aj =
{

1, for j ≤ k,
0, for j > k.

(2.5)

Thus Sk is the Sobolev statistic corresponding to (2.5). These t(k) are used in Hen-
driks’s [9] density estimates f̂k , which are given by

f̂k(x) = 1

n

n∑
i=1

〈
t(k)(xi), t(k)(x)

〉
.

2.3. Data-driven tests of uniformity. A major problem in practice with the
score tests of Section 2.2 is the need to choose a suitable k. The solution proposed
here is for this choice to be made by the data, using a modification of Schwarz’s
[24] Bayesian Information Criterion (BIC) selection rule, as considered by Inglot
et al. [12], Kallenberg and Ledwina [16, 17], Inglot [11] and Inglot and Ledwina
[14] for observations on the line and by Bogdan et al. [2] for observations on the
circle.

The choice of k in the data-driven versions of the score tests of Section 2.2 is
based on the penalized score statistic

BS(k) = Sk − νk logn,(2.6)

where

νk =
k∑

i=1

di.

The second term on the right-hand side of (2.6) penalizes higher-dimensional mod-
els. The value of k is chosen as k̂, where

k̂ = inf
{
k ∈ N :BS(k) = sup

m∈N

BS(m)

}
.(2.7)
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(Recall that inf ∅ = ∞.) This procedure is an analogue for score tests of Schwarz’s
[24] BIC selection rule. The data-driven score tests reject the null hypothesis of
uniformity for large values of Sk .

The main large-sample properties of these tests can be stated intuitively as:

(i) Under the null hypothesis, k̂ tends to be near 1, so that the test statistic Sk

is “often” simple (for large samples);
(ii) The asymptotic null distribution of Sk is chi-squared;

(iii) Under the alternative hypothesis, k̂ tends to rise to a value large enough to
cause rejection of the null hypothesis.

Rigorous versions of (i), (ii) and (iii) are given in Theorems 3.1, 3.2 and 3.3, re-
spectively.

A useful geometrical tool in deriving the properties of data-driven score tests is
the spectral function, which can be defined as

e(x, y, T ) = 1

vol(M)

∑
λk≤T

〈tk(x), tk(y)〉, x, y ∈ M,T > 0,(2.8)

where vol(M) denotes the Riemannian volume of M . Note that

e(x, x,λk) = 1

vol(M)

∥∥t(k)(x)
∥∥2

.(2.9)

A key property of the spectral function is

sup
x∈M

∣∣T −m/2e(x, x, T )
(
2
√

π
)m

�(m/2 + 1) − 1
∣∣ = O(T −1/2),

(2.10)
T → ∞,

where m is the dimension of M and � denotes the gamma function. See, for ex-
ample Theorem 1.1 of [10] or equation (2.25) of [6]. Let N(T ) be the number
of eigenvalues λ (counted with their multiplicities) of the Laplacian with λ ≤ T .
Then ∫

M
e(x, x, T )dvol(x) = vol(M)N(T ),

and so (2.10) yields Weyl’s formula

lim
T →∞T −m/2N(T ) = vol(M)

(2
√

π)m�(m/2 + 1)
.(2.11)

See, for example, page 243 of [20] or page 9 of [4]. Thus

νk ∼ vol(M)

(2
√

π)m�(m/2 + 1)
λ

m/2
k as k → ∞.(2.12)

Combining (2.10) with (2.11) gives

vol(M)e(x, x, λk)

νk

→ 1 (uniformly in x) as k → ∞.(2.13)

The following complement of (2.13) will be useful.



1250 P. E. JUPP

PROPOSITION 2.1. If x �= y then

e(x, y,λk)

νk

→ 0 as k → ∞.(2.14)

Since the proof of Proposition 2.1 is rather technical, it is postponed to the
Appendix.

If k̂ = ∞, then Sk is not defined. The following proposition shows that this
occurs with probability zero, except in very small samples.

PROPOSITION 2.2. If n ≥ 3 then for random samples of size n from a contin-
uous distribution on M ,

P(k̂ = ∞) = 0.(2.15)

PROOF. Since the distribution is continuous, the observations x1, . . . , xn are
distinct with probability 1. In this case, (2.4), (2.8), (2.9), (2.13), and (2.14) give

Sk

νk

= 1

nνk

{
n∑

i=1

∥∥t(k)(xi)
∥∥2 +

n∑
i=1

∑
j �=i

〈
t(k)(xi), t(k)(xj )

〉}

= vol(M)

n

{
n∑

i=1

e(xi, xi, λk)

νk

+
n∑

i=1

∑
j �=i

e(xi, xj , λk)

νk

}

→ 1 as k → ∞.

It follows that

BS(k) − BS(1)

νk

→ 1 − logn as k → ∞.

Thus, if n ≥ 3 then BS(k) < BS(1) for large enough k, so that k̂ < ∞. �

REMARK. In practice k̂ is calculated not by (2.7) but as

inf
{
k :BS(k) = sup

1≤m≤K

BS(m)

}

for some suitable K . Tables 1, 3 and 5 in Section 5 indicate that it is reasonable to
take K = 5 for M = S2,RP 2 or SO(3). Calculation of S

k̂
takes approximately K

times as much effort as calculation of a Sobolev test which is consistent against all
alternatives. Thus, the extra computational cost of using a data-driven test is small.
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3. Asymptotic properties.

THEOREM 3.1. Under uniformity,

lim
n→∞P(k̂ = 1) = 1.

PROOF. Since {fi : 1 ≤ i ≤ dk} is a orthonormal basis of Ek , if x is uniformly
distributed then

E
[
t(k)(x)

] = 0 and E
[
t(k)(x)t(k)(x)′

] = Iνk
.(3.1)

Straight forward calculation gives

E[Sk] = νk(3.2)

and

var(Sk) = 1

n2 var

(
n∑

i=1

∥∥t(k)(xi)
∥∥2 +

n∑
i=1

∑
j �=i

〈
t(k)(xi), t(k)(xj )

〉)

= 1

n2

n∑
i=1

var
(∥∥t(k)(xi)

∥∥2)

+ 2

n2

n∑
i=1

∑
j �=i

tr
(
E

[
t(k)(xi)t(k)(xi)

′]E[
t(k)(xj )t(k)(xj )

′])

= 1

n
var

(∥∥t(k)(x)
∥∥2) + 2

(
1 − 1

n

)
νk.(3.3)

It follows from (2.9)–(2.12) that there is a positive A such that∣∣∥∥t(k)(x)
∥∥2 − νk

∣∣ ≤ Aνk
(m−1)/m for k = 1,2, . . . and x ∈ M.

Thus

var
(∥∥t(k)(x)

∥∥2) ≤ A2νk
2(1−1/m) for k = 1,2, . . . .

Combining this with (3.3) gives

var(Sk) < A2νk
2(1−1/m) + 2νk.(3.4)

It follows from (2.11) that there is a positive T0 such that

T > T0 �⇒ 2 ≤ N(32/mT )/N(T ) ≤ 4.(3.5)

Put μ1 = λ1, choose μ2 such that N(μ2) = ν2, and define μ3,μ4, . . . by

μl = 32(l−1)/mμ2 for l ≥ 3.(3.6)
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From (3.5) and (3.6) there are positive constants C1 and C2 such that

N(μl) ≥ 2lC1 for l ≥ 1,(3.7)

N(μl)/N(μl−1) ≤ C2 for l ≥ 2.(3.8)

Suppose that μl ≤ λ
k̂
< μl+1, for some l ≥ 2. Define r by N(μl+1) = νr . Since

k �→ Sk and N are increasing functions,

Sr − N(μl) logn ≥ S
k̂
− ν

k̂
logn > S1 − ν1 logn,

so that, by (3.2),

Sr − E[Sr ] ≥ S1 − ν1 logn + N(μl) logn − N(μl+1)

≥ (
N(μl) − ν1

)
logn − N(μl+1)

(3.9)
= N(μl){[1 − ν1/N(μl)] logn − N(μl+1)/N(μl)}
≥ N(μl){[d2/(d1 + d2)] logn − C2},

which is positive if logn > C2(d1 + d2)/d2. In this case, it follows from (3.9),
Chebyshev’s inequality and (3.4) that

P(μl ≤ λ
k̂
< μl+1)

≤ var(Sr)

{N(μl)[d2/(d1 + d2) logn − C2]}2

<

{
A2

N(μl+1)
2/m

(
N(μl+1)

N(μl)

)2

+ 2

N(μl)

N(μl+1)

N(μl)

}(
d2

d1 + d2
logn − C2

)−2

.

Provided that logn > 2C2(d1 + d2)/d2, using (3.8) then gives

P(μl ≤ λ
k̂
< μl+1) <

{
A2C2

2

N(μl+1)
2/m

+ 2C2

N(μl)

}
4(d1 + d2)

2

d2
2 (logn)2

.(3.10)

Summing (3.10) over l = 2,3, . . . and using (3.7) and (2.15) gives

P(k̂ > 1) < C3(logn)−2

for some positive C3, and so

P(k̂ > 1) → 0 as n → ∞. �

The asymptotic null distribution of S
k̂

can now be found.

THEOREM 3.2. Under uniformity,

S
k̂

d→ χ2
ν1

as n → ∞,

where
d→ denotes convergence in distribution and χ2

ν1
denotes the chi-squared

distribution with ν1 degrees of freedom.



DATA-DRIVEN TESTS OF UNIFORMITY 1253

PROOF. This is a consequence of Theorem 3.1 and the fact [which can be
obtained by applying the central limit theorem to t(k)(x) and using (3.1)] that,
under uniformity, for any fixed k,

Sk
d→χ2

νk
as n → ∞. �

The following theorem guarantees consistency.

THEOREM 3.3. The test which rejects uniformity for large values of S
k̂

is
consistent against all alternatives to uniformity.

PROOF. For any nonuniform distribution, there is a natural number K such
that E[tK(x)] �= 0. For 1 ≤ j < K ,

P(k̂ = j) ≤ P(Sj − νj logn ≥ SK − νK logn)

≤ P
(
n‖t̄K‖2 ≤ (νK − νj ) logn

)
→ 0 as n → ∞,

because ‖t̄K‖2 → ‖E[tK(x)]‖2 almost surely as n → ∞ and (logn)/n → 0 as
n → ∞. Then, for any positive C,

P(S
k̂
> C) ≥ P(SK > C) − P(k̂ < K)

≥ P(n‖t̄K‖2 > C) − P(k̂ < K)

→ 1 as n → ∞.

Since S
k̂

has a nondegenerate limiting distribution under uniformity, it follows that
the test is consistent. �

4. Examples: spheres, projective spaces and the rotation group. In order
to calculate the statistic S

k̂
, explicit expressions for 〈tk(x), tk(y)〉 and νk are re-

quired. This section gives such expressions where M is a sphere, a projective space
or the rotation group SO(3).

4.1. Spheres. It follows from the formula for the cosine of a difference and
from Proposition 2.1 of [22] that, for x,y in Sp−1 (the unit sphere in R

p)

〈tk(x), tk(y)〉 =
⎧⎨
⎩

2 cos(kθ), ifp = 2,(
1 + k

α

)
Cα

k (x′y), if p > 2,
(4.1)

where cos θ = x′y, α = p/2 − 1 and Cα
k denotes the Gegenbauer polynomial of

degree k. The expression for dk given on page 171 of [22] yields

νk = 1

p − 1

{
k

(
p + k − 2

p − 2

)
+ (k + 1)

(
p + k − 1

p − 2

)}
− 1.(4.2)
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In the case of S2, (4.1) reduces to

〈tk(x), tk(y)〉 = (2k + 1)Pk(x′y)

(as in (6.7) of [7]), where Pk denotes the Legendre polynomial of degree k, and
(4.2) reduces to

νk = k(k + 2).

4.2. Projective spaces. Since the eigenspace Ek of the Laplacian on RP p−1

(the projective space of one-dimensional subspaces of R
p), can be identified with

the eigenspace E2k of the Laplacian on Sp−1, it follows from (4.1) that, for ±x,±y
in RP p−1,

〈tk(±x), tk(±y)〉 =
⎧⎨
⎩

2 cos(2kθ), if p = 2(
1 + 2k

α

)
Cα

2k(x
′y), if p > 2,

(4.3)

where cos θ = x′y, and from (4.2) that

νk =
k∑

i=1

{(
p + 2i − 3

p − 2

)
+

(
p + 2i − 2

p − 2

)}
.(4.4)

In the case of RP 2, (4.3) and (4.4) reduce to

〈tk(±x), tk(±y)〉 = (4k + 1)P2k(x′y)

and

νk = k(3k + 2).

4.3. The rotation group SO(3). There is a standard identification of the
rotation group SO(3) with RP 3 given by the mapping which sends ±u =
±(u1, . . . , u4)

′ in RP 3 to the matrix⎛
⎝u2

1 + u2
2 − u2

3 − u2
4 −2(u1u4 − u2u3) 2(u1u3 + u2u4)

2(u1u4 + u2u3) u2
1 + u2

3 − u2
2 − u2

4 −2(u1u2 − u3u4)

−2(u1u3 − u2u4) 2(u1u2 + u3u4) u2
1 + u2

4 − u2
2 − u2

3

⎞
⎠

in SO(3). Combining this with (4.3) and (4.4), for p = 4 shows that on SO(3)

〈tk(X), tk(Y)〉 = (2k + 1)C1
2k

(
tr(X′Y) + 1

4

)
, X,Y ∈ SO(3),

νk = k(4k2 + 12k + 11)

3
.
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5. Simulation study. Tables 1–6 summarize the null distributions of k̂ and
S

k̂
for S2, RP 2 and SO(3), based on 10,000 simulations. Comparison with the

simulations for the circle S1 by Bogdan et al. [2] show that, as n → ∞, k̂ converges
more rapidly to 1 and the distribution of S

k̂
converges more rapidly to its limiting

χ2 distribution for S2, RP 2 and SO(3) than for S1.

TABLE 1
Empirical distribution of k̂ (based on 10,000 simulations) from samples of size n from the uniform

distribution on S2

n = 5 n = 10 n = 15 n = 20 n = 25 n = 30

1 8407 9635 9826 9900 9951 9964
2 1060 338 167 97 49 36
3 357 25 6 3 0 0
4 92 2 1 0 0 0

5–10 84 0 0 0 0 0

TABLE 2
Empirical upper tail probabilities P(S

k̂
≥ χ2

3;α) (upper line) and P(S∗
k̂

≥ χ2
3;α) (lower line) from

samples of size n from the uniform distribution on S2. The estimates are based on 10,000
simulations. The modified statistic S∗

k̂
is defined in (5.1). Bold figures indicate values

in the interval α ± 2
√

α(1 − α)/10,000

α n = 5 n = 10 n = 15 n = 20 n = 25 n = 30

0.10 0.232 0.132 0.114 0.108 0.110 0.102
0.078 0.114 0.105 0.101 0.102 0.097

0.05 0.187 0.078 0.062 0.058 0.058 0.051
0.000 0.056 0.050 0.048 0.048 0.043

0.01 0.120 0.043 0.023 0.017 0.014 0.011
0.000 0.000 0.018 0.015 0.010 0.008

TABLE 3
Empirical distribution of k̂ (based on 10,000 simulations) from samples of size n from the uniform

distribution on RP 2

n = 5 n = 10 n = 15 n = 20 n = 25 n = 30

1 9044 9900 9968 9986 9996 9999
2 759 95 32 14 4 1
3 139 4 0 0 0 0
4 41 1 0 0 0 0

5–8 17 0 0 0 0 0
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TABLE 4
Empirical upper tail probabilities P(S

k̂
≥ χ2

5;α) (upper line) and P(S∗
k̂

≥ χ2
5;α) (lower line) from

samples of size n from the uniform distribution on RP 2. The estimates are based on 10,000
simulations. The modified statistic S∗

k̂
is defined in (5.2). Bold figures indicate values

in the interval α ± 2
√

α(1 − α)/10,000

α n = 5 n = 10 n = 15 n = 20 n = 25 n = 30

0.10 0.162 0.099 0.100 0.098 0.098 0.100
0.116 0.099 0.094 0.099 0.095 0.101

0.05 0.123 0.051 0.052 0.049 0.048 0.048
0.028 0.042 0.042 0.045 0.040 0.046

0.01 0.100 0.018 0.013 0.009 0.010 0.009
0.000 0.009 0.006 0.006 0.005 0.008

TABLE 5
Empirical distribution of k̂ (based on 10,000 simulations) from samples of size n from the uniform

distribution on SO(3)

n = 5 n = 10 n = 15 n = 20 n = 25 n = 30

1 9790 9997 10000 10000 10000 10000
2 189 3 0 0 0 0

3–4 21 0 0 0 0 0

TABLE 6
Empirical upper tail probabilities P(S

k̂
≥ χ2

9;α) (upper line) and P(S∗
k̂

≥ χ2
9;α) (lower line) from

samples of size n from the uniform distribution on SO(3). The estimates are based on 10,000
simulations. The modified statistic S∗

k̂
is defined in (5.3). Bold figures indicate values

in the interval α ± 2
√

α(1 − α)/10,000

α n = 5 n = 10 n = 15 n = 20 n = 25 n = 30

0.10 0.094 0.087 0.093 0.093 0.097 0.095
0.095 0.089 0.098 0.096 0.097 0.095

0.05 0.055 0.042 0.045 0.044 0.047 0.047
0.043 0.037 0.045 0.046 0.045 0.045

0.01 0.027 0.008 0.010 0.008 0.009 0.009
0.024 0.008 0.009 0.012 0.009 0.009

Tables 2, 4 and 6 show that comparison of the observed values of S
k̂

with the
upper 10% and 5% quantiles of the large-sample asymptotic χ2 distribution is
reasonable for n ≥ 30 for S2, n ≥ 20 for RP 2 and n ≥ 25 for SO(3). Since the
asymptotic distribution of S

k̂
is χ2, it follows from general results of Cordeiro
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and Ferrari [5] that there are polynomial modifications of S
k̂

which bring its null
distribution closer to the asymptotic distribution. The cubic modification S∗

k̂
of S

k̂

given by

S∗
k̂

=
{

1 + 1.37 − 0.31S
k̂

n

}
S

k̂
for M = S2,(5.1)

S∗
k̂

=
{

1 + 1.91 − 0.21S
k̂

n

}
S

k̂
for M = RP 2,(5.2)

S∗
k̂

=
{

1 +
5.496 − 0.636S

k̂
+ 0.018S2

k̂

n

}
S

k̂
for M = SO(3)(5.3)

(obtained by cubic regression of the empirical quantiles of the limiting distribution
on the empirical quantiles of S

k̂
) is reasonable at the 10% and 5% levels for n ≥ 15

for S2, RP 2 and SO(3).
A common alternative to uniformity on S2 is a mixture of two Fisher distribu-

tions with modes that are antipodal, so that the probability density function is

f (x;μ, κ) = κ

2 sinhκ
(exp{κμ′x} + exp{−κμ′x})(5.4)

with μ ∈ S2. The main Sobolev test in common use on S2 that is consistent against
all alternatives is Giné’s [7] Fn test. (See also page 209 of [19].) Table 7 gives the
empirical power (based on 10,000 simulations) of some tests of uniformity against
the alternative of density (5.4) with κ = 2. The tests reject uniformity for P(S ≥
χ2

3;α), where S is Fn, the statistic S
k̂

of the data-driven test, and the modification
S∗

k̂
defined in (5.1). The data-driven test is definitely more powerful than Giné’s

test for the small sample sizes considered.

TABLE 7
Empirical power P(S ≥ χ2

3;α) (based on 10,000 simulations) of tests of uniformity on S2 against

alternative (5.4) of mixture of Fisher distributions. Fn denotes Giné’s statistic; S∗
k̂

is defined in (5.1)

α S n = 5 n = 10 n = 15 n = 20 n = 25 n = 30

0.10 Fn 0.101 0.117 0.143 0.151 0.177 0.197
S
k̂

0.301 0.201 0.196 0.190 0.205 0.215
S∗
k̂

0.103 0.176 0.184 0.183 0.200 0.210

0.05 Fn 0.050 0.060 0.070 0.078 0.096 0.106
S
k̂

0.261 0.156 0.145 0.147 0.162 0.171
S∗
k̂

0.000 0.127 0.137 0.138 0.157 0.165

0.01 Fn 0.000 0.000 0.000 0.000 0.000 0.000
S
k̂

0.182 0.124 0.114 0.111 0.128 0.137
S∗
k̂

0.000 0.000 0.104 0.107 0.124 0.133
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APPENDIX: PROOF OF PROPOSITION 2.1

This proof is based on that of the asymptotic behavior of the heat kernel given
in Chapter 5 of [23].

Let D denote the de Rham operator d +d∗ acting on the complex exterior forms
on M . Then D2 = 
 is the Laplacian operator on the complex exterior forms on
M . For T = 1,2, . . . , choose a smooth function ϕT : R → R such that

ϕT (s) =
{

1, if |s| ≤ (2λT + λT +1)/3,

0, if |s| ≥ (λT + 2λT +1)/3.

The kernel of ϕT (
) is the spectral function e(·, ·, T ) given by (2.8). Given distinct
points x and y in M , define δ as the Riemannian distance between x and y. Choose
a smooth function ψ : R → R such that

|t | ≤ δ/3 �⇒ ψ(t) = 1,
(A.1)

|t | ≥ 2δ/3 �⇒ ψ(t) = 0.

Since ϕT and ψ are in the class S(R) of rapidly decreasing functions with all
derivatives rapidly decreasing, their Fourier transforms ϕ̂T and ψ̂ are in S(R̂), and
so there are functions f1,T and f2,T in S(R) with Fourier transforms f̂1,T and f̂2,T

satisfying

f̂1,T (λ) = 1

νT

ϕ̂T (λ)ψ(λ),

(A.2)

f̂2,T (λ) = 1

νT

ϕ̂T (λ)
(
1 − ψ(λ)

)
.

Then

f1,T (
) + f2,T (
) = 1

νT

ϕT (
).

Since the functions f1,T and f2,T are in the space R(R) of rapidly decreasing
functions, the operators f1,T (
) and f2,T (
) have smooth kernels (see Proposi-
tion 5.8 of [23]). Denote these kernels by e1,T and e2,T . As

f1,T (
) = 1

νT

∫ ∞
−∞

ϕ̂T (λ2)eiλDψ(λ)dλ,

it follows from (A.1) and the fact that D has unit propagation speed (cf. Proposition
5.5 of [23]) that e1,T is supported within 2δ/3 of the diagonal. Thus

e(x, y, T )

νT

= e2,T (x, y).(A.3)

It follows from (A.2) that∣∣∣∣f̂2,T (λ) − 2 sin(cT λ)

λνT

(
1 − ψ(λ)

)∣∣∣∣ ≤ 2(λT +1 − λT )

3νT

,
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where cT = (2λT + λT +1)/3, and so f̂2,T tends to 0 in S(R̂) as T → ∞. By
Fourier theory, f2,T → 0 in S(R) and so in R(R). Thus (see Proposition 5.8 of
[23]) e2,T → 0 as T → ∞. By (A.3) this gives (2.14).

Acknowledgment. I am grateful to Jørgen Ellegaard Andersen for suggesting
that Proposition 2.1 could be proved by adapting a proof of the asymptotic behavior
of the heat kernel.
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