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OBJECTIVE PRIORS FOR THE BIVARIATE NORMAL MODEL

BY JAMES O. BERGER1 AND DONGCHU SUN2

Duke University and University of Missouri-Columbia

Study of the bivariate normal distribution raises the full range of issues
involving objective Bayesian inference, including the different types of objec-
tive priors (e.g., Jeffreys, invariant, reference, matching), the different modes
of inference (e.g., Bayesian, frequentist, fiducial) and the criteria involved in
deciding on optimal objective priors (e.g., ease of computation, frequentist
performance, marginalization paradoxes). Summary recommendations as to
optimal objective priors are made for a variety of inferences involving the
bivariate normal distribution.

In the course of the investigation, a variety of surprising results were
found, including the availability of objective priors that yield exact frequentist
inferences for many functions of the bivariate normal parameters, including
the correlation coefficient.

1. Introduction and prior distributions.

1.1. Notation and problem statement. The bivariate normal distribution of
(x1, x2)

′ has mean parameters μ = (μ1,μ2)
′ and covariance matrix

� =
(

σ 2
1 ρσ1σ2

ρσ1σ2 σ 2
2

)
,

where ρ is the correlation between x1 and x2. The density is

1

2πσ1σ2

√
1 − ρ2

× exp
{
−σ 2

2 (x1 − μ1)
2 + σ 2

1 (x2 − μ2)
2 − 2ρσ1σ2(x1 − μ1)(x2 − μ2)

2σ 2
1 σ 2

2 (1 − ρ2)

}
.

The data consists of an independent random sample X = (xk = (x1k, x2k), k =
1, . . . , n) of size n ≥ 3, for which the sufficient statistics are

x =
(

x1
x2

)
and S =

n∑
k=1

(xk − x)(xk − x)′ =
(

s11 r
√

s11s22
r
√

s11s22 s22

)
,(1)
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where, for i, j = 1,2,

xi = n−1
n∑

j=1

xij , sij =
n∑

k=1

(xik − xi)(xjk − xj ) and r = s12√
s11s22

.

We will denote prior densities as π(μ1,μ2, σ1 σ2, ρ), and the corresponding poste-
rior densities as π(μ1,μ2, σ1 σ2, ρ | X) (all with respect to dμ1 dμ2 dσ1 dσ2 dρ).

We consider objective inference for parameters of the bivariate normal distri-
bution and functions of these parameters, with special focus on development of
objective confidence or credible sets. Section 1.2 introduces many of the key is-
sues to be covered, through a summary of some of the most interesting results
involving priors yielding exact frequentist procedures; this section also raises in-
teresting historical and philosophical issues. For easy access, Section 1.3 presents
our summary recommendations as to which priors to utilize.

Often, the posteriors for the recommended priors are essentially available in
computational closed form, allowing direct Monte Carlo simulation. Section 2 pro-
vides simple accept-reject schemes for computing with the recommended priors
in other cases. Sections 3 and 4 develop the needed theory, concerning what are
called reference priors and matching priors, respectively, and also present various
simulations that were conducted to enable summary recommendations to be made.

Notation: In addition to (μ1,μ2, σ1, σ2, ρ), the following parameters will be
considered:

η1 = 1

σ1
, η2 = 1

σ2

√
1 − ρ2

, η3 = − ρ

σ1

√
1 − ρ2

,(2)

θ1 = ρσ2

σ1
, θ2 = σ 2

2 (1 − ρ2), θ3 ≡ |�| = σ 2
1 σ 2

2 (1 − ρ2),

(3)

θ4 = σ2

√
1 − ρ2

σ1
,

θ5 = μ1

σ1
, θ6 = σ 2

1 σ 2
2 , θ7 = σ2

σ1
, θ8 = μ2

σ2
,

(4)
θ9 ≡ σ12 = ρσ1σ2,

θ10 = σ 2
1 + σ 2

2 − 2ρσ1σ2,(5)

θ11 = d′�d [d′ = (d1, d2) not proportional to (0,1)],(6)

λ1 = chmax(�), λ2 = chmin(�).(7)

Some of these parameters have straightforward statistical interpretations. Since
(x2 | x1,μ,�) ∼ N(μ2 + θ1(x1 − μ1), θ2), it is clear that θ1 is a regression co-
efficient, θ2 is a conditional variance, and η2

2 is the corresponding precision. For
the marginal distribution of x1, η2

1 is the precision and θ5 is the reciprocal of the
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coefficient of variation. θ3 is usually called the generalized variance. (η1, η2, η3)

gives a type of Cholesky decomposition of the precision matrix �−1 [see (13) in
Section 2.1]. θ10 is the variance of x1 − x2, and θ11 is the variance of d1x1 + d2x2.
Finally, λ1 and λ2 are the largest and smallest eigenvalues of �.

Technical issue. We will assume that |ρ| < 1 and |r| < 1 in virtually all ex-
pressions and results that follow. This is because, if either equals 1 in absolute
value, then ρ = {sign of r} with probability 1 (either frequentist or Bayesian pos-
terior, as relevant). Indeed, the situation then essentially collapses to the univariate
version of the problem, which is standard.

1.2. Matching, constructive posteriors and fiducial distributions. The bivari-
ate normal distribution has been extensively studied from frequentist, fiducial and
objective Bayesian perspectives. Table 1 summarizes a number of interesting re-
sults.

• For a variety of parameters, it presents objective priors (discussed below) for
which the resulting Bayesian posterior credible sets of level 1 −α are also exact
frequentist confidence sets at the same level; in this case, the priors are said to
be exact frequentist matching. This is a very desirable situation: see [23] and [2]
for general discussion and the many earlier references.

• For μ1,μ2, σ1, σ2 and ρ, the constructive posterior distributions are also the
fiducial distributions for the parameters, as found in Fisher [14, 15] and [21].

• Posterior distributions are presented as constructive random distributions, that
is, by a description of how to simulate from them. Thus to simulate from the
posterior distribution of σ1, given the data (actually, only s11 is needed), one
draws independent χ2

n−1 random variables and simply computes the correspond-

ing
√

s11/χ
2
n−1; this yields an independent sample from the fiducial/posterior

distribution of σ1.

Table 1 also lists the objective prior distributions that yield the indicated objec-
tive posterior. The notation πab in the table stands for the important class of prior
densities (a subclass of the generalized Wishart distributions of [8])

πab(μ1,μ2, σ1, σ2, ρ) = 1

σ 3−a
1 σ 2−b

2 (1 − ρ2)2−b/2
.(8)

Special cases of this class are the Jeffreys-rule prior πJ = π10, the right-Haar prior
πH = π12, the independence Jeffreys prior πIJ = π21 = σ−1

1 σ−1
2 (1 − ρ2)−3/2 and

πRO which has a = b = 1. The independence Jeffreys prior follows from using a
constant prior for the means, and then the Jeffreys prior for the covariance matrix
with means given.

We highlight the results about ρ in Table 1 because they are interesting from
practical, historical and philosphical perspectives. First, it does not seem to be
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TABLE 1
Parameters with exact matching priors of the form πab , and associated constructive posteriors:
Here Z∗ is a standard normal random variable, and χ2∗

n−1 and χ2∗
n−2 are chi-squared random

variables with the indicated degrees of freedom, all random variables being independent.
For μ1,μ2, σ1, σ2 and ρ, the indicated posteriors are also fiducial distributions

Parameter Prior Posterior

μ1 π1b,∀b (including πJ and πH ) x1 + Z∗√
χ2∗

n−1

√
s11
n

μ2 πJ = π10 x2 + Z∗√
χ2∗

n−1

√
s22
n

d′(μ1
μ2

)
, d ∈ R

2 πJ = π10 and πH ∗ (see Table 4) d′(x1, x2)′ + Z∗√
χ2∗

n−1

√
d′Sd

n

σ1 π1b,∀b (including πJ and πH )
√

s11
χ2∗

n−1

ρ πH = π12 ψ( −Z∗√
χ2∗

n−1

+
√

χ2∗
n−2√

χ2∗
n−1

r√
1−r2

)

ψ(y) = y/

√
1 + y2

η3 = − ρ

σ1
√

1−ρ2
πa2,∀a (including πH ) Z∗√

s11
−

√
χ2∗

n−2√
s11

r√
1−r2

θ1 = ρσ2
σ1

πa2,∀a (including πH )
r
√

s22√
s11

− Z∗√
χ2∗

n−2

√
1−r2√s22√

s11

θ2 = σ 2
2 (1 − ρ2) πa2,∀a (including πH ) s22(1−r2)

χ2∗
n−2

θ3 = |�| πH = π12 and πIJ = π21
|S|

χ2∗
n−1χ

2∗
n−2

θ4 = σ2
√

1−ρ2

σ1
πH = π12

√
χ2∗

n−1√
χ2∗

n−2

√
s22(1−r2)√

s11

θ5 = μ1
σ1

π1b,∀b (including πJ and πH ) Z∗√
n

+ x1

√
χ2∗

n−1√
s11

d′�d πJ = π10 and πH ∗ (see Table 4)
√

d′Sd
χ2∗

n−1

known that the indicated prior for ρ is exact frequentist matching (proved here in
Theorem 2). Indeed, standard statistical software utilizes various approximations
to arrive at frequentist confidence sets for ρ, missing the fact that a simple exact
confidence set exists, even for n = 3. It was, of course, known that exact frequentist
confidence procedures could be constructed (cf. Exercise 54, Chapter 6 of [18]),
but explicit expressions do not seem to be available.

The historically interesting aspect of this posterior for ρ is that it is also the fidu-
cial distribution of ρ. Geisser and Cornfield [16] studied the question of whether
the fiducial distribution of ρ could be reproduced as an objective Bayesian pos-
terior, and they concluded that this was most likely not possible. The strongest
evidence for this arose from Brillinger [7], which used results from [19] and a dif-
ficult analytic argument to show that there does not exist a prior π(ρ) such that
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the fiducial density of ρ equals f (r | ρ)π(ρ), where f (r | ρ) is the density of r

given ρ. Since the fiducial distribution of ρ only depends on r , it was certainly
reasonable to speculate that if it were not possible to derive this distribution from
the density of r and a prior, then it would not be possible to do so in general. The
above result, of course, shows that this speculation was incorrect.

The philosophically interesting aspect of this situation is that Brillinger’s result
does show that the fiducial/posterior distribution for ρ provides another example of
the marginalization paradox ([13]). This leads to an interesting philosophical co-
nundrum of a type that we have not previously seen: a complete fiducial/objective
Bayesian/frequentist unification can be obtained for inference about ρ, but only
if violation of the marginalization paradox is accepted. We will shortly introduce
a prior distribution that avoids the marginalization paradox for ρ, but which is
not exactly frequentist matching. We know of no way to adjudicate between the
competing goals of exact frequentist matching and avoidance of the marginaliza-
tion paradox, and so will simply present both as possible objective Bayesian ap-
proaches. (Note that the same conundrum also arises for θ5 = μ1/σ1; the exact
frequentist matching prior results in a marginalization paradox, as shown in [24].)
Some interesting examples of improper priors resulting in marginalization paradox
can be found from Ghosh and Yang [17] and Datta and Ghosh [10, 11].

1.3. Recommended priors. It is actually rare to have exact matching priors
for parameters of interest. Also, one is often interested in very complex functions
of parameters (e.g., predictive distributions) and/or joint distributions of parame-
ters. For such problems it is important to have a general objective prior that seems
to perform reasonably well for all quantities of interest. Furthermore, it is unap-
pealing to many Bayesians to change the prior according to which parameter is
declared to be of interest, and an objective prior that performs well overall is often
sought.

The five priors we recommend for various purposes are πJ , πH ,

πRρ ∝ 1

σ1σ2(1 − ρ2)
, πRσ ∝

√
1 + ρ2

σ1σ2(1 − ρ2)
(9)

and

πRλ ∝ 1

σ1σ2(1 − ρ2)

√
(σ1/σ2 − σ2/σ1)2 + 4ρ2

.(10)

The first prior in (9) was developed in [20] and was studied extensively in [1],
where it was shown to be a one-at-a-time reference prior (see Section 3). The
second prior in (9) is new and is derived in Section 3. πRλ was developed as a
one-at-a-time reference prior in [25].

With these definitions, we can make our summary recommendations. Table 2
gives the four objective priors that are recommended for use, and indicates for
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TABLE 2
Recommendations of objective priors for various parameters in the bivariate normal model:

indicates that the posterior will not be exact frequentist matching. (For μ2 and parameters
with σ1 replaced by σ2, use the right-Haar prior with the variances interchanged.)

Prior Parameter

πRρ ρ , σ1
σ2

, general use

πH μ1, σ1, ρ, η3,
ρσ2
σ1

, σ 2
2 (1 − ρ2), |�|, σ2

σ1

√
1 − ρ2, μ1

σ1

π̃H (see Table 4) d′(μ1,μ2)′, d′�d

πRλ chmax(�)

πRσ σ12 = ρσ1σ2

which parameters (or functions thereof) they are recommended. These recommen-
dations are based on three criteria: (i) the degree of frequentist matching, discussed
in Section 4; (ii) being a one-at-a-time reference prior, discussed in Section 3; and
(iii) ease of computation. The rationale for each of the entries in the table, based
on these criteria, is given in Section 4.5.

Another commonly used prior is the “scale prior,” πS ∝ (σ1σ2)
−1. The moti-

vation that is often given for this prior is that it is “standard” to use σ−1
i as the

prior for a standard deviation σi , while −1 < ρ < 1 is on a bounded set and so one
can use a constant prior in ρ. We do not recommend this prior, but do consider its
performance in Section 4.5.

2. Computation. In this paper, a constant prior is always used for (μ1,μ2),
so that ((

μ1
μ2

) ∣∣∣�,X
)

∼ N2

((
x1
x2

)
, n−1�

)
.(11)

Generation from this conditional posterior distribution is standard, so the chal-
lenge of simulation from the posterior distribution requires only sampling from
(σ1, σ2, ρ | X).

The marginal likelihood of (σ1, σ2, ρ) satisfies

L1(σ1, σ2, ρ) ∝ 1

|�|(n−1)/2 exp
(
−1

2
trace(S�−1)

)
.(12)

It is immediate that, under the priors πJ and πIJ , the marginal posteriors of � are
Inverse Wishart (S−1, n) and Inverse Wishart (S−1, n − 1), respectively.

Berger, Strawderman and Tang [4] gave a Metropolis–Hastings algorithm to
generate from (σ1, σ2, ρ | X) based on the prior πRλ. The following sections deal
with the other priors we consider.
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TABLE 3
Ratio π/πIJ , upper bound M , rejection step and acceptance probability for ρ = 0.80,0.95,0.99,

when π = πRρ , πRσ , π̃Rσ , πS and πMS

Bound Acceptance probability

Prior Ratio π
πIJ

M Rejection Step ρ = 0.80 ρ = 0.95 ρ = 0.99

πRρ

√
1 − ρ2 1 u ≤

√
1 − ρ2 0.6000 0.3122 0.1410

πRσ

√
1 − ρ4 1 u ≤

√
1 − ρ4 0.7684 0.4307 0.1985

π̃Rσ

√
1−ρ2

2−ρ2
1√
2

u ≤
√

2(1−ρ2)

2−ρ2 0.7276 0.4215 0.1975

πS (1 − ρ2)3/2 1 u ≤ (1 − ρ2)3/2 0.2160 0.0304 0.0028

2.1. Marginal posteriors of (σ1, σ2, ρ) under πRρ , πRσ , π̃Rσ , and πS . For
these priors, an independent sample from π(σ1, σ2, ρ | X) can be obtained by the
following acceptance-rejection algorithm:

Simulation step. Generate (σ1, σ2, ρ) from the independence Jeffreys posterior
πIJ (σ1, σ2, ρ | X) [the Inverse Wishart (S−1, n − 1) distribution] and, inde-
pendently, sample u ∼ Uniform(0,1).

Rejection step. Suppose M ≡ sup(σ1,σ2,ρ)
π(σ1,σ2,ρ)

πIJ (σ1,σ2,ρ)
< ∞. If u ≤ π(σ1, σ2, ρ)/

[MπIJ (σ1, σ2, ρ)], accept (σ1, σ2, ρ); else, return to Simulation step.

For each of the priors listed in Table 3, the key ratio, π/πIJ , is listed in the ta-
ble, along with the upper bound M , the Rejection step and the resulting acceptance
probability for ρ = 0.80,0.95,0.99. The rejection algorithm is quite efficient for
sampling these posteriors. Indeed, for ρ ≈ 0, the algorithms accept with probabil-
ity near one and, even for large |ρ|, the acceptance probabilities are very reasonable
for the priors πRρ , πRσ , and π̃Rσ . For large |ρ|, the algorithm is less efficient for
the posteriors under the prior πS , but even these acceptance rates may well be fine
in practice, given the simplicity of the algorithm.

2.2. Computation under πab. The most interesting prior of this form (besides
the Jeffreys and independence Jeffreys priors) is the right-Haar prior πH , although
other priors such as π11 arise as reference priors, and hence are potentially of inter-
est. While Table 1 gave an explicit form for the most important marginal posteriors
arising from priors of this form, it is of considerable interest that essentially closed
form generation from the full posterior of any prior of this form is possible (see,
e.g., [8]). This is briefly reviewed in this section, since the expressions for the re-
sulting constructive posteriors are needed for later results on frequentist coverage.

It is most convenient to work with the parameters (η1, η2, η3) given in (2).
This parameterization gives a type of Cholesky decomposition of the precision
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matrix �−1,

�−1 =
(

η1 η3
0 η2

)(
η1 0
η3 η2

)
,(13)

which accounts for the simplicity of ensuing computations. Note that (2) is equiv-
alent to

σ1 = 1

η1
, σ2 =

√
η2

1 + η2
3

η1η2
, ρ = − η3√

η2
1 + η2

3

.(14)

The prior πab of (8) for (μ1,μ2, σ1, σ2, ρ) transforms to the extended conjugate
class of priors for (μ1,μ2, η1, η2, η3), given by πab(μ1,μ2, η1, η2, η3) = η−a

1 η−b
2 .

LEMMA 1. Consider the prior πab.

(a) The marginal posterior of η3 given (η1, η2;X) is N(−η2r
√

s22/s11,1/s11).

(b) The marginal posterior distributions of η1 and η2 are independent and

(η2
1 | X) ∼ Gamma

(1
2(n − a), 1

2s11
);

(η2
2 | X) ∼ Gamma

(1
2(n − b), 1

2s22(1 − r2)
)
.

See [5] for a proof of this result. We next present the constructive posteriors of
(η1, η2, η3), and from these derive the constructive posteriors of (μ1,μ2, σ1, σ2, ρ)

and other parameters. All results follow directly from Lemma 1 and (14).
In presenting the constructive posteriors, we will use a star to represent a ran-

dom draw from the implied distribution; thus μ∗
1 will represent a random draw

from its posterior distribution, Z∗
1 ,Z∗

2,Z∗
3 will be independent draws from the

standard normal distribution, and χ2∗
n−a and χ2∗

n−b will be independent draws from
chi-squared distributions with the indicated degrees of freedom. Recall that these
constructive posteriors are not only useful for simulation, but will be the key to
proving exact frequentist matching results.

FACT 1. (a) The constructive posterior of (η1, η2, η3) given X can be ex-
pressed as

η∗
1 =

√
χ2∗

n−a

s11
, η∗

2 =
√√√√ χ2∗

n−b

s22(1 − r2)
,

(15)

η∗
3 = Z∗

3√
s11

−
√

χ2∗
n−b√
s11

r√
1 − r2

.
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(b) The constructive posterior of (σ1, σ2, ρ) given X can be expressed as

σ ∗
1 =

√
s11

χ2∗
n−a

,(16)

σ ∗
2 =

√
s22(1 − r2)

√√√√√ 1

χ2∗
n−b

+ 1

χ2∗
n−a

(
Z∗

3√
χ2∗

n−b

− r√
1 − r2

)2
,(17)

ρ∗ = ψ(Y ∗), Y ∗ = − Z∗
3√

χ2∗
n−a

+
√

χ2∗
n−b√

χ2∗
n−a

r√
1 − r2

,(18)

where ψ(x) = x/
√

1 + x2.
(c) The constructive posterior for μ1 and μ2 can be written

μ∗
1 = x1 + Z∗

1√
χ2∗

n−a

√
s11

n
,(19)

μ∗
2 = x2 + Z∗

1√
χ2∗

n−a

r
√

s22√
n

+
(

Z∗
2√

χ2∗
n−b

− Z∗
3√

χ2∗
n−b

Z∗
1√

χ2∗
n−a

)√
s22(1 − r2)

n
.(20)

3. Reference priors. This paper began with an effort to derive and catalogue
the possible reference priors for the bivariate normal distribution. The reference
prior theory (cf. Bernardo [6] and Berger and Bernardo [3]) has arguably been
the most successful technique for deriving objective priors. Reference priors de-
pend on (i) specification of a parameter of interest; (ii) specification of nuisance
parameters; (iii) specification of a grouping of parameters; and (iv) ordering of the
groupings. These are all conveyed by the shorthand notation used in Table 4. Thus,
{(μ1,μ2), (σ1, σ2, ρ)} indicates that (μ1,μ2) is the parameter of interest, with the
others being nuisance parameters, and there are two groupings with the indicated
ordering. (The resulting reference prior is the independence Jeffreys prior, πIJ .)
As another example, {λ1, λ2, ϑ,μ1,μ2} introduces the eigenvalues λ1 > λ2 of �
as being primarily of interest, with ϑ (the angle defining the orthogonal matrix that
diagonalizes �), μ1 and μ2 being the nuisance parameters.

Based on experience with numerous examples, the reference priors that are typ-
ically judged to be best are one-at-a-time reference priors, in which each parameter
is listed separately as its own group. Hence we will focus on these priors. It turns
out to be the case that, for the one-at-a-time reference priors, the ordering of μ1
and μ2 among the variables is irrelevant. Hence if μ1 and μ2 are omitted from a
listing in Table 4, the resulting reference prior is to be viewed as any one-at-a-time
reference prior with the indicated ordering of other variables, with the μi being
inserted anywhere in the ordering.
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TABLE 4
Reference priors for the bivariate normal model (where μ̃1 = d′(μ1,μ2)′, (σ̃1)2 = θ7,

ρ̃ = d′�(0,1)′/(σ1
√

θ7), θ̃2 = σ 2
2 [1 − (ρ̃)2] and θ̃1 = ρ̃σ2/σ̃1); {{ }} indicates that any ordering of

the parameters yields the same reference prior

Prior π(μ1,μ2,σ 1, σ 2,ρ) For parameter ordering Has form (8) with

πJ ∝ 1
σ 2

1 σ 2
2 (1−ρ2)2 {(μ1,μ2, σ1, σ2, ρ)} (a, b) = (1,0)

πIJ ∝ 1
σ1σ2(1−ρ2)3/2 {(μ1,μ2), (σ1, σ2, ρ)} (a, b) = (2,1)

πRρ ∝ 1
σ1σ2(1−ρ2)

{ρ,σ1, σ2}, {θ7, θ6, ρ}
πRσ ∝

√
1+ρ2

σ1σ2(1−ρ2)
{σ1, σ2, ρ}

π̃Rσ ∝ 1
σ1σ2(1−ρ2)

√
2−ρ2

{σ1, ρ, σ2}
{σ1, η3, θ2}

πRO ∝ 1
σ 2

1 σ2(1−ρ2)3/2 {σ1, θ2, η3} (a, b) = (1,1)

πRλ ∝ [((σ1/σ2)−(σ2/σ1))
2+4ρ2]−1/2

σ1σ2(1−ρ2)
{λ1, λ2, ϑ}

πH ∝ 1
σ 2

1 (1−ρ2)
{{σ1, θ1, θ2}}, {{θ1, θ3, θ4}} (a, b) = (1,2)

{{η1, η2, θ1}} , {{η1, θ1, θ2}}
π̃H ∝ dμ̃1dμ2dσ̃1dσ2dρ̃

(σ̃1)
2[1−(ρ̃)2] {{d′(μ1,μ2)′,μ2, θ11, θ̃2, θ̃1}}

We are interested in finding one-at-a-time reference priors for the parameters
μ1,μ2, σ1, σ2, ρ, η3, θ1, . . . , θ9 and λ1. This is done in [5], with the results sum-
marized in Table 4, for all these parameters (i.e., the parameter appears as the first
entry in the parameter ordering) except η3, σ12, and μi/σi ; finding one-at-a-time
reference priors for these parameters is technically challenging. (We do not explic-
itly list the reference priors for σ2 in the table, since they can be found by simply
switching with σ1 in the various expressions.)

4. Comparisons of priors via frequentist matching.

4.1. Frequentist coverage probabilities and exact matching. Suppose a pos-
terior distribution is used to create one-sided credible intervals (θL, θ1−α(X)),
where θL is the lower limit in the relevant parameter space and θ1−α(X) is the
posterior quantile of the parameter θ of interest, defined by P(θ < θ1−α(X) |
X) = 1 − α. (Here θ is the random variable.) Of interest is the frequentist cov-
erage of the corresponding confidence interval, that is, C(μ1,μ2, σ1, σ2, ρ) =
P(θ < θ1−α(X) | μ1,μ2, σ1, σ2, ρ). (Here X is the random variable.) The closer
C(μ1,μ2, σ1, σ2, ρ) is to the nominal 1 − α, the better the procedure (and corre-
sponding objective prior) is judged to be.

The main results about exact matching are given in Theorems 1 through 8. The
proofs of Theorems 1, 2 and 8 are given in Section 5; the rest can be found in [5].
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The following technical lemmas will be repeatedly utilized. The first lemma is
from (3d.2.8) in [22]. Lemma 3 is easy.

LEMMA 2. For n ≥ 3 and given σ1, σ2, ρ, the following three random vari-
ables are independent and have the indicated distributions:

T2 =
[

s11

σ 2
2 (1 − ρ2)

]1/2[
r
√

s22√
s11

− ρσ2

σ1

]
≡ Z3 (standard normal),(21)

T3 = s22(1 − r2)

σ 2
2 (1 − ρ2)

≡ χ2
n−2,(22)

T5 = s11

σ 2
1

≡ χ2
n−1.(23)

LEMMA 3. Let Y1−α denote the 1 − α quantile of any random variable Y .

(a) If g(·) is a monotonically increasing function, [g(Y )]1−α = g(Y1−α) for any
α ∈ (0,1).

(b) If W is a positive random variable, (WY)1−α ≥ 0 if and only if Y1−α ≥ 0.

We will reserve quantile notation for posterior quantiles, with respect to
the ∗ distributions. Thus the quantile [(σ1Z

∗
3 − rZ3)/χ

2
n−1 + ρ

√
s11χ

2∗
n−b]1−α

would be computed based on the joint distribution of (Z∗
3 , χ2∗

n−b), while holding
(σ1, ρ, r, s11,Z3, χ

2
n−1) fixed.

4.2. Credible intervals for a class of functions of (σ1, σ2, ρ). We consider the
one-sided credible intervals of σ1, σ2 and ρ and some functions of the form

θ = σ
d1
1 σ

d2
2 g(ρ),(24)

for d1, d2 ∈ R and some function g(·). We also consider a class of scale-invariant
priors

π(μ1,μ2, σ1, σ2, ρ) ∝ h(ρ)

σ
c1
1 σ

c2
2

,(25)

for some c1, c2 ∈ R and a positive function h.

THEOREM 1. Denote the 1 − α posterior quantile of θ by θ1−α(X) under the
prior (25). For any fixed (μ1,μ2, σ1, σ2, ρ), the frequentist coverage of the credible
interval (θL, θ1−α(X)) depends only on ρ. Here θL is the lower boundary of the
parameter space for θ.

Note that parameters ρ, η1, η2, η3, θ1, . . . , θ4 are all functions of the form (24).
From Theorem 1, under any of the priors πJ ,πIJ ,πRσ ,πRρ,πRO,πH ,πS , the
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frequentist coverage probabilities of credible intervals for any of these parameters
will depend only on ρ. We will show that the frequentist coverage probabilities
could be exact under the prior πab. Since η1(η2) is a monotone function of σ1(θ2),

we consider only ρ and the last 5 parameters.

4.3. Coverage probabilities under πab.

THEOREM 2. (a) For ψ defined in (18), the posterior 1 − α quantile of ρ is
ρ∗

1−α = ψ(Y ∗
1−α). (b) For any α ∈ (0,1), ξ = (μ1,μ2, σ1, σ2) and ρ ∈ (−1,1),

P (ρ < ρ∗
1−α | ξ , ρ)

(26)

= P

(√
1 − ρ2Z3 + ρ

√
χ2

n−1√
χ2

n−2

>

(√
1 − ρ2Z∗

3 + ρ
√

χ2∗
n−a√

χ2∗
n−b

)
α

∣∣∣ρ)
.

(c) (26) equals 1 − α if and only if the right Haar prior is used, that is, (a, b) =
(1,2).

THEOREM 3. (a) For any α ∈ (0,1), ξ = (μ1,μ2, σ1, σ2) and ρ ∈ (−1,1),

P
(
η3 < (η∗

3)1−α | ξ , ρ
)

(27)

= P

(Z3 + ρ√
1−ρ2

√
χ2

n−1√
χ2

n−2

<

(Z∗
3 + ρ√

1−ρ2

√
χ2

n−1√
χ2∗

n−b

)
1−α

∣∣∣ρ)
.

(b) (27) equals 1 − α for any −1 < ρ < 1 if and only if b = 2.

THEOREM 4. (a) The constructive posterior of θ1 = ρσ2/σ1 has the expres-
sion

θ∗
1 = r

√
s22√
s11

− Z∗
3√

χ2∗
n−b

√
1 − r2√s22√

s11
.

(b) For any α ∈ (0,1), ξ = (μ1,μ2, σ1, σ2) and ρ ∈ (−1,1),

P
(
θ1 < (θ∗

1 )1−α | ξ , ρ
) = P

(
tn−2 <

√
n − 2

n − b
(t∗n−b)1−α

)
,(28)

which does not depend on ρ. Furthermore, (28) equals 1 − α if and only if b = 2.

THEOREM 5. (a) The constructive posterior of θ2 = σ 2
2 (1 − ρ2) is θ∗

2 =
s22(1 − r2)/χ2∗

n−b.

(b) For any α ∈ (0,1), ξ = (μ1,μ2, σ1, σ2) and ρ ∈ (−1,1),

P
(
θ2 < (θ∗

2 )1−α | ξ , ρ
) = P

(
χ2

n−2 > (χ2∗
n−b)α

)
,(29)

which does not depend on ρ. Furthermore, (29) equals 1 − α if and only if b = 2.
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THEOREM 6. (a) The constructive posterior of θ3 = |�| is θ∗
3 = |S|/

(χ2∗
n−aχ

2∗
n−b).

(b) For any ξ = (μ1,μ2, σ1, σ2) and ρ ∈ (−1,1),

P
(
θ3 < (θ∗

3 )1−α | ξ , ρ
) = P

(
χ2

n−1χ
2
n−2 > (χ2∗

n−aχ
2∗
n−b)α

)
,(30)

which does not depend on ρ. Furthermore, (30) equals 1 − α iff (a, b) is (1,2) or
(2,1).

THEOREM 7. (a) The constructive posterior of θ4 is

θ∗
4 =

√√√√χ2∗
n−a

χ2∗
n−b

√
s22(1 − r2)

s11
.

(b) For any ξ = (μ1,μ2, σ1, σ2) and ρ ∈ (−1,1),

P
(
θ4 < (θ∗

4 )1−α | ξ , ρ
) = P

(
χ2

n−1/χ
2
n−2 < (χ2∗

n−a/χ
2∗
n−b)1−α

)
,(31)

which does not depend on ρ. Furthermore, (31) equals 1 − α iff (a, b) = (1,2).

An interesting function of (μ1,μ2, σ1, σ2, ρ) not of the form (24) is θ5 = μ1/σ1.

THEOREM 8. (a) The constructive posterior of θ5 = μ1/σ1 is

θ∗
5 = Z∗

1√
n

+ x1√
s11

√
χ2∗

n−a.

(b) For any α ∈ (0,1), the frequentist coverage of the credible interval
(−∞, (θ∗

5 )1−α) is

P
(
θ5 < (θ∗

5 )1−α | μ1,μ2, σ1, σ2, ρ
)

(32)

= P

(
Z1 − θ5

√
n√

χ2
n−1

<

(
Z∗

1 − θ5
√

n√
χ2∗

n−a

)
1−α

∣∣∣ θ5

)
,

which depends on θ5 only and equals 1 − α if and only if a = 1.

4.4. First order asymptotic matching. Datta and Mukerjee [9] and Datta and
Ghosh [12] discuss how to determine first-order matching priors for functions of
parameters; these are priors such that the frequentist coverage of a one-sided cred-
ible interval is equal to the Bayesian coverage up to a term of order n−1. For
each of the nine objective priors πJ , πIJ , πRρ, π̃Rσ , πRO, πRλ, πH , πS and
πRσ , [5] determines if it is a first-order matching prior for each of the parameters
μ1,μ2, σ1, σ2, ρ, η3, θ1, . . . , θ10. The results are listed in Table 5. For example, πJ

is a first order matching prior for μ1,μ2, σ1, σ2, θ1, θ5, θ7, θ8, and θ10, but not for
η3, θ2, θ3 and θ9.



976 J. O. BERGER AND D. SUN

TABLE 5
The first-order asymptotic matching of objective priors for μ1,μ2, σ1, σ2, ρ, μ1 − μ2, η3,

θj , j = 1, . . . ,10. Here a boldface letter indicates exact matching

Asymptotic matching

Prior π(μ1,μ2,σ 1,σ 2,ρ) Yes No

πJ ∝ 1
σ 2

1 σ 2
2 (1−ρ2)2 μ1,μ2,σ 1,σ 2 ρ

μ1 − μ2, θ1, θ5, θ7, θ8, θ10 η3, θ2, θ3, θ9
πIJ ∝ 1

σ1σ2(1−ρ2)3/2 μ1,μ2 σ1, σ2, ρ

μ1 − μ2, θ1, θ3, θ7 η3, θ2, θ5, θ8, θ9, θ10
πRρ ∝ 1

σ1σ2(1−ρ2)
μ1,μ2, ρ σ1, σ2

μ1 − μ2, θ3, θ7 η3, θ1, θ2, θ5, θ8, θ9, θ10
π̃Rσ ∝ 1

σ1σ2(1−ρ2)
√

2−ρ2
μ1,μ2 σ1, σ2, ρ

μ1 − μ2, η3, θ3, θ7 θ1, θ2, θ5, θ8, θ9, θ10
πRO ∝ 1

σ 2
1 σ2(1−ρ2)3/2 μ1,μ2,σ 1 σ2, ρ

μ1 − μ2, θ1, θ5 η3, θ2, θ3, θ7, θ8, θ9, θ10

πRλ ∝ [σ1σ2(1−ρ2)]−1√
((σ1/σ2)−(σ2/σ1))

2+4ρ2
μ1,μ2 σ1, σ2, ρ

μ1 − μ2, θ3 η3, θ1, θ2, θ5,

θ7, θ8, θ9, θ10
πH ∝ 1

σ 2
1 (1−ρ2)

μ1,μ2,σ 1,ρ σ2

μ1 − μ2, η3, θ1, θ2, θ3, θ4, θ5 θ7, θ8, θ9, θ10
πS ∝ 1

σ1σ2
μ1,μ2 σ1, σ2, ρ

μ1 − μ2, θ3, θ7 η3, θ1, θ2, θ5, θ8, θ9, θ10

πRσ ∝
√

1+ρ2

σ1σ2(1−ρ2)
μ1,μ2 σ1, σ2, ρ

μ1 − μ2, θ3, θ7, θ9 θ1, θ2, η3, θ5, θ8, θ10

4.5. Numerically computed coverage and recommendations. First-order
matching is only an asymptotic property, and finite sample performance is also
crucial. We thus also implemented a modest numerical study, comparing the nu-
merical values of frequentist coverages of the one-sided credible sets P(θ > q0.05)

and P(θ < q0.95), for the parameters, θ , listed in Table 6 and for the eight ob-
jective priors πJ ,πIJ ,πRρ,πRσ , πRO,πRλ,πH and πS . As usual, qα = qα(X) is
the posterior α-quantile of θ , and the coverage probability is computed based on
the sampling distribution of qα(X) for the fixed parameter (μ1,μ2, σ1, σ2) and
ρ. Many of the coverage probabilities depend only on ρ, which was thus cho-
sen to be the x-axis in the graphs. We considered the case n = 3 (the minimal
possible sample size and hence the most challenging in terms of obtaining good
coverage) and the two scenarios Case a: (μ1,μ2, σ1, σ2) = (0,0,1,1), and Case
b: (μ1,μ2, σ1, σ2) = (0,0,2,1).
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TABLE 6
Performance of objective priors for each of the parameters

Prior

Parameter Bad Medium Good

μ1 rest πRO,πH ,πJ

μ1 − μ2 rest πJ , πRO

σ1 πIJ rest πH ,πRλ,πMS

σ2 πH ,πRO,πIJ rest πJ

ρ πJ ,πIJ ,πS,πRO πRρ,πRσ ,πRλ,πH ,πMS

λ1 rest πJ ,πRλ,πRO

θ3 = |�| πRO,πJ rest πIJ ,πH

θ7 = σ2
σ1

πH ,πJ ,πRO,πRλ rest
θ9 = σ12 πJ ,πIJ (due to size) rest πH ,πRρ,πRσ

Here we present the numerical results concerning coverage for only two of the
parameters: ρ in Figure 1 and θ7 = σ2/σ1 in Figure 2. Table 6 summarizes the
results from the entire numerical study, the details of which can be found in [5].
The recommendations made in Table 2 for the boxed parameters are justified from
these numerical results as follows.

FIG. 1. Frequentist coverages for ρ, where Case a: (μ1,μ2, σ1, σ2) = (0,0,1,1), and Case b:
(μ1,μ2, σ1, σ2) = (0,0,2,1). The x-axis is for ρ ∈ (−1,1).
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FIG. 2. Frequentist coverages for θ7 = σ2/σ1, where Case a: (μ1,μ2, σ1, σ2) = (0,0,1,1) and
Case b: (μ1,μ2, σ1, σ2) = (0,0,2,1). The x-axis is for ρ ∈ (−1,1).

The inferences involving the nonboxed parameters in Table 2 are given in closed
form in Table 1 (and so are computationally simple), and are exact frequentist
matching. Furthermore, with the exception of μ1/σ1 and η3, the nonboxed pa-
rameters have the indicated priors as one-at-a-time reference priors, so all three
criteria point to the indicated recommendation.

For ρ, we recommend using πRρ , since this prior is a one-at-a-time-reference
for ρ, first-order matching (as shown in Table 5), and has excellent numerical
coverage as shown in Figure 1. Note that some might prefer to use the right-Haar
prior because of its exact matching for ρ (even though it exhibits a marginalization
paradox). For σ2/σ1, the one-at-a-time reference prior was also πRρ . As this was
first-order frequentist matching and among the best in terms of numerical coverage
(see Figure 2), we also recommend it for this parameter.

For λ1, the situation is unclear. The one-at-a-time reference prior is πRλ and is
hence our recommendation, but first-order matching results for this parameter are
not known, and the numerical coverages of all priors were rather bad. For σ12, the
only first-order matching prior among our candidates is πRσ . It also had the best
numerical coverages, and so is a clear recommendation. Note, however, that we
were not able to determine if it is a one-at-a-time reference prior for σ12, so the
recommendation should be considered tentative.

The most interesting question is what to recommend for general use, as an all-
purpose prior. Looking at Table 2, it might seem that πH or even πJ would be good
choices, since they are optimal for so many parameters. However, both these priors
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can also give quite bad coverages, as indicated in Figure 2 for πH and in Figures 1
and 2 for πJ . Indeed, from Table 6, the only priors that did not have significantly
poor performance for at least one parameter (other than λ1, for which no prior
gave good coverages) were πRρ and πRσ . The numerical coverages for πRρ and
πRσ are virtually identical for all the parameters, so there is no principled way to
choose between them. πRρ is a commonly used prior and somewhat simpler, so it
becomes our recommended choice for a general prior.

5. Proofs. Due to space limitations, we give only the proofs of Theorems 1, 2
and 8, because their proofs are quite different. The proofs of the other theorems in
Section 4 are relatively easy consequences of Fact 1 and Lemmas 1–3. For details
of these other proofs, see [5].

5.1. Proof of Theorem 1. With the constant prior for (μ1,μ2), the marginal
likelihood of (σ1, σ2, ρ) depends on S and is proportional to

|�|−(n−1)/2 exp
{−1

2 trace(S�−1)
}
.

Define

D = {(σ ∗
1 , σ ∗

2 , ρ∗) :σ ∗d1
1 σ

∗d2
2 g(ρ∗) < σ

d1
1 σ

d2
2 g(ρ)},

G(X, σ1, σ2, ρ) =
∫
D

π(σ ∗
1 , σ ∗

2 , ρ∗ | S) dσ ∗
1 dσ ∗

2 dρ∗.

Clearly, the frequentist coverage probability is

P {θ < θ1−α(X) | μ1,μ2, σ1, σ2, ρ} = P {G(S, σ1, σ2, ρ) < 1 − α | σ1, σ2, ρ}.
Under the prior (25),

G(X, σ1, σ2, ρ) =
∫ ∫ ∫

D
h(ρ∗) exp(−0.5 trace(S�∗−1))

σ
∗(n−1+c1)

1 σ
∗(n−1+c2)

2 (1−ρ∗2)(n−1)/2
dσ ∗

1 dσ ∗
2 dρ∗

∫ ∫ ∫ h(ρ∗) exp(−0.5 trace(S�∗−1))

σ
∗(n−1+c1)

1 σ
∗(n−1+c2)

2 (1−ρ∗2)(n−1)/2
dσ ∗

1 dσ ∗
2 dρ∗

,

where �∗ is the 2 × 2 symmetric matrix, whose diagonal elements are σ ∗2
1 and

σ ∗2
2 , and off-diagonal element is σ ∗

1 σ ∗
2 ρ∗. Denote 	 = diag(1/σ1,1/σ2) and make

transformations

T = 	S	 =

⎛⎜⎜⎝
S11

σ 2
1

S12

σ1σ2
S12

σ1σ2

S22

σ 2
2

⎞⎟⎟⎠ and 
 = 	�∗	 =
(

ω2
1 ω1ω2ρ

∗
ω1ω2ρ

∗ ω2
2

)
.

Clearly trace(S�∗−1) = trace(T
−1), and then

G(X, σ1, σ2, ρ) =
∫ ∫ ∫

D̃
h(ρ∗) exp(−0.5 trace(T
−1))

ω
n−1+c1
1 ω

n−1+c2
2 (1−ρ∗2)(n−1)/2

dω1 dω2 dρ∗

∫ ∫ ∫ h(ρ∗) exp(−0.5 trace(T
−1))

ω
n−1+c1
1 ω

n−1+c2
2 (1−ρ∗2)(n−1)/2

dω1 dω2 dρ∗
,
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where D̃ = {(ω1,ω2, ρ
∗) :ωd1

1 ω
d2
2 g(ρ∗) < g(ρ)}. Since the sampling distribution

of T depends only on ρ, so does the sampling distribution of G(X, σ1, σ2, ρ). Also
D̃ depends on ρ only. The result thus holds.

5.2. Proof of Theorem 2. It follows from (18) and Lemma 3 (a) that

P(ρ < ρ∗
1−α | ξ , ρ) = P

{[
ψ

( −Z∗
3√

χ2∗
n−a

+
√

χ2∗
n−b√

χ2∗
n−a

r√
1 − r2

)]
1−α

> ρ
∣∣∣ρ}

,

Note that ψ , defined in (18), is invertible, and ψ−1(ρ) = ρ/

√
1 − ρ2, for |ρ| < 1.

It follows from Lemma 3 (a) and (b) that

P(ρ < ρ∗
1−α | ξ , ρ) = P

(( −Z∗
3√

χ2∗
n−a

+
√

χ2∗
n−b√

χ2∗
n−a

r√
1 − r2

− ρ√
1 − ρ2

)
1−α

> 0
∣∣∣ρ)

= P

(( −Z∗
3√

χ2∗
n−b

− ρ√
1 − ρ2

√
χ2∗

n−a√
χ2∗

n−b

)
1−α

+ r√
1 − r2

> 0
∣∣∣ρ)

.

It follows from (21)–(23) that

r√
1 − r2

= s12/
√

s11√
s22(1 − r2)

= σ2

√
1 − ρ2Z3 + (ρσ2/σ1)

√
s11

σ2

√
1 − ρ2

√
χ2

n−2

= Z3√
χ2

n−2

+ ρ√
1 − ρ2

√
χ2

n−1√
χ2

n−2

.

Consequently,

P(ρ < ρ∗
1−α | ξ , ρ)

= P

(
Z3√
χ2

n−2

+ ρ√
1 − ρ2

√
χ2

n−1√
χ2

n−2

<

(
Z∗

3√
χ2∗

n−b

+ ρ√
1 − ρ2

√
χ2∗

n−a√
χ2∗

n−b

)
1−α

∣∣∣ρ)
.

This completes the proof of part (a). For part (b), if (26) equals to 1 − α for any
−1 < ρ < 1, choose ρ = 0 and get

P

(
Z3√
χ2

n−2

<

(
Z∗

3√
χ2∗

n−b

)
1−α

)
= 1 − α,

which implies that b = 2. Substituting b = 2 into (26) shows that a = 1.
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5.3. Proof Theorem 8. Part (a) is obvious. For part (b), since x1 = μ1 +
Z1σ1/

√
n and Z1 and χ2

n−1 are independent, we have

(
θ5 < (θ∗

5 )1−α

) =
([

Z∗
1√
n

+ θ5

(√√√√χ2∗
n−a

χ2
n−1

− 1
)

+ Z1√
n

√√√√χ2∗
n−a

χ2
n−1

]
1−α

> 0
)
.

It follows from Lemma 3 (a) and (b) that

(
θ5 < (θ∗

5 )1−α

) =
([

Z∗
1√

χ2∗
n−a

+ θ5

( √
n√

χ2
n−1

−
√

n√
χ2∗

n−a

)
+ Z1√

χ2
n−1

]
1−α

> 0
)

=
(
− Z1√

χ2
n−1

− θ5

√
n√

χ2
n−1

<

(
Z∗

1√
χ2∗

n−a

− θ5

√
n√

χ2∗
n−a

)
1−α

)
.

Because Z1 and −Z1 have the same distribution and Z1 and χ2
n−1 are independent,

(32) holds. If (32) equals 1 − α for any θ5, choose θ5 = 0,

P

(
Z1√
χ2

n−1

<

(
Z∗

1√
χ2∗

n−a

)
1−α

)
= 1 − α,

which implies that a = 1. The result holds.
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