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We investigate the time-varying ARCH (tvARCH) process. It is shown
that it can be used to describe the slow decay of the sample autocorrelations
of the squared returns often observed in financial time series, which warrants
the further study of parameter estimation methods for the model.

Since the parameters are changing over time, a successful estimator needs
to perform well for small samples. We propose a kernel normalized-least-
squares (kernel-NLS) estimator which has a closed form, and thus outper-
forms the previously proposed kernel quasi-maximum likelihood (kernel-
QML) estimator for small samples. The kernel-NLS estimator is simple,
works under mild moment assumptions and avoids some of the parameter
space restrictions imposed by the kernel-QML estimator. Theoretical evi-
dence shows that the kernel-NLS estimator has the same rate of convergence
as the kernel-QML estimator. Due to the kernel-NLS estimator’s ease of com-
putation, computationally intensive procedures can be used. A prediction-
based cross-validation method is proposed for selecting the bandwidth of
the kernel-NLS estimator. Also, we use a residual-based bootstrap scheme
to bootstrap the tvARCH process. The bootstrap sample is used to obtain
pointwise confidence intervals for the kernel-NLS estimator. It is shown that
distributions of the estimator using the bootstrap and the “true” tvARCH es-
timator asymptotically coincide.

We illustrate our estimation method on a variety of currency exchange and
stock index data for which we obtain both good fits to the data and accurate
forecasts.

1. Introduction. Among models for log-returns Xt = log(Pt/Pt−1) on spec-
ulative prices Pt (such as currency exchange rates, share prices, stock indices, etc.),
the stationary ARCH(p) [Engle (1982)] and GARCH(p, q) [Bollerslev (1986) and
Taylor (1986)] processes have gained particular popularity and have become stan-
dard in the financial econometrics literature as they model well the volatility of
financial markets over short periods of time. For a review of recent advances on
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those and related models, we refer the reader to Fan and Yao (2003) and Giraitis,
Leipus and Surgailis (2005).

The modeling of financial data using nonstationary time series models has re-
cently attracted considerable attention. Arguments for using such models were laid
out, for example, in Fan, Jiang, Zhang and Zhou (2003), Mikosch and Stărică
(2000, 2003, 2004), Mercurio and Spokoiny (2004a, 2004b), Stărică and Granger
(2005) and Fryzlewicz et al. (2006).

Recently, Dahlhaus and Subba Rao (2006) generalized the class of ARCH(p)

processes to include processes whose parameters were allowed to change “slowly”
through time. The resulting model, called the time-varying ARCH(p)

[tvARCH(p)] process, is defined as

Xt,N = σt,NZt , σ 2
t,N = a0

(
t

N

)
+

p∑
j=1

aj

(
t

N

)
X2

t−j,N ,(1)

for t = 1,2, . . . ,N , where {Zt }t are independent and identically distributed ran-
dom variables with E(Zt ) = 0 and E(Z2

t ) = 1. In this paper, we focus on how the
tvARCH(p) process can be used to characterize some of the features present in fi-
nancial data, estimation methods for small samples, bootstrapping the tvARCH(p)

process and the fitting of the tvARCH(p) process to data.
In Section 2, we show how the tvARCH(p) process can be used to describe the

slow decay of the sample autocorrelations of the squared returns often observed in
financial log-returns and usually attributed to the long memory of the underlying
process. This is despite the true nonstationary correlations decaying geometrically
fast to zero. Thus, the tvARCH(p) process, due to its nonstationarity, captures
the appearance of long memory which is present in many financial datasets: a
feature also exhibited by a short memory GARCH(1,1) process with structural
breaks [Mikosch and Stărică (2000, 2003, 2004)—note that this effect goes back
to Bhattacharya, Gupta and Waymire (1983)].

The benchmark method for the estimation of stationary ARCH(p) parameters
is the quasi-maximum likelihood (QML) estimator. Motivated by this, Dahlhaus
and Subba Rao (2006) use a localized kernel-based quasi-maximum likelihood
(kernel-QML) method for estimating the parameters of a tvARCH(p) process.
However, the kernel-QML estimator for small sample sizes is not very reliable,
since the QML tends to be shallow about the minimum for small sample sizes
[Shephard (1996) and Bose and Mukherjee (2003)]. This is of particular relevance
to tvARCH(p) processes, where in regions of nonstationarity, we need to base our
estimator on only a few observations to avoid a large bias. Furthermore, the para-
meter space of the estimator is restricted to infj aj (u) > 0. However, it is suggested
in the examples in Section 6 that over large periods of time some of the higher-
order parameters should be zero. This renders the assumption infj aj (u) > 0 rather
unrealistic. In addition, evaluation of the kernel-QML estimator at every time point
is computationally quite intensive. Therefore, bandwidth selection based on a data
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driven procedure, where the kernel-QML estimator has to be evaluated at each
time point for different bandwidths, may not be feasible for even moderately large
sample sizes.

A rival class of estimators are least-squares-based and are known to have good
small-sample properties [Bose and Mukherjee (2003)]. These types of estimators
will be the focal point in this paper. In Section 3 and the following sections, we pro-
pose and thoroughly analyze a (suitably localized and normalized) least-squares-
type estimator for the tvARCH(p) process which, unlike the kernel-QML estima-
tor mentioned above, enjoys the following properties: (i) very good performance
for small samples, (ii) simplicity and closed form and (iii) rapid computability.
In addition, it does allow infj aj (u) = 0, thereby avoiding the parameter space
restriction described above.

In Section 3.1, we consider a general class of localized weighted least-squares
estimators for tvARCH(p) process and study their sampling properties. We show
that their small sample performance, sampling properties and moment assumptions
depend on the weight function used.

In Section 3.3, we investigate weight functions that lead to estimators which are
close to the kernel-QML estimator for large samples and easy to compute. In fact,
we show that the weight functions which have the most desirable properties contain
unknown parameters. This motivates us in Section 3.4 to propose the two-stage
kernel normalized-least-squares (kernel-NLS) estimator where in the first stage
we estimate the weight function which we use in the second stage as the weight
in the least-squares estimator. The two-stage kernel-NLS estimator has the same
sampling properties as if the true weight function were a priori known, and has the
same rate of convergence as the kernel-QML estimator. In Section 3.6, we state
some of the results from extensive simulation studies which show that for small
sample sizes the two-stage kernel-NLS estimator performs better than the kernel-
QML estimator. This suggests that at least in the nonstationary setup, the two-stage
kernel-NLS estimator is a viable alternative to the kernel-QML estimator.

In Section 4, we propose a cross-validation method for selecting the bandwidth
of the two-stage kernel-NLS estimator. The proposed cross-validation procedure
for tvARCH(p) processes is based on one-step-ahead prediction of the data to
select the bandwidth. The closed form solution of the two-stage kernel-NLS esti-
mator means that, for every bandwidth, the estimator can be evaluated rapidly. The
computation ease of the two-stage kernel-NLS estimator means that it is simple to
implement a cross-validation method based on this scheme. We discuss some of
the implementation issues associated with the procedure and show that its compu-
tational complexity remains low.

In Section 5, we bootstrap the tvARCH(p) process. This allows us to obtain
finite sample pointwise confidence intervals for the tvARCH(p) parameter esti-
mators. The scheme is based on bootstrapping the estimated residuals, which we
use, together with the estimated tvARCH(p) parameters, to construct the bootstrap
sample. Again, the fact that the bootstrapping scheme is computationally feasible
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is only due to the rapid computability of the two-stage kernel-NLS estimator. We
show that the distribution of the bootstrap tvARCH(p) estimator asymptotically
coincides with the “true” tvARCH(p) estimator. The method and results in this
section may also be of independent interest.

In Section 6, we demonstrate that our estimation methodology gives a very good
fit to data for the USD/GBP currency exchange and FTSE stock index datasets,
and we also exhibit bootstrap pointwise confidence intervals for the estimated pa-
rameters. In Section 7, we test the long-term volatility forecasting ability of the
tvARCH(p) process with p = 0,1,2, where the parameters are estimated via the
two-stage kernel-NLS estimator. We show that, for a variety of currency exchange
datasets, our forecasting methodology outperforms the stationary GARCH(1, 1)
and EGARCH(1, 1) techniques. However, it is interesting to observe that the latter
two methods give slightly superior results for a selection of stock index datasets.

Proofs of the results in the paper are outlined in the Appendix. Further details
of the proofs can be found in the accompanying technical report, available from
the authors or from http://www.maths.bris.ac.uk/~mapzf/tvarch/trNLS.pdf.

2. The tvARCH(p) process: preliminary results and motivation. In this
section, we discuss some of the properties of the tvARCH(p) process.

2.1. Notation, assumptions and main ingredients. We first state the assump-
tions used throughout the paper.

ASSUMPTION 1. Suppose {Xt,N }t is a tvARCH (p) process. We assume that
the time-varying parameters {aj (u)}j and the innovations {Zt }t satisfy the follow-
ing conditions:

(i) There exist 0 < ρ1 ≤ ρ2 < ∞ and 0 < δ < 1 such that, for all u ∈ (0,1],
ρ1 ≤ a0(u) ≤ ρ2, and supu

∑p
j=1 aj (u) ≤ 1 − δ.

(ii) There exist β ∈ (0,1] and a finite constant K > 0 such that for u, v ∈ (0,1]
|aj (u) − aj (v)| ≤ K|u − v|β for each j = 0,1, . . . , p.

(iii) For some γ > 0, E(|Zt |4(1+γ )) < ∞.
(iv) For some η > 0 and 0 < δ < 1, m1+η supu

∑p
j=1 aj (u) ≤ 1 − δ, where

m1+η = {E(|Zt |2(1+η))}1/(1+η).

Assumption 1(i) implies that supt,N E(X2
t,N ) < ∞. Assumption 1(i), (ii)

means that the tvARCH(p) process can locally be approximated by a station-
ary process. We require Assumption 1(iii), (iv) to show asymptotic normal-
ity of the two-stage kernel-NLS estimator (defined in Section 3.4). Comparing
m1+η supu

∑p
j=1 aj (u) ≤ 1 − δ with the assumption required to show asymptotic

normality of the kernel-QML estimator (m1 supu

∑p
j=1 aj (u) ≤ 1 − δ, where we

http://www.maths.bris.ac.uk/~mapzf/tvarch/trNLS.pdf.
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note that m1 = 1), it is only a mildly stronger assumption, as we only require it to
hold for some η > 0. In other words, if the moment function mν increases smoothly
with ν, and m1 supu

∑p
j=1 aj (u) ≤ 1 − δ, then there exists a η > 0 and 0 < δ1 < 1

such that m1+η supu

∑p
j=1 aj (u) ≤ 1 − δ1 [which satisfies Assumption 1(iv)].

In order to prove results concerning the tvARCH(p) process, Dahlhaus and
Subba Rao (2006) define the stationary process {X̃t (u)}t . Let u ∈ (0,1] and sup-
pose that, for each fixed u, {X̃t (u)}t satisfies the model

X̃t (u) = σ̃t (u)Zt , σ̃ 2
t (u) = a0(u) +

p∑
j=1

aj (u)X̃2
t−j (u).(2)

The following lemma is a special case of Corollary 4.2 in Subba Rao (2006),
where it was shown that {X̃2

t (u)}t can be regarded as a stationary approximation
of the nonstationary process {X2

t,N }t about u ≈ t/N , which is why {Xt,N }t can
be regarded as a locally stationary process. We can treat the lemma below as the
stochastic version of Hölder continuity.

LEMMA 1. Suppose {Xt,N }t is a tvARCH(p) process which satisfies Assump-
tion 1(i), (ii), and let {X̃t (u)}t be defined as in (2). Then, for each fixed u ∈ (0,1],
we have that {X̃2

t (u)}t is a stationary, ergodic process such that

|X2
t,N − X̃2

t (u)| ≤ 1

Nβ
Vt,N +

∣∣∣∣u − t

N

∣∣∣∣βWt almost surely,(3)

and |X̃2
t (u)− X̃2

t (v)| ≤ |u−v|βWt , almost surely, where {Vt,N }t and {Wt }t are
well-defined positive processes, and {Wt }t is a stationary process. In addition, if
we assume that Assumption 1(iv) holds, then we have supt,N E|Vt,N |1+η < ∞ and
E|Wt |1+η < ∞.

Several of the estimators considered in this paper [e.g., the estimators defined
in (4) and (7), etc.] are local or global averages of functions of the tvARCH(p)

process. Unlike stationary ARCH(p) (or more general stationary) processes, we
cannot study the sampling properties of these estimators by simply letting the
sample size grow. Instead, we use the rescaling by N to obtain a meaningful as-
ymptotic theory. The underlying principle to studying an estimator at a particular
time t , is to keep the ratio t/N fixed and let N → ∞ [Dahlhaus (1997)]. However,
the tvARCH(p) process varies for different N , which is the reason for introducing
the stationary approximation.

Throughout the paper,
P→ and

D→ denote convergence in probability and in dis-
tribution, respectively.
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2.2. The covariance structure and the long memory effect. The following
proposition shows the behavior of the true autocovariance function of the squares
of a tvARCH(p) process.

PROPOSITION 1. Suppose {Xt,N }t is a tvARCH(p) process which satisfies
Assumption 1(i), (ii), and assume that {E(Z4

t )}1/2 supu

∑p
j=1 aj (u) ≤ 1 − δ, for

some 0 < δ < 1. Then, for some ρ ∈ (1 − δ,1) and a fixed h ≥ 0, we have

sup
t,N

| cov{X2
t,N ,X2

t+h,N }| ≤ Kρh,

for some finite constant K > 0 that is independent of h.

If the fourth moment of the process {Xt,N }t exists, then Proposition 1 implies
that {X2

t,N }t is a short memory process.
However, we now show that the sample autocovariance of the process {X2

t,N }t ,
computed under the wrong premise of stationarity, does not necessarily decay to
zero. Typically, if we believed that the process {X2

t,N }t were stationary, we would
use SN(h) as an estimator of cov{X2

t,N ,X2
t+h,N }, where

SN(h) = 1

N − h

N−h∑
t=1

X2
t,NX2

t+h,N − (X̄N)2(4)

and

X̄N = 1

N − h

N−h∑
t=1

X2
t,N .

Denote μ(u) = E(X̃2
t (u)) and c(u,h) = cov{X̃2

t (u), X̃2
t+h(u)} for each u ∈ (0,1]

and h ≥ 0.
The following proposition shows the behavior of the sample autocovariance of

the squares of a tvARCH(p) process, evaluated under the wrong assumption of
stationarity.

PROPOSITION 2. Suppose {Xt,N }t is a tvARCH(p) process which satisfies
Assumption 1(i), (ii), and assume that, for some 0 < ζ ≤ 2 and 0 < δ < 1,
{E(|Zt |2(2+ζ ))}1/(2+ζ ) supu

∑p
j=1 aj (u) ≤ 1−δ. Then, for fixed h > 0, as N → ∞,

we have

SN(h)
P→
∫ 1

0
c(u,h) du +

∫ ∫
{0≤u<v≤1}

{μ(u) − μ(v)}2 dudv.(5)

According to Proposition 2, since the autocovariance of the squares of a
tvARCH(p) process decays to zero exponentially fast as h → ∞, so does the
first integral in (5). However, the appearance of persistent correlations would still
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appear if the second integral were nonzero. We consider the simple example when
the mean of the squares increases linearly, that is, if μ(u) = cu, for some nonzero
constant c. In this case, the second integral in (5) reduces to c2/12. In other words,
the long memory effect is due to changes in the unconditional variance of the
tvARCH(p) process.

3. The kernel-NLS estimator and its asymptotic properties. Typically, to
estimate the parameters of a stationary ARCH(p) process, a QML estimator is
used, where the likelihood is constructed as if the innovations were Gaussian. The
main advantage of the QML estimator is that, even in the case that the innovations
are non-Gaussian, it is consistent and asymptotically normal. In contrast, Strau-
mann (2005) has shown that under misspecification of the innovation distribution,
the resulting non-Gaussian maximum likelihood estimator is inconsistent. As it
is almost impossible to specify the distribution of the innovations, this makes the
QML estimator the benchmark method when estimating stationary ARCH(p) pa-
rameters.

A localized version of the QML estimator is used to estimate the parameters of a
tvARCH(p) process in Dahlhaus and Subba Rao (2006). To prove the sampling re-
sults, the asymptotics are done in the rescaled time framework. In practice, a good
estimator is obtained if the process is close to stationary over a relatively large
region. However, the story is completely different over much shorter regions. As
noted in the Section 1, in estimation over a short period of time (which will often
be the case for nonstationary processes), the performance of the QML estimator is
quite poor.

Rival methods are least-squares-type estimators which are known to have good
small sample properties. In this section, we focus on kernel weighted least-squares
as a method for estimating the parameters of a tvARCH(p) process. To this end, we
define the kernel W : [−1/2,1/2] → R, which is a function of bounded variation
and satisfies the standard conditions:

∫ 1/2
−1/2 W(x)dx = 1 and

∫ 1/2
−1/2 W 2(x) dx <

∞.

3.1. Kernel weighted least-squares for tvARCH (p) processes. It is straight-
forward to show that the squares of the tvARCH(p) process satisfy the autore-
gressive representation X2

t,N = a0(
t
N

) +∑p
j=1 aj (

t
N

)X2
t−j,N + (Z2

t − 1)σ 2
t,N . For

reasons that will become obvious later, we weight the least squares representation
with the weight function κ(u0,Xk−1,N ), where XT

k−1,N = (1,X2
k−1,N , . . . ,X2

k−p,N),
and define the following weighted least-squares criterion:

Lt0,N (α) =
N∑

k=p+1

1

bN
W

(
t0 − k

bN

)(X2
k,N − α0 −∑p

j=1 αjX
2
k−j,N)2

κ(u0,Xk−1,N )2 .(6)
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If |u0 − t0/N | < 1/N , we use ât0,N
as an estimator of a(u0) = (a0(u), a1(u), . . . ,

ap(u))T , where

ât0,N
= arg min

a
Lt0,N (a).(7)

Since ât0,N
is a least-squares estimator, it has the advantage of a closed form solu-

tion, that is, ât0,N
= {Rt0,N }−1rt0,N

, where

Rt0,N =
N∑

k=p+1

1

bN
W

(
t0 − k

bN

)Xk−1,NXT
k−1,N

κ(u0,Xk−1,N )2 ,

rt0,N
=

N∑
k=p+1

1

bN
W

(
t0 − k

bN

)
X2

k,NXk−1,N

κ(u0,Xk−1,N )2 .

3.2. Asymptotic properties of the kernel weighted least-squares estimator. We
now obtain the asymptotic sampling properties of ât0,N

.

To show asymptotic normality we require the following definitions:

Ak(u) = X̃k−1(u)X̃T
k−1(u)

κ(u0, X̃k−1(u))2
, Dk(u) = σ̃ 4

k (u)X̃k−1(u)X̃T
k−1(u)

κ(u0, X̃k−1(u))4
(8)

and

Bt0,N (α) =
N∑

k=p+1

1

bN
W

(
t0 − k

bN

)

×
[{X2

k,N − α0 −∑p
j=1 αjX

2
k−j,N }2

κ(u0,Xk−1,N )2(9)

− {X̃2
k(u0) − α0 −∑p

j=1 αj X̃
2
k−j (u0)}2

κ(u0, X̃k−1(u))2

]
,

where X̃t−1(u) = (1, X̃2
t−1(u), . . . , X̃2

t−p(u)). We point out that if {Xt,N }t were a
stationary process then Bt0,N (α) ≡ 0.

In the following proposition we obtain consistency and asymptotic nor-
mality of ât0,N

. We denote ∇f (u, a) = (
∂f (u,a)

∂a0
, . . . ,

∂f (u,a)
∂ap

)T , and set x =
(1, x1, x2, . . . , xp) and y = (1, y1, y2, . . . , yp).

PROPOSITION 3. Suppose {Xt,N }t is a tvARCH (p) process which satisfies
Assumption 1(i), (ii), (iii), and let ât0,N

, At (u), Dt (u) and Bt0,N (α) be defined
as in (7), (8) and (9), respectively. We further assume that κ is bounded away
from zero and we have a type of Lipschitz condition on the weighted least-squares;
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that is, for all 1 ≤ i ≤ p, | xi

κ(u,x)
− yi

κ(u,y)
| ≤ K

∑p
j=1 |xj − yj |, for some finite

constant K > 0. Also, assume for all 1 ≤ i ≤ p that supk,N E(
X4

k−i,N

κ(u0,Xk−1,N )2 ) < ∞,

and suppose |u0 − t0/N | < 1/N .

(i) Then we have ât0,N

P→ a(u0), with b → 0, bN → ∞ as N → ∞.
(ii) If in addition we assume for all 1 ≤ i ≤ p and some ν > 0 that

supk,N E(
X8+2ν

k−i,N

κ(u0,Xk−1,N )4+ν ) < ∞, then we have ∇Bt0,N (a(u0)) = Op(bβ) and

√
bN
(
ât0,N

− a(u0)
)+ 1

2

√
bNE[At (u0)]−1∇Bt0,N (a(u0))

(10)
D→ N (0,w2μ4E[At (u0)]−1

E[Dt (u0)]E[At (u0)]−1),

with b → 0, bN → ∞ as N → ∞, where w2 = ∫ 1/2
−1/2 W 2(x) dx and μ4 =

var(Z2
t ).

At first glance the above assumptions may appear quite technical, but we note
that in the case κ(·) ≡ 1, they are standard in least-squares estimation. Further-
more, if the weight function κ is bounded away from zero and Lipschitz continu-
ous [i.e., supx,y |κ(u, x) − κ(u, y)| ≤ K

∑p
j=1 |xj − yj |, for some finite constant

K > 0], then it is straightforward to see that | xi

κ(u,x)
− yi

κ(u,y)
| ≤ K

∑p
j=1 |xj − yj |.

In the following section, we will suggest a κ(·) that is ideal for tvARCH(p) esti-
mation and satisfies the required conditions.

3.3. Choice of weight function κ . By considering both theoretical and empir-
ical evidence, we now investigate various choices of weight functions. To do this,
we study Proposition 3 and consider the κ which yields an estimator which requires
only weak moment assumptions and has minimal error [see (10)]. Considering first
the bias in (10), if

√
bNbβ → 0, then the bias converges in probability to zero. In-

stead we focus attention on (i) the variance E[At (u0)]−1
E[Dt (u0)]E[At (u0)]−1

and (ii) derivation under low moment assumptions.
In the stationary ARCH framework, Giraitis and Robinson (2001), Bose and

Mukherjee (2003), Horváth and Liese (2004) and Ling (2007) have considered
the weighted least-squares estimator for different weight functions. Giraitis and
Robinson (2001) use the Whittle likelihood to estimate the parameters of a sta-
tionary ARCH(∞) process. Adapted to the nonstationary setting, the local Whittle
likelihood estimator and the local weighted least-squares estimator are asymptot-
ically equivalent when κ(·) ≡ 1. Studying their assumptions, supt,N E(X4

t,N ) <

∞ and supt,N E(X8+2ν
t,N ) < ∞, for some ν > 0, are required to show consis-

tency and asymptotic normality. Assuming normality of the innovations {Zt }t
and interpreting these conditions in terms of the coefficients of the tvARCH(p)

process, they imply that supu

∑p
j=1 aj (u) < 1/

√
3 is required for consistency and
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supu

∑p
j=1 aj (u) < 1/{E(Z8+2ν

t )}1/(4+ν) for asymptotic normality. In other words,
the tvARCH(p) process should be close to a white noise process for the sampling
results to be valid.

On the other hand, Bose and Mukherjee (2003) use a two-stage least-squares
procedure to estimate the stationary ARCH(p) parameters. In the first stage, they
use least-squares with weight function κ(·) ≡ 1 and in the second stage—a least-
squares estimator with κ = σ̂ 2

t , where σ̂ 2
t is an estimator of the conditional vari-

ance. An advantage of their scheme is that, asymptotically, it has the same dis-
tribution variance as the QML estimator. However, because in the first stage they
use the weight κ(·) ≡ 1, their method requires the same set of assumptions as in
Giraitis and Robinson (2001).

To reduce the high moment restrictions, Horváth and Liese (2004) use ran-
dom weights of the form κ(u,Xk−1,N ) = 1 +∑p

j=1 X2
k−j,N to estimate stationary

ARCH(p) parameters, and Ling (2007) uses a similar weighting to estimate the
parameters of a stationary ARMA–GARCH process. The main advantage of using
this choice of weight functions is that under Assumption 1(i), (ii), (iii) the moment
assumptions in Proposition 3 are satisfied.

Motivated by the discussion above, let us consider weight functions which have
the form κ(u,Xk−1,N ) = g(u) +∑p

j=1 ρj (u)X2
k−j,N . We will make some com-

parisons with the kernel-QML estimator considered in Dahlhaus and Subba Rao
(2006), who showed that the kernel-QML estimator is asymptotically normal with
variance w2μ4E[
t(u0)]−1, where


t(u0) = X̃t−1(u0)
T X̃t−1(u0)

σ̃ 4
t (u0)

.(11)

It is worth noting that if {ρj (u)} are bounded away from zero, then the conditions
in Proposition 3 are fulfilled with no additional assumptions. For the purposes of
this discussion only, let us assume for a moment that infj aj (u) > 0 (although
this is not a requirement for our estimation methodology to be valid). In order
to select g(·) and ρj (·), we first observe that if a(u0) were known then letting
κ(u0,Xk−1,N ) = a0(u0) +∑p

j=1 aj (u0)X
2
k−1,N would be the ideal choice [pro-

vided infj aj (u0) > 0] as the asymptotic variance of the resulting kernel weighted
least-squares estimator would be the same as the kernel-QML estimator. Clearly
this weight function is unknown, and for this reason we call it the “oracle” weight.
Instead, we look for a closely related alternative, which is computationally sim-
ple to evaluate and avoids the requirement that infj aj (u0) > 0. Let us consider
a weight function κ(u,Xk−1,N) = g(u) + ∑p

j=1 X2
k−j,N [which is in the spirit

of the solution proposed by Horváth and Liese (2004) for stationary ARCH(p)

processes] and compare it to the oracle weight. For convenience, the estimator
using the weight function g(u) +∑p

j=1 X2
k−j,N we call the g-estimator, and the

estimator using the oracle weight we call the oracle estimator.
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Using Proposition 3, we see that the asymptotic distribution variance of
the g-estimator and the oracle estimator is w2μ4E[A(g)

t (u)]−1
E[D (g)

t (u)] ×
E[A(g)

t (u)]−1 and w2μ4E[
t(u0)]−1, respectively, where

A
(g)
k (u) = X̃k−1(u)X̃T

k−1(u)

[g(u) +∑p
j=1 X̃2

k−j (u)]2
,

(12)

D
(g)
k (u) = σ̃ 4

k (u)X̃k−1(u)X̃T
k−1(u)

[g(u) +∑p
j=1 X̃2

k−j (u)]4
,

and 
t(u) is defined in (11). Let α(u) =∑p
j=1 aj (u), β(u) = 1/minp

j=1 aj (u) and

|A|det denote the determinant of a matrix. By bounding A
(g)
t (u) and D

(g)
t (u) from

both above and below we obtain

�(g)−4 |E[
t(u)]|−1
det ≤ ∣∣E[A(g)

t (u)
]−1

E
[
D

(g)
t (u)

]
E
[
A

(g)
t (u)

]−1∣∣
det

(13)
≤ �(g)4|E[
t(u)]|−1

det,

where

�(g) =
(

a0(u) + g(u)α(u)

g(u)

)(
g(u) + β(u)a0(u)

a0(u)

)
.

Examining (13), we have an upper and lower bound for the asymptotic distribu-
tion variance of the g-estimator in terms of the asymptotic variance of the ora-
cle estimator. It is easily seen that the difference (�(g)4 − �(g)−4)|E[
t(u)]|−1

det
and the upper bound �(g)4|E[
t(u)]|−1

det are minimized when g∗(u) = (a0(u))/

([min1≤j≤p aj (u)]∑p
j=1 aj (u)). However, g∗(u) depends on unknown parameters

and is highly sensitive to small values of aj (u), hence it is inappropriate as a weight
function. Instead, we consider a close relative g(u) := μ(u) = a0(u)/(1 − α(u)),
where μ(u) = E[X̃2

t (u)]. In this case, using (13), we obtain the following upper
and lower bound for the asymptotic variance of the kernel weighted least-squares
estimator in terms of the oracle variance:

|E[
t(u)]|−1
detω(u)−1 ≤ ∣∣E[A(μ)

t (u)
]−1

E
[
D

(μ)
t (u)

]
E
[
A

(μ)
t (u)

]−1∣∣
det

(14)
≤ |E[
t(u)]|−1

detω(u),

where

ω(u) =
(

1 + β(u)[1 − α(u)]
1 − α(u)

)4

.

We notice that the upper and lower bounds in (14) do not depend on the magnitude
of a0(u).

Since a0(u)
1−α(u)

= E(X̃2
t (u)) = μ(u), which is the local mean, it can easily be es-

timated from {Xk,N }. In the following section, we use it to estimate the weight
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function κ(u0,Xk−1,N ) = μ(u0) + Sk−1,N , where Sk−1,N = ∑p
j=1 X2

k−j,N . An
additional advantage of this weight function, κ(u0,Xk−1,N ), is that under As-

sumption 1, supk,N E(
X4

k−i,N

κ(u0,Xk−1,N )2 ) < ∞ and supk,N E(
X8+2ν

k−i,N

κ(u0,Xk−1,N )4+ν ) < ∞ are

immediately satisfied. Furthermore, |κ(u, x) − κ(u, y)| ≤ K
∑p

j=1 |xj − yj |, thus

|xi/κ(u, x) − yi/κ(u, y)| ≤ K
∑p

j=1 |xj − yj |. Therefore, all the conditions in
Proposition 3 hold.

3.4. The two-stage kernel-NLS estimator. We use μ̂t0,N as an estimator of
μ(u0) (see Lemma A.1 in the Appendix), where

μ̂t0,N =
N∑

k=1

1

bN
W

(
t0 − k

bN

)
X2

k,N .(15)

We use this to define the two-stage kernel-NLS estimator of the tvARCH(p) para-
meters.

The two-stage scheme:

(i) Evaluate μ̂t0,N , given in (15), which is an estimator of μ(u0).
(ii) Let ãt0,N

= {R̃t0,N }−1r̃ t0,N
with Sk−1,N =∑p

j=1 X2
k−j,N , κt0,N (Sk−1,N ) =

(μ̂t0,N + Sk−1,N ) and

R̃t0,N
=

N∑
k=p+1

1

bN
W

(
t0 − k

bN

)Xk−1,NXT
k−1,N

κt0,N (Sk−1,N )2 ,

(16)

r̃ t0,N
=

N∑
k=p+1

1

bN
W

(
t0 − k

bN

)
X2

k,NXk−1,N

κt0,N (Sk−1,N )2 .

If |u0 − t0/N | < 1/N , we use ãt0,N
as an estimator of a(u0). We call ãt0,N

the
two-stage kernel-NLS estimator.

3.5. Asymptotic properties of the two-stage kernel-NLS estimator. We derive
the asymptotic sampling properties of ãt0,N

. [We note that because in the first
stage we need to estimate the weight function κ(u0,Xk−1) = μ(u0) + Sk−1,N ,
we require the additional mild Assumption 1(iv), which we use to obtain a rate of
convergence for |μ̂t0,N − μ(u0)|.]

In the following proposition we obtain consistency and asymptotic normality of
ãt0,N

.

PROPOSITION 4. Suppose {Xt,N }t is a tvARCH (p) process which satisfies

Assumption 1(i), (ii), and let μ̂t0,N , ãt0,N
, A

(μ)
t (u) and D

(μ)
t (u) be defined as in

(15), the two stage scheme and (12), respectively. Further, let μ(u) = E(X̃2
t (u)),

and suppose |u0 − t0/N | < 1/N .
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(i) Then we have ãt0,N

P→ a(u0), with b → 0, bN → ∞ as N → ∞.
(ii) If in addition we assume that Assumption 1(iii), (iv) holds, then we have

√
bN
(
ãt0,N

− a(u0)
)+ 1

2

√
bN
{
E
[
A

(μ)
t (u0)

]}−1∇B̃t0,N
(a(u0))

(17)
D→ N

(
0,w2μ4

{
E
[
A

(μ)
t (u0)

]}−1
E
[
D

(μ)
t (u0)

]{
E
[
A

(μ)
t (u0)

]}−1)
,

where ∇B̃t0,N
(a(u0)) = Op(bβ) and w2 and μ4 are defined as in Proposition 3,

with b → 0, bN → ∞ as N → ∞.

Comparing the two-stage kernel-NLS estimator with the kernel-QML estimator in
Dahlhaus and Subba Rao (2006), it is easily seen that they both have the same rate
of convergence.

REMARK 1 (An asymptotically optimal estimator). We recall that the ora-
cle estimator asymptotically has the same variance as the kernel-QML estima-
tor, but in practice the oracle weight is never known. However, the two-stage
kernel-NLS estimator can be used as the basis of an estimate of the oracle
weight. In other words, using the two-stage kernel-NLS estimator, we define
the weight function σ̂ 2

k,N(u0) = ãt0,N (0) +∑p
j=1 ãt0,N (j)X2

k−j,N , where ãt0,N
=

(ãt0,N (0), . . . , ãt0,N (p)). Then, we use ăt0,N
as an estimator of a(u0), where

ăt0,N
= {R̆t0,N }−1r̆ t0,N

, and R̆t0,N and r̆ t0,N
are defined in the same way as R̃t0,N

and r̃ t0,N
, with σ̂ 2

t,N (u0) replacing (μ̂t0,N +∑p
j=1 X2

t−j,N). The asymptotic sam-
pling results can be derived using a similar proof to Proposition 4. More precisely,
if Assumption 1 holds, bβ

√
bN → 0, and aj (u0) > 0 for all j , then we have

√
bN
(
ăt0,N

− a(u0)
) D→ N (0,w2μ4{E[
t(u0)]}−1).(18)

In other words, by using the two-stage kernel-NLS estimator, we are able to esti-
mate the oracle weight sufficiently well for the parameter to have the same as-
ymptotic variance as the kernel-QML estimator. We note that, similarly to the
kernel-QML estimator, we require that infj aj (u) > 0. However, it is suggested
in the examples in Section 6 that over large periods of time some of the higher-
order parameters should be zero. This renders the assumption infj aj (u) > 0 rather
unrealistic. Furthermore, to estimate ăt0,N

, we require an additional stage of com-
putation, which significantly increases computation time in tasks such as cross-
validatory bandwidth choice or evaluation of bootstrap confidence intervals. Also,
small sample evidence suggests that the performance of the estimators ãt0,N

and
ăt0,N

is similar. For this reason, in the rest of this paper, we focus on ãt0,N
, though

our results can be generalized to ăt0,N
.
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TABLE 1
Ratios of Mean Absolute Errors of two-stage NLS and QML estimators, averaged over 100
simulated sample paths, for stationary ARCH(2) estimation with Gaussian errors Zt and

(a0, a1, a2) = (1,0.6,0.3). Sample sizes vary from N = 15 to N = 250

N = 15 N = 30 N = 60 N = 100 N = 150 N = 250

a0 0.59 0.69 0.91 1.04 0.96 1.28
a1 0.84 0.73 0.97 0.97 1.10 1.11
a2 0.64 0.68 0.86 0.98 0.94 1.08

3.6. Comparison of two-stage kernel-NLS and kernel-QML estimators for small
samples. As mentioned earlier, in a nonstationary setting, it is essential for any
estimator of tvARCH(p) parameters to perform well for small sample sizes.
We now briefly describe the outcome of an extensive simulation study aimed
at comparing the performance of the two-stage NLS and QML estimators on
short stretches of stationary ARCH(2) data. We have tested the two estimators
for Gaussian, Laplace and Student-t errors Zt , and for various points of the para-
meter space (a0, a1, a2). The two-stage NLS estimator significantly outperformed
the QML estimator for very small sample sizes in almost all of the cases. More
complicated patterns emerged for sample sizes of about 150 and larger, where the
performance depended on the particular point of the parameter space. However, the
two-stage NLS estimator was never found to perform much worse than the QML
estimator. We also found the two-stage NLS estimator to be significantly faster
than the QML estimator as it did not involve an iterative optimization procedure.

As an example, Table 1 shows the ratios of the mean absolute errors of the two-
stage NLS and QML estimators, averaged over 100 simulated sample paths, for the
following parameter configuration: (a0, a1, a2) = (1,0.6,0.3). The errors Zt are
Gaussian. The above point of the parameter space is “typical” in the sense that it
lies in the interior of the parameter space (and thus is suitable for QML estimation
which requires a1, a2 > 0) and that a1 > a2 as expected in a real-data setting. Also,
it is interesting in that a1 + a2 > 1/

√
3 and thus the classical (nonnormalized)

least-squares estimator, corresponding to κ(·) ≡ 1, would not be consistent in this
setup.

4. A cross-validation method for bandwidth selection and implementation.
In this section, we propose a data-driven method for selecting the bandwidth of the
two-stage kernel-NLS estimator.

4.1. The cross-validation bandwidth estimator. Several cross-validation meth-
ods in nonparametric statistics consider the distance between an observation and
a predictor of that observation given neighboring observations. For example, Hart
(1996) used a cross-validation method based on the best linear predictor of Yt given
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the past to select the bandwidth of a kernel smoother, where Yt was a nonparamet-
ric function plus correlated noise. The methodology we propose is based on the
best linear predictor of X2

t,N given the past, which is a0(
t
N

)+∑p
j=1 aj (

t
N

)X2
t−j,N .

We estimate the parameters {aj (t/N)}j using the localized two-stage kernel-
NLS method but omit the observation X2

t,N in the estimation. More precisely, we

use â
−t
t,N (b) = (â−t

0 (b), . . . , â−t
p (b)) as an estimator of {aj (t/N)}j , where

â
−t
t,N (b) = {R−t

t,N (b)}−1r−t
t,N (b),(19)

with

R−t
t,N (b) =

N∑
k=p+1

k �=t,...,t+p

1

bN
W

(
t − k

bN

) Xk−1,NXT
k−1,N

(μ̂t,N + Sk−1,N )2 ,

r−t
t,N (b) =

N∑
k=p+1

k �=t,...,t+p

1

bN
W

(
t − k

bN

)
X2

k,NXk−1,N

(μ̂t,N + Sk−1,N )2 .

By using â
−t
t,N (b), the squared error in predicting X2

t,N is given by (X2
t,N −

â−t
0 (b) −∑p

j=1 â−t
j (b)X2

t−j,N )2.
To reduce the complexity, we suggest only evaluating the cross-validation cri-

terion on a subsample of the observations. Let h be such that h → ∞, N/h → ∞
as N → ∞ (in practice h 
 p). We implement the cross-validation criterion on
only the subsampled observations {Xkh,N :k = 1, . . . ,N/h}. In other words, let
â

−kh
kh,N(b) = (â−kh

0 (b), . . . , â−kh
p (b)) be the estimator defined in (19) and by nor-

malizing the squared error with the term (μ̂kh,N +∑p
j=1 X2

kh−j,N)2, we define the
following cross-validation criterion

GN,h(b) = h

N

N/h∑
k=1

(X2
kh,N − â−kh

0 (b) −∑p
j=1 â−kh

j (b)X2
kh−j,N )2

(μ̂kh,N +∑p
j=1 X2

kh−j,N )2
.(20)

We then use b̂h
opt as the optimal bandwidth, where b̂h

opt = arg minbGN,h(b). Us-
ing similar arguments to those in Hart (1996), asymptotically, one can show that
GN,h(b) is equivalent to the mean-squared error G̃N,h(b), where

G̃N,h(b) = h

N

N/h∑
k=1

E

{(X2
kh,N − â−kh

0 (b) −∑p
j=1 â−kh

j (b)X2
kh−j,N )2

(μ̂kh,N +∑p
j=1 X2

kh−j,N )2

}
.(21)

It follows that b̂h
opt is an estimator of bopt, where bopt = arg minb G̃N,h(b). G̃N,h(b)

is minimized if â
−t
kh,N(b) = a(kh/N) and in that case it is asymptotically equal to

∫ 1

0
E

{
(Z2

0 − 1)2σ 2
0 (u)

[μ(u) +∑p
j=1 X2−j (u)]2

}
du.(22)
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FIG. 1. Dotted lines in the middle and right plots: the true time-varying parameters a0(u) and
a1(u), respectively. The left plot: a sample path from the model, with Gaussian errors. Solid lines in
the middle and right plots: the corresponding estimates. See Section 4.2 for details.

Therefore, b̂h
opt is such that â

−t
t,N (b̂h

opt) is close to a(t/N).
It is straightforward to show that the computational complexity of this algo-

rithm is O(B N
h
N log N), where B is the cardinality of the set of bandwidths tested

for the minimum of the cross-validation criterion. We note that the above rate is
unattainable for the kernel-QML estimator due to its iterative character.

4.2. An illustrative example. We illustrate the performance of the proposed
cross-validation criterion by an interesting example of a tvARCH(1) process for
which the parameters a0(·) and a1(·) vary over time but the asymptotic uncondi-
tional variance E(X̃2

t (u)) = a0(u)/(1 − a1(u)) remains constant. This means that
sample paths of {Xt,N }t will invariably appear stationary on visual inspection, and
that more sophisticated techniques are needed to detect the nonstationarity.

The left-hand plot in Figure 1 shows a sample path of length 1024, simulated
from the above process using standard Gaussian errors. The true time-varying pa-
rameters a0(·) and a1(·) are displayed as dotted lines in the middle and right-hand
plots, respectively. In the estimation procedure, we used the Parzen kernel (a con-
volution of the rectangular and triangular kernels) and, for simplicity, set μ̂t,N to
be the sample mean of {X2

t,N }t . To estimate a suitable bandwidth, we applied the
proposed cross-validation procedure described above with h = 10 (empirically, we
have found that for data of length of order 1000, the value h = 10 offers a good
compromise between speed and accuracy of our method). We examined the value
of the cross-validation criterion over a regular grid of bandwidths between 0 and
1, and obtained the optimal bandwidth as b̂h

opt = 0.132.
The resulting parameter estimates are shown in the middle and right-hand plots

of Figure 1 as solid lines. While we can clearly observe a degree of bias due to the
small sample sizes involved in the estimation, it is reassuring to see that the result-
ing estimates correctly trace the shape of the underlying parameters. Denoting the
empirical residuals from the fit by Ẑt , the p-value of the Kolmogorov–Smirnov
test for Gaussianity of Ẑt was 0.08, and the p-values of the Ljung–Box test for
lack of serial correlation in Ẑt , |Ẑt | and Ẑ2

t were 0.71, 0.33 and 0.58, respectively.
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5. Constructing bootstrap pointwise confidence intervals. In parameter es-
timation of linear time series, bootstrap methods are often used to obtain a good fi-
nite sample approximation of the distribution of the parameter estimators. Schemes
based on estimating the residuals are often used [Franke and Kreiss (1992)]. In-
spired by these methods, we propose a bootstrap scheme for the tvARCH(p)

process, which we use to construct pointwise confidence intervals for the two-stage
kernel-NLS estimator. The main idea of the scheme is to use the two-stage kernel-
NLS estimator to estimate the residuals. We construct the empirical distributions
from the estimated residuals, sample from it and use this to construct the bootstrap
tvARCH(p) sample. We show that the distribution of the two-stage kernel-NLS
estimator using the bootstrap tvARCH(p) sample and the “true” tvARCH(p) esti-
mator asymptotically coincide. We mention that the scheme and the asymptotic re-
sults derived here are also of independent interest and can be used to bootstrap sta-
tionary ARCH(p) processes [for a recent review on resampling and subsampling
financial time series in the stationary context, see Paparoditis and Politis (2007)].
We emphasize that unlike the kernel-QML estimator, this computer-intensive pro-
cedure is feasible for the kernel-NLS estimator due to its rapid computability.

Let ãt0,N
= (ãt0,N (0), . . . , ãt0,N (p)). We first note that Assumption 1(i) is usu-

ally imposed in the tvARCH framework because it guarantees that almost surely
every realization of the resulting process is bounded. When the sum of the coef-
ficients is greater than one, the corresponding process is unstable. The following
residual bootstrap scheme constructs the tvARCH(p) process from estimates of

the residuals and the parameter estimators. Despite ãt0,N

P→ a(u0), it is not neces-
sarily true that the sum of the parameter estimates satisfies

∑p
j=1 ãt0,N (j) < 1.

To overcome this, we now define a very slight modification of the two-stage
kernel-NLS estimator which guarantees that this sum is less than one. Let āt0,N

=
(āt0,N (0), . . . , āt0,N (p)), where āt0,N (0) = ãt0,N (0) and, for j > 1,

āt0,N (j) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ãt0,N (j), if
p∑

j=1

ãt0,N (j) ≤ 1 − δ,

(1 − δ)
ãt0,N (j)∑p

j=1 ãt0,N (j)
, if

p∑
j=1

ãt0,N (j) > 1 − δ.

(23)

Since ãt0,N

P→ a(u0) and
∑p

j=1 aj (u) ≤ 1 − δ [Assumption 1(i)], it is straightfor-

ward to see that āt0,N

P→ a(u0) and
∑p

j=1 āt0,N (j) ≤ 1 − δ.
The residual bootstrap of the tvARCH (p) process:

(i) If k ∈ [t0 − bN, t0 + bN − 1], using the parameter estimators construct
residuals

Z̃2
k = X2

k,N

ãt0,N (0) +∑p
j=1 ãt0,N (j)X2

k−j,N

.
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(ii) Define Ẑ2
t = Z̃2

t − 1
2bN

∑t0+bN−1
k=t0−bN Z̃2

k + 1 and consider the empirical dis-
tribution function

F̂t0,N (x) = 1

bN

t0+bN−1∑
k=t0−bN

I(−∞,x](Ẑ2
k ),

where IA(y) = 1 if y ∈ A, 0 otherwise. It is worth mentioning that we use Ẑ2
t

rather than Z̃2
t since we have E(Ẑ2

t ) = ∫
zF̂t0,N (dz) = 1. (This result is used in

Proposition 6 in the Appendix.)
Set X+2

t (u0) = 0 for t ≤ 0. For 1 ≤ t ≤ t0 + bN/2, sample from the distribution
function F̂t0,N (x), to obtain the sample {Z+2

t }t . Use this to construct the bootstrap
sample

X+2
t (u0) = σ+2

t (u0)Z
+2
t , σ+2

t (u0) = āt0,N (0) +
p∑

j=1

āt0,N (j)X+2
t−j (u0).

We note that by estimating the residuals from [t0 − bN, t0 + bN − 1], the distri-
bution of X+2

t (u0) will be suitably close to the stationary approximation Xt(u0)

when t ∈ [t0 − bN/2, t0 + bN/2 − 1], this allows us to obtain the sampling prop-
erties of the bootstrap estimator.

(iii) Define the bootstrap estimator

â
+
t0,N

= {R+
t0,N

}−1r+
t0,N

,(24)

where Xt−1(u0)
+ = (1,X+2

t−1(u0), . . . ,X
+2
t−p(u0))

T and

R+
t0,N

=
N∑

k=p+1

1

bN
W

(
t0 − k

bN

)
Xk−1(u0)

+Xk−1(u0)
+T

(μ̂t0,N +∑k
j=1 X+2

k−j (u0))2
,

r+
t0,N

=
N∑

k=p+1

1

bN
W

(
t0 − k

bN

)
X+2

k (u0)Xk−1(u0)
+T

(μ̂t0,N +∑k
j=1 X+2

k−j (u0))2
.

We observe that in steps (i), (ii) of the bootstrap scheme we are constructing the
bootstrap sample {X+2

t (u0)}t whose distribution should emulate the distribution of
the stationary approximation {X̃2

t (u0)}t . In step (iii) of the bootstrap scheme we
are constructing the bootstrap estimator â

+
t0,N

from the bootstrap samples. We note

that we have bootstrapped the stationary approximation X̃2
t (u0) since the limiting

distribution of ãt0,N
is derived using the stationary approximation.

We now show that the distributions of
√

bN{â+
t0,N

− āt0,N
} and

√
bN{ât0,N

−
a(u0)} asymptotically coincide.

PROPOSITION 5. Suppose Assumption 1 holds, and suppose either
infj aj (u0) > 0 or E(Z4

t )
1/2 supu[

∑p
j=1 aj (u)] < 1 − δ [which implies
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supk E(X4
k,N) < ∞]. Let āt0,N

and â
+
t0,N

be defined as in (23) and (24), respec-

tively, and let bβ
√

bN → 0. If |u0 − t0/N | < 1/N , then we have
√

bN(â
+
t0,N

− āt0,N
)

D→ N
(
0,w2μ4

{
E
[
A

(μ)
t (u0)

]}−1{
E
[
D

(μ)
t (u0)

]}{
E
[
A

(μ)
t (u0)

]}−1)
,

with b → 0, bN → ∞ as N → ∞.

Comparing the results in Propositions 4(ii) and Propositions 5 we see if
bβ

√
bN → 0, then, asymptotically, the distributions of (â

+
t0,N

− āt0,N
) and (ãt0,N

−
a(u0)) are the same.

6. Volatility estimation: real data examples. The datasets analyzed in this
and the following section fall into two categories:

1. Logged and differenced daily exchange rates between USD and a number of
other currencies running from January 1, 1990 to December 31, 1999: the
data are available from the US Federal Reserve website: www.federalreserve.
gov/releases/h10/Hist/default1999.htm. We use the following acronyms: CHF
(Switzerland Franc), GBP (United Kingdom Pound), HKD (Hong Kong Dol-
lar), JPY (Japan Yen), NOK (Norway Kroner), NZD (New Zealand Dollar),
SEK (Sweden Kronor), TWD (Taiwan New Dollar).

2. Logged and differenced daily closing values of the NIKKEI, FTSE, S and
P500 and DAX indices, measured between a date in 1996 (exact dates vary)
and April 29, 2005: the data are available from: www.bossa.pl/notowania/
daneatech/metastock/.

The lengths N of each dataset vary but oscillate around 2500. In this section, we
exhibit the estimation performance of the two-stage kernel-NLS estimator on the
USD/GBP exchange rate and FTSE series. We examine the cases p = 0,1,2 and
use the Parzen kernel with bandwidths selected by the cross-validation algorithm
of Section 4.2.

The left column in Figure 2 shows the results for USD/GBP. The top plot shows
the data, the next one down shows the estimates of a0(·) for p = 0 (dashed line),
p = 1 (dotted line) and p = 2 (solid line), the one below displays the positive parts
of the estimates of a1(·) for p = 1 (dotted) and p = 2 (solid), and the bottom plot
shows the positive part of the estimate of a2(·) for p = 2. Note that the negative
values arise since our estimator is not guaranteed to be nonnegative. The right
column shows the corresponding quantities for the FTSE data. It is interesting to
observe that in both cases, the shapes of the estimated time-varying parameters are
similar for different values of p.

The goodness of fit for each choice of p = 0,1,2 is assessed in Table 2. In each
case, Ẑt denotes the sequence of empirical residuals from the given fit. For the

www.federalreserve.gov/releases/h10/Hist/default1999.htm
www.bossa.pl/notowania/daneatech/metastock/
www.federalreserve.gov/releases/h10/Hist/default1999.htm
www.bossa.pl/notowania/daneatech/metastock/
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FIG. 2. Left (right) column: USD/GBP (FTSE) series and the corresponding estimation results. See
Section 6 for details.

USD/GBP data, the best fit is obtained for p = 1. For the FTSE data, it is less
clear which order gives the best fit but the Ljung–Box (L–B) p-value for |Ẑt | is
the highest for p = 0 and thus it seems to be the preferred option, which is further
confirmed by the visual inspection of the sample autocorrelation function of |Ẑt |
in the three cases. In both cases, the empirical residuals are negatively skewed, and
in the case of USD/GBP they are also heavy-tailed.
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TABLE 2
The values of bandwidth selected by cross-validation, the p-values of the L–B test for white noise
for Ẑt , |Ẑt |, Ẑ2

t , and the sample skewness and kurtosis coefficients for Ẑt for the USD/GBP and
FTSE data sets. The boxed value means p-value is below 0.05

USD/GBP FTSE

p = 0 p = 1 p = 2 p = 0 p = 1 p = 2

Bandwidth 0.02 0.032 0.04 0.024 0.028 0.028
L–B P -value for Ẑt 0.83 0.83 0.82 0.15 0.20 0.30

L–B P -value for |Ẑt | 0.17 0.71 0.03 0.10 0.07 0.07
L–B P -value for Ẑ2

t 0.09 0.79 0.26 0.13 0.35 0.52
Skewness of Ẑt −0.05 −0.09 −0.08 −0.13 −0.15 −0.16
Kurtosis of Ẑt 0.7 0.92 1.24 −0.01 0.06 0.15

We conclude this section by constructing bootstrap pointwise confidence inter-
vals for the estimated parameters, using the algorithm detailed in Section 5. Note
that our central limit theorem (CLT) of Proposition 4 could be used for the same
purpose, but this would require pre-estimation of a number of quantities, which
we wanted to avoid. We base our bootstrap pointwise confidence intervals on 100
bootstrap samples. For clarity, we only display confidence intervals for the “pre-
ferred” orders p: that is, for p = 1 in the case of the USD/GBP data, and p = 0 in
the case of the FTSE series. These are shown in Figure 3.

It is interesting to note that the pointwise confidence intervals for the “nonlin-
earity” parameter a1(·) in the USD/GBP series are relatively wide and that the
parameter can be viewed as only insignificantly different from zero most (but not
all) of the time. On the other hand, there exist time intervals where the parameter
significantly deviates from zero. This further confirms the observation made ear-
lier that the order p = 0 is an inferior modeling choice for this series and that the
order p = 1 is preferred.

7. Volatility forecasting: real data examples. In this section, we describe
a numerical study whereby the long-term volatility forecasting ability of the
tvARCH(p) process is compared to that of the stationary GARCH(1,1) and
EGARCH(1, 1) processes with standard Gaussian errors. We compute the fore-
casts of the tvARCH(p) process as follows: we use the available data to estimate
the tvARCH(p) parameters, and then forecast into the future using the “last” es-
timated parameter values, that is, those corresponding to the right edge of the ob-
served data. For a rectangular kernel with span m, this strategy leads to the fol-
lowing algorithm: (a) treat the last m data points as if they came from a stationary
ARCH(p) process, (b) estimate the stationary ARCH(p) parameters on this seg-
ment (via the two-stage NLS scheme), and (c) forecast into the future as in the
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FIG. 3. Solid lines from left to right: estimates of a0(·) for USD/GBP, a1(·) for USD/GBP, and a0(·)
for FTSE. Dashed lines: the corresponding 80% symmetric bootstrap pointwise confidence intervals.

classical stationary ARCH(p) forecasting theory [for the latter, see, e.g., Bera and
Higgins (1993)].

We denote the mean-square-optimal h-step-ahead volatility forecasts at time t ,
obtained via the above algorithm, by σ

2,tvARCH(p)
t |t+h . Note that to obtain the analo-

gous quantities, σ 2,GARCH(1,1)
t |t+h and σ

2,EGARCH(1,1)
t |t+h , for the stationary GARCH(1,1)

and EGARCH(1, 1) processes, we always use the entire available dataset, and not
only the last m observations.

To test the forecasting ability of the various models, we use the exchange rate
and stock index datasets listed in Section 6. For the tvARCH(p) process, we take
p = 0,1,2, and use the forecasting procedure described above with a rectangular
kernel, over a grid of span values m = 50,100, . . . ,500. Note that the tvARCH(0)
process has the simple form Xt,N = a

1/2
0 (t/N)Zt and is also considered by Stărică

and Granger (2005). We select the span by a “forward validation” procedure, that
is, choose the value of m that yields the minimum out-of-sample prediction error
AMSE defined below.

For the stationary (E)GARCH(1,1) prediction, we use the standard S-Plus
garch and predict routines. The stationary (E)GARCH(1,1) parameters are
re-estimated for each t .

For each t = 1000, . . . ,N − 250, we compute the quantities

σ
2,model
t |t+250 =

250∑
h=1

σ
2,model
t |t+h ,

where “model” is one of: tvARCH(0), tvARCH(1), tvARCH(2), GARCH(1,1),
and EGARCH(1,1), and compare them to the “realized” volatility

X
2
t |t+250 =

250∑
h=1

X2
t+h,
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using the scaled aggregated mean square error (AMSE)

Rmodel
250,1000,N =

N−250∑
t=1000

(σ
2,model
t |t+250 − X

2
t |t+250)

2,

where the scaling is by the factor of 1/(N − 1000). For a justification of this
simulation setup, see Stărică (2003).

Table 3 lists the AMSEs attained by tvARCH(0), tvARCH(1), tvARCH(2), sta-
tionary GARCH(1,1) and stationary EGARCH(1, 1) processes: the best results
are boxed. The values in brackets indicate the selected span values. The bullets
for the USD/TWD and USD/HKD series indicate that the numerical optimizers
performing the QML estimation in stationary (E)GARCH(1,1) processes failed to
converge at several points of the series and, therefore, we were unable to obtain
accurate forecasts. We list below some interesting conclusions from this study.

• In most cases, the selected span values m are similar across orders p. These
values can be taken as an indication of how “variable” the time-varying parame-
ters are. Exceptions to this rule occur mostly in data sets which are difficult to
model, such as the HKD series, which is extremely spiky. For the latter series,
more thought is needed on how to model it accurately in the tvARCH(p) (or
indeed any other) framework.

• For the NZD series, it can clearly be seen how “adding more nonlinearity takes
away nonstationarity”: as p increases, a larger and larger span m is selected,
which means that more and more variability in the volatility of the data can be
attributed to the nonlinearity, rather than the nonstationarity.

• While the tvARCH(p) framework seems superior to stationary (E)GARCH(1,1)

methodology for the currency exchange data, the opposite is true for the stock
indices. This might be indicative of the fact that stock indices are “less nonsta-
tionary” than currency exchange series.

We conclude with a heuristic investigation of the quality of our volatility fore-
casts. Conditioning on the information available up to time t , the quantity σ

2,model
t |t+250

predicts the variance of the variable X
(250)
t := ∑250

h=1 Xt+h. By CLT-type argu-

ments, X
(250)
t is approximately Gaussian, and thus we assess the quality of the

predicted volatility by measuring how often the process Yt := X
(250)
t /{σ 2,model

t |t+250}1/2

falls into desired confidence intervals for standard Gaussian variables.
However, this is less informative of the quality of the forecasting procedure

than one might hope, the reason being that the process Yt is strongly dependent,
so it is not reasonable to expect it to take values outside (1 − α)100% confidence
intervals exactly, or approximately, 100α% of the time. Figure 4 shows processes
Yt constructed for the GBP, NZD and SEK series, with the “optimal” forecasting
parameters from Table 3 (i.e., those for which the results are boxed). For α = 0.05,
the coverages are, respectively, 100%, 79% and 95%. If the dependence in Yt were
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TABLE 3
AMSE for long-term forecasts using tvARCH (0), tvARCH (1), tvARCH (2), stationary

GARCH (1,1) and stationary EGARCH(1, 1) processes. R
(E)GARCH(1,1)
250,1000,N is the better result out of:

R
GARCH(1,1)
250,1000,N and R

EGARCH(1,1)
250,1000,N

Series Scaling R
(E)GARCH(1,1)
250,1000,N R

tvARCH(0)
250,1000,N R

tvARCH(1)
250,1000,N R

tvARCH(2)
250,1000,N

CHF 108 2395 2371 (500) 2254 (500) 3030 (500)

GBP 109 20282 7660 (250) 9567 (300) 9230 (300)

HKD 1012 • 230 (150) 170 (500) 150 (100)

JPY 108 8687 9713 (350) 9173 (300) 9450 (300)

NOK 108 1767 1552 (500) 1875 (250) 2221 (500)

NZD 108 11890 5270 (50) 4976 (100) 4955 (150)

SEK 109 37720 6639 (250) 6805 (250) 7321 (250)

TWD 108 • 2323 (500) 2372 (500) 2400 (500)

S & P500 105 33 43 (500) 43 (500) 40 (500)

FTSE 106 516 860 (500) 958 (500) 983 (500)

DAX 106 2602 4492 (150) 4483 (500) 4864 (150)

NIKKEI 107 2364 3418 (100) 3252 (250) 3432 (250)

weaker, we would expect the three coverages to be closer to 95%, provided the
forecasting procedure was “adequate.” However, here, the strong dependence in Yt

causes the variance of the coverage percentages to be high.
Nonetheless, it is reassuring to note that on average, across the datasets, we

do obtain the correct coverage of around 95%. To see this, let us consider the
series for which our forecasting procedure is satisfactory [i.e., those for which
it outperforms (E)GARCH(1,1) processes], bar the two series: HKD and TWD,
which are extremely spiky and thus difficult to model and forecast. These are:
CHF, GBP, NOK, NZD, SEK. Table 4 shows the coverages for the five series.
The average coverage is 94.2%, which is very close to the ideal coverage of 95%.
Averaging across all series, excluding HKD and TWD, we obtain a coverage of
95.7%.

TABLE 4
Coverage of 95% Gaussian prediction intervals for our method, using parameter configurations

that gave the best results in Table 3

Series CHF GBP NOK NZD SEK

Coverage 99% 100% 98% 79% 95%
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FIG. 4. From top to bottom: processes Yt for the GBP, NZD, SEK series. Horizontal lines: symmet-
ric 95% confidence intervals for standard Gaussian variables.

APPENDIX: AUXILIARY LEMMAS AND OUTLINE OF PROOFS

The aim of this Appendix is to sketch the proofs of the results stated in the
previous sections. The full details can be found in a technical report, available
from the authors or from http://www.maths.bris.ac.uk/~mapzf/tvarch/trNLS.pdf.

http://www.maths.bris.ac.uk/~mapzf/tvarch/trNLS.pdf
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Before proving these results, we first obtain some results related to weighted
sums of tvARCH(p) processes that we use below.

In what follows, we use K to denote a generic finite positive constant.

A.1. Properties of tvARCH(p) processes. Let us define the following quan-
tity:

r(u) = E

{
X̃2

k(u)X̃k−1(u)

κ(u0,Xk−1,N )2

}
.(25)

LEMMA A.1. Suppose the conditions in Proposition 3(i) are satisfied, let
μ(u) = E{X̃2

t (u)}, and let At (u), Dt (u) and r(u) be defined as in (8) and (25),
respectively. If |u0 − t0/N | < 1/N , then we have:

(i)

N∑
k=1

1

bN
W

(
t0 − k

bN

)
X2

k,N

P→ μ(u0).(26)

(ii)

Rt0,N
=

N∑
k=p+1

1

bN
W

(
t0 − k

bN

)Xk−1,NXT
k−1,N

κ(u0,Xk−1,N )2
P→ E[At (u0)].(27)

(iii)

rt0,N
=

N∑
k=p+1

1

bN
W

(
t0 − k

bN

)
X2

k,NXk−1,N

κ(u0,Xk−1,N )2
P→ r(u0).(28)

(iv) Suppose further that the conditions in Proposition 3(ii) are satisfied, then
we have

N∑
k=p+1

1

bN
W 2
(

t0 − k

bN

)
σ 4

k,NXk−1,NXT
k−1,N

κ(u0,Xk−1,N )4
P→ w2E[Dt (u0)],(29)

with b → 0, bN → ∞ as N → ∞, where w2 = ∫ 1/2
−1/2 W 2(x)dx.

PROOF. It is straightforward to derive (i), (ii), (iii) and (iv) using Lemma A.5
in Dahlhaus and Subba Rao (2006). We omit the details. �

To prove Lemma A.3 below we use the following lemma, whose proof is based
on mixingale arguments. Suppose 1 ≤ q < ∞, and let ‖ · ‖q denote the �q -norm of
a vector.



768 P. FRYZLEWICZ, T. SAPATINAS AND S. SUBBA RAO

LEMMA A.2. Suppose {φk : k = 1,2, . . .} is a stochastic process which
satisfies E(φk) = 0 and E(φ

q
k ) < ∞ for some 1 < q ≤ 2. Further, let Ft =

σ(φt , φt−1, . . .), and suppose that there exists a ρ ∈ (0,1) such that {E‖E(φk|
Fk−j )‖q

q}1/q ≤ Kρj . Then we have

{
E

∥∥∥∥∥
s∑

k=1

akφk

∥∥∥∥∥
q

q

}1/q

≤ K

1 − ρ

(
s∑

k=1

|ak|q
)1/q

.(30)

In Lemma A.3 below we derive rates of convergence for local sums of a sta-
tionary ARCH(p) process. We use this result to prove the long memory result in
Proposition 2.

Let us define the following quantities:

μ1(u, d,h) = E{X̃2
t (u)X̃2

t+h(u + d)},
(31)

c(u, d,h) = cov{X̃2
t (u), X̃2

t+h(u + d)},
and set μ1(u,0, h) = μ1(u,h) and c(u,0, h) = c(u,h). Define also the following
quantities:

Sk,bN(u) = 1

bN

(k+1)bN−1∑
s=kbN

X̃2
s (u),(32)

Sk,bN(u,h, d) = 1

bN

(k+1)bN−1∑
s=kbN

X̃2
s (u)X̃2

s+h(u + d).(33)

LEMMA A.3. Suppose {X̃t (u)}t is a stationary ARCH(p) process defined as
in (2) and suppose the conditions on the parameters {aj (u)}j and the innovations
{Zt } in Assumption 1(i), (ii), (iv) hold. Let μ(u) = E{X̃2

t (u)}, and let μ1(u, d,h),
Sk,bN(u) and Sk,bN(u,h, d) be defined as in (31), (32) and (33) respectively. Then,
we have {

E

∥∥∥∥∥
N∑

k=p+1

1

bN
W

(
t − k

bN

)
{X̃2

k(u) − μ(u)}
∥∥∥∥∥

1+η

1+η

}1/(1+η)

(34)
≤ K(bN)−(η)/1+η.

Further, if {E(|Zt |2(2+ζ ))}1/(2+ζ ) supu

∑p
j=1 aj (u) ≤ 1 − δ for some 0 < ζ ≤ 2

and δ > 0, then we have

{E‖Sk,bN(u,h, d) − μ1(u, d,h)‖1+ζ/2
1+ζ/2}1/(1+ζ/2) ≤ K(bN)−(ζ )/2+ζ ,(35)

where the constant K is independent of u and d .
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PROOF. We will first prove (34). We use Lemma A.2, with ak = W(t−k
bN

),
φk = {X̃2

k(u) − μ(u)} and q = 1 + η. It can be shown that

{‖E(X̃2
k(u) | Fk−j ) − μ(u)‖1+η

1+η}1/(1+η)

≤ Kρj (1 + {E‖X̃k−j (u)‖1+η
1+η}1/(1+η)),

where Ft = σ(X̃2
t (u), X̃2

t−1(u), . . .). By using the above and that the support of
W(t−k

bN
) is proportional to bN , we can apply Lemma A.2 to obtain

{
E

∥∥∥∥∥
N∑

k=p+1

1

bN
W

(
t − k

bN

)
{X̃2

k(u) − μ(u)}
∥∥∥∥∥

1+η

1+η

}1/(1+η)

≤ 1

bN

K

1 − ρ

(
N∑

k=p+1

∣∣∣∣W
(

t − k

bN

)∣∣∣∣
1+η

)1/(1+η)

≤ K(bN)−η/(1+η).

Thus, we have proved (34). The proof of (35) is similar to the proof above but
requires the additional (stated) assumption, hence we omit the details. �

A.2. The covariance structure and the long memory effect of tvARCH(p)
processes. In this section, we prove results for the covariance structure and the
long memory effect of tvARCH(p) processes.

PROOF OF PROPOSITION 1. It follows easily by making a time-varying
Volterra series expansion of the tvARCH(p) process [see Section 5 in Dahlhaus
and Subba Rao (2006)] and using Lemma 2.1 in Giraitis, Kokoszka and Leipus
(2000). We omit the details. �

The following lemma is used to prove Proposition 2.

LEMMA A.4. Suppose {Xt,N }t is a tvARCH(p) which satisfies Assumption
1(i), (ii), (iv), and let {X̃t (u)}t be defined as in (2). Let h := h(N) be such that
h/N → d ∈ [0,1) as N → ∞. Then we have

1

N − h

N−h∑
s=1

X2
s,N

P→
∫ 1−d

0
E{X̃2

t (u)}du.(36)

Further, if {E(|Zt |2(2+ζ ))}1/(2+ζ ) supu

∑p
j=1 aj (u) ≤ 1 − δ for some 0 < ζ ≤ 2

and δ > 0, then we have

1

N − h

N−h∑
s=1

X2
s,NX2

s+h,N

P→
∫ 1−d

0
E{X̃2

t (u)X̃2
t+h(u + d)}du.(37)
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PROOF. We first prove (37). Let b := b(N) be such that 1/b is an inte-
ger, b → 0 and b(N − h) → ∞ as N → ∞. We partition the left-hand side of
(37) into 1/b blocks. Let kb = kb[1 − d], and replace the terms X2

kb(N−h)+r,N

and X2
kb(N−h)+r+h,N with X̃2

kb(N−h)+r (kb) and X̃2
kb(N−h)+r+h(kb + d), respec-

tively. Let N ′ = (N − h). If s ∈ [kbN ′, (k + 1)bN ′) then we replace X2
s,N with

X̃2
s (kb) and X2

s+h,N with X̃2
s (kb + d). Recall the notation Sk,bN(u,h, d) and

μ1(u, d,h) given in (31) and (33), respectively. Now, by using Lemma 1 and that
kb(N−h)

N
≤ s

N
< (k+1)b(N−h)

N
, we have

1

N − h

N−h∑
s=1

X2
s,NX2

s+h,N

(38)

= b

1/b−1∑
k=0

1

b(N − h)

b(N−h)−1∑
r=0

Sk,bN(kb, h, d) + RN,

where

|RN | ≤ b

1/b−1∑
k=0

1

bN ′
bN ′−1∑
r=0

{
X2

kbN ′+r,N

(
1

Nβ
VkbN ′+r+h,N

+
(

2b +
∣∣∣∣ hN − d

∣∣∣∣
)β

WkbN ′+r+h

)

+ X̃2
kbN ′+r+h(kb + d)

(
1

Nβ
VkbN ′+r,N

+ (2b)βWkbN ′+r

)}
.

Now, taking expectations of the above, we have

(E|RN |1+ζ/2)1/(1+ζ/2) ≤ K

{(
2b + b

∣∣∣∣d − h

N

∣∣∣∣
)β

+ 1

Nβ

}
.(39)

Therefore, RN
P→ 0 as N → ∞. By substituting the integral

∫ 1−d
0 μ1(u, d,h) du

with a sum and using (38) and (39), we have{
E

∥∥∥∥∥ 1

N − h

N−h∑
s=1

X2
s,NX2

s+h,N −
∫ 1−d

0
μ1(u, d,h) du

∥∥∥∥∥
1+ζ/2

1+ζ/2

}1/(1+ζ/2)

≤ b

1/b−1∑
k=0

{E‖Sk,b(N−h)(kb, h, d) − μ1(kb, d,h)‖1+ζ/2
1+ζ/2}1/(1+ζ/2)

(40)

+
∣∣∣∣∣b

1/b−1∑
k=0

μ1(kb, d,h) −
∫ 1−d

0
μ1(kb, d,h) du

∣∣∣∣∣
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+ O

{(
b + kb

∣∣∣∣d − h

N

∣∣∣∣
)β

+ 1

Nβ

}
.

Finally, by substituting the bound (35) and∣∣∣∣∣b
1/b−1∑
k=0

μ1(kb, d,h) −
∫ 1−d

0
E{X̃2

t (u)X̃2
t+h(u + d)}du

∣∣∣∣∣≤ kb

into (40), we have{
E

∥∥∥∥∥ 1

N − h

N−h∑
s=1

X2
s,NX2

s+h,N

−
∫ 1−d

0
E{X̃2

t (u)X̃2
t+h(u + d)}du

∥∥∥∥∥
1+ζ/2

1+ζ/2

}1/(1+ζ/2)

→ 0,

which gives us (37). The proof of (36) is similar and we omit the details. �

PROOF OF PROPOSITION 2. We first consider the more general case where
h := h(N) is such that h/N → d ∈ [0,1) as N → ∞. Then, for fixed h > 0, we
obtain (5) as special case with d = 0.

Let SN(h) = AN − BN , where

AN = 1

N − h

N−h∑
t=1

X2
t,NX2

t+h,N and BN = (X̄N)2.

We consider the asymptotic behavior of the terms AN and BN separately. By using
(36) and (37), we have

AN
P→
∫ 1−d

0
μ1(u,h, d) du and BN

P→
∫ 1−d

0

∫ 1−d

0
μ(u)μ(v) dudv.

Recall that μ(u) = E{X̃2
t (u)}, and that μ1(u, d,h) and c(u, d,h) are defined in

(31). By using the formula μ1(u, d,h) = c(u, d,h) + μ(u)μ(u + d), we obtain

SN(h)
P→
∫ 1−d

0
{c(u, d,h) + μ(u)μ(u + d)}du −

{∫ 1−d

0
μ(u)du

}2

(41)

where h/N → d as N → ∞.
Let us now consider the special case of (41) where d = 0. Then, for fixed h > 0,

we have

SN(h)
P→
∫ 1

0
c(u,h) du +

∫ 1

0

∫ 1

0
μ2(u) dudv −

∫ 1

0

∫ 1

0
μ(u)μ(v) dudv,

as N → ∞. This proves (5) and, hence, we have the required result. �
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A.3. Proofs in Section 3.2. In this section, we prove consistency and asymp-
totic normality of the weighted kernel-NLS estimator.

PROOF OF PROPOSITION 3(I). By using (27), (28) and Slutsky’s theorem, we
have

ât0,N
= {Rt0,N

}−1rt0,N

P→ {E[At (u0)]}−1r (u0).

Therefore, to prove that ât0,N

P→ a(u0), we need to show that a(u0) =
{E[At (u0)]}−1r (u0). By using (2) and dividing by κ(u0, X̃k−1(u0)), {X̃2

k−1(u0)}k
satisfies the representation

X̃2
k(u0)

κ(u0, X̃k−1(u0))
= aT (u0)X̃k−1(u0)

κ(u0, X̃k−1(u0))
+ (Z2

k − 1)
σ̃ 2

k (u0)

κ(u0, X̃k−1(u0))
.(42)

Finally, multiplying (42) by X̃k−1(u0)/κ(u0,Xk−1,N ) and taking on both sides
expectations, we obtain the desired result.

To prove Proposition 3(ii), we use the same methodology given in the proof of
Theorem 3 in Dahlhaus and Subba Rao (2006), hence we omit the details. �

A.4. Proofs in Section 3.4. In this section, we prove consistency and asymp-
totic normality of the two-stage kernel-NLS estimator. To prove these asymptotic
properties, we need the following two lemmas.

LEMMA A.5. Suppose {Xt,N }t is a tvARCH(p) process which satisfies As-
sumption 1(i), (ii), (iv), let μ(u) = E{X̃2

t (u)}, and let μ̂t0,N be defined as in (15).
If |u0 − t0/N | < 1/N , then, for 0 ≤ i, j ≤ p, we have

N∑
k=p+1

1

bN
W

(
t0 − k

bN

) X2
k−i,NX2

k−j,N

(μ̂t0,N + Sk−1,N )2
P→ E

( X̃2
k−i(u0)X̃

2
k−j (u0)

(μ(u0) + Sk−1(u0))2

)
,(43)

with b → 0, bN → ∞ as N → ∞.

PROOF. To prove the result we use techniques similar to those in Bose and
Mukherjee (2003). By using the inequality |1/x2 − 1/y2| ≤ 2|x − y|{(1/x)[1 +
x/y]}3, for x, y > 0, we bound the difference∣∣∣∣ X2

k−i,NX2
k−j,N

(μ̂t0,N + Sk−1,N )2 − X2
k−i,NX2

k−j,N

(μ(u0) + Sk−1,N )2

∣∣∣∣
≤ 2X2

k−i,NX2
k−j,N |μ̂t0,N − μ(u0)|

(44)

×
∣∣∣∣ 1

μ(u0) + Sk−1,N

(
1 + μ̂t0,N + Sk−1,N

μ(u0) + Sk−1,N

)∣∣∣∣
3

≤ 2|μ̂t0,N − μ(u0)|
(

1 + |μ(u0)|
|μ̂t0,N |

) X2
k−i,NX2

k−j,N

(μ(u0) + Sk−1,N )3 .
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Let us now define the following quantities:

�(u0) = E

( X̃2
k−i(u0)X̃

2
k−j (u0)

{μ(u0) + Sk−1(u0)}2

)
,

At0,N =
N∑

k=p+1

1

bN
W

(
t0 − k

bN

) X2
k−i,NX2

k−j,N

{μ̂t0,N + Sk−1,N }2 ,

Ct0,N (u0) =
∣∣∣∣∣

N∑
k=p+1

1

bN
W

(
t0 − k

bN

) X2
k−i,NX2

k−j,N

{μ(u0) + Sk−1,N }2 − �(u0)

∣∣∣∣∣.
Then, by using the bound (44), we have∣∣∣∣At0,N − �(u0)

∣∣∣∣∣
≤
∣∣∣∣

N∑
k=p+1

1

bN
W

(
t0 − k

bN

) X2
k−i,NX2

k−j,N

{μ(u0) + Sk−1,N }2 − �(u0)

∣∣∣∣∣
+ 2|μ̂t0,N − μ(u0)|

(
1 + |μ(u0)|

|μ̂t0,N |
)

(45)

×
N∑

k=p+1

1

bN

∣∣∣∣W
(

t0 − k

bN

)∣∣∣∣ X2
k−i,NX2

k−j,N

{μ(u0) + Sk−1,N }3

≤ Ct0,N (u0) + 2|μ̂t0,N − μ(u0)|
(

1 + |μ(u0)|
|μ̂t0,N |

) N∑
k=p+1

1

bN

∣∣∣∣W
(

t0 − k

bN

)∣∣∣∣.
Since μ̂t0,N

P→ μ(u0), by using Slutsky’s lemma we have

|μ̂t0,N − μ(u0)|
(

1 + |μ(u0)|
|μ̂t0,N |

)
P→ 0.

Furthermore, by using (27) we have Ct0,N (u0)
P→ 0. Altogether this gives |At0,N −

�(u0)| P→ 0, and the desired result follows. �

To show asymptotic normality, we need to define the following least-squares
criteria:

L̃t0,N
(α) =

N∑
k=p+1

1

bN
W

(
t0 − k

bN

)
h̃t0,N (Xk,N ,Xk−1,N ,α),(46)

L̃t0
(u,α) =

N∑
k=p+1

1

bN
W

(
t0 − k

bN

)
h̃t0,N (X̃k(u), X̃k−1(u),α),(47)
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L
(μ)
t0

(u,α) =
N∑

k=p+1

1

bN
W

(
t0 − k

bN

)
h̃(u, X̃k(u), X̃k−1(u),α),(48)

where h̃t0,N
(y0, y,α) = (μ̂t0,N +∑p

j=1 y2
j )−2{y2

p −α0−∑p
j=1 αjy

2
j }2 and h̃(u, y0,

y,α) = (μ(u) + ∑p
j=1 y2

j )−2{y2
0 − α0 − ∑p

j=1 αjy
2
j }2. We note that ãt0,N

=
arg mina L̃t0,N

(a). Asymptotic normality of
√

bN∇L
(μ)
t0

(u0, a(u0)) can easily
be established by verifying the conditions of the martingale central limit theo-
rem. However, the same theorem cannot be used to show the asymptotic nor-
mality of

√
bN∇L̃t0(u0, a(u0)), since L̃t0(u0, a(u0)) is not a sum of martin-

gale differences. In Lemma A.6 below we overcome this problem by showing

that
√

bN(L̃t0(u0, a(u0)) − L
(μ)
t0

(u0, a(u0)))
P→ 0, which allows us to replace

L̃t0(u0, a(u0)) with L
(μ)
t0

(u0, a(u0)).

LEMMA A.6. Suppose {Xt,N }t is a tvARCH(p) process which satisfies As-
sumption 1(i), (ii), (iii), (iv). Let μ(u) = E{X̃2

t (u)}, and μ̂t0,N , L̃t0(u,α) and

L
(μ)
t0

(u,α) be defined as in (15), (47) and (48), respectively. If |u0 − t0| < 1/N ,
then we have

|μ̂t0,N − μ(u0)| = Op

(
bβ + (bN)−η/(1+η)),(49)

and √
bN
[∇L̃t0(u0, a(u0)) − ∇L

(μ)
t0

(u0, a(u0))
]= op(1),(50)

with b → 0, bN → ∞ as N → ∞.

PROOF OF PROPOSITION 4. (i) It is straightforward to show consistency using
(17) and Lemma A.5.

(ii) Define B̃t0,N
(α) = L̃t0,N

(α) − L̃t0
(u,α). To prove that ∇B̃t0,N (a(u0)) =

Op(bβ), we use the same arguments given in Theorem 3 in Dahlhaus and Subba
Rao (2006), hence we omit the details. To prove (17), we use that ∇L̃t0,N (ãt0,N

) =
0, and expanding ∇L̃t0,N (ãt0,N

) about a(u0), we have

∇2L̃t0,N

(
ãt0,N

− a(u0)
)

= L
(μ)
t0

(u0, a(u0)) + {∇L̃t0(u0, a(u0)) − ∇L
(μ)
t0

(u0, a(u0))
}

− ∇B̃t0,N (a(u0)).

By using Lemma A.5, we easily see that ∇2L̃t0,N (a(u0))
P→ 2E[A(μ)

t (u0)] and,
using (50), we have(

ãt0,N
− a(u0)

)
= −1

2

{∇L
(μ)
t0

(u0, a(u0)) + ∇B̃t0,N (a(u0))
}{

E
[
A

(μ)
t (u0)

]}−1 + op

(
1

bN

)
.
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Finally, by using the martingale central limit theorem [see, e.g., Hall and Heyde
(1980), Theorem 3.2], we obtain (17). �

A.5. Proofs in Section 5. In this section, we prove the results in Section 5.
Some of the results in this section have been inspired by corresponding results in
the residual bootstrap for linear processes literature [cf. Franke and Kreiss (1992)].
However, the proofs are technically very different, because the tvARCH(p)

process is a nonlinear, nonstationary process, and the normalization of the two-
stage kernel-NLS estimator with random weights.

In order to show that the distribution of the bootstrap sample â
+
t0,N

− āt0,N
as-

ymptotically coincides with the asymptotic distribution of ãt0,N
− a(u0), we will

show convergence of the distributions under the Mallows distance. The Mallows
distance between the distribution H and G is defined as

d2(H,G) = inf
X∼H,Y∼G

{E(X − Y)2}1/2.

Roughly speaking, if d2(Fn,Gn) → 0, then the limiting distributions of Fn and Gn

are the same [Bickel and Freedman (1981)]. Following Franke and Kreiss (1992),
to reduce notation, we let d2(X,Y ) = d2(H,G), where the random variables X

and Y have measures H and G, respectively.
We also require the following definitions. Let

R̃N(u0) =
N∑

k=p+1

1

bN
W

(
t0 − k

bN

)
X̃k−1(u0)X̃k−1(u0)

T

(μ̂t0,N +∑k
j=1 X2

k−j (u0))
,

r̃N (u0) =
N∑

k=p+1

1

bN
W

(
t0 − k

bN

)
X̃2

k(u0)X̃k−1(u0)
T

(μ̂t0,N +∑k
j=1 X̃2

k−j (u0))2
.

PROPOSITION 6. Suppose Assumption 1 holds, and suppose either
infj aj (u0) > 0 or E(Z4

t )
1/2 supu[

∑p
j=1 aj (u)] ≤ 1 − δ [which implies

supk E(X4
k,N) < ∞]. Let F be the distribution function of Z2

t . Then we have

d2(F̂t0,N ,F )
P→ 0.(51)

Furthermore, if we suppose bβ
√

bN → 0, then we have

d2
(√

bN(r+
t0,N

− R+
t0,N

āt0,N
),

√
bN
(
r̃N (u0) − R̃N(u0)a(u0)

)) P→ 0,(52)

and

R+
t0,N

P→ E
{
A

(μ)
t (u0)

}
,(53)

with b → 0, bN → ∞ as N → ∞.
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We prove each part of the proposition below.

PROOF OF (51). To prove this result, we define the empirical distribution
function of the true residuals, that is,

Ft0,N (x) = 1

2bN

t0+bN−1∑
k=t0−bN

I(−∞,x](Z2
t ),

noting that Ẑ2
t is an estimator of Z2

t . [It is worth pointing out that in a differ-
ent context, the empirical distribution of the estimated residuals of a stationary
ARCH(p) process was considered in Horváth, Kokoszka and Teyssiére (2001).]
We first observe that since d2 is a distance it satisfies the triangle inequality
d2(F̂t0,N ,F ) ≤ d2(F̂t0,N ,Ft0,N

)+d2(Ft0,N ,F ). By using Lemma 8.4 in Bickel and

Freedman (1981), it can be shown that d2(Ft0,N ,F )
P→ 0. Therefore, to prove (51),

we need only show that d2(F̂t0,N ,Ft0,N
)

P→ 0.

By definition of d2 and the measures F̂t0,N and Ft0,N , we have

d2(F̂t0,N ,Ft0,N )2 = inf
Z+2

t ∈F̂t0,N ,Z2
t ∈Ft0,N

E(Z+2
t − Z2

t )
2,

where the infinimum is taken over all joint distributions on (Z+2
t ,Z2

t ) which have
marginals F̂t0,N and Ft0,N . Let us suppose P(J = i) = (i + bN)/2bN , for i ∈
{−bN, . . . , bN − 1}, and define Z+2

t = Ẑ2
J and Z2

t = Z2
J . Then, since (Ẑ2

J ,Z2
J )

both have marginals F̂t0,N and Ft0,N , respectively, we have

d2(F̂t0,N ,Ft0,N )2 ≤ E(Ẑ2
J − Z2

J )2 = 1

2bN

t0+bN−1∑
k=t0−bN

(Ẑ2
k − Z2

k )
2

≤ 1

2bN

t0+bN−1∑
k=t0−bN

(
Z2

k − Ẑ2
k + 1

2bN

t0+bN∑
k=t0−bN

Ẑ2
k − 1

)2

.

By adding and subtracting 1
2bN

∑t0+bN
k=t0−bN Z2

k , and using that 1
2bN

∑t0+bN
k=t0−bN(Z2

k −
1)2 P→ 0, we have

d2(F̂t0,N ,Ft0,N
)2

≤ 1

2bN

t0+bN−1∑
k=t0−bN

(
Z2

k − Ẑ2
k + 1

2bN

t0+bN−1∑
k=t0−bN

(Ẑ2
k − Z2

k )

+ 1

2bN

t0+bN−1∑
k=t0−bN

(Z2
k − 1)

)2
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≤ K

bN

t0+bN−1∑
k=t0−bN

(Ẑ2
k − Z2

k )
2 + K

bN

t0+bN−1∑
k=t0−bN

(Z2
k − 1)2

≤ K

bN

t0+bN−1∑
k=t0−bN

[
Z2

k

σ̂ 2
k,N

{
a0(k/N) − ãt0,N (0)

+
p∑

j=1

[aj (k/N) − ãt0,N (j)]X2
k−j,N

}]2

+ op(1),

where σ̂ 2
k,N = ãt0,N (0) +∑p

j=1 ãt0,N (j)X2
k−j,N . Now by bounding the above in

two different ways we obtain

d2(F̂t0,N ,Ft0,N
)2

≤ min

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

K

( p∑
j=0

|aj (k/N) − ãt0,N (j)|
|ãt0,N (j)|

)2(
1

2bN

t0+bN/2∑
k=t0−bN

Z4
k

)

K

( p∑
j=0

|aj (k/N) − ãt0,N (j)|
|ãt0,N (0)|

)2(
1

2bN

t0+bN/2∑
k=t0−bN

Z4
kX

4
k−j,N

)
⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

+ op(1).

To show (51), we need to use the bounds above noting that the bound we use
depends on the conditions we have placed on the parameters {aj (·)}. By using
|aj (u) − aj (v)| ≤ K|u − v|β and k ∈ [t0 − bN, t0 + bN − 1], we have

|a(k/N) − ãt0,N
| ≤ |a(k/N) − a(u0)| + |a(u0) − ãt0,N

|
≤ Kbβ + |a(u0) − ãt0,N

|.

Since |ãt0,N
− a(u0)| P→ 0, by using the above, it is straightforward to show

Kp

(
bβ + |a(u0) − ãt0,N

|
minj |ãt0,N (j)|

)2
(

1

2bN

t0+bN−1∑
k=t0−bN

Z4
k

)
P→ 0

if infj aj (u) > 0,

Kp

(
bβ + |a(u0) − ãt0,N

|
|ãt0,N (0)|

)2
(

1

2bN

t0+bN−1∑
k=t0−bN

Z4
kX

4
k−j,N

)
P→ 0

if supk,N E(X4
k,N) < ∞,

with b → 0, bN → ∞ as N → ∞. Therefore, under the stated assumptions, and

by using the above convergence in probability, we have that d2(F̂t0,N ,Ft0,N
)

P→ 0.
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Altogether this means that d2(F̂t0,N ,F )
P→ 0, with b → 0, bN → ∞ as N → ∞,

thus we obtain the result. �

It follows from the above [Bickel and Freedman (1981), Lemma 8.3] that

E(Z+2
t )

P→ E(Zt ), E(Z+4
t )

P→ E(Z4
t ) and

(54)
inf E(Z+2

t − Z2
t )

2 P→ 0,

where the infinimum is taken over all joint distributions on (Z+2
t ,Z2

t ) which have
marginals F̂t0,N and Ft0,N . We use these limits to prove the results below.

To prove Proposition 6 we require the following definitions:

X̃+2
t (u0) = σ̃+2

t (u0)Z
+2
t , σ̃+2

t (u0) = a0(u0) +
p∑

j=1

aj (u0)X̃
+2
t−j (u0),

and Lemma A.7 below. We note that X̃+2
t (u0) is very similar to X̃+2

t (u0), but the
estimated parameters āt0,N

have been replaced by the true parameters a(u0).
In the lemma below we show that for t ∈ [t0 −bN/2, t0 +bN/2−1], the distrib-

utions of X+2
t (u0) and Xt(u0) are sufficiently close and the difference is uniformly

bounded over t .

LEMMA A.7. Suppose assumptions in Proposition 6 hold, then we have

E|X+2
t (u0) − X̃+2

t (u0)| ≤ C|āt0,N
− a(u0)|

∞∑
k=1

k2(1 − δ)k
P→ 0,(55)

where b → 0, bN → ∞ as N → ∞ and where the expectation is conditioned on
{Xk,N }. Furthermore for t0 + bN/2 ≤ t ≤ t0 + bN/2 we have

inf E|X̃+2
t (u0) − X̃2

t (u0)|

≤ C

∞∑
k=1

(
1 + (E|Z+2

t |)k+bN/(2p))(1 − δ)k

(56)

+ C inf E|Z+2
1 − Z2

t |
∞∑

k=1

{1 + E(Z+2
1 ) + · · · + [E(Z+2

1 )]k−1}(1 − δ)k

+ op(1)
P→ 0,

where b → 0, bN → ∞ as N → ∞. The expectation is with respect to the measure
on all independent pairs {(Z+2

t ,Z2
t )}t , and the infinimum is taken over all joint

distributions on (Z+2
t ,Z2

t ) which have marginals F̂t0,N and Ft0,N , respectively.
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PROOF. It can be shown that the stationary ARCH(∞) process has a solution
which can be written in terms of a Volterra series [Giraitis, Kokoszka and Leipus
(2000)]. Define for all j > p, aj (u0) = 0 and āt0,N (j) = 0. Then, by following
Giraitis, Kokoszka and Leipus (2000), X+2

t (u0), X̃
+2
t (u0) and X̃2

t (u0) have the
solutions

X+2
t (u0) =

N∑
k=0

∑
jk<···j0:j0=t

{
k∏

s=0

āt0,N (js − js+1)

}
k∏

s=1

Z+2
js

,

X̃+2
t (u0) =

N∑
k=0

∑
jk<···j0:j0=t

{
k∏

s=0

ajs−js+1(u0)

}
k∏

s=1

Z+2
js

,

X̃2
t (u0) =

∞∑
k=0

∑
jk<···j0:j0=t

{
k∏

s=0

ajs−js+1(u0)

}
k∏

s=1

Z2
js

,

respectively. We first consider

E|X+2
t (u0) − X̃+2

t (u0)|

= E

∣∣∣∣∣
N∑

k=0

∑
jk<···<j0:j0=t

{
āt0,N (js − js+1) −

k∏
s=0

ajs−js+1(u0)

}
k∏

s=1

Z+2
js

∣∣∣∣∣.
Now, by repeatedly taking differences, and using that supu

∑p
j=1 aj (u) ≤ 1 − δ,∑p

j=1 āt0,N (j) ≤ 1 − δ and ‖āt0,N
− a(u0)‖2

P→ 0, we obtain (55).
To prove (56), we first note that expectation is taken with respect to the joint

measure on the independent pairs {(Z+2
t ,Z2

t )}t . Using the Volterra expansions
above, we have

E|X̃+2
t (u0) − X̃2

t (u0)|

≤
∞∑

k=0

∑
1≤j1,...,jk≤p

k∏
s=0

ajs (u0)E

∣∣∣∣
k∏

s=1

Z+2
t−∑s

i=1 ji
−

k∏
s=1

Z2
t−∑s

i=1 ji

∣∣∣∣(57)

+ op(1).

We see from (54), if t0 − bN ≤ k ≤ t0 + bN − 1 and by setting Z+2
k = Ẑk , we

have E|Z+2
k − Z2

k | P→ 0. Therefore, for all t ∈ [t0 − bN/2, t0 + bN/2 − 1], and

t − bN/2 ≤ i ≤ t , we will show that inf E|∏k
s=1 Z+2

t−∑s
i=1 ji

−∏k
s=1 Z2

t−∑s
i=1 ji

| P→
0. This allows us to obtain a uniform rate of convergence for E|X̃+2

t (u0)− X̃2
t (u0)|

for all t0 − bN/2 ≤ k ≤ t0 + bN/2 − 1. To obtain this rate, we partition the inner
sum above into two sums, where

∑k
i=1 js ≤ bN/2 and

∑k
i=1 js > bN/2. We fur-

ther note that since for all i, 1 ≤ ji ≤ p, if
∑k

j=1 js > bN/2, then this implies
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k > bN/(2p). Altogether this gives

E|X̃+2
t (u0) − X̃2

t (u0)| ≤ I + II + op(1),(58)

where

I = a0(u0)

∞∑
k=0

∑
∑k

i=1 js≤bN/2

k∏
s=1

ajs (u0)E

∣∣∣∣∣
k∏

s=1

Z+2
t−∑s

i=1 ji
−

k∏
s=1

Z2
t−∑s

i=1 ji

∣∣∣∣∣
and

II =
∞∑

k>bN/(2p)

∑
1≤j1,...,jk≤p

k∏
s=0

ajs (u0){(E|Z2
t |)k + (E|Z+2

t |)k}.

We now study I and consider, in particular, the difference E|∏k
s=1 Z+2

js
−∏k

s=1 Z2
js

|. By repeatedly taking differences, we have

E

∣∣∣∣∣
k∏

s=1

Z+2
js

−
k∏

s=1

Z2
js

∣∣∣∣∣≤ E|Z+2
js

− Z2
js

|{1 + E(Z+2
js

) + · · · + [E(Z2
js

)]k−1}.

Substituting the above into I , taking the infinimum over all joint measures on
(Z+2

t ,Z2
t ), and using supu

∑p
j=1 aj (u) ≤ 1 − δ, we obtain

a0(u0)

∞∑
k=0

∑
∑k

i=1 js≤bN/2

k∏
s=0

ajs (u0) inf E

∣∣∣∣∣
k∏

s=1

Z+2
t−∑s

i=1 ji
−

k∏
s=1

Z2
t−∑s

i=1 ji

∣∣∣∣∣
≤ C{inf E|Z+2

t − Z2
t |}(59)

×
N∑

k=1

{1 + E(Z+2
1 ) + · · · + [E(Z+2

1 )]k}(1 − δ)k + op(1).

We note that in the above we have extended the sum beyond
∑k

i=1 js ≤ bN/2 to
make the summands easier to handle. Our aim is to show that the right-hand side of
(59) converges in probability to 0. For any ε > 0, define Bε

N := {E|Z+2
1 | > 1 + ε}.

By (54), we have P(Bε
N) → 0 as N → ∞. Denote further

Aε
n :=

{
C{inf E|Z+2

t − Z2
t |}

N∑
k=1

{1 + E(Z+2
1 ) + · · · + [E(Z+2

1 )]k}(1 − δ)k > ε

}
.

For ε1 < δ/(1 − δ), we have

P(Aε
n) = P(Aε

n|Bε1
n )P (Bε1

n ) + P(Aε
n|(Bε1

n )c)P ((Bε1
n )c)

≤ P(Bε1
n ) + P

(
C{inf E|Z+2

t − Z2
t |}

N∑
k=1

(k + 1)(1 + ε1)
k(1 − δ)k > ε

)

≤ P(Bε1
n ) + P(C1 inf E|Z+2

t − Z2
t | > ε) → 0,
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which demonstrates the convergence in probability of on the right-hand side of
(59).

We now consider the second term II. Since k > bN/(2p) and
supu

∑p
j=1 aj (u) ≤ 1 − δ, it is straightforward to show

II ≤ a0(u0)

∞∑
k>bN/(2p)

(
1 + (E|Z+2

t |)k)(1 − δ)k

≤ a0(u0)(1 − δ)bN/(2p)
∞∑

k=1

(
1 + (E|Z+2

t |)k+bN/(2p))(1 − δ)k.

Now it is straightforward to show that II
P→ 0 with b → 0, bN → ∞ as N → ∞.

Altogether we obtain (56), and the desired result follows. �

We note that the bounds given in Lemma A.7 are uniform for all t0 − bN/2 ≤
t ≤ t0 + bN/2, this is required to prove (52). As a byproduct of Lemma A.7, we
have the following result.

COROLLARY 1. Suppose the assumptions in Lemma A.7 hold. Then, for all
t ∈ [t0 − bN/2, t0 + bN/2 − 1], we have

E|σ+2
t (u0) − σ̃+2

t (u0)| P→ 0,(60)

inf E|σ̃+2
t (u0) − σ̃ 2

t (u0)| P→ 0,(61)

where b → 0, bN → ∞ as N → ∞, and the expectations are defined in the same
way as in Lemma A.7.

PROOF. By using the expressions σ+2
t (u0) = āt0,N (0) + ∑p

j=1 āt0,N (j) ×
X+2

t−j (u0) and σ̃ 2
t (u) = a0(u) +∑p

j=1 aj (u)X̃2
t−j (u), and taking also into account

that āt0,N

P→ a(u0), the desired result follows immediately from Lemma A.7. �

In order to prove (52), we require the following inequalities.
Let us suppose σ 2

x = α0 +∑p
j=1 αjxj , σ 2

y = β0 +∑p
j=1 βjyj with {αj }, {βj },

{xj } and {yj } positive. Then, it can be shown that

∣∣∣∣∣ zxσ
2
x xi

(μ̂t0,N +∑p
j=1 xj )2

− zxσ
2
y yi

(μ̂t0,N +∑p
j=1 yj )2

∣∣∣∣∣
2

(62)

≤ Kz2
x(A + B)2

μ̂t0,N

{
2

p∑
j=1

|xj − yj | + |σ 2
x − σ 2

y |
}
,
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where

A = α0

μ̂t0,N

+
p∑

j=1

αj and B = β0

μ̂t0,N

+
p∑

j=1

βj .

Similarly, we have
∣∣∣∣ zxσ

2
x xi

(μ̂t0,N +∑p
j=1 xj )2

− zyσ
2
y yi

(μ̂t0,N +∑p
j=1 yj )2

∣∣∣∣
2

≤ K(A + B)|zx − zy |2(63)

+ Kz2
x(A + B)2

μ̂t0,N

{
2

p∑
j=1

|xj − yj | + |σ 2
x − σ 2

y |
}
.

We use these inequalities to prove the following result.

PROOF OF (52). By definition of Mallows metric, independence of the pairs
{(Z+2

t ,Z2
t )}t , and that E(Z+2

t ) = 1, we have

d2
{√

bN(r+
t0,N

− R+
t0,N

āt0,N
),

√
bN
(
r̃N (u0) − R̃N(u0)a(u0)

)}
≤ (bN) inf E

{
(r+

t0,N
− R+

t0,N
āt0,N

) − (
r̃N (u0) − R̃N(u0)a(u0)

)}2

(64)

≤ 2

bN

p∑
j=1

N∑
k=p

W

(
t0 − k

b

)2

inf E

(
(Z+2

k − 1)σ+2
k (u0)X

+2
k−i(u0)

[μ̂t0,N +∑p
j=1 X+2

k−j (u0)]2

− (Z2
k − 1)σ̃ 2

k (u0)X̃
2
k−i(u0)

[μ̂t0,N +∑p
j=1 X̃2

k−j (u0)]2

)2

,

where the infinimum is taken over all joint measures on (Z+2
t ,Z2

t ). We now con-
sider

E

(
(Z+2

k − 1)σ+2
k (u0)X

+2
t−i(u0)

[μ̂t0,N +∑p
j=1 X+2

k−j (u0)]2
− (Z2

k − 1)σ̃ 2
k (u0)X̃

2
k−i(u0)

[μ̂t0,N +∑p
j=1 X̃2

k−j (u0)]2

)2

≤ 2(I + II),

where

I = E

(
(Z+2

k − 1)σ+2
k (u0)X

+2
k−i(u0)

[μ̂t0,N +∑p
j=1 X+2

k−j (u0)]2
− (Z+2

k − 1)σ̃+2
k (u0)X̃

+2
k−i(u0)

[μ̂t0,N +∑p
j=1 X̃+2

k−j (u0)]2

)2

,

II = E

(
(Z+2

k − 1)σ+2
k (u0)X

+2
k−i(u0)

[μ̂t0,N +∑p
j=1 X+2

k−j (u0)]2
− (Z2

k − 1)σ̃ 2
k (u0)X̃

2
k−i(u0)

[μ̂t0,N +∑p
j=1 X̃2

k−j (u0)]2

)2

.
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Studying first I , and using (63), we have

I ≤ KE(Z+2
k − 1)2

× E

(
σ+2

k (u0)X
+2
k−i(u0)

[μ̂t0,N +∑p
j=1 X+2

k−j (u0)]2
− σ̃+2

k (u0)X̃
+2
k−i(u0)

[μ̂t0,N +∑p
j=1 X̃+2

k−j (u0)]2

)2

≤ KE(Z+2
k − 1)2(A1 + B1)

2

μ̂t0,N

×
{

2
p∑

j=1

E|X+2
k−j (u0) − X̃+2

k−j (u0)| + E|σ+2
k (u0) − σ̃+2

k (u0)|
}
,

where A1 = ât0,N (0)

μ̂t0,N
+∑p

j=1 ât0,N (j) and B1 = a0(u0)
μ̂t0,N

+∑p
j=1 aj (u0). Therefore,

by using (54), (55) and (60), we have I
P→ 0. Bounding II by using (64), we have

II ≤ (A1 + B1)E|Z+2
k − Z2

k |2

+ KE(Z+2
k )(A1 + B1)

2

μ̂t0,N

×
{

2
p∑

j=1

E|X̃+2
k−j (u0) − X̃2

k−j (u0)| + E|σ̃+2
k (u0) − σ̃ 2

k (u0)|
}
.

Substituting the above bounds into (65), we have

d2
{√

bN(r+
t0,N

− Rt0,N (u0)
+ât0,N

),
√

bN
(
r̃N (u0) − R̃N(u0)a(u0)

)}
≤ Ĩ + ĨI,

where

Ĩ =
[

4E(Z+2
k − 1)2(A1 + B1)

2

μ̂t0,N

×
{

2
p∑

j=1

E|X+2
k−j (u0) − X̃+2

k−j (u0)| + E|σ+2
k (u0) − σ̃+2

k (u0)|
}]

ωN,

ĨI = 4E(Z+2
k )(A1 + B1)

2

μ̂t0,N

×
{

2
p∑

j=1

inf E|X̃+2
k−j (u0) − X̃2

k−j (u0)| + inf E|σ̃+2
k (u0) − σ̃ 2

k (u0)|
}
ωN,
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and ωN = 1
bN

∑p
j=1

∑bN/2
k=bN/2 W(

t0−k
b

)2. By using (54), (55) and (60), we have

Ĩ
P→ 0. By using (54), (56) and (61), we have ĨI

P→ 0. Altogether we obtain the
required result. �

PROOF OF (53). We use the same methods as those in the proof of (52) to

show that d2(R
+
t0,N

, R̃N(u0))
P→ 0. Then, by using Lemma 8.3 in Bickel and

Freedman (1981), and R̃N(u0)
P→ E[A(μ)

t (u)] we have R+
t0,N

P→ E[A(μ)
t (u)], thus

obtaining the desired result. �

We now have the necessary ingredients to prove Proposition 5.

PROOF OF PROPOSITION 5. We observe that√
bN(â

+
t0,N

− āt0,N
)

= √
bN(R+

t0,N
)−1(r+

t0,N
− R+

t0,N
āt0,N

).

Now, since by (53) we have R+
t0,N

P→ E[A(μ)
t (u0)], we can replace in the above

R+
t0,N

with E[A(μ)
t (u0)], and then use the delta method and (52) to get the required

result. �
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