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The support vector machine (SVM) algorithm is well known to the com-
puter learning community for its very good practical results. The goal of the
present paper is to study this algorithm from a statistical perspective, using
tools of concentration theory and empirical processes.

Our main result builds on the observation made by other authors that the
SVM can be viewed as a statistical regularization procedure. From this point
of view, it can also be interpreted as a model selection principle using a penal-
ized criterion. It is then possible to adapt general methods related to model
selection in this framework to study two important points: (1) what is the
minimum penalty and how does it compare to the penalty actually used in the
SVM algorithm; (2) is it possible to obtain “oracle inequalities” in that set-
ting, for the specific loss function used in the SVM algorithm? We show that
the answer to the latter question is positive and provides relevant insight to the
former. Our result shows that it is possible to obtain fast rates of convergence
for SVMs.

1. Introduction. The success of the support vector machine (SVM) algorithm
for pattern recognition is probably mainly due to the number of remarkable experi-
mental results that have been obtained in very diverse domains of application. The
algorithm itself can be written as a nice convex optimization problem for which
there exists a unique optimum, except in rare degenerate cases. It can also be ex-
pressed as the minimization of a regularized functional where the regularizer is the
squared norm in a Hilbert space of functions on the input space. Although these
are nice mathematical formulations, quite amenable to analysis, the statistical be-
havior of this algorithm remains only partially understood. Our goal in this work
is to investigate the properties of the SVM algorithm in a statistical setting.

1.1. The abstract classification problem and convex loss approximation. We
consider a generic (binary) classification problem, defined by the following setting:
assume that the product X × Y is a measurable space endowed with an unknown
probability measure P , where Y = {−1,1} and X is called the input space. The
pair (X,Y ) denotes a random variable with values in X × Y distributed according
to P . We will denote PX the marginal distribution of variable X. We observe a
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set of n independent and identically distributed (i.i.d.) pairs (Xi, Yi)
n
i=1 sampled

according to P . These random variables form the training set.
Given this sample, the goal of the classification task is to estimate the Bayes

classifier, that is, the measurable function s∗ from X to Y which minimizes
the probability of misclassification, also called generalization error, E(s∗) =
P[s∗(X) �= Y ]. It is easily shown that s∗(x) = 2 × 1{P(Y = 1|X = x) > 1

2} − 1
a.s. on the set {P(Y = 1|X = x) �= 1

2}. Note that it is an abuse to call s∗ “the”
minimizer of the misclassification error, since it can have arbitrary value on the
set {P(Y = 1|X = x) = 1

2}. In the sequel, we refer to s∗ as a fixed function, for
example, if we choose arbitrarily s∗ to be 1 on the latter set.

Having a finite sample from P , a seemingly reasonable procedure is to find a
classifier s minimizing the empirical classification error En(s) = 1

n

∑
i 1{s(Xi) �=

Yi}, with the minimization performed over some model of controlled complexity.
However, this is in most cases intractable in practice because it is not a convex
optimization procedure. This is the reason why a number of actual classification
algorithms replace this loss by a convex loss over some real-valued (instead of
{−1,1} valued) function spaces. This is the case of the SVM where such a “proxy”
loss is used ensuring convexity properties. Its relation with the classification loss
will be detailed in Section 2.1.

1.2. Motivations.

Relative loss and oracle-type inequalities. In the last two decades of the last
century, the theoretical study of various classification algorithms has mainly fo-
cused on deriving confidence intervals about their generalization error. The foun-
dations of this theory have been laid down by Vapnik and Chervonenkis as soon
as 1971 [38]. Such confidence intervals have been derived for SVMs and, more
generally, so-called “large margin classifiers,” for example, using the notion of
fat-shattering VC dimension; see [2].

However, it is probably fair to say that the explicit confidence intervals thus
obtained are never sharp enough to be of practical interest—even though effort,
legitimately, has been and is still made to obtain tighter bounds. On the other hand,
we argue that uniform confidence intervals about the generalization error are not
the most adapted tool to understand correctly the behavior of the algorithm.

If we compare the classification setting to regression, we see that, in regression,
the loss of an estimator is always measured relatively to a target function f ∗ (e.g.,
through L2 distance). Furthermore, recent work (see, e.g., [22]) has shown that
a precise study of the behavior of the relative loss when the estimator f̂ is close
to f ∗ is a key element for proving correct convergence rates. This approach is
sometimes called “localization.”

In this paper we follow this general principle in the context of SVMs. Our main
quantity of interest will therefore be the relative loss, for the proxy loss function,
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of ŝ with respect to s∗, instead of the absolute loss itself (the average relative loss
will also be called risk). In this regard, this work should be put in the context
of a general trend in the recent literature on classification and, more generally,
statistical learning, where the focus has shifted to the relative loss (see also below
Section 5.1.2 for further discussion on this point).

Of course, a confidence interval for the relative loss is not informative, since s∗
is unknown; instead, the goal to be aimed at is an oracle-type inequality. The term
oracle inequality originally refers to a risk bound for a model selection procedure
where the bound is within a constant factor of the risk of a minmax estimator in
the best model; that is, almost as good as if this best model had been known in
advance through an “oracle”. In the present context, we use more loosely the term
“oracle-type inequality” to designate a bound where the risk of the estimator can be
compared to the risk of the best approximating functions coming from any model
under consideration plus a model-dependent penalty term; this without knowing in
advance which models are best. This approach typically allows us to obtain precise
bounds on the rates of convergence toward the target function.

SVM and regularized model selection. It has been noted by several authors
(see Section 2.3) that SVMs can be seen as a regularized estimation method, where
the regularizer is the squared norm of the estimating function in some reproducing
kernel Hilbert space. We show that this can also be interpreted as a penalized model
selection method, where the models are balls in this Hilbert space. This allows us
to cast the SVM problem into a general penalized model selection framework,
where we are able to use tools developed in [22], in order to obtain oracle-type
inequalities over the family of considered models.

1.3. Highlights of the present work.

A generic, versatile model selection theorem. To be applied to SVMs, the re-
sults of [22] need to be extended to a setting where various parameters are model-
dependent, resulting in various technical problems. Therefore, we decided to de-
vote a whole section (Section 4) of this paper to the extension of these model
selection results in a very general setting. We believe this result is of much inter-
est per se because it can be useful for other applications (at least when the loss
function is bounded model-wise) and constitutes an important point of this work.

Is the SVM an adaptive procedure? The application of the above general re-
sult to SVMs is an example of the power of this approach, and allows us to derive
a nonasymptotic oracle-type inequality for the SVM proxy risk. This is the main
result of this paper. The interesting feature of oracle-type bounds is that they dis-
play adaptivity properties: while the regularization term used in the estimator does
not depend on assumptions on the target function, the bound itself involves the ap-
proximation properties of the models to the target function. Therefore, the (fixed)
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estimation procedure “adapts” to how well the target is approximated by the mod-
els. This is in contrast to other related work on the subject such as [12, 32], where
typically the optimal bound is obtained for a choice of the regularization constant
that depends a priori on these approximation properties.

Is the SVM regularization function adequate? Our result allows us to cast a
new light on a very interesting problem, namely, concerning the adequate regular-
ization function to be used in the SVM setting. Our main theorem establishes that
the oracle-type inequality holds provided the regularizer function is larger than
some lower bound ζ(‖f ‖k, n), which is a function of the Hilbert norm ‖f ‖k and
the sample size n. Since the oracle inequality bound is nonincreasing in function of
the regularization term, choosing the regularization precisely equal to ζ(‖f ‖k, n)

will result in the best possible bound allowed by our analysis. The precise behavior,
as a function of the sample size n, of ζ(‖f ‖k, n) depends on a capacity analysis
of the kernel Hilbert space. For this, we provide two possible routes, either using
the spectrum of the kernel integral operator, or the supremum norm entropy of the
kernel space. In particular, we show (in both situations) that, while the squared
Hilbert norm is traditionally used as a regularizer for the SVM, a linear function
of the Hilbert norm is enough to ensure the oracle inequality: this suggests that the
traditional regularizer could indeed be too heavy.

Using several kernels. Another interesting consequence of the model selection
approach is that it is possible to derive almost transparently an oracle-type inequal-
ity in an extended situation where we use several kernels at once for the SVM.
Namely, the different kernels can be compared via their respective penalized em-
pirical losses. The oracle inequality then states that this amounts to selecting the
best kernel available for the problem.

Influence of the generating probability on the convergence rate. It has been
recently pointed out (see [23, 35]) that in the classification setting, the behavior
of the function η(x) = P[Y = 1|X = x] in the neighborhood of the value 1

2 plays
a crucial role in the optimal convergence rate toward the Bayes classifier. In this
paper we assume that η(x) is bounded away from the value 1

2 by a “gap” η0 and
study the influence of η0 on the risk bounds obtained. An interesting feature of the
result is that the knowledge of η0 is not needed to define the estimator itself: it only
comes into play through a remainder term in the bound.

Note that, for a strictly convex proxy loss, this type of assumption on η essen-
tially influences the relation between classification risk and proxy risk (see [4]),
while it has no impact on the statistical behavior of the proxy risk itself. Because
the proxy loss used by the SVM is not strictly convex (it is piecewise linear), the
setting considered in the present paper is different: the gap assumption plays a
role directly in the inequalities for the proxy risk and not in the relation with the
classification risk.
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1.4. Organization of the paper. In Section 2 we present the SVM algorithm,
show how to formulate it as a model selection via penalization method and survey
existing results. In Section 3 we state the main result of the paper for the SVM and
discuss its implications and scope. The main tool to derive these results, which
handle penalized model selection in a generic setting, is given in Section 4—we
hope that its generality will make it useful in the future for other settings as well.
We subsequently show how to apply this general result to the special case of the
SVM. Section 5 contains a comparison of our result to other related work and
concluding remarks. Finally, Section 6 contains the proofs of the results.

2. Support vector machines. For details about the algorithm, its basic prop-
erties and various extensions, we refer to the books [13, 29, 37]. We give here a
short presentation of the formulation of the algorithm with emphasis on the fact
that it can be thought of as a model selection via penalization method.

2.1. Preliminaries: loss functions. With some abuse of notation, we denote
Pg := E[g(X,Y )] for an integrable function g from X × Y to R. Also, we intro-
duce the empirical measure defined by the sample as

Pn := 1

n

n∑
i=1

δXi
⊗ δYi

,

so that Png denotes n−1∑n
i=1 g(Xi, Yi). Finally, we denote η(x) = P [Y = 1|

X = x].
Before we delve further into the details of the support vector machine, we want

to establish a few general preliminaries useful to understand the goals of the rest
of the paper.

The natural setting to study SVMs is real-valued classification where we build
estimators f̂n of s∗ as real-valued functions, being understood that the actual bi-
nary classifier associated to a real function is obtained by taking its sign. We there-
fore measure the probability of misclassification by comparing the sign of f̂n(X)

to Y , thus rewriting the generalization error as

E(f̂n) = P[Y f̂n(X) ≤ 0] = E[θ(Y f̂n(X))],
where θ(z) = 1{z ≤ 0} is called the 0-1 loss function. By a slight abuse of notation,
we also denote by θ the following functional:

θ(f ) := (x, y) �→ 1{yf (x) ≤ 0}.
We define the associated risk (or relative average loss) function

�(f̂n, s
∗) := P[Y f̂n(X) ≤ 0] − P[Ys∗(X) ≤ 0] = Pθ(f̂n) − Pθ(s∗).

However, as will appear in the next section, the classification error θ(·) is not the
actual measure of fit used by the algorithm of the support vector machine; it uses
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instead the “hinge loss” function defined by �(z) := (1 − z)+, where (·)+ denotes
the positive part. Similarly, we also denote by � the following functional:

�(f ) := (x, y) �→ (
1 − yf (x)

)
+;

the associated risk function is denoted

L(f̂n, s
∗) := E[�(f̂n) − �(s∗)].

As mentioned in the introduction, using this convex loss allows for a tractable
optimization problem for actual implementation of the algorithm. Since � is the
loss function actually used to build the SVM classifier, the aim of our analysis is
to derive oracle inequalities about its associated risk L.

However, as the main goal of classification is ultimately to obtain low general-
ization error E , it is only natural to ask the question of the connection between the
two above losses. It is obvious that θ(x) ≤ �(x) and therefore that E(f ) ≤ E[�(f )].
Nevertheless, recalling our main focus is on risks (i.e., relative average loss), this
remark is not really satisfactory and the two following additional questions are of
primary interest:

• How is the real-valued function f ∗ minimizing the averaged hinge loss
E[�(f ∗)] related to the optimal classifier s∗?

• How are �(·, ·) and L(·, ·) related?

(Again, note that it is not entirely correct to talk about “the” function f ∗ minimiz-
ing the hinge loss, since it is not unique: in the sequel we will assume a specific
choice has been made.)

The following elementary lemma gives a satisfactory answer to these questions:

LEMMA 2.1. (i) Let s∗ be a minimizer of E(s) over all measurable functions
s from X into {−1,1}. Then the following holds:

E[�(s∗)] = min
f

E[�(f )],

where the right-hand side minimum is taken over all measurable real-valued func-
tions on X. Furthermore, if f ∗ is a minimizer of E[�(f )], then f ∗ = s∗ a.s. on the
set {P[Y = 1|X = x] /∈ {0, 1

2 ,1}}.
(ii) For any P -measurable function f ,

�(f, s∗) ≤ L(f,f ∗).

Part (i) of the lemma can be found in [19] and part (ii) in [40], but we give a
self-contained proof in Section 6.1 for completeness. Since the choice of f ∗ is
arbitrary among minimizers of E[�(f )], (i) implies that we can choose f ∗ = s∗,
which will be assumed from now on.
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2.2. The SVM algorithm. There are several possible ways of formulating the
SVM algorithm. Historically, it was formulated geometrically. First suppose the in-
put space X is a Hilbert vector space and that the two classes can be separated by a
hyperplane. The SVM classifier is then the linear classifier obtained by finding the
hyperplane which separates the training points in the two classes with the largest
margin (maximal margin hyperplane). The margin corresponds to the smallest dis-
tance from a data point to the hyperplane.

Now, in general, X may not be a Hilbert space, but is mapped into one where
the above algorithm is applied. For computational tractability of the algorithm, it
is crucial that this Hilbert space can be generated by a (reproducing) kernel, whose
properties we sum up briefly here.

Assume we have at hand a so-called kernel function k :X × X → R, meaning
that k is symmetric and positive semi-definite, in the following sense:

∀n,∀(x1, . . . , xn) ∈ Xn,∀(a1, . . . , an) ∈ R
n

n∑
i,j=1

aiaj k(xi, xj ) ≥ 0.

It can be proved that such a function defines a unique reproducing kernel Hilbert
space (RKHS for short) Hk of real-valued functions on X. Namely, define Hk as
the completion of span{k(x, ·) : x ∈ X}, with respect to the norm induced by the
following inner product:

〈u, v〉k =
n∑

i=1

m∑
j=1

aibj k(xi, xj ) for u =
n∑

i=1

aik(xi, ·) and v =
m∑

j=1

bjk(xj , ·);

here the completion is defined in such a way so that it consists of real functions on
X as announced. We denote the norm in Hk by ‖ · ‖k .

Since Hk is a Hilbert space of real-valued functions on X, any element w of Hk

can be alternatively understood as a vector or as a function. Moreover, this space
has the so-called reproducing property which can be expressed as

∀u ∈ Hk,∀x ∈ X u(x) = 〈u, k(x, ·)〉k.
Finally, as announced, the input space X is mapped into Hk by the simple mapping
x �→ k(x, ·), and, thus, the scalar product of the images of x, x′ ∈ X in Hk is just
given by k(x, x′).

Now, in that space, a hyperplane is defined by its normal vector w and a thresh-
old b ∈ R as

H(w,b) = {v ∈ Hk : 〈w,v〉k + b = 0}.
It is easy to see [29] that the maximum margin hyperplane (when it exists) is

given by the solution of the following optimization problem:

min
w∈Hk,b∈R

1
2‖w‖2

k

under the constraints: ∀i = 1, . . . , n,Yi(〈w,k(Xi, ·)〉k + b) ≥ 1.
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However, it can happen that the data is not linearly separable (i.e., the above con-
straints define an empty set). This has led to considering the following relaxed
optimization problem, depending on some constant C ≥ 0:

min
w∈Hk,b∈R

1
2‖w‖2

k + C

n∑
i=1

ξi

under the constraints: ∀i = 1, . . . , n,Yi(〈w,k(Xi, ·)〉k + b) ≥ 1 − ξi;(2.1)

∀i = 1, . . . , n ξi ≥ 0.

This problem always has a solution and is usually referred to as the soft-margin
SVM. It is common, although not systematical, for theoretical studies of SVMs
to introduce a simpler version of the SVM algorithm where one uses only hy-
perplanes containing the origin, that is, b is set to zero (although this version is
admittedly rarely used in practice). This is mainly for avoiding some technical dif-
ficulties. We will adopt this simplification here, calling this constrained version
“SVM0,” and we will focus on it for the main part of the paper.

2.3. From regularization to model selection. It has been noticed by several
authors [15, 30] that the soft-margin SVM algorithm can be formulated as the
minimization of a regularized functional. Consider the primal optimization prob-
lem (2.1). For a fixed w, obviously the optimal choice for the parameters (ξi) given
the constraints is ξi = (1 − Yi(〈w,k(Xi, ·)〉k + b))+. Now using the reproducing
property of the kernel, we have 〈w,k(Xi, ·)〉k = w(Xi), so the new formulation of
the problem is (now denoting f instead of w)

min
f

1

n

n∑
i=1

(
1 − Yif (Xi)

)
+ + 	n‖f ‖2

k,(2.2)

where 	n = 1
nC

and the minimum is to be performed over f ∈ Hk (for the SVM0

algorithm) and for f ∈ Hb
k = {x �→ g(x) + b|g ∈ Hk, b ∈ R} for the plain SVM

algorithm. Note that ‖ · ‖k , inherited from Hk to Hb
k , is only a semi-norm on Hb

k .
Now, it is straightforward that the optimization problem (2.2) can be rewritten

in the following way:

min
R∈R

{
min

f :‖f ‖k≤R

1

n

n∑
i=1

(
1 − Yif (Xi)

)
+ + 	nR

2

}
.(2.3)

This gives rise to the interpretation of the above regularization as model selection,
where the models are balls in Hk (or “semi-norm balls” in Hb

k ), and where the
model selection is done using penalized empirical loss minimization. Also, it is
now clear from equations (2.2) and (2.3) that the empirical loss used by the SVM
is not the classification error (or 0–1 loss function), but the hinge loss function �

defined in the previous section.
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Denoting B(R) the ball of Hk of radius R, our interest in the main part of the
paper is to study the behavior of SVM0 vis-à-vis the family of models B(R), and
the correct order of the regularization function to be used.

3. Main result.

3.1. Assumptions. We will present two variations of our main result. The dif-
ference between the two versions is in the way the capacity of the RKHS is ana-
lyzed. General assumptions on the RKHS Hk and on the generating distribution
are common to the two versions. Below we denote η(x) = P(Y = 1|X = x).

Hk is a separable space (Note that the separability of Hk is ensured,(A1)

in particular, if X is a compact topological space and k is continuous on

X × X.), and k(x, x) ≤ M2 < ∞ for all x ∈ X.

(“Low noise” condition) ∀x ∈ X
∣∣η(x) − 1

2

∣∣≥ η0.(A2)

The following additional assumption will be required only for setting (S1) be-
low:

∀x ∈ X min
(
η(x),1 − η(x)

)≥ η1.(A3)

Our result covers the two following possible settings:

Setting 1 (S1). Suppose assumptions (A1), (A2) and (A3) satisfied. In this first
setting, the capacity of the RKHS is analyzed through the spectral properties of the
kernel integral operator Lk : L2(PX) → L2(PX) defined as

(Lkf )(x) =
∫

k(x, x′)f (x′) dPX(x′),(3.1)

which is positive, self-adjoint and trace-class (see Appendix A for details). As a
result, Lk can be diagonalized in an orthogonal basis of L2(PX), it has discrete
spectrum λ1 ≥ λ2 ≥ · · · (where the eigenvalues are repeated with their multiplic-
ities) and satisfies

∑
j≥0 λj < ∞. For a fixed δ > 0, we then define for n ∈ N the

following function:

γ (n) = η1
−1 1√

n
inf
d∈N

(
d√
n

+ η1

M

√∑
j>d

λj

)
.

Setting 2 (S2). Suppose assumptions (A1) and (A2) satisfied. For the second
situation covered by the theorem, the capacity is measured via supremum norm
covering numbers. In this situation, we assume that the RKHS Hk can be included
via a compact injection into C(X) and we denote by H∞(BHk

, ε) the ε-entropy
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number (log-covering number) in the supremum norm of the unit ball of Hk . De-
note

ξ(x) =
∫ x

0

√
H∞(BHk

, ε) dε,(3.2)

and let x∗(n) be the solution of the equation ξ(x) = M−1n1/2x2. For a fixed δ > 0,
define for n ∈ N the following function:

γ (n) = M−2x2∗(n).

3.2. Statement. We now state our main result, which applies, in particular, to
the SVM0 algorithm.

THEOREM 3.1. Consider either setting (S1) under assumptions (A1), (A2)
and (A3), or setting (S2) under assumptions (A1) and (A2). Define the constant
w1 = η1 for setting (S1) and w1 = 1 for setting (S2).

Let δ > 0 be a fixed real number; and let 	n > 0 be a real number satisfying

	n ≥ c

(
γ (n) + w−1

1
log(δ−1 logn) ∨ 1

n

)
,(3.3)

where c is a universal constant. Finally, let ϕ be a nondecreasing function on R
+

such that ϕ(0) = 0 and ϕ(x) ≥ x for x ≥ 1
2 .

Consider the following regularized minimum empirical loss procedure on an
i.i.d. sample ((Xi, Yi))i=1,...,n from distribution P , using the hinge loss function
�(x, y) = (1 − xy)+:

ĝ = Arg Min
g∈Hk

(
1

n

n∑
i=1

�(g(Xi), Yi) + 	nϕ(M‖g‖k)

)
,(3.4)

then if s∗ denotes the Bayes classifier, the following bound holds with probability
at least 1 − δ:

L(ĝ, s∗) ≤ 2 inf
g∈Hk

[L(g, s∗) + 2	nϕ(2M‖g‖k)] + 4	n

(
2ϕ(2) + cw1η

−1
0

)
.(3.5)

3.3. Discussion and comments.

3.3.1. Discussion of the result.
Adaptivity of the SVM. The most important point we would like to stress about

Theorem 3.1 is that the regularization term and the final bound are independent of
any assumption on how well the target function f ∗ is approximated by functions
in Hk . This is an important advantage in the approach we advocate here, that is,
casting regularization as model selection. The model selection approach dictates
a minimal order of the regularization, which is “structural” in the sense that it
depends on some complexity measure of the models (here balls of Hk) and not
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on how well the models approximate the target. In simpler terms, the minimal
regularizer depends only on the estimation error, not the approximation error. Our
result is therefore an oracle type bound, which entails that the SVM is an adaptive
procedure with respect to the approximation properties of the target by functions
in Hk . From this bound, we can derive convergence rates to Bayes as soon as
we have an additional hypothesis on these approximation properties, while the
procedure stays unchanged. We discuss this point in more detail in Section 3.4.

Squared versus linear regularization. The second point we want to emphasize
about Theorem 3.1 is that the minimum regularization function required to ensure
that the oracle inequality holds is of order ‖g‖k only (as a function of ‖g‖k).
In the original SVM algorithm, a regularization of order ‖g‖2

k is used. The theo-
rem covers both situations by choosing respectively ϕ(x) = x or ϕ(x) = 2x2. In
view of the oracle inequality, the weaker the regularization term, the better the up-
per bound: provided that the oracle inequality holds, a weaker regularization will
grant a better bound on the convergence rate. Therefore, this theorem suggests that
[under certain conditions, i.e., mainly (A2)] a lighter regularization can be used
instead of the standard, quadratic, one.

Of course, while a lighter regularization results in a better bound in our theorem,
we cannot assert positively that the resulting algorithm will necessarily outperform
the standard one: to draw such a conclusion, we would need a corresponding lower
bound for the standard algorithm. Here we will merely point out the analogy of
SVM to regularized least squares regression. Under a Gaussian noise assumption,
the behavior of the regularized least squares estimator of the form (3.4) [with the
square loss �(x, y) = (x − y)2 replacing the hinge loss] is completely elucidated
(see [24], Section 4.4). In particular, the standard quadratic regularization estimator
has an explicit form, from which it is relatively simple to derive corresponding
lower bounds. As a consequence, in that case, it can be proven that a regularization
that is lighter than quadratic enjoys better adaptivity properties than the standard
one. In the present work, we have followed essentially the same driving ideas to
derive our main result in the SVM setting, so that there is reasonable hope that the
obtained bound indeed reflects the behavior of the algorithm. A complete proof of
that fact is an interesting open issue.

From hinge loss risk to classification risk. This theorem relates the relative hinge
loss E[�(ĝ) − �(s∗)] (where s∗ is the Bayes classifier) to the optimum relative
loss in the models considered, that is, balls of Hk (see Section 2.3). Furthermore,
Lemma 2.1 ensures that the relative classification error is upper-bounded by the
relative hinge loss error, hence, the theorem also results in a bound on the relative
classification error.

3.3.2. Discussion of the assumptions.
About assumption (A2). This assumption requires that the conditional probabil-

ity of Y given X should be bounded away from 1
2 by a “gap” η0. Note that the
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knowledge of η0 is not necessary for the definition of the estimator, as it does not
enter in the regularization term. This quantity only appears as an additional term
in the oracle inequality (3.5). Furthermore, for η0 not depending on n, this trail-
ing term will become negligible as n → ∞, since the infimum in the first term
will be attained for a function gn ∈ Hk with ‖gn‖k → ∞ (see below Section 3.4
). Assumption (A2) is a particular case of the so-called Tsybakov’s noise condi-
tion, which is known to be a crucial factor for determining fast minmax rates in
classification problems (see [23, 35]).

A possible generalization. A more general Tsybakov’s noise condition would be
to assume, in place of (A2), that |1

2 −η(x)|−1 ∈ Lp for some p > 0. In this setting,
it is possible to show (although it is out of the scope if the present work) that a
result similar to (3.5) holds, with the same regularization function, except that the
trailing term in (3.5) of order η−1

0 	n gets replaced by a term of the form ζ(	n),
with x � ζ(x) � √

x, where the exact form of ζ depends on the noise condition
and the structural complexity analysis of Hk . Obviously, in this general situation,
the trailing term is no longer necessarily negligible — whether or not this is the
case will depend on the behavior of the first term of the bound, and therefore on the
approximation properties of f ∗ by Hk . The interpretation of this generalization is
therefore more involved.

About assumption (A3). The requirement that η should be bounded away from
0,1 by a gap η1 is a technical assumption in setting (S2) needed as a quid pro
quo for obtaining an explicit relation between regularization term and eigenvalues
(see the short discussion before Theorem 6.6 in Section 6.3). While there does not
appear to be an intrinsic reason for this assumption, we did not succeed in getting
rid of it in this setting. Note that, in contrast to the previous point, the knowledge
of η1 is needed to define the regularization explicitly in this setting. While this
assumption is somewhat unsatisfactory, it is possible, at least in principle, to ob-
tain an explicit lower bound on the value of η1 by introducing deliberately in the
data a small artificial “label flipping noise” (i.e., flipping a small proportion of the
training labels). We refer to [9] (in the discussion preceding Corollary 10 there; the
idea also appeared earlier in [39]) where this idea is exposed in more detail. Note
that the label flipping preserves assumption (A2), albeit with a smaller gap value
η0.

About setting (S2). An unsatisfactory part of the result for setting (S2) is that
it is not possible to compute the value of the regularization parameter γ (n) from
the data, since it requires knowledge of the eigenvalues of Lk . The interest of this
setting is to give an idea of what the relevant quantities are for defining a suitable
regularization, in a way that is generally more precise than for setting (S1) (see
discussion in the next section). Moreover, there is strong hope that estimating these
tail sum of eigenvalues from the data (using, e.g., techniques from [3]) would lead
to a suitable data-dependent penalty.
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3.3.3. Other comments.
Multiplicative constant. The constant 2 in front of the right-hand side of equa-

tion (3.5) could be made arbitrarily close to one at the price of increasing the
regularization function accordingly. Here we made an arbitrary choice in order to
simplify the result.

Deviation inequality vs. average risk. The above result states a deviation bound
valid with high probability 1−δ. Note that δ enters into the regularization function,
hence, it is not possible to directly integrate (3.5) to state a bound for the average
risk. However, it is possible to obtain such a result at the price of a slightly heavier
regularization (an additional logarithmic factor). Namely, the proof of Theorem 2
essentially relies on a general model selection theorem (Theorem 4.3 in the next
section) which covers both the deviation inequalities and average risk inequalities
with minor changes in the penalty function. For brevity, we do not state here the
resulting theorem obtained for average SVM performance, but it should be clear
that only minor modifications to the proof of Theorem 3.1 would be necessary.

Using several kernels at once. Suppose we have several different kernels
k1, . . . , kt at hand. Then we can adapt the theorem to use them simultaneously.
Namely, to each kernel is associated a penalization constant 	

(i)
n ; the estimator ĝ

is given by (3.4) where we add another Arg min operation over the kernel index;
and oracle inequality (3.5) is valid with an additional minimum over the kernel
index; only δ has to be replaced by δ/t for the price of the union bound. That
such a result holds is straightforward when one takes a look at the model selec-
tion approach used to prove Theorem 3.1 (developed Section 4). This is one of the
advantages of this approach.

3.4. Penalty functions and convergence rates for support vector machines.

3.4.1. Convergence rates for the SVM. Let us first note from the definition of
γ in both settings (S1) and (S2) that, generally, γ (n) is of order lower than n−1/2.
This is in contrast with some earlier results in learning theory where bounds and
associated penalties often behave like n−1/2. Actual rates of convergence to the
Bayes classifier also depend on the behavior of the bias (or approximation error)
term inf‖g‖k≤R L(g, s∗). In most practical cases, the functions in Hk are contin-
uous, while the Bayes classifier is not; hence, the Bayes classifier cannot belong
to any of the models. If we assume that Hk is dense in L1(P ), however (see also
the stronger notion of “universal kernel” in [31]), then there exists a sequence of
functions (gn) ∈ Hk such that un = L(gn, s

∗) → 0, implying consistency of the
SVM. Moreover, if information is available about the speed of approximation [i.e.,
how inf‖g‖k≤R L(g, s∗) goes to zero as a function of R] and about the function
γ (n) [depending either on eigenvalues or supremum norm entropy according to
setting (S1) or (S2)], an upper bound on the speed of convergence of the estimator
can be derived from Theorem 3.1. As noted earlier, in this case, using a regular-
ization term of order ‖g‖k instead of ‖g‖2

k always leads to a better upper bound
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on the convergence rate. The study of such approximation rates for special func-
tion classes is outside the scope of the present paper, but is an interesting future
direction.

3.4.2. About the function γ (n) in settings (S1) and (S2). The behavior, as a
function of the norm ‖g‖k , of the minimum regularization function required in the
theorem does not depend on the setting. Its behavior as a function of the sample
size n, however, does, since the complexity analysis is different in both settings.

In order to fix ideas, we give here a very classical Sobolev space type example
where we can explicitly compute the function γ in both settings—and where they
coincide. Let us consider the case where X = T is the unit circle, the marginal
PX of the observations is the Lebesgue measure, and the reproducing kernel k is
translation invariant, k(x, y) = k(x − y) where k is a periodic function that admits
the Fourier series decomposition

k(z) = ∑
k≥0

ak cos(2πkz),

where (ak) is a sequence of nonnegative numbers. Obviously, the Fourier basis
forms a basis of eigenvectors for the associated integral operator Lk and the eigen-
values are λ1 = a0, λ2k = λ2k+1 = ak/2 for k > 0. A function belonging to the
RKHS f ∈ Hk is therefore characterized by

∑
k≥0

λ−1
k f̂ 2

k = ‖f ‖2
k < ∞, where f̂k

are its Fourier coefficients.
Consider the case where λk � k−2s for some s > 1

2 . Then computing the func-
tion γ in setting (S1) yields γ1(n) � n−2s/(2s+1). On the other hand, clearly Hk can
be continuously included into the Sobolev space Hs(T). Uniform norm entropy es-
timates for Sobolev spaces have been established (and can be traced back to [7]; see
also [14], page 105 for a general result); it is known that H∞(BHs(T), ε) � ε−1/s ;
hence, the function ξ appearing in setting (S2) is such that ξ(x) � n(2s−1)/2s , lead-
ing also to γ2(n) � n−2s/(2s+1).

However, the fact that the two settings lead to a regularization of the same order
seems very specific to this case, depending, in particular, on the properties of the
Lebesgue measure and of Sobolev spaces. In a more general situation, if we assume
the eigenvalues to be known, and η1 to be a fixed constant, we expect the analysis
in setting (S1) to give a tighter estimate for the minimal regularization function
than the analysis in setting (S2); that is to say, the function γ (n) appearing in (S1)
will be of smaller order than the one appearing in (S2). Informally speaking, this is
because the eigenvalues of LK are related to the covering entropy of the unit ball
of Hk in L2 norm, while setting (S2) considers covering entropy with respect to
the stronger supremum norm.

On the other hand, this tighter analysis comes at a certain price, namely, addi-
tional assumption (A3) and the requirement that the eigenvalues are known (or es-
timated), as already pointed out above. One advantage of supremum norm entropy
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is that, by definition, it is distribution independent. Furthermore, some relatively
general results are known on this entropy depending on the regularity properties of
the kernel function; see [41].

4. A model selection theorem and its application.

4.1. An abstract model selection theorem. The remainder of the paper is de-
voted to the proof of Theorem 3.1. However, in the present section we change
gears somewhat, forgetting voluntarily about the specific setting of the SVM to
present an “abstract” theorem resulting in oracle inequalities that can be obtained
for model selection by penalized empirical loss minimization. This theorem is the
cornerstone for the proof of Theorem 3.1.

Our motivation for leaving momentarily the SVM framework for a more gen-
eral one is twofold. On the one hand, we hope that it will make appear more
clearly to the reader the general principle underlying our result, independently of
the specifics of the SVM (which we will return to in the next section). On the other
hand, we think that this result is general enough to be of interest of itself, inasmuch
as it can be applied in a variety of different frameworks.

The theorem is mainly an extended version of Theorem 4.2 of [22] to a more
general setting, namely, where some key parameters, considered fixed in the above
reference, can now depend on the model. This extension is necessary for our in-
tended application to SVMs, which is exposed in Section 4.2, and requires appro-
priate handling. However, the scope of this abstract model selection theorem can
cover a wider variety of situations. Examples are the classical VC-dimension set-
ting using classification loss (in this case the result of [22] is actually sufficient;
see also the more detailed study [23]), or regularized Boosting-type procedures
(see [9], where an earlier version of the model selection theorem presented here
was used). The fact that the theorem applies to approximate, rather than exact,
penalized minimum empirical loss estimation is a minor refinement that is use-
ful in certain situations: this will be the case for our application to SVMs, where
the continuous regularization scheme will be related to an approximate discrete
penalization scheme.

We first need to introduce the following definition:

DEFINITION 4.1. A function ψ : [0,∞) → [0,∞) is sub-root if it is nonneg-
ative, nondecreasing, and if r �→ ψ(r)/

√
r is nonincreasing for r > 0.

Sub-root functions have the following property:

LEMMA 4.2 ([3]). Let ψ : [0,∞) → [0,∞) be a sub-root function. Then it is
continuous on [0,∞) and the equation ψ(r) = r has a unique positive solution. If
we denote this solution by r∗, then for all r > 0, r ≥ ψ(r) if and only if r∗ ≤ r .
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We can now state the model selection result:

THEOREM 4.3. Let � :G → L2(P ) [where G ⊂ L2(P )] be a loss function
and assume that there exists g∗ ∈ Arg Ming∈G E[�(g)]. Let (Gm)m∈M , Gm ⊂ G be
a countable collection of classes of functions and assume there exists the following:

• a pseudo-distance d on G;
• a sequence of sub-root functions (φm),m ∈ M;
• two positive sequences (bm) and (Cm),m ∈ M;

such that

∀m ∈ M,∀g ∈ Gm ‖�(g)‖∞ ≤ bm;(H1)

∀g,g′ ∈ G Var
(
�(g) − �(g′)

)≤ d2(g, g′);(H2)

∀m ∈ M,∀g ∈ Gm d2(g, g∗) ≤ CmL(g,g∗);(H3)

and, if r∗
m denotes the solution of φm(r) = r/Cm,

∀m ∈ M,∀g0 ∈ Gm,∀r ≥ r∗
m

(H4)

E

[
sup

g∈Gm

d2(g,g0)≤r

(P − Pn)
(
�(g) − �(g0)

)]≤ φm(r).

Let (xm)m∈M be a sequence of real numbers such that
∑

m∈M e−xm ≤ 1. We
assume that families (bm), (Cm), (xm), m ∈ M, are ordered the same way, by which
we mean that

∀m,m′ ∈ M, xm < xm′ ⇒
{

bm ≤ bm′ ;
Cm ≤ Cm′ .

(4.1)

Let ξ > 0,K > 1 be some real numbers to be fixed in advance. Put Bm =
75KCm + 28bm, and let pen(m) be a penalty function such that, for each m ∈ M,

pen(m) ≥ 250K
r∗
m

Cm

+ Bm(xm + ξ + log(2))

3n
.(4.2)

Let (ρm)m∈M be a family of positive numbers and g̃ denote a (ρm)-approximate
penalized minimum empirical loss estimator over the family (Gm) using the above
penalty function, that is, satisfying

∃m̃ ∈ M : g̃ ∈ Gm̃ and
(4.3)

Pn�(g̃) + pen(m̃) ≤ inf
m∈M

inf
g∈Gm

(
Pn�(g) + pen(m) + ρm

);
then the following deviation inequality holds with probability greater than 1 −
exp(−ξ):

L(g̃, g∗) ≤ K + 1/5

K − 1
inf

m∈M

(
inf

g∈Gm

L(g, g∗) + 2pen(m) + ρm

)
.
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Furthermore, if the penalty function satisfies, for each m ∈ M,

pen(m) ≥ 250K
r∗
m

Cm

+ Bm(xm + log(2))

3n
+ Bm logBm

n
,(4.4)

then the following expected risk inequality holds:

E[L(g̃, g∗)] ≤ K + 1/5

K − 1
inf

m∈M

(
inf

g∈Gm

L(g, g∗) + 2pen(m) + ρm + 2

n

)
.

Remarks.

1. Note that the difference with Theorem 4.2 of [22] is the fact that constants bm

and Cm can depend on m, which requires additional work, but is a necessary
step for application to SVMs.

2. In hypothesis (H4) φ(r2) can be interpreted as the modulus of continuity with
respect to d of the supremum of the empirical process indexed by G.

3. The class G ⊂ L2(P ) should be seen as the “ambient space”; it should at least
contain all models. Note that choice of G determines the target function g∗ (the
minimizer of the average loss on G). Typically, the theorem will be applied with
G = L2(P ) or G = L2(PX) (as will be the case below), but other choices may
be useful.

4. Although it is not its main purpose, this theorem can also be used for the
convergence analysis of the empirical loss minimization procedure on a sin-
gle model G. Namely, it is sufficient to consider a model family reduced to a
singleton and to disregard the penalty. This is also a situation where the choice
of G can be of interest. If we make the choice G = G, then the target g∗

G is the
best available function in the model G. In this case, the bias term of the bound
vanishes. By adding to the left and right of the obtained inequality the quantity
L(g∗

G, g∗), where g∗ is the minimum average loss function over a larger class

[e.g., L2(P )], it is then possible to obtain a constant 1 in front of the bias term
(instead of K+1

K−1 > 1). However, this does not come completely for free since
we must consider g∗

G instead of g∗ when checking for assumption (H3). This
assumption may actually be harder to check for in practice, because usually g∗
has a simple, closed form (e.g., the Bayes classifier in a classification frame-
work), whereas g∗

G depends on the approximation properties of model G. Under
certain convexity assumptions of the risk and of the model, it was shown in [4]
that (H3) holds in this setting; this way we retrieve a bound in all points similar
to single-model ERM results of [4].

4.2. Application to support vector machines. We now expose briefly the key
elements needed to apply Theorem 4.3 to the SVM framework. Remember that
in the case of SVMs, the natural loss function to consider is the hinge loss func-
tion �(g) = (x, y) �→ (1 − yg(x))+: this is the empirical loss which is minimized
(subject to regularization) to find a classifier ĝ. Interpreting the SVM procedure
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as a penalized model selection procedure (see Section 2.3), we intend to apply
Theorem 3.1.

To this end, we first discretize the continuous family of models (B(R))R∈R

over a certain family of values of the radii: thus, our collection of models will be
(B(R))R∈R, where R is an appropriate discrete set of positive real numbers. We
now have to check assumptions (H1)–(H4) of Theorem 4.3. The detailed analysis
is exposed in Section 6.3 and the following statement sums up the obtained results:

THEOREM 4.4. Let R be a countable set of positive real numbers, G =
L2(PX), and � the hinge loss function.

In setting (S1) under assumptions (A1), (A2) and (A3), the family of models
(B(R))R∈R satisfies hypotheses (H1) to (H4) of Theorem 4.3 with the following
parameter values:

bR = 1 + MR; CR = 2
(

MR

η1
+ 1

η0

)
;

r∗
R ≤ 16

C2
R√
n

inf
d∈N

(
d√
n

+ η1

M

√∑
j>d

λj

)
.

In setting (S2) under assumptions (A1) and (A2), the family of models
(B(R))R∈R satisfies hypotheses (H1) to (H4) of Theorem 4.3 with the following
parameter values:

bR = 1 + MR; CR =
(
MR + 1

η0

)
; r∗

R ≤ 2500M−2C2
Rx2∗(n),

where x∗ is as in the definition of setting (S2).

Once assumptions (H1)–(H4) are granted, the remaining task in order to prove
Theorem 3.1 is to formalize precisely how to back and forth between the contin-
uous regularization and the discrete sets of models (B(R))R∈R. The details are
given in Section 6.4.

5. Discussion and conclusion.

5.1. Relation to other work. In this section we compare our result to earlier
work. The properties of the generalization error of the SVM algorithm have been
investigated in various ways (we omit here the vast literature on algorithmic as-
pects of the SVM with which the present paper is not concerned). To this regard,
we distinguish between two types of results: the first type are error bounds. They
bound the difference between the empirical and true expected loss of an estimator.
The second type are excess loss inequalities which relate the risk of the estimator
to the Bayes risk.
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5.1.1. Error bounds. The first result about the SVM algorithm is due to
Vapnik; who proved that the fat-shattering dimension (see, e.g., [1] for a de-
finition) at scale 1 of the set {(x, y) �→ y〈k(x, ·), f 〉k + b = yf (x) + b :f ∈
Hk,‖f ‖k ≤ R,b ∈ R} on a sample X1, . . . ,Xn is bounded by D2R2, where D

is the radius of the smallest ball enclosing the sample in feature space, which
can be computed as D = infg∈Hk

maxi=1,...,n ‖k(Xi, ·) − g‖k or, equivalently,
D2 := max‖β‖1≤1

βi≥0

∑n
i=1 βik(Xi,Xi) −∑

i,j βiβj k(Xi,Xj ).

This bound is known as the “radius-margin” bound since it involves the ratio of
the radius of the sphere enclosing the data in feature space and of the (geometrical)
margin of separation of the data which is equal to 1/R when the scaling is chosen
such that the points lying on the margin (the “support vectors”) have output value
in {−1,1}.

The first formal error bounds on large margin classifiers were proven by Bartlett
[2]. In these bounds, the misclassification error E(f ) of a real-valued classifier
f is compared to the fraction of the sample which are misclassified or almost
misclassified, that is, which have margin less than a certain (positive) value. In
later work, it was noticed that for classes of functions such as B(R), the spectrum
of the kernel operator [27] plays an important role in capacity analysis.

More recent bounds on the capacity of such classes, involving Rademacher av-
erages, have confirmed this role. We reproduce here a particularly elegant bound
based on this technique (Theorem 21 of [5], slightly adapted for our notation):

THEOREM 5.1. Let R > 0; for any x > 0, with probability at least 1 − 4e−x ,
for all f ∈ B(R),

Pθ(f ) ≤ Pn[�(f ) ∧ 1] + 4R√
n

√√√√1

n

n∑
i=1

k(Xi,Xi) + 9
√

x

2n
.

Error bounds as the above are typically valid for any function in B(R) uni-
formly. They thus do not take into account the specificity of the SVM algorithm.
Also, for an error bound, we cannot expect a better convergence rate than n−1/2

of the empirical loss to the true average loss, since for a single function this is the
rate given asymptotically by the central limit theorem.

The term
∑n

i=1 k(Xi,Xi) in the above theorem is the trace of the so-called Gram
matrix (matrix of inner products of the data points in feature space). Its expected
value under the sampling of the data is precisely n times the trace of the kernel
operator, that is, the sum of its eigenvalues. If we compare this to our main re-
sult Theorem 3.1, in setting (S1), we see that our complexity penalty is always of
smaller order (up to a constant factor, and to the relation between empirical and
true spectrum, which we do not cover here, but is studied, e.g., in [8, 28]).

In a different direction, in [11] are presented error bounds for regularization
algorithms which explicitly involve the regularization parameter.



508 G. BLANCHARD, O. BOUSQUET AND P. MASSART

5.1.2. Excess loss inequalities. Studying the behavior of relative (or excess)
loss has been at the heart of recent work in the statistical learning field. Some
results have been developed specifically for regularization algorithms of the type
(2.2). In particular, asymptotic results on the consistency of the SVM algorithm,
that is, convergence of the risk toward Bayes risk, were obtained by Steinwart in
[31].

Using a leave-one-out analysis of the SVM algorithm and techniques similar to
those in [11], Zhang [40] obtained sharp bounds on the difference between the risk
of the SVM classifier and the Bayes risk of the form

E[�(fn)] − cE[�(f ∗)],
where c > 1. However, because of this last strict inequality, this means that one
cannot directly obtain information about the convergence L(fn,f

∗) to zero from
these results as soon as E�(f ∗) is nonzero.

Studying the convergence of L(fn,f
∗) opens the door to complexity penalties

that decrease faster than n−1/2, because the final goal is to compare directly the
true average loss of the target and the estimated function, not their empirical loss.
The so-called “localized approach” (that we followed in this paper) is a theoretical
device used to prove such improved rates. Introduced in the statistical community
for the general study of M-estimation, it has become widespread recently in the
learning theoretical community; see, for example, [3, 4, 6, 16, 17, 20, 23, 25].

Concerning more specifically the SVM, recent works have concentrated on ob-
taining faster rates of convergence in various senses. In [12], the q-soft margin
SVM is studied (i.e., when the considered loss function is �q ) for q > 1. In [26],
the SVM is studied from the point of view of inverse problems. In [32], conver-
gence properties of the standard SVM is studied in the case of the Gaussian kernel.
In the above references, to obtain the best bounds on the rates of convergence, the
regularization parameter 	n (and, in the latter reference, the width of the Gaussian
kernel) must have a prescribed decrease as a function of the sample size n, de-
pending on a priori knowledge on regularity properties of the function f ∗ (or η).
Therefore, these results do not display adaptivity with respect to the regularity
of f ∗.

In the recent paper [33], a general inequality for regularized risk minimizers
was derived, applying, in particular, to the SVM framework. The main differences
in this work with respect to our framework are the following:

• a general family of possible loss functions (which includes hinge loss and square
loss) is considered;

• a general condition on the loss and the generating probability distribution is con-
sidered, covering, in particular, the general Tsybakov’s noise setting for classi-
fication (but without adaptivity to this regard);

• the regularization considered is fixed to be the squared RKHS norm;
• the capacity of the kernel space is measured in terms of universal L2 entropy.
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While our work has obviously less generality concerning the first two points, our
results are sharper concerning the two last ones. One of our main goals here was
to study precisely what was the minimal order of the penalty with which we could
prove an oracle inequality for the loss function used in the SVM. Furthermore, our
setting (S2) relies on a capacity measure of the kernel space based on the spec-
tral properties of the associated integral operator, which is sharper than universal
entropy in this setting. Again, the approach we followed here was inspired by an
analogy of the SVM with the more classical regularized least squares regression,
which is by now relatively well understood, and where the optimal results con-
cerning the two last above points are known to be sharper than those obtained in
[33]. Our investigation was driven by the question of how much of these precise
results could be carried over to the SVM setting.

Finally, while our results demonstrate the adaptivity of support vector machines
with respect to the approximation properties by the RKHS Hk of the target f ∗,
we do not tackle the question of full adaptivity with respect to Tsybakov’s noise
condition. Only recently have results been obtained in this direction [18, 34, 36].

5.2. Conclusion. Summing up our findings, we have brought forth a general
theorem allowing to derive oracle inequalities for penalized model selection meth-
ods. Application of this theorem to support vector machines has led to precise
sufficient conditions for the form of the regularization function to be used in order
to obtain oracle inequalities for the hinge loss. In particular, under the assumptions
considered here about the probability distribution P(Y |X), the bound we obtain
gets better if we use a linear regularizer in the Hilbert norm rather than the stan-
dard quadratic one.

This result thus brings forth the interesting question of whether a SVM-type
algorithm using a lighter (linear in the Hilbert norm) regularizer would yield im-
proved practical results. Several issues are in play here. First a practical issue:
a disadvantage of a linear regularizer is that the associated optimization problem,
although convex, is not as easily tractable from an algorithmic point of view as the
squared-norm regularization. Second, a theoretical issue, namely, whether a corre-
sponding lower bound holds, which would prove that the linear regularizer is in-
deed better. This is the case for regularized least squares in the Gaussian noise; for
the SVM, lower bounds remain very largely an open problem. And third, a crucial
issue both theoretical and practical, and not tackled here, is that the multiplicative
factor 	n in (2.2) is seldom taken equal to some a priori fixed function of n in
practice. Instead, it is typically picked by cross-validation. It is important to bring
into focus the fact that, even if the quadratic regularizer was sub-optimal for a fixed
penalty scheme, this may still be compensated by the cross-validation step for the
multiplicative factor 	n, which could implicitly “correct” this effect. We believe
this issue has not been studied in current work on SVMs, and that it is a central
point to be studied in the future in order to reconciliate theory and practice.
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Several other mathematical problems remain open. Ideally, one would hope to
obtain the same kind of result for the full SVM algorithm instead of the SVM0
considered here. We mentioned in our comments after the main theorem a possi-
ble extension from our “gap” condition to a general Tsybakov’s noise condition.
This would give rise to an additional term for which we cannot always ensure that
it is only a negligible remainder as the sample size grows to infinity. Therefore, the
question of full adaptivity to Tsybakov’s noise remains generally open. Finally, it
is not clear whether our sufficient minimum rate conditions for the penalty are min-
imal: it would be interesting to investigate whether a lower order penalty would,
for example, yield an inconsistent estimator.

6. Proofs.

6.1. Proof of Lemma 2.1. We start with proving (i). We can write

E[�(g)] = E
[
η(X)

(
1 − g(X)

)
+

+ (
1 − η(X)

)(
1 + g(X)

)
+
]
.

We will prove that, for each fixed x, s∗(x) minimizes the expression in the expec-
tation. Let’s study the function g �→ η(1 − g)+ + (1 − η)(1 + g)+. It is easy to see
that for η ∈ [1

2 ,1] it is minimized for g = 1, and for η ∈ [0, 1
2 ] it is minimized for

g = −1. This means that, in all cases, the minimum is reached at g = s∗. Finally, it
is easy to see that this minimum is unique whenever η /∈ {0, 1

2 ,1}, hence, f ∗ = s∗
a.s. on this set. (Notice additionally that, for η = 1, any g ≥ 1 reaches the mini-
mum, for η = 0, any g ≤ −1 reaches the minimum and for η = 1

2 , any g ∈ [−1,1]
reaches the minimum.)

We now turn to (ii). Considering (i), we can arbitrarily choose f ∗ = s∗. We then
have to prove that

E[1{Yg(X) ≤ 0} − 1{Ys∗(X) ≤ 0}]
≤ E

[(
1 − Yg(X)

)
+ − (

1 − Ys∗(X)
)
+
]
.

We know that the right-hand side is nonnegative. Moreover, the random variable
in the left-hand side is positive (and thus equal to 1) if and only if Yg(X) ≤ 0 and
Ys∗(X) ≥ 0, in which case (1 − Yg(X))+ ≥ 1 and (1 − Ys∗(X))+ = 0 (since s∗
takes its values in {−1,1}). This proves the inequality.

6.2. Proof of Theorem 4.3. To prove Theorem 4.3, we first state the key tech-
nical result concerning a localized uniform control of an empirical process.

THEOREM 6.1. Let F be a class of measurable, square integrable functions
such that for all f ∈ F , Pf − f ≤ b. Let w(f ) be a nonnegative function such
that Var[f ] ≤ w(f ). Let φ be a sub-root function, D be some positive constant
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and r∗ be the unique positive solution of φ(r) = r/D. Assume that the following
holds:

∀r ≥ r∗
E

[
0 ∨

(
sup

f ∈F :w(f )≤r

(P − Pn)f

)]
≤ φ(r).(6.1)

Then, for all x > 0 and all K > D/7, the following inequality holds with proba-
bility at least 1 − e−x :

∀f ∈ F Pf − Pnf ≤ K−1w(f ) + 50K

D2 r∗ + (K + 9b)x

n
.

If additionally, the convex hull of F contains the null function, the same is true
when the positive part in (6.1) is removed.

Note that this result is very similar to Theorem 3.3 in [3] which was obtained
using techniques from [21]. We use similar techniques to obtain the version pre-
sented here.

We will need to transform assumption (6.1), using the following technical
lemma which is a form of the so-called “peeling device”; the version presented
here is very close to a similar lemma in [22].

LEMMA 6.2. If φ is a sub-root function such that for any r ≥ r∗ ≥ 0,

E

[
0 ∨

(
sup

f ∈F :w(f )≤r

Pf − Pnf

)]
≤ φ(r),

one has for any r ≥ r∗,

E

[
sup
f ∈F

Pf − Pnf

w(f ) + r

]
≤ 4

φ(r)

r
,

and when 0 ∈ convF , the same is true if the positive part is removed in the previous
condition.

PROOF. We choose some x > 1. In the calculations below a supremum over
an empty set is considered as 0. We have

sup
f ∈F

Pf − Pnf

w(f ) + r

≤ sup
f ∈F :w(f )≤r

(Pf − Pnf )+
w(f ) + r

+ ∑
k≥0

sup
f ∈F :rxk≤w(f )≤rxk+1

(Pf − Pnf )+
w(f ) + r

≤ 1

r
sup

f ∈F :w(f )≤r

(Pf − Pnf )+ + ∑
k≥0

sup
f ∈F :rxk≤w(f )≤rxk+1

(Pf − Pnf )+
rxk + r

≤ 1

r

(
sup

f ∈F :w(f )≤r

(Pf − Pnf )+ + ∑
k≥0

sup
f ∈F :w(f )≤rxk+1

(Pf − Pnf )+
1 + xk

)
.
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In the general case, note that supa∈A(0 ∨ a) = 0 ∨ supa∈A a. In the case where
convF contains the null function, one has supf ∈F Pf −Pnf = supf ∈convF Pf −
Pnf ≥ 0 so that supf ∈F (Pf − Pnf )+ = supf ∈F Pf − Pnf , which allows us to
remove the positive part in the condition for φ.

So, taking the expectation, we obtain

E

[
sup
f ∈F

Pf − Pnf

w(f ) + r

]
≤ 1

r

(
φ(r) + ∑

k≥0

φ(rx(k+1))

1 + xk

)

≤ φ(r)

r

(
1 + ∑

k≥0

x(k+1)/2

1 + xk

)

≤ φ(r)

r

(
1 + x1/2

(
1

2
+ ∑

k≥1

x−k/2

))

≤ φ(r)

r

(
1 + x1/2

(
1

2
+ 1

x1/2 − 1

))
,

where we have used the sub-root property for the second inequality. It is then easy
to check that the minimum of the right-hand side is attained at

x = (
1 + √

2
)2

.

Plugging this value in the right-hand side, we obtain the result. �

PROOF OF THEOREM 6.1. The main technical tool of the proof is Talagrand’s
concentration inequality (here we use an improved version proved in [10]). We
recall it briefly as follows.

Let Xi be independent variables distributed according to P , and F a set of
functions from X to R such that E[f ] = 0, ‖f ‖∞ ≤ c and Var[f ] ≤ σ 2 for any
f ∈ F . Let Z = supf ∈F

∑n
i=1 f (Xi). Then with probability 1 − e−x , it holds that

Z ≤ EZ +
√

2x(nσ 2 + 2cE[Z]) + cx

3
.(6.2)

We will apply this inequality to the rescaled set of functions

Fr =
{

Pf − f

w(f ) + r
, f ∈ F

}
,

where we assume r ≥ r∗. The precise choice for r will be decided later. We now
check the assumptions on the supremum norm and the variance of functions in Fr .
We have

sup
f ∈F

sup
x∈X

Pf − f (x)

r + w(f )
≤ b

r
;
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and, recalling the hypothesis that Var[f ] ≤ w(f ), the following holds:

Var
[

f (X)

w(f ) + r

]
≤ w(f )

(w(f ) + r)2 ≤ w(f )

4rw(f )
= r−1/4,

where we have used the fact that 2ab ≤ a2 +b2. Introducing the following random
variable

Vr = sup
f ∈F

Pf − Pnf

w(f ) + r
,(6.3)

we thus obtain by application of (6.2) that, with probability at least 1 − e−x ,

Vr ≤ E[Vr ] +
√

x

2rn
+ 4xbE[Vr ]

rn
+ xb

3rn
.(6.4)

It follows from Lemma 6.2 that E[Vr ] ≤ 4φ(r)/r . Plugging this into (6.4), and
recalling that r∗ is the unique solution of φ(r) = r/D, we obtain that, for all x > 0,
and r ≥ r∗, the following inequality hold with probability at least 1 − e−x :

∀f ∈ F
(6.5)

Pf − Pnf

w(f ) + r
≤ inf

α>0

(
4

1 + α

D

√
r∗
r

+
√

x

2nr
+
(

1

3
+ 1

α

)
bx

rn

)
.

Here, we have used the fact that, for r ≥ r∗, φ(r)/r ≤
√

r∗/rD2 and that 2
√

ab ≤
αa + b/α.

Now given some constant K , we want to find r ≥ r∗ such that Vr ≤ 1/K (with
high probability). This corresponds to finding r such that the left-hand side of (6.5)
is upper bounded by 1/K .

Denote A1 = 4(1 + α)
√

r∗/D + √
x/2n and A2 = (1/3 + 1/α)bx/n. Then we

have to find r such that A1r
−1/2 +A2r

−1 ≤ K−1. It can be easily checked that this
is satisfied if

r ≥ K2A2
1 + 2A2K.(6.6)

We have

K2A2
1 + 2A2K ≤ 32(1 + α)2 K2r∗

D
+ x

n
(K2 + 2bK/3 + 2bK/α).

Taking α = 1/4, we conclude that (6.6) is satisfied when the following holds:

r ≥ 50
K2

D2 r∗ + (K2 + 9bK)
x

n
.

Note that K > D/7 ensures that the lower bound above is greater than r∗. We can
thus take r equal to this value.

Combining the above results concludes the proof of Theorem 6.1. �
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We are now in a position to proceed to the proof of the main model selection
theorem.

PROOF OF THEOREM 4.3. The main use of hypotheses (H1), (H2) and (H4)
will be to apply Theorem 6.1 to the class

Fm,g0 = {�(g) − �(g0), g ∈ Gm}
for some m ∈ M, g0 ∈ Gm with the choice w(f ) = min{d2(g, g0)|g ∈ Gm, �(g) −
�(g0) = f }, so that, using hypotheses (H1), (H2), (H4) and the fact that the null
function belongs to the class, we obtain that, for any arbitrary K > C/7, with
probability at least 1 − e−x ,

∀g ∈ Gm

(6.7)

(P − Pn)
(
�(g) − �(g0)

)≤ K−1d2(g, g0) + 50K

C2 r∗ + (K + 9b)x

n
.

For each m ∈ M, we define um and gm as functions in Gm satisfying, respec-
tively, ⎧⎨⎩

d(um,g∗) = inf
g∈Gm

d(g, g∗),

L(gm,g∗) = inf
g∈Gm

L(g, g∗).

[If these infima are not attained, one can choose um,gm such that d(um,g∗),
L(gm,g∗) are arbitrary close to the inf, and use a dominated convergence argu-
ment at the end of the proof.]

Now, for any m ∈ M, gm ∈ Fm,

L(g̃, g∗) − L(gm,g∗)
= P�(g̃) − P�(gm)

(6.8)
= Pn�(g̃) − Pn�(gm) + (P − Pn)

(
�(g̃) − �(gm)

)
≤ pen(m) − pen(m̃) + ρm + (P − Pn)

(
�(g̃) − �(gm)

)
,

where the last inequality stems from the definition of g̃.
Denoting m̃ the model containing g̃, we decompose the last term above:

(P − Pn)
(
�(g̃) − �(gm)

)= (P − Pn)
(
�(g̃) − �(um̃)

)
(6.9)

+ (P − Pn)
(
�(um̃) − �(gm)

)
.

We will bound both terms separately. For the first term, we use (6.7): for any
m′ ∈ M and an arbitrary Km′ > Cm′/7, with probability at least 1 − e−xm′−ξ , for
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all g ∈ Gm′ we have

(P − Pn)
(
�(g) − �(um′)

)
≤ K−1

m′ d2(g,um′) + 50Km′

C2
m′

r∗
m′(6.10)

+ (Km′ + 9bm′)(xm′ + ξ)

n
.

By the union bound, this inequality is valid simultaneously for all m′ ∈ M with
probability 1 − e−ξ , so that it holds, in particular, for m′ = m̃, g = g̃ with this
probability. Finally, note that, for g ∈ Gm̃,

d2(g,um̃) ≤ (
d(g, g∗) + d(um̃, g∗)

)2 ≤ 4d2(g, g∗).(6.11)

For the second term of (6.9), we will use the following Bernstein inequality: for
any m1,m2 ∈ M, we have, with probability 1 − exp(−xm1 − xm2 − ξ),

(P − Pn)
(
�(um1) − �(gm2)

)
≤
√

2(xm1 + xm2 + ξ)
Var[�(um1) − �(gm2)]

n
(6.12)

+ max(bm1, bm2)(xm1 + xm2 + ξ)

6n
.

Now, using assumption (4.1), if bm∗ = max(bm1, bm2),

max(bm1, bm2)(xm1 + xm2) ≤ 2bm∗xm∗ ≤ 2bm1xm1 + 2bm2xm2 .

We now deal with the first term of the bound (6.12): for any g ∈ Gm1 ,√
2(xm1 + xm2 + ξ)

Var[�(um1) − �(gm2)]
n

≤
√

4(xm1 + xm2 + ξ)
(d2(um1, g

∗) + d2(gm2, g
∗))

n

≤ 2

√
(xm1 + xm2 + ξ)

d2(g, g∗)
n

+ 2

√
(xm1 + xm2 + ξ)

d2(gm2, g
∗)

n

≤ K−1
m1

d2(g, g∗) + K−1
m2

d2(gm2, g
∗) + (Km1 + Km2)(xm1 + xm2 + ξ)

n
,

where the first inequality follows from hypothesis (H2) followed by the triangle
inequality, and the second from the definition of um1 . Anticipating somewhat the
end of the proof, we will choose Km = αCm for some fixed α, so that, using again
assumption (4.1) like above, it is true that

(Km1 + Km2)(xm1 + xm2) ≤ 4Km1xm1 + 4Km2xm2 .
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Therefore, (6.12) becomes, with probability 1 − exp(−xm1 − xm2 − ξ), for any
g ∈ Gm1 ,

(P − Pn)
(
�(um1) − �(gm2)

)
≤ K−1

m1
d2(g, g∗) + K−1

m2
d2(gm2, g

∗)
(6.13)

+ (12Km1 + bm1)(xm1 + ξ)

3n

+ (12Km2 + bm2)(xm2 + ξ)

3n
.

Bound, (6.13) is therefore valid for all m1,m2 ∈ M simultaneously with probabil-
ity 1 − exp(−ξ), and, in particular, for m1 = m̃,m2 = m,g = g̃.

Putting together (6.9), (6.10), (6.11) and (6.13), we obtain that, with probability
1 − 2 exp(−ξ), for all m ∈ M,

(P − Pn)
(
�(g̃) − �(gm)

)
≤ 5K−1

m̃ d2(g̃, g∗) + K−1
m d2(gm,g∗) + 50Km̃

C2
m̃

r ∗̃
m(6.14)

+ (15Km̃ + 28bm̃)(xm̃ + ξ)

3n
+ (12Km + bm)(xm + ξ)

3n
.

Now choosing Km = 5KCm (note that we have Km > Cm/7 as required, since
K > 1), and replacing ξ by ξ + log(2), recalling inequality (6.8) and the hypothesis
(4.2) on the penalty function, we thus obtain that, with probability 1 − exp(−ξ),
for any m ∈ M,

L(g̃, g∗) − L(gm,g∗)
≤ pen(m) − pen(m̃) + C−1

m̃ K−1d2(g̃, g∗) + 1
5C−1

m K−1d2(gm,g∗)
+ pen(m̃) + pen(m) + ρm

≤ K−1L(g̃, g∗) + 1
5K−1L(gm,g∗) + 2pen(m) + ρm,

using hypothesis (H4). This leads to the conclusion for the deviation inequality of
the model selection theorem.

For the inequality in expected risk, we go back to inequality (6.14), with the
choice Km = 5KCm; also using (6.8), we conclude that, for any ξ > 0, the follow-
ing inequality holds with probability 1 − exp(−ξ):

L(g̃, g∗) − L(gm,g∗)
≤ K−1L(g̃, g∗) + 1

5K−1L(gm,g∗) + pen(m) − pen(m̃) + ρm
(6.15)

+ 250KCm̃

D2
m̃

r ∗̃
m + Bm̃(xm̃ + ξ + log(2))

3n

+ Bm(xm + ξ + log(2))

3n
.
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The point is now to linearize the products Bmξ . To do so, we use the following
Young’s inequality valid for any positive x, y:

xy ≤ exp
(

x

2

)
+ 2y logy,

with x = ξ, y = Bm, so that, putting u = exp(ξ/2), and using the hypothesis (4.4)
on the penalty function, we obtain that, with probability 1 − (u−2 ∧ 1),

L(g̃, g∗) − L(gm,g∗) ≤ K−1L(g̃, g∗) + 1
5K−1L(gm,g∗)

(6.16)
+ 2pen(m) + ρm + u

n
.

Integrating concludes the proof. �

6.3. Proof of Theorem 4.4. The purpose of Theorem 4.4 is to check that con-
ditions (H1) to (H4) of the general model selection Theorem 4.3 are satisfied for
settings (S1) and (S2) of the SVM. We will split the proofs into several results
corresponding to the different hypotheses.

LEMMA 6.3. Under assumption (A1), hypothesis (H1) is satisfied for bR =
MR + 1.

PROOF. We use the reproducing property of the kernel to conclude that

∀g ∈ B(R) |�(yg(x))| ≤ 1 + |g(x)|
= 1 + |〈g, k(x, ·)〉|k
≤ 1 + ‖g‖k‖k(x, ·)‖k

= 1 + ‖g‖k

√
k(x, x) ≤ 1 + MR. �

We now check conditions (H2) and (H3). This differs according to the setting,
because we make a different choice for the pseudo-distance d depending on the
setting considered.

LEMMA 6.4 [Setting (S1)]. Under assumptions (A1), (A2) and (A3), condi-
tions (H2) and (H3) of Theorem 4.3 are satisfied for the choice

d1(g, g′) = E[(g − g′)2]; CR = 2
(

MR

η1
+ 1

η0

)
.

PROOF. Obviously, (H2) is satisfied since � is a Lipschitz function, so that
|�(yg(x)) − �(yg′(x))| ≤ |g(x) − g′(x)|.

We will obtain the result we look for if we can bound uniformly in x the ratio

E[(g − s∗)2 | X = x]
E[�(g) − �(s∗) | X = x] .
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Remember that, for g ∈ B(R), the reproducing property of the kernel and assump-
tion (A1) imply ‖g‖∞ ≤ M‖g‖k ≤ MR. Let us consider without loss of generality
the case s∗ = 1 (i.e., η = P[Y = 1|X = x] ≥ 1

2 ). We then have to bound the ratio

(1 − g)2

η(1 − g)+ + (1 − η)(1 + g)+ − 2(1 − η)
.

For g ≤ −1, this becomes (1−g)2

η(1−g)−2(1−η)
; putting x = −g − 1 ∈ [0,MR], this can

be rewritten as

(x + 2)2

ηx + 2(2η − 1)
≤ 2x2 + 8

ηx + 2(2η − 1)
≤ 4MR + 2

η0
≤ 2

(
MR

η1
+ 1

η0

)
,

where we have used the fact that η ≥ 1
2 ≥ η1. For g ≥ 1, this becomes g−1

1−η
, which

is smaller than (MR − 1)/η1 for g ∈ [1,MR]. For g ∈ [−1,1], the ratio becomes
1−g
2η−1 , which is smaller than 1/η0. �

LEMMA 6.5 [Setting (S2)]. Under assumptions (A1) and (A2), conditions
(H2) and (H3) of Theorem 4.3 are satisfied for the choice

d2(g, g′) = E
[(

�(g) − �(g′)
)2]; CR =

(
MR + 1

η0

)
.

PROOF. Obviously, (H2) is satisfied as before. We will obtain the result we
look for if we can bound uniformly in x the ratio

E[�(g)2 − 2�(g)�(s∗) + �2(s∗) | X = x]
E[�(g) − �(s∗) | X = x] .

Notice first that

E[�2(s∗) | X = x] = 2E[�(s∗) | X = x] = 4 min
(
η(x),1 − η(x)

)
.

Let us first consider the case s∗ = 1 (i.e., η ≥ 1
2 ). The above ratio can be written

η(1 − g)2+ + (1 − η)(1 + g)+((1 + g)+ − 4) + 4(1 − η)

η(1 − g)+ + (1 − η)(1 + g)+ − 2(1 − η)
.

For g ≤ −1, this becomes η(1−g)2+4(1−η)
η(1−g)−2(1−η)

; putting x = −g − 1 ∈ [0,MR], this can
be written as

ηx2 + 4ηx + 4

ηx + 2(2η − 1)
= x + 4 + 2x

ηx + 2(2η − 1)
≤ MR + 1

η0
.

For g ≥ 1, this becomes (1−g)2

g−1 = g − 1, which is smaller than MR − 1 for g ∈
[1,MR]. For g ∈ [−1,1], this becomes 1−g

2η−1 , which is smaller than 1/η0. The case

η < 1
2 can be treated in a similar way. �
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Finally, we check for hypothesis (H4); this condition characterizes the complex-
ity of the models and constitutes the meaty part of Theorem 4.4. We start with the
following result which deals with setting (S1). Here we can see the (technical) rea-
son why assumption (A3) was introduced in this setting: to relate the penalty to
the spectrum of the integral operator, we use the L2 distance d1 as an intermediate
pseudo-distance; but this requires in turn, assumption (A3) to check hypothesis
(H3) (see Lemma 6.4 above).

THEOREM 6.6. Let G be a RKHS with reproducing kernel k such that the
associated integral operator Lk has eigenvalues (λi) (in nonincreasing order). Let
� be the hinge loss function and denote d2

1 (g,u) = P(g − u)2. Then, for all r > 0
and u ∈ B(R),

E

[
sup

g∈B(R)

d2
1 (g,u)≤r

∣∣(P − Pn)
(
�(g) − �(u)

)∣∣]≤ 4√
n

inf
d∈N

(√
dr + 2R

√∑
j>d

λj

)
:= φR(r).

The above φR is a sub-root function, and the unique solution of φR(r) = r/CR ,
with CR ≥ η−1

1 MR, is upper bounded by

r∗
R ≤ 16

C2
R√
n

inf
d∈N

(
d√
n

+ η1

M

√∑
j>d

λj

)
.

To prove Theorem 6.6, we will use two technical results; the first will allow
to bound the quantity we are interested in by a localized Rademacher complexity
term; the second will give an upper bound on this term using the assumptions.

We introduce the following notation for Rademacher averages: let σ1, . . . , σn be
n i.i.d. Rademacher random variables (i.e., such that P[σi = 1] = P[σi = −1] =
1
2 ), independent of (Xi, Yi)

n
i=1; then we define for any measurable real-valued

function f on X × Y

Rnf := n−1
n∑

i=1

σif (Xi, Yi).(6.17)

We then extend this notation to sets F of functions from X × Y to R, denoting

RnF = sup
f ∈F

Rnf.

We then have the following lemma:

LEMMA 6.7. Let F be a set of real functions; let φ be a 1-Lipschitz function
on R. Then for g0 ∈ F ,

E

[
sup
g∈F

|(P − Pn)(φ ◦ g − φ ◦ g0)|
]

≤ 4ERn{g − g0 :g ∈ F }.
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PROOF. By a symmetrization argument, we have

E

[
sup
g∈F

|(P − Pn)φ ◦ g − (P − Pn)φ ◦ g0|
]

≤ 2E

[
sup
g∈F

|Rn(φ ◦ g − φ ◦ g0)|
]
,

and by symmetry of the Rademacher random variables, we have

E

[
sup
g∈F

|Rn(φ ◦ g − φ ◦ g0)|
]

≤ 2E

[
sup
g∈F

(
Rn(φ ◦ g − φ ◦ g0)

)
+
]
.

Since g0 ∈ F , choosing g = g0, one notices that

E

[
sup
g∈F

(
Rn(φ ◦ g − φ ◦ g0)

)
+
]

= E

[
sup
g∈F

(
Rn(φ ◦ g − φ ◦ g0)

)]
,

and since g0 is fixed, and ERnφ ◦ g0 = 0, we obtain

E

[
sup
g∈F

|(P − Pn)φ ◦ g − (P − Pn)φ ◦ g0|
]

≤ 4E

[
sup
g∈F

Rn(φ ◦ g)

]
.

Since φ is 1-Lipschitz, we can finally apply the contraction principle for
Rademacher averages; then using ERng0 = 0, we obtain the result. �

The next lemma gives a result similar to [25], but we provide a slightly different
proof (also, we are not concerned about lower bounds here). The principle of the
proof below can be traced back to the work of R. M. Dudley.

LEMMA 6.8.

ERn{g ∈ Hk :‖g‖k ≤ R,‖g‖2
2,P ≤ r} ≤ 1√

n
inf
d∈N

(√
dr + R

√∑
j>d

λj

)

≤
√

2

n

(∑
j≥1

min(r,R2λj )

)1/2

.

PROOF. For g ∈ Hk , by Lemma A.1 in the Appendix, we can decompose g as

g(x) =∑
i>0

αiψi(x),

with ‖g‖2
2,P = ∑

i>0 λiα
2
i and ‖g‖2

k = ∑
i>0 α2

i . The above series representation
holds as an equality in Hk , and hence pointwise since the evaluation functionals
are continuous in a RKHS. Let us denote

�(R, r) =
{
α ∈ �2 :‖α‖2 ≤ R2,

∑
i>0

λiα
2
i ≤ r

}
.
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Thus, the quantity we try to upper bound is equal to

1

n
E

[
sup

α∈�(R,r)

∣∣∣∣∣
n∑

i=1

σigα(Xi)

∣∣∣∣∣
]
,

where

gα(Xi) = ∑
j>0

αjψj (Xi).

We now write for any nonnegative integer d and α ∈ �(R, r)∣∣∣∣∣
n∑

i=1

σigα(Xi)

∣∣∣∣∣=
∣∣∣∣∣∑
j>0

αj

n∑
i=1

σiψj (Xi)

∣∣∣∣∣
(6.18)

≤
∣∣∣∣∣∑
j≤d

αj

n∑
i=1

σiψj (Xi)

∣∣∣∣∣+
∣∣∣∣∣∑
j>d

αj

n∑
i=1

σiψj (Xi)

∣∣∣∣∣.
Applying the Cauchy–Schwarz inequality to the second term, we have∣∣∣∣∣∑

j>d

αj

n∑
i=1

σiψj (Xi)

∣∣∣∣∣≤
(∑

j>d

α2
j

)1/2(∑
j>d

(
n∑

i=1

σiψj (Xi)

)2)1/2

≤ R

(∑
j>d

(
n∑

i=1

σiψj (Xi)

)2)1/2

.

We now take the expectation with respect to (σi) and (Xi) in succession. We use
the fact that the (σi) are zero mean, uncorrelated, unity variance variables; then the
fact that E[X1/2] ≤ E[X]1/2, to obtain

EXEσ

[∣∣∣∣∣∑
j>d

αj

n∑
i=1

σiψj (Xi)

∣∣∣∣∣
]

≤ REX

[(∑
j>d

n∑
i=1

ψ2
j (Xi)

)1/2]

≤ √
nR

(∑
j>d

λj

)1/2

,

where we have used the fact that EX[ψ2
j (X)] = λj . We now apply exactly the

same treatment to the first term of (6.18), except that we use weights (λi) in the
Cauchy–Schwarz inequality, yielding

EXEσ

[∣∣∣∣∣∑
j≤d

αj

n∑
i=1

σiψj (Xi)

∣∣∣∣∣
]

≤
(∑

j≤d

λjα
2
j

)1/2

EX

[∑
j≤d

n∑
i=1

λ−1
j ψ2

j (Xi)

]1/2

≤ √
nrd.
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This gives the first result. The second one follows from choosing d such that, for
all j > d , R2λj ≤ r , and using the inequality

√
A + √

B ≤ √
2
√

A + B . �

PROOF OF THEOREM 6.6. For g a function X → R, let us briefly intro-
duce the notation g : (x, y) ∈ X × Y �→ yg(x) ∈ R. Let us apply Lemma 6.7 to
F u = {g,g ∈ Fu}, where Fu = {g ∈ Hk :‖g‖k ≤ R,d2(g,u) ≤ r}. The hinge loss
function � is 1-Lipschitz, and u ∈ F , hence,

E

[
sup
g∈F

∣∣(P −Pn)
(
�(g)−�(u)

)∣∣]≤ 4ERn{g − u,g ∈ Fu} = 4ERn{g − u,g ∈ Fu},

where the last equality is true because of the symmetry of the Rademacher vari-
ables. Notice that, since ‖u‖k ≤ R, we have

{g − u,g ∈ Fu} ⊂ {g − u,‖g − u‖k ≤ 2R,d2(g,u) ≤ r};
since d2(g,u) = E[(g − u)2] is a norm-induced distance, we can replace g − u by
g (by linearity) so that the above term can be upper bounded by

4ERn

{
g ∈ Hk :‖g‖k ≤ 2R,‖g‖2,P ≤ √

r
}
.

Using Lemma 6.8, this can be further upper bounded by

4√
n

inf
d∈N

(√
dr + 2R

√∑
j>d

λj

)
,

which concludes the proof of the first part of the theorem.
Observe that the minimum of two sub-root functions is a sub-root function, so

that φR is a sub-root function. We now compute an upper bound on the solution of
the equation φR(r) = r/C, which can be written

r = 4C√
n

inf
d∈N

(√
rd + 2R

√∑
j>d

λj

)
.

Notice that the infimum is a minimum since the series
∑

j≥1 λj is converging and,
thus, the value of the right-hand side is bounded for all d and goes to ∞ when
d → ∞. Let us then consider the particular value of d where this minimum is
achieved. Solving the fixed point equation for this particular value, we have

r∗ = 4C2

n

(√
d +

√√√√d + 8
√

nR(4C)−1
√∑

j>d

λj

)2

.

Now for any other value d ′ �= d , r∗ satisfies

r∗ ≤ 4C√
n

(√
r∗d ′ + 2R

√∑
j>d ′

λj

)
,
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which means that r∗ is smaller than the largest solution of the corresponding equal-
ity. As a result, we have

r∗ = inf
d∈N

4C2

n

(√
d +

√√√√d + 8
√

nR(4C)−1
√∑

j>d

λj

)2

.

Using (a + b)2 ≤ 2(a2 + b2), putting C = CR and finally using the assumption
RC−1

R ≤ η1M
−1 yields the result. �

This concludes the proof of Theorem 4.4 for setting (S1). We finally turn to
checking hypothesis (H4) in setting (S2): in this case we use a classical entropy
chaining argument.

THEOREM 6.9. Under assumption (A1) and the notation of setting (S2), we
have

E

[
sup

‖g‖k≤R

d2
2 (g,g0)≤r

∣∣(P − Pn)
(
�(g) − �(g0)

)∣∣] ≤ 48R√
n

ξ

(√
r

2R

)
+ 8MR3

n
r−1ξ

(√
r

2R

)2

:= ψR(r),

where the function ξ is defined as in (3.2). The function ψR is sub-root; if x∗
denotes the solution of the equation ξ(x) = M−1n−1/2x2, then the solution r∗

R of
the equation ψR(r) = C−1

R r , with CR ≥ MR, satisfies

r∗
R ≤ 2500M−2C2

Rx2∗ .

The chaining technique used for proving this theorem is summed up in the next
lemma, for which we give a proof for completeness.

LEMMA 6.10. Let F be a class of real functions which is separable in the
supremum norm, containing the null function, and such that every f ∈ F satisfies
‖f ‖∞ ≤ M and E[f 2] ≤ σ 2. Denote H∞(ε) the supremum norm ε-entropy for F .
Then it holds that

E

[
sup
f ∈F

|(P − Pn)f |
]

≤ 24√
n

∫ σ

0

√
H∞(ε) dε + MH∞(σ )

n
.(6.19)

PROOF. It is a well-known consequence of Hoeffding’s (resp. Bernstein’s) in-
equality that a finite class of functions G bounded by M in absolute value have

E

[
sup
g∈G

(P − Pn)g

]
≤
√

2
M2 log(|G|)

n
;(6.20)
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respectively, if, additionally, it holds that E[g2] ≤ σ 2 for all g ∈ G, we have

E

[
sup
g∈G

(P − Pn)g

]
≤
√

2
σ 2 log(|G|)

n
+ M log(|G|)

3n
.(6.21)

Since F contains the null function, it is clear that

E

[
sup
f ∈F

|(P − Pn)f |
]

≤ E

[
sup
f ∈F

(P − Pn)f

]
+ E

[
sup
f ∈F

(Pn − P)f

]
.(6.22)

Since we have assumed that F is separable for the sup norm, it is sufficient to
prove (6.19) for any finite subset of F . Without loss of generality, we therefore
assume that F is finite. Put δi = σ2−i and let, for any f ∈ F , �if be a member
of a δi-supremum norm cover of F such that ‖�if − f ‖∞ ≤ δi . We write

E

[
sup
f ∈F

(P − Pn)f

]
≤ E

[
sup
f ∈F

(P − Pn)�0f

]

+∑
i>0

E

[
sup
f ∈F

(P − Pn)(�if − �i−1f )

]
.

We now apply (6.21) to the first term of the above bound and (6.20) to all of the
other terms. More precisely, we apply (6.21) to the class {�0f,f ∈ F } which
has cardinality bounded by exp(H∞(δ0)), and respectively (6.20) to the classes
{(�if − �i−1f ), f ∈ F } which have their respective cardinality bounded by
exp(2H∞(δi)). We then have

E

[
sup
f ∈F

(P − Pn)f

]
≤
√

2σ 2H∞(δ0)

n
+ MH∞(δ0)

3n
+∑

i>0

√
36δ2

i

n
H∞(δi)

≤ 12√
n

∫ σ

0

√
H∞(ε) dε + MH∞(σ )

3n
.

We apply the same inequality to the class −F and conclude using (6.22). �

PROOF OF THEOREM 6.9. We want to apply Lemma 6.10 to the class of func-
tions

Fg0 = {
�(g) − �(g0) :g ∈ Hk; ‖g‖k ≤ R;E

[(
�(g) − �(g0)

)2]≤ r
}
.

Similarly to the reasoning used in the proof of Theorem 6.6, it is clear that

Fg0 ⊂ F̃ (2R, r) = {�(g);g ∈ Hk; ‖g‖k ≤ 2R;E[�(g)2] ≤ r}.
Because the loss function � is 1-Lipschitz, it holds that ‖�(f )−�(g)‖ ≤ ‖f −g‖∞,
hence, H∞(F̃ (2R, r), ε) ≤ H∞(BHk

(2R), ε). Applying Lemma 6.10 therefore



STATISTICAL PERFORMANCE OF SVM 525

yields

E

[
sup

‖g‖k≤R

d2
2 (g,g0)≤r

∣∣(P − Pn)
(
�(g) − �(g0)

)∣∣]

≤ 24√
n

∫ √
r

0

√
H∞(2RBHk

, ε) dε + 2MRH∞(2RBHk
,
√

r)

n
.

= 48R√
n

∫ √
r/2R

0

√
H∞(BHk

, ε) dε + 2MRH∞(BHk
,
√

r/2R)

n

≤ 48R√
n

ξ

(√
r

2R

)
+ 8MR3

n
r−1ξ

(√
r

2R

)2

= ψR(r),

where ξ is defined as in (3.2), and the last inequality comes from the observa-
tion that ξ(x) ≤ x

√
H∞(BHk

, x). The function ψR is obviously sub-root since
H∞(BHk

, ε) is a decreasing function or ε.
Denote x∗ the solution of the equation ξ(x) = M−1√nx2; we claim that, for a

suitable choice of constant c, t∗R = c2M−2C2
Rx2∗ is an upper bound for the solution

r∗
R of the equation ψR(r) = C−1

R r entering in hypothesis (H4). This is implied by
the relation ψR(t∗R) ≤ C−1

R t∗R which we now prove.

Note that
√

t∗R
2R

= c CR
2RM

x∗, and that CR
RM

≥ 1. Since x−1ξ(x) is a decreasing
function, assuming c ≥ 2, it holds that

ξ

(√t∗R
2R

)
≤ c

CR

2RM
ξ(x∗) = c

CR

√
n

2RM2 x2∗ =
√

n

cRCR

t∗R.

Plugging this into the expression for ψR yields

ψR(t∗R) ≤
(

48

c
+ 8MR

c2CR

)
t∗R
CR

≤
(

48

c
+ 8

c2

)
t∗R
CR

,

where we have used again the relation MR ≤ CR . The choice c = 50 implies the
desired relation. �

6.4. Proof of Theorem 3.1. Theorem 4.4 states that the conditions (H1)–(H4)
of the model selection theorem (Theorem 4.3) are satisfied for the family of models
B(R),R ∈ R and some explicit values for bR,CR,φR and r∗

R [depending on the
considered setting (S1) or (S2)]. Let us choose an appropriate finite set R and a
sequence (xR)R∈R so that we can approximate the minimization over all R > 0 in
equation (3.4) by a minimization over the finite set of radii R.

We consider the set of discretized radii

R = {M−12k, k ∈ N,0 ≤ k ≤ �log2 n�}.
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The cardinality of R is then �(log2 n)� + 1 and we consequently choose xR ≡
log(log2 n + 2) for all R ∈ R which satisfies

∑
R∈R e−xR ≤ 1.

In order to apply Theorem 4.3, the penalty function should satisfy equation
(4.2). A sufficient condition on the penalty function for the family of models
{B(R),R ∈ R} is therefore

pen(R) ≥ c1

(
r∗
R

CR

+ (CR + bR)(xR + log(δ−1) ∨ 1)

n

)
,

where c1 is a suitable constant, and we picked K = 3 in equation (4.2).
Recalling the definition of γ (n) in settings (S1) and (S2), the requirement (3.3)

on 	n and the definition of w1 in Theorem 3.1, it can be checked by elementary
manipulations that the above condition on the penalty is satisfied in both settings
for

pen(R) = 	n

(
ϕ(MR/2) + w1η0

−1),
up to a suitable choice of the constant c in (3.3); note that we can assume c ≥ 1.

The last step to be analyzed now is how to go back and forth between the dis-
cretized framework R ∈ R and the continuous framework to obtain the final result.
To apply the model selection theorem, we will interpret the continuous regular-
ization defining ĝ as an approximate discretized penalized minimization over the
above family of models using the penalty function defined above.

In view of definition (3.4) of the estimator ĝ, the following upper bound holds:

Pn�(ĝ) + 	nϕ(M‖ĝ‖k) ≤ Pn�(0) + 	nϕ(0) = 1,

which implies 1 ≥ 	nϕ(M‖ĝ‖k). Since we have assumed c ≥ 1 in (3.3), we
have 	n ≥ n−1; this implies ‖ĝ‖k ≤ M−1n (using the assumption on ϕ). Denote
R̂ = M−12k̂ where k̂ = �(log2(M‖ĝ‖k))+�. The fact that ‖ĝ‖k ≤ M−1n implies
R̂ ∈ R. Note that ĝ ∈ B(R̂) and that R̂ ≤ 2M−1 max(M‖ĝ‖k,1). This entails

Pn�(ĝ) + pen(R̂) ≤ Pn�(ĝ) + 	nϕ(max(M−1‖ĝ‖k,1)) + η−1
0 w−1

1 	n

≤ Pn�(ĝ) + 	nϕ(M−1‖ĝ‖k) + 	nϕ(1) + w−1
1 η−1

0 	n

≤ inf
g∈Hk

[Pn�(g) + 	nϕ(M−1‖g‖k)] + 	nϕ(1) + w−1
1 η−1

0 	n

= inf
R≥0

inf
g∈B(R)

[
Pn�(g) + 	n

(
ϕ(MR) + ϕ(1) + w−1

1 η−1
0

)]
≤ inf

R∈R
inf

g∈B(R)

[
Pn�(g) + 	n

(
ϕ(MR) + ϕ(1) + w−1

1 η−1
0

)]
,

where the first inequality follows from the definition of pen(R̂), and the third from
the definition of ĝ. So if we put ρR = 	n(ϕ(MR)+ϕ(1)+w−1

1 η−1
0 )−pen(R) ≥ 0,

we just proved that ĝ is a (ρR)-approximate penalized minimum loss estimator
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over the family (B(R))R∈R. Now applying the model selection theorem (The-
orem 4.3), we conclude that the following bound holds with probability at least
1 − δ:

L(ĝ, s∗) ≤ 2 inf
R∈R

inf
g∈B(R)

[
L(g, s∗) + 2	n

(
ϕ(MR) + ϕ(1) + w−1

1 η−1
0

)]
= 2 inf

R∈R
inf

g∈B(R)
[L(g, s∗) + 2	nϕ(2log2 MR)] + 4	n

(
ϕ(1) + w−1

1 η−1
0

)
≤ 2 inf

M−1≤R≤nM−1
inf

g∈B(R)

[
L(g, s∗) + 2	nϕ

(
2�logMR�)]

+ 4	n

(
ϕ(1) + w−1

1 η−1
0

)
≤ 2 inf

R≤nM−1
inf

g∈B(R)

[
L(g, s∗) + 2	nϕ

(
2�(logMR)+�)]

+ 4	n

(
ϕ(1) + w−1

1 η−1
0

)
≤ 2 inf

R≤nM−1
inf

g∈B(R)

[
L(g, s∗) + 2	n

(
ϕ
(
2(MR ∨ 1)

))]
+ 4	n

(
ϕ(1) + w−1

1 η−1
0

)
≤ 2 inf

g∈Hk

[L(g, s∗) + 2	nϕ(2M‖g‖k)] + 4	n

(
2ϕ(2) + w−1

1 η−1
0

)
.

The last inequality holds because, if we denote g∗ the minimizer of the last in-
fimum, comparing it with the constant null function (as for ĝ earlier), we con-
clude that 2	nϕ(2M‖g∗‖k) ≤ 1, implying ‖g∗‖k ≤ M−1n, so that the restriction
R ≤ M−1n in the previous infimum can be dropped.

APPENDIX A: PROPERTIES OF THE KERNEL INTEGRAL OPERATOR.

In this appendix, we sum up a few useful properties of the integral operator Lk

introduced in (3.1). These are used in the proof of Lemma 6.8. While these results
are certainly not new, we provide a self-contained proof for completeness.

LEMMA A.1. Let Hk be a separable RKHS with kernel k on a measurable
space X. Assume y �→ k(x, y) is measurable for any fixed x ∈ X. Then the func-
tion x �→ k(x, ·) ∈ Hk is measurable; in particular, (x, y) �→ k(x, y) is jointly
measurable.

Let P be a probability distribution on X; assume L2(P ) is separable and
EX∼P [k(X,X)] < ∞.

Then Hk ⊂ L2(P ) and the canonical inclusion T :Hk → L2(P ) is continuous.
The integral operator Lk :L2(P ) → L2(P ) defined as

(Lkf )(x) =
∫

k(x, y)f (y) dP (y)
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is well defined, positive, self-adjoint and trace class; moreover, Lk = T T ∗. In
particular, if (λi)i≥0 denote its eigenvalues, repeated with their multiplicities,∑

i≥0 λi < ∞.
Finally, there exists an orthonormal basis (ψi)i≥0 of Hk such that, for any

f ∈ Hk ,

‖Tf ‖2
2,P =∑

i≥0

λi〈f,ψi〉2.

PROOF. Let us first prove that any function f ∈ Hk is measurable. By as-
sumption, for any fixed x, k(x, ·) is measurable; hence, also any finite linear com-
bination

∑
i αik(xi, ·). Any function f ∈ Hk is the limit in Hk of a sequence of

such linear combinations. By the reproducing property, a sequence converging in
Hk also converges pointwise, since 〈fi, k(x, ·)〉 = fi(x). Hence, f is measurable.
Now we prove that x �→ K(x) = k(x, ·) ∈ Hk is measurable.

For any f ∈ Hk , x �→ 〈k(x, ·), f 〉 = f (x) is measurable, hence, the inverse
image of a half-space by K is measurable. Since Hk is separable, any open set
is a countable union of open balls (Lindelöf property); and any ball in Hk is a
countable intersection of half-spaces. Hence, K is measurable. This implies that
k(x, y) = 〈k(x, ·), k(y, ·)〉H is jointly measurable.

By the Cauchy–Schwarz inequality, we further have |k(x, y)|2 ≤ k(x, x)k(y, y),
so that the assumptions that k(x, x) ∈ L1(P ) imply that k(·, ·) ∈ L2(X ×
X,P ⊗ P ). This ensures that Lk is well defined [as an operator L2

P (X) →
L2

P (X)] and Hilbert–Schmidt, hence, compact. Moreover, by symmetry of k, Lk

is self-adjoint. As L2(P ) is separable, Lk can be diagonalized in an orthonormal
basis (φi)i≥0 of L2(P ), where Lkφi = λiφi .

Consider now the canonical inclusion T from the reproducing kernel Hilbert
space Hk into L2(P ). For f ∈ Hk , we have∫

f 2(x) dP (x) =
∫

〈f, k(x, ·)〉2
Hk

dP (x) ≤ ‖f ‖2
Hk

∫
k(x, x) dP (x).

This proves that T is well defined and continuous on Hk . Let T ∗ :L2(P ) → Hk

denote its adjoint.
For any f ∈ L2(P ), we have by definition for all x ∈ X, T ∗f (x) = 〈k(x, ·),

T ∗f 〉Hk
= 〈T k(x, ·), f 〉L2(P ) = (Lkf )(x). Hence, T T ∗ = Lk . In particular, λi =

〈φi, λiφi〉L2(P ) = 〈T ∗φi, T
∗φi〉Hk

≥ 0, which proves that Lk is a positive operator.
Now let us consider the operator C = T ∗T :Hk → Hk . It is bounded, positive

and self-adjoint. Let (ψi)i≥0 be an orthonormal basis of Hk . We have

k(x, x) = 〈k(x, ·), k(x, ·)〉 =∑
i≥0

〈k(x, ·),ψi〉2 =∑
i≥0

ψi(x)2

and ∑
i≥0

〈ψi,Cψi〉Hk
=∑

i≥0

‖T ψi‖2
2,P = E

∑
i≥0

(T ψi)
2(X) = Ek(X,X) < ∞,
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by monotone convergence. This proves that C is trace-class. Now since T T ∗ and
T ∗T have the same nonzero eigenvalues (with identical multiplicities), and trC =∑

i≥0 λi < ∞, Lk is also trace-class.
We can actually choose (ψi) as an orthonormal basis of eigenvectors of C with

corresponding eigenvalues λi . In that case, we can write any function f ∈ Hk as

f =∑
i≥0

〈f,ψi〉ψi,

where ‖f ‖2
Hk

=∑
i≥0〈f,ψi〉2 and by continuity of T ,

Tf =∑
i≥0

〈f,ψi〉T ψi.

Now, since Cψi = λiψi , we have 〈T ψi, T ψj 〉 = λi〈ψi,ψj 〉 = λiδij so that

‖Tf ‖2
2,P =∑

i≥0

λi〈f,ψi〉2.
�
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