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Longitudinal studies are often conducted to explore the cohort and age
effects in many scientific areas. The within cluster correlation structure plays
a very important role in longitudinal data analysis. This is because not only
can an estimator be improved by incorporating the within cluster correlation
structure into the estimation procedure, but also the within cluster correlation
structure can sometimes provide valuable insights in practical problems. For
example, it can reveal the correlation strengths among the impacts of various
factors. Motivated by data typified by a set from Bangladesh pertinent to the
use of contraceptives, we propose a random effect varying-coefficient model,
and an estimation procedure for the within cluster correlation structure of
the proposed model. The estimation procedure is optimization-free and the
proposed estimators enjoy asymptotic normality under mild conditions. Sim-
ulations suggest that the proposed estimation is practicable for finite samples
and resistent against mild forms of model misspecification. Finally, we ana-
lyze the data mentioned above with the new random effect varying-coefficient
model together with the proposed estimation procedure, which reveals some
interesting sociological dynamics.

1. Introduction.

1.1. Theoretical background. Longitudinal data analysis has attracted consid-
erable attention from statisticians recently. The methodology for parametric-based
longitudinal data analysis is quite mature; see, for example, Diggle, Heagerty,
Liang and Zeger [5] and the references therein. The situation with nonparametric-
based longitudinal data analysis is quite different. One of the main difficulties
is how to incorporate the within cluster correlation structure into the estimation
procedure. For nonparametric longitudinal regression, see Zeger and Diggle [30],
Hoover, Rice, Wu and Yang [15], Fan and Zhang [10], Lin and Carroll [19], Wu
and Zhang [28], Fan and Li [8], Qu and Li [24] and others. He, Fung and Zhu [13]
investigate the robust estimation in generalized partial linear models for longitudi-
nal data. Lin and Carroll [19] recommend that we ignore the within cluster corre-
lation when kernel smoothing is employed. Welsh, Lin and Carroll [26] investigate
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the possibility of using weighted least squares based on the within cluster correla-
tion structure when spline smoothing is used. They suggest that the weighted least
squares estimator works better than the estimator based on working independence
when spline smoothing is used. Wang [25] provides an innovative kernel smooth-
ing and demonstrates that, when the true correlation is available, her estimator
is more efficient than the most efficient estimator that is obtained by adopting a
working independence approach.

In longitudinal data analysis, whether parametric or nonparametric, within clus-
ter correlation structure can be used to improve the efficiency of the estimation.
However, the within cluster correlation structure is typically unknown in reality.
In this paper, we investigate systematically the estimation of the within cluster
correlation structure.

1.2. Practical meaning. The within cluster correlation structure can lead to
not only important improvement of the estimation but also some practical insights.
As we shall see in the analysis of the Bangladesh data, the estimated within cluster
correlation structure actually sheds interesting light on the impacts among factors.

The Bangladesh data set is from the Bangladesh Demographic and Health Sur-
vey 1996–1997. This survey follows a two-stage sample design in which clusters
were selected at the first stage, and women were sampled from these clusters at the
second stage. The clusters correspond to villages in rural areas and neighborhoods
in urban areas, and may loosely be termed communities. What is of interest is how
the factors which are commonly found to be associated with fertility in Bangladesh
affect the first birth interval, and how strongly correlated are the effects of these
factors. The selected factors are (1) age at first marriage; (2) woman’s level of edu-
cation; (3) type of region of residence; (4) woman’s religion; (5) year of marriage;
(6) administrative area. Among these factors, type of region of residence and ad-
ministrative area pertain to cluster levels and are called cluster-level variables, and
the rest are called individual-level variables.

We use y to denote the length of the first birth interval, Z the vector of
individual-level variables, ξ the vector of cluster-level variables and e the random
effect. For j = 1, . . . , ni , i = 1, . . . ,m, let yij and Zij be the j th observation of y

and Z in the ith cluster, ξi the observation of ξ at the ith cluster, and ei the random
effect of the ith cluster, which is unobservable.

When examining the effects of year of marriage and other factors on the length
of the first birth interval, it is necessary to take into account clustering of responses
for women in the same community. This is because the first birth intervals for
women in the same cluster may be correlated due to unobserved cluster-level fac-
tors such as cultural norms and access to family planning programes. The usual
way to incorporate unobservable variables in a statistical model is via random ef-
fects. This leads to the multilevel model

yij = ZT
ij (a1 + ei ) + ξT

i a2 + εij .(1.1)
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The coefficient a1 + e can be regarded as the impact of Z on y, which is random
across the clusters. The correlation matrix of e can reveal how strongly correlated
are the impacts of the components of Z on y. In this paper, we propose an estima-
tion procedure for the covariance matrix of e.

Let

Xij = (ZT
ij , ξ

T
i )T, a = (aT

1 ,aT
2 )T.

Equation (1.1) can be written as

yij = XT
ij a + ZT

ij ei + εij .(1.2)

Model (1.2) assumes that the impacts of the factors on the length of the first
birth interval are time-invariant, which may not be plausible because as a soci-
ety Bangladesh is changing with time. So, it is more realistic to assume that the
impacts can vary with time. This leads to the following random effect varying-
coefficient model:

yij = XT
ij a(Uij ) + ZT

ij ei + εij , j = 1, . . . , ni, i = 1, . . . ,m,(1.3)

where εij , j = 1, . . . , ni , i = 1, . . . ,m, are measurement errors, which we assume
to be i.i.d. with E(εij ) = 0 and var(εij ) = σ 2. Here ei , i = 1, . . . ,m, are ran-
dom effects across the clusters, which we assume to be i.i.d. with E(ei ) = 0 and
cov(ei ) = �. Further, ei is independent of εij ; Xij is a p-dimensional covariate
and Zij is a q-dimensional covariate associated with random effects. We assume
that ni < N < ∞. (Uij ,Xij ,Zij ) are i.i.d. and independent of ei and εij .

The within cluster correlation structure in (1.3) has been used extensively in the
literature to model the cluster effect. See, for example, Laird and Ware [18], Jenn-
rich and Schluchter [17], Longford [21], Zeger, Liang and Albert [31], Lindstrom
and Bates [20], Hedeker and Gibbons [14] and others. The focus in the above cited
was on the estimation relevant to the regressive coefficients in parametric mod-
els. Wu and Liang [27] proposed an interesting backfitting estimation procedure
to estimate the functional coefficients in a time-varying-coefficient mixed effects
model.

Varying-coefficient models are useful when exploring dynamic systems. There
is a growing literature addressing this kind of model, which includes Hastie and
Tibshirani [12], Xia and Li [29], Cai, Fan and Li [1], Zhang, Lee and Song [32],
Fan, Yao and Cai [9] and the references therein.

There is some literature discussing how to estimate the within cluster covariance
matrix for the parametric setting. The commonly used method is restricted max-
imum likelihood estimation (REML); see Laird and Ware [18]. While REML is
theoretically appealing, the optimization involved can be very difficult. Recently,
Fan, Huang and Li [7] proposed an innovative semiparametric estimation proce-
dure for the covariance structure in longitudinal studies. They investigated both the
quasi-likelihood approach and the minimum generalized variance approach. In this
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paper, focusing on model (1.3), we take a different approach to studying the esti-
mation of � and σ 2 that includes both the methodology and relevant asymptotics.
The estimators proposed in this paper have closed forms, so they are easy to im-
plement without any need for optimization. Also, the proposed estimation method
does not depend on the likelihood function, so it is robust against likelihood spec-
ification. We have established asymptotic normality of the proposed estimators.
We have also conducted extensive simulation studies, which show that when the
dimension of ei is not larger than 3, REML encounters no serious optimization
problem, and in such cases REML and our estimators have comparable perfor-
mance, with perhaps the latter being marginally better. On the other hand, when
the dimension of ei is larger than 3, we have not been able to find a convergent al-
gorithm for REML. In this paper, we will also show that, when spline smoothing is
used, the weighted least squares estimators of the functional coefficients perform
much better if we incorporate the within cluster correlation structure estimated by
our proposed method instead of assuming working independence.

Our paper is organized as follows. We begin in Section 2 with a description
of an estimation procedure for � and σ 2. We present the asymptotic properties
of the proposed estimators in Section 3 and assess the performance of the model
by simulation in Section 4. In Section 5, using the new model and the proposed
estimation procedure, we explore how the impacts of the factors on the length of
first birth interval in Bangladesh change with time and how strongly correlated are
the impacts of the factors on the length of first birth interval.

2. Estimation procedure. The procedure first estimates a(·) based on work-
ing independence, then uses the residual to estimate σ 2, and finally estimates �.

For any given u, we use a and ȧ to denote a(u) and da(u)/du, respectively. By
Taylor’s expansion, we have

a(Uij ) ≈ a + ȧ(Uij − u)

when Uij is in a small neighborhood of u. This leads to the local least squares
procedure

m∑
i=1

ni∑
j=1

[yij − XT
ij {a + b(Uij − u)}]2Kh(Uij − u),(2.1)

where Kh(·) = K(·/h)/h, K(·) is the kernel function and h is the bandwidth. We
minimize (2.1) with respect to (a,b) to get the minimizer (â, b̂). The estimator
of a is taken to be â. By simple calculations, we have

â = (Ip,0p)

(
m∑

i=1

�T
i Wi�i

)−1 m∑
i=1

�T
i WiYi,
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where Ip is p × p identity matrix and 0p is the p × p matrix with all entries
being 0,

�i = (Xi ,DiXi), Xi = (Xi1, . . . ,Xini
)T,

Di = diag(Ui1 − u, . . . ,Uini
− u),

Wi = diag
(
Kh(Ui1 − u), . . . ,Kh(Uini

− u)
)
, Yi = (yi1, . . . , yini

)T.

Next, we estimate σ 2. Let â(Uij ) be â with u being replaced by Uij . Let

ri = (ri1, . . . , rini
)T, rij = yij − XT

ij a(Uij ), r̂i = (r̂i1, . . . , r̂ini
)T,

r̂ij = yij − XT
ij â(Uij ), Zi = (Zi1, . . . ,Zini

)T, Pi = Zi (ZT
i Zi )

−1ZT
i .

For each given i, based on the residual ri , we have the following synthetic linear
model:

ri = Ziei + εi , εi = (εi1, . . . , εini
)T.(2.2)

The residual sum of squares of this linear model,

rssi = rT
i (Ini

− Pi)ri ,

would be the raw material for estimating σ 2. The synthetic degrees of freedom of
rssi is ni − q . Let RSSi be rssi with ri replaced by r̂i . RSSi is a natural estimator
for rssi . Pooling all RSSi , i = 1, . . . ,m, together naturally leads to the estimator
of σ 2 as

σ̂ 2 = (n − qm)−1
m∑

i=1

RSSi , n =
m∑

i=1

ni.

Finally, we estimate �. From (2.2), we have the least squares estimator of ei as

ẽi = (ZT
i Zi )

−1ZT
i ri = ei + (ZT

i Zi )
−1ZT

i εi ,

which leads to
m∑

i=1

ẽi ẽT
i =

m∑
i=1

eieT
i +

m∑
i=1

(ZT
i Zi )

−1ZT
i εiε

T
i Zi (ZT

i Zi )
−1 +

m∑
i=1

(ZT
i Zi )

−1ZT
i εieT

i

+
m∑

i=1

eiε
T
i Zi (ZT

i Zi )
−1.

The last two terms are of order OP (m1/2), so they are negligible. This leads to

m−1
m∑

i=1

eieT
i ≈ m−1

{
m∑

i=1

ẽi ẽT
i −

m∑
i=1

(ZT
i Zi )

−1ZT
i εiε

T
i Zi (ZT

i Zi )
−1

}

≈ m−1

{
m∑

i=1

ẽi ẽT
i − σ 2

m∑
i=1

(ZT
i Zi )

−1

}
.
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So, we use

�̂ = m−1
m∑

i=1

êi êT
i − m−1σ̂ 2

m∑
i=1

(ZT
i Zi )

−1(2.3)

to estimate �. In (2.3), êi is ẽi with ri replaced by r̂i .

3. Asymptotic properties. For any q × q symmetric matrix A, we use
vech(A) to denote the vector consisting of all elements on and below the diag-
onal of the matrix A, vec(M) to denote the vector by simply stacking the column
vectors of matrix M below one another, and let c1 = limm→∞ n/(n − qm) and
c2 = limm→∞ n/m. Obviously there exists a unique q2 × q(q + 1)/2 matrix Rq

such that vec(A) = Rq vech(A).
To make the presentation more clear, we introduce the following notation. Set

μi =
∫

t iK(t) dt, i = 0,1,2,3, ηi = (XT
i1a′′(Ui1), . . . ,X

T
ini

a′′(Uini
))T,

b = (n − qm)−1
m∑

i=1

ηT
i (Ini

− Pi)ηi , B1 = m−1
m∑

i=1

(ZT
i Zi )

−1,

B2 = m−1
m∑

i=1

(ZT
i Zi )

−1ZT
i ηiη

T
i Zi (ZT

i Zi )
−1.

Further, we write

� = lim
m→∞m−1

m∑
i=1

E[(ZT
i Zi )

−1],

�2 = lim
m→∞m−1

m∑
i=1

E[vec{(ZT
i Zi )

−1}vecT{(ZT
i Zi )

−1}],

�3 = lim
m→∞m−1

m∑
i=1

ni∑
j=1

E[vec{(ZT
i Zi )

−1ZijZ
T
ij (Z

T
i Zi )

−1}.

× vecT{(ZT
i Zi )

−1ZijZ
T
ij (Z

T
i Zi )

−1}].

γ = lim
m→∞(n − qm)−1

m∑
i=1

ni∑
j=1

E[ZT
ij (Z

T
i Zi )

−1Zij ]2 − c1q/c2 + 1.

As the data are unbalanced, that is, different subjects have different numbers of
observations, the above expectations take no simple forms. Moreover, let

�1 =
⎛
⎜⎝

� ⊗ �(1) + � ⊗ �(1)

...

� ⊗ �(q) + � ⊗ �(q)

⎞
⎟⎠ ,
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where �(r),�(r) (r = 1, . . . , q) denote the r th row of �, �, respectively, and ⊗ is
the Kronecker product.

THEOREM 1. Under the technical conditions in the Appendix, we have

n1/2
{

vech(�̂ − �) − 1

4
h4

(
μ1μ3 − μ2

2

μ0μ2 − μ2
1

)2

{vech(B2) − vech(B1)b}
}

D−→ N(0, (RT
q Rq)

−1RT
q �Rq(R

T
q Rq)

−1c2),

where

� = E{e1eT
1 ⊗ e1eT

1 } − vec(�)vecT(�) + σ 2{� ⊗ � + � ⊗ � + �1}
+ 2σ 4{�2 − �3 + c1/c2(1 + γ )�} + var(ε2

11){�3 + c1/c2γ�}.

It is clear from Theorem 1 that the estimator �̂ would achieve root-n conver-
gence rate if the bandwidth is properly selected, say the bandwidth h is taken to
be O(n−1/8). For the estimation of the regression function based on the within
cluster correlation structure, Welsh, Lin and Carroll [26] suggest that the spline-
based weighted least squares estimation with the right weight would have smaller
variance than the working independence approach, but they do not take the bias
into consideration. Bias and variance are equally important when assessing the
goodness of an estimator. To appreciate both bias and variance, it is better to use
the mean squared error as a criterion to assess the accuracy of an estimator. It
is not clear whether Welsh, Lin and Carroll’s estimator is more efficient than the
working independence one in terms of the mean squared error. How to construct
a good estimator of the regression function is very important and interesting, but
it lies beyond the scope of this paper. Also based on the within cluster correlation
structure Wang [25] proposes an estimator of the regression function, which again
has smaller variance than the working independence one. Both Wang’s approach
and Welsh, Lin and Carroll’s rely on the within cluster correlation structure be-
ing known although in reality it is often unknown. Our estimator �̂ can be used
to substitute the (unknown) within cluster correlation structure in their estimation
procedure. This would not change the efficiency of the estimator of the regres-
sion function because �̂ enjoys convergence rate n−1/2. Further, the established
asymptotic normality is also useful for statistical inference.

THEOREM 2. Under the technical conditions in the Appendix, we have

n1/2
{
σ̂ 2 − σ 2 − 1

4
h4

(
μ1μ3 − μ2

2

μ0μ2 − μ2
1

)2

b

}

D−→ N
(
0, 2σ 4(1 + γ )c1 + var(ε2

11)γ c1
)
.
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Similarly to Theorem 1, if we choose the bandwidth h to be O(n−1/8), the
estimator σ̂ 2 will have the convergence rate n−1/2.

We give the proofs of these two theorems in the Appendix.

4. Simulation study. In this section, we conduct a simulation study on the ef-
ficacy of the proposed estimation method, and compare our results with restricted
maximum likelihood estimation (REML), which is commonly used in the liter-
ature for the estimation of the within cluster correlation structure. We will also
demonstrate that the proposed estimator of the covariance matrix can be used to
improve the estimators of the functional coefficients, and the proposed estimator
of the covariance matrix is robust against likelihood specification and mild model
misspecification.

EXAMPLE. In (1.3), with p = 2, Xij are i.i.d. from N(0, I2), Uij are i.i.d.
from U(0,1) and εij are i.i.d. from N(0, σ 2). With q = 2, Zij are i.i.d. from
N(0, I2) and ei are i.i.d. from N(0,�). Next, ni are i.i.d. and set to be the integer
part of |θ | + 6, θ ∼ N(0,4). We set m equal to 100 and σ 2 to 1. � = (σij )2×2,
and σ11 is set to be 2, σ12 to 1.5 and σ22 to 2. We also set a1(U) = sin(2πU) and
a2(U) = cos(2πU).

The kernel function involved in the local linear modeling is taken to be the
Epanechnikov kernel K(t) = 0.75(1 − t2)+. The bandwidth is chosen to be 0.15.
We repeat the simulation 100 times; the mean squared error (MSE) is used to as-
sess the accuracy of the estimators. The MSEs of the estimators of σij and σ 2 are
presented in the last column in Table 1, which suggests that the proposed estima-
tors perform well.

Next, we compare the proposed estimation with REML. For the nonparametric
setting, we use the B-spline decomposition to approximate the functional coeffi-
cient. The knots in the B-spline decomposition are equally spaced. We choose the
range of number of knots where the REML performs best when we use REML to
estimate the σij and σ 2. The Downhill Simplex approach (Jacoby, Kowalik and

TABLE 1
The MSEs of the estimators

6 7 8 9 10 Our method

σ11 0.1008 0.1013 0.0997 0.0987 0.0972 0.0967
σ12 0.0785 0.0788 0.0791 0.0789 0.0787 0.0760
σ22 0.0857 0.0874 0.0889 0.0890 0.0899 0.0887
σ 2 0.0787 0.0461 0.0242 0.0154 0.0095 0.0081

The top row is the number of knots. The last column is the MSE of the estimators obtained by our
method. The rest are the MSE of the estimators obtained by REML at different numbers of knots.
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Pizzo [16]) is employed for the optimization involved in REML. The MSEs of the
obtained estimators are presented in Table 1.

From Table 1, we can see that the newly proposed method and REML have com-
parable performance. Given the fact that REML is a likelihood-based method fully
utilizing the information provided by data, it should be, in theory, the most effi-
cient as long as the likelihood function is correctly specified. However, in practice,
REML may not be practicable because the optimization involved in REML can
be problematic when the dimension of ei is larger than 3. Specifically, the Down-
hill Simplex method, which served us well previously, has a tendency of failing to
converge in such cases. Although we cannot rule out the possibility of better op-
timization algorithms, the newly proposed estimation does have the considerable
practical advantage of yielding a closed-form solution and being optimization-free.

As one referee has rightly pointed out, another advantage of the proposed esti-
mation over REML is that the former does not rely on the likelihood function, so
it is robust against likelihood specification. To examine this point, we set the εij

as i.i.d. from a uniform distribution with mean 0 and variance σ 2. The proposed
estimation is employed again to estimate the σij and σ 2. The MSEs of the obtained
estimators are 0.006 for σ̂ 2, 0.090 for σ̂11, 0.066 for σ̂12 and 0.091 for σ̂22. This
suggests that the proposed estimation is indeed robust with respect to likelihood
specification.

As mentioned in the Introduction, the covariance matrix of random effects
serves two purposes. First, it improves the estimator of the functional coefficient.
Lin and Carroll [19] have shown that the estimator based on working indepen-
dence would be the best when kernel smoothing is used in a nonparametric setting.
Welsh, Lin and Carroll [26] have also shown the estimator can be improved by the
weighted least squares approach when spline smoothing is used. The following is
to explore how much improvement can be achieved when we incorporate the pro-
posed estimator of the covariance matrix of random effects in the latter approach.

For any function g(·), if ĝ(·) is an estimator of g(·), the mean integrated squared
error (MISE) of ĝ(·) is defined as

MISE =
∫

{ĝ(u) − g(u)}2 du.

Let MISE1 be the MISE of the estimator of the functional coefficient based on
working independence, and MISE2 the MISE based on the weighted least squares
approach, incorporating the proposed estimator of the covariance matrix of random
effects. We use IMP = (MISE1 − MISE2)/MISE2 to denote the improvement due
to the weighted least squares approach.

We have computed IMP when the number of knots in the B-spline decomposi-
tion is greater than 7 and less than 15, the choice being made on empirical grounds.
In fact, we found that the MISE of the estimators based on either the weighted least
squares approach or working independence is much smaller when the number of
knots lies in this range than when it lies outside this range. The obtained IMPs
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TABLE 2
The Improvement of the estimators

7 8 9 10 11 12 13 14 15

1.47 2.20 2.62 2.70 2.71 2.81 2.74 2.80 2.80
0.10 0.19 0.30 0.45 0.67 0.94 1.28 1.59 2.00

The top row is the number of knots, the second row is the IMP for a1(·) and the third row is the IMP
for a2(·).

are presented in Table 2, which suggests improvement across all cases and by a
substantial margin for the larger number of knots.

Finally, another interesting question is whether the proposed estimation still
works when the model is misspecified. We have conducted some investigation,
leaving a systematic study to the future. We simulated data from the model

yij = xij1a1(Uij ) + xij2a2(Uij ) + g1(zij1)ei1 + g2(zij2)ei2 + εij ,

j = 1, . . . , ni , i = 1, . . . ,m. Xij = (xij1, xij2)
T, Zij = (zij1, zij2)

T, ei = (ei1,

ei2)
T, and Uij and εij are simulated in the same way as before. ni and m are also set

in the same way as before. We set g1(z) = z+0.1 sin(z) and g2(z) = z+0.1 sin(z).
We still set a1(U) = sin(2πU) and a2(U) = cos(2πU).

Notice that tij1 = g1(zij1) cannot be treated as a covariate because g1(·) is
treated as unknown. The same remark applies to g2(zij2). So, the model (1.3) is
not the true model and we have a misspecified case here.

The proposed estimation is employed again to estimate the σij and σ 2. The
MSEs of the obtained estimators are 0.006 for σ̂ 2, 0.104 for σ̂11, 0.076 for σ̂12 and
0.098 for σ̂22. This suggests that the proposed estimation is robust against a mild
degree of misspecification.

5. Real data analysis. The data come from the Bangladesh Demographic and
Health Survey (BDHS) of 1996–1997 (Mitra et al. [23]), which is a cross-sectional,
nationally representative survey of ever-married women aged between 10 and 49.
The analysis is based on a sample of 8189 women nested within 296 primary
sampling units or clusters, with sample sizes ranging from 16 to 58. We allow
for the hierarchical structure of the data by fitting a two-level model with women
at level 1 nested within clusters at level 2. In the multilevel model, cluster-level
random effects allow for correlation between outcomes for women in the same
cluster. A further hierarchical level is the administrative division; Bangladesh is
divided into six administrative divisions which are Barisal, Chittagong, Dhaka,
Kulna, Rajshahi and Sylhet. Effects at this level are represented in the model by
fixed effects since there are only six divisions.

The dependent variable, yij , is the duration in months between marriage and the
first birth for the j th woman in the ith cluster. A small number of women (0.6%
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of the total sample size) reported a premarital birth, and these are excluded from
the analysis. When a woman was asked for the date of her first marriage in the
BDHS, the intention was to collect the age at which she started to live with her
husband. However, it is likely that some older women reported the age at which
they were formally married, which in Bangladesh can take place at a very young
age and some time before puberty (Mitra et al. [23]). For this reason, we calculate
the first birth interval assuming a minimum effective age at marriage of 12 years.
The youngest age at first birth in the sample was 12 years and this is assumed to be
the youngest age at which a woman can give birth. 11.53% of women in the sample
had not had a birth by the time of the survey and are therefore right-censored.

We consider several covariates which are commonly found to be associated with
fertility in Bangladesh. The selected individual-level categorical covariates (Zij )
include the woman’s level of education (none coded by 0, primary or secondary
plus coded by 1), religion (Muslim coded by 1, Hindu or other coded by 0) and age
at first marriage in years. Another individual-level covariate is year of marriage
(Uij ). We also consider two cluster-level variables, administrative division and
type of region of residence (urban coded by 1, rural coded by 0). We take Barisal
as the reference and the differences among the six administrative divisions are
modeled by a set of dummy variables. We take urban as the reference and the
differences between urban and rural clusters are modeled by dummy variables.
ξi is the vector of these six dummy variables.

Typically, there are two ways to analyze right-censored data. One is the like-
lihood function approach based on Cox proportional hazard function (Cox [4]);
another is the regression approach based on an unbiased transformation (Fan and
Gijbels [6]). In this paper, we adopt the latter approach. We recover the cen-
sored yij by the unbiased transformation proposed by Fan and Gijbels [6] first,
then let Xij = (ZT

ij , ξ
T
i )T and employ (1.3) to fit the transformed data. The pro-

posed estimation procedure is used to estimate the impacts of the covariates as
well as the correlations of these impacts. The results obtained are presented in
Figure 1 and Table 3.

Table 3 shows that the correlation between the impact of age (of the woman
at first marriage) and the impact of education is negative. This implies that the
impact of age on the first birth interval would be weak in areas where the education
level is high. The impact of age and the impact of religion are strongly negatively
correlated. This suggests that the impact of age on the first birth interval is also
very weak in areas which are predominantly Muslim. The correlation between the
impact of education and the impact of religion is also negative. This suggests that
education would not have a big impact on the first birth interval in areas which are
predominantly Muslim.

From Figure 1, we can see the trend of length of the first birth interval is decreas-
ing with time. This is attributed to a successful national family planning program
(see, e.g., Cleland et al. [2]), which increases the age at first marriage. A nationally
representative survey of women in 1996–1997 (Mitra et al. [23]) found that the
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FIG. 1. The impacts of the covariates which are commonly found to be associated with fertility in
Bangladesh on the length of the first birth interval.
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TABLE 3
The correlation between the impacts of the covariates

AGE1MAR EDUC REL

AGE1MAR 1 −0.180 −0.934
EDUC −0.180 1 −0.171
REL −0.934 −0.171 1

AGE1MAR is the impact of the age of the woman at first marriage in years, EDUC is the impact of
woman’s education and REL is the impact of the woman’s religion.

median age at marriage was 13.3 years among respondents aged 45–49 at the time
of the survey, compared to 15.3 years for respondents aged 20–24.

The impact of the woman’s age is negative and decreasing with time. The im-
pact of the woman’s education is negative until around 1984. Before 1984, the
longer birth intervals among women with no education may be partly explained by
the higher frequency with which these women report their age at formal marriage
rather than their age at cohabitation. Calculating the duration to the first birth from
an origin of age 12 for these women may have artificially inflated the lengths of
their birth intervals.

Urban impact is negative before 1959, and is getting smaller with time after
1959. This is because at earlier times, some women in rural areas got married
very early. There was a considerable time period between their formal marriage
and their age at cohabitation. Such cases are getting fewer with time. The impact
of following the Muslim religion is always negative, and was decreasing sharply
from 1955 to 1968, after which it stayed steady. This suggests that Muslims tend to
have significantly shorter first birth intervals than others before 1968; after 1968,
they still tend to have shorter first birth intervals than others but not as significantly.

Looking at the impact of the division, it is noticeable that the intervals are
shorter in Chittagong than in the other divisions. This regional effect is as expected
and is most likely explained by lower contraceptive use in Chittagong (the most re-
ligiously conservative part of Bangladesh) compared to other divisions. Moreover,
the impact of the division clearly varies with time.

APPENDIX

Let D = {(Uij ,Xij ,Zij ) : j = 1, . . . , ni, i = 1, . . . ,m}, and we use (U,X,Z) to
represent its population. Further, we write �1(u) = E(XXT |U = u).

The following technical conditions are imposed to establish the asymptotic re-
sults:

(1) Eε4
11 < ∞,E‖e1‖4 < ∞, Ex2s

i < ∞ and Ez2s
j < ∞, where ‖e1‖ = (eT

1 e1)
1/2,

xi denotes the ith element of X and zj denotes the j th element of Z for s > 2,
i = 1, . . . , p, j = 1, . . . , q .
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(2) a′′
j (·) is continuous in a neighborhood of u for j = 1, . . . , p, where a′′

j (·) is the
j th element of a′′(·). Further, assume a′′

j (u) 	= 0.
(3) The marginal density f (·) of U has a continuous derivative in some neighbor-

hood of u, and f (u) 	= 0.
(4) rij (u),βil(u) and γij (u) are continuous in a neighborhood of u, where

rij (u) = E(xixj |U = u), βil(u) = E(xizl|U = u),

γij (u) = E(xiZ
T �Zxj |U = u) for i, j = 1, . . . , p, l = 1, . . . , q.

(5) The function K(t) is a density function with a compact support.
(6) h → 0, nh2 → ∞ and nh8 is bounded.
(7) There exists a sequence of positive real numbers Mn such that Mn → ∞ and

n−1Mn max
1≤i≤m,1≤j≤ni

ni∑
s=1

(ZT
ij (Z

T
i Zi )

−1Zis)
2 P−→ 0.

For easy reference, we first present some useful lemmas.

LEMMA A.1. Let

T(n) =
n∑

i=1

n∑
j=1

aijXiXj

be a quadratic form in independent random variables Xi [E(Xi) = 0, E(X2
i ) = 1],

with λ1, . . . , λn the eigenvalues of the symmetric matrix (aij ), with aii = 0 for all i.
We denote σ 2

n = E(T 2
(n)). Suppose that there is a sequence of real numbers K(n)

such that

(a) K(n)2σ−2
n max1≤i≤n(

∑
1≤j≤n a2

ij ) → 0, n → ∞, and

(b) max1≤i≤n(E[X2
i I{|Xi |>K(n)}]) → 0, n → ∞, and that the eigenvalues of the

matrix (aij ) are negligible:
(c) σ−2

n max1≤i≤n(λ
2
i ) → 0, n → ∞; then σ−1

n T(n) has an asymptotic N(0,1)

distribution.

See Commenges and Jacqmin-Gadda ([3], Theorem 1).

LEMMA A.2. Let (X1, Y1), . . . , (Xn,Yn) be i.i.d. random vectors, where
the Yi ’s are scalar random variables. Assume further that E|Y |s < ∞ and
supx

∫ |y|sf (x, y) dy < ∞, where f denotes the joint density of (X,Y ). Let K

be a bounded positive function with bounded support, satisfying a Lipschitz condi-
tion. Then

sup
x∈D

∣∣∣∣∣n−1
n∑

i=1

{Kh(Xi − x)Yi − E[Kh(Xi − x)Yi]}
∣∣∣∣∣ = OP [{nh/ log(1/h)}−1/2]

provided that n2ε−1h → ∞ for some ε < 1 − s−1.
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This follows immediately from the result obtained by Mack and Silverman [22].
As we need the result of Theorem 2 to prove Theorem 1, we prove Theorem 2

first.

PROOF OF THEOREM 2. On using similar arguments as in Fan and Zhang
[11], the asymptotic conditional bias and covariance of â(Uij ) are equal to

bias{â(Uij )|D} = −1

2
h2 μ1μ3 − μ2

2

μ0μ2 − μ2
1

a′′(Uij

)(
1 + oP (1)

)
(A.1)

and

cov{â(Uij )|D} = OP ((nh)−1).(A.2)

Let Qi = Ini
− Pi , and let Q̃i be a diagonal matrix generated from the diagonal

elements of Qi . Now

σ̂ 2 = 1

n − qm

m∑
i=1

εT
i (Qi − Q̃i)εi + 1

n − qm

m∑
i=1

εT
i Q̃iεi

+ 1

n − qm

m∑
i=1

E[(r̂i − ri )
T|D]QiE[(r̂i − ri )|D]

+ 2

n − qm

m∑
i=1

{(r̂i − ri ) − E[(r̂i − ri )|D]}TQiE[(r̂i − ri )|D]

+ 1

n − qm

m∑
i=1

{(r̂i − ri ) − E[(r̂i − ri )|D]}T

(A.3)
× Qi{(r̂i − ri ) − E[(r̂i − ri )|D]}

+ 2

n − qm

m∑
i=1

εT
i QiE[(r̂i − ri )|D]

+ 2

n − qm

m∑
i=1

εT
i Qi{(r̂i − ri ) − E[(r̂i − ri )|D]}

≡ Jn1 + Jn2 + Jn3 + Jn4 + Jn5 + Jn6 + Jn7.

As Qi is an idempotent matrix and all the diagonal components of Qi − Q̃i are
equal to zero, by straightforward calculation it follows that

E(Jn1|D) = σ 2

n − qm

m∑
i=1

tr(Qi − Q̃i) = 0,

E(Jn2|D) = σ 2

n − qm

m∑
i=1

tr(Q̃i) = σ 2,
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cov(Jn1, Jn2|D) = E(Jn1Jn2 |D) = 2σ 4

(n − qm)2

m∑
i=1

tr
(
(Qi − Q̃i)Q̃i

) = 0,

var(Jn1|D) = 2σ 4

n − qm

{qm − ∑m
i=1

∑ni

j=1(Z
T
ij (Z

T
i Zi )

−1Zij )
2

n − qm

}
,

var(Jn2|D) = var(ε2
11)

(n − qm)2

m∑
i=1

ni∑
j=1

[1 − ZT
ij (Z

T
i Zi )

−1Zij ]2.

By the law of large numbers, it can be easily verified that

nvar(Jn2|D)
P−→ var(ε2

11)γ c1, nvar(Jn1|D)
P−→ 2σ 4(1 + γ )c1.

Since the eigenvalues of an idempotent matrix are either 1 or 0, by Eε4
11 < ∞,

condition (7) and Lemma A.1, we obtain that

n1/2Jn1
D−→ N

(
0,2σ 4(1 + γ )c1

)
.

As Q̃i is a diagonal matrix, Jn2 is a sum of independent variables. By Eε4
11 < ∞

and condition (7), it follows from the Lindeberg–Feller theorem that

n1/2(Jn2 − σ 2)
D−→ N(0,var(ε2

11)γ c1).

Since the two terms are uncorrelated, we have that

n1/2(Jn1 + Jn2 − σ 2)
D−→ N

(
0,2σ 4(1 + γ )c1 + var(ε2

11)γ c1
)
.(A.4)

It follows from (A.1) that

Jn3 = 1

n − qm

m∑
i=1

ni−q∑
k=1

ni∑
j=1

ni∑
s=1

QikjQiksX
T
ij bias{â(Uij )|D}

× XT
isbias{â(Uis)|D}(A.5)

= 1

4
h4

(
μ1μ3 − μ2

2

μ0μ2 − μ2
1

)2

b
(
1 + oP (1)

)
,

where

ni∑
l=1

QirlQisl = δrs =
{

1, r = s,
0, r 	= s.

In the following, we will show that the remaining parts Jn4 to Jn7 in (A.3)
satisfy n1/2Jnl = oP (1), l = 4, . . . ,7.
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By (A.1), (A.2) and the law of large numbers, we have

E{|Jn4||D}

= h2|μ1μ3 − μ2
2|

(n − qm)|μ0μ2 − μ2
1|

×
{

m∑
i=1

ni−q∑
k=1

ni∑
j=1

ni∑
s=1

|QikjQiksX
T
isa′′(Uis)|

× E
[∣∣(r̂ij − rij ) − E

[
(r̂ij − rij )|D]∣∣|D]}

(A.6)
× (

1 + oP (1)
)

≤ h2|μ1μ3 − μ2
2|

(n − qm)|μ0μ2 − μ2
1|

(
1 + oP (1)

)

×
m∑

i=1

(ni − q)

{
ni∑

s=1

(XT
isa′′(Uis))

2
ni∑

j=1

XT
ij cov(â(Uij )|D)Xij

}1/2

= Op((n−1h3)1/2).

By the inequality ab ≤ 2(a2 + b2),
∑ni

l=1 Q2
irl = 1, for r = 1, . . . , (ni − q), and

(A.2), it follows that

E{|Jn5||D} ≤ 4

n − qm

m∑
i=1

ni∑
j=1

(ni − q)XT
ij cov(â(Uij )|D)Xij

(A.7)
= OP ((nh)−1).

Using (A.1) and the inequality ηT
i Qiηi ≤ ηT

i ηi due to Qi being an idempotent
matrix, we have

E(J 2
n6|D)

≤ h4σ 2

(n − qm)2

{
μ1μ3 − μ2

2

μ0μ2 − μ2
1

}2 m∑
i=1

ni∑
j=1

XT
ij a′′(Uij )a′′(Uij )

TXij

(
1 + oP (1)

)
.

Therefore,

Jn6 = Op(n−1/2h2).(A.8)

As

Jn7 = 2

n − qm

m∑
i=1

ni−q∑
k=1

ni∑
j=1

ni∑
s=1

QikjQiks{(r̂ij − rij ) − E[(r̂ij − rij )|D]}εis,
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it follows from straightforward but tedious calculations and Lemma A.2 that

{(r̂ij − rij ) − E[(r̂ij − rij )|D]}εis

= XT
ij�

−1
1 (Uij )

nhf (Uij )(μ0μ2 − μ2
1)

×
{
−hμ2

[
m∑

r=1

nr∑
l=1

XrlKh(Url − Uij )(Zrler + εrl)εis

]

+ μ1

[
m∑

r=1

nr∑
l=1

Xrl(Url − Uij )Kh(Url − Uij )(Zrler + εrl)εis

]}

× (
1 + oP (1)

)
.

By boundedness of the kernel function, independence of random errors and ran-
dom effects, we have that E(J 2

n7|D) = Op((nh)−2), that is,

Jn7 = Op((nh)−1).(A.9)

Combining (A.3)–(A.9) and condition (6), we obtain that

n1/2
{
σ̂ 2 − σ 2 − 1

4
h4

(
μ1μ3 − μ2

2

μ0μ2 − μ2
1

)2

b

}
(A.10)

D−→ N
(
0,2σ 4(1 + γ )c1 + var(ε2

11)γ c1
)
. �

PROOF OF THEOREM 1. Using standard arguments as in the proof of Theo-
rem 2 and (A.1), the conditional bias of �̂ is

bias{vec(�̂)|D} = 1

4
h4

(
μ1μ3 − μ2

2

μ0μ2 − μ2
1

)2

{vec(B2) − vec(B1)b}(1 + oP (1)
)

+ OP ((nh)−1),

and by straightforward but tedious calculation, the Lindeberg–Feller theorem and
condition (7), it follows that

n1/2{vec(�̂ − �) − bias[vec(�̂)|D]} D−→ N(0,�c2),

where

� = E{e1eT
1 ⊗ e1eT

1 } − vec(�)vecT(�) + σ 2{� ⊗ � + � ⊗ � + �1}
+ 2σ 4{�2 − �3 + c1/c2(1 + γ )�} + var(ε2

11){�3 + c1/c2γ�}.
Therefore, we have

n1/2
{

vech(�̂ − �) − 1

4
h4

(
μ1μ3 − μ2

2

μ0μ2 − μ2
1

)2

{vech(B2) − vech(B1)b}
}

D−→ N(0, (RT
q Rq)

−1RT
q �Rq(RT

q Rq)
−1c2). �
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