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CONDITIONAL DENSITY ESTIMATION IN
A REGRESSION SETTING1

BY SAM EFROMOVICH

The University of Texas at Dallas

Regression problems are traditionally analyzed via univariate character-
istics like the regression function, scale function and marginal density of re-
gression errors. These characteristics are useful and informative whenever the
association between the predictor and the response is relatively simple. More
detailed information about the association can be provided by the conditional
density of the response given the predictor. For the first time in the litera-
ture, this article develops the theory of minimax estimation of the conditional
density for regression settings with fixed and random designs of predictors,
bounded and unbounded responses and a vast set of anisotropic classes of
conditional densities. The study of fixed design regression is of special inter-
est and novelty because the known literature is devoted to the case of random
predictors. For the aforementioned models, the paper suggests a universal
adaptive estimator which (i) matches performance of an oracle that knows
both an underlying model and an estimated conditional density; (ii) is sharp
minimax over a vast class of anisotropic conditional densities; (iii) is at least
rate minimax when the response is independent of the predictor and thus a
bivariate conditional density becomes a univariate density; (iv) is adaptive to
an underlying design (fixed or random) of predictors.

1. Introduction. Let (Yl,Xl), l = 1, . . . , n, be independent pairs of observa-
tions (bivariate data). We would like to analyze a relationship (association) be-
tween variables Xl (the predictor) and Yl (the response) that allows one to quantify
the input of Xl on Yl . To simplify the problem, the nonparametric regression litera-
ture recommends analysis of the association via the conditional expectation of the
response given the predictor because this implies estimation of a well-understood
univariate function. In practical applications, this simplification may or may not
fully describe the association; see discussion in [1, 5, 14, 16, 21, 31]. In general,
the conditional density of the response given the predictor describes the ultimate
association between the response and the predictor. However, this is a bivariate
function and its estimation is complicated by the curse of dimensionality, the latter
necessitating development of optimal estimators. The literature on such estimators
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is next to nothing, and the aim of this article is to develop minimax and oracle
theory of estimation of conditional densities.

Let us formulate the problem of estimation of the conditional density (in what
follows, the abbreviation c.d. will often be used) considered in this paper. We
would like to estimate the c.d. of the response Y given the predictor X in the fol-
lowing regression settings. First, we need to take into account two possible models
of design of predictors. The first model is where pairs of observations are inde-
pendent samples from a pair of two random variables Y and X. Then, if the joint
density f (y, x) exists and the marginal density p(x) := ∫ ∞

−∞ f (y, x) dy of the
predictor is positive, we are estimating the conditional density

f (y|x) := f (y, x)

p(x)
.(1.1)

It is traditional to refer to this design as random and to the marginal density p

as the design density, regardless of the fact that it may be known or unknown to
the statistician. The second model is where predictors are created by a determinis-
tic procedure and then responses are generated according to a conditional density
f (y|x). This is the case of a so-called fixed design. A discussion of these two de-
signs can be found in [5, 31]; an interesting probabilistic point of view is presented
in [1].

We also need to take into account that (i) the response can be either bounded
or unbounded (the former case is typical in practical applications and the latter is
of theoretical interest); (ii) the smoothness of the c.d. f (y|x) may depend on the
direction (it can be anisotropic), and moreover, if the response and predictor are
independent, then f (y|x) = f (y); (iii) different losses can be used to evaluate the
quality of estimation of the c.d. All these issues will be explored in this paper.

The level of known results on c.d. estimation is not on a par with the theory of
multivariate density estimation. The latter is the reason why using (1.1) has been
the main approach to assess the optimality of a c.d. estimator. To give an example
of how this formula is used in the literature, let us note that an isotropic bivari-
ate density with two derivatives for each component can be estimated with Mean
Integrated Squared Error (MISE) of order n−2/3 and then if the design density is
sufficiently smooth (say it is twice differentiable), this implies that the conditional
density can also be evaluated with MISE of order n−2/3. While such an approach
is legitimate, it has obvious limitations. In particular, it cannot resolve many basic
issues like how smoothness of the design density affects estimation of the condi-
tional density or how to consider a classical fixed design regression.

Formula (1.1) has also been an inspiration for creating ad hoc estimators of the
c.d. with the main theoretical emphasis on the bias-variance analysis. The inter-
ested reader can find a historical overview of this and related approaches in the
books [5, 15, 34]; other relevant references are [2, 16, 17, 22, 21, 23, 26–28, 35].

The content of the article is as follows. Section 2 presents the setting. Sec-
tions 3 and 4 describe new sharp minimax lower bounds under L2([0,1]2) and
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L2((−∞,∞)×[0,1]) losses, respectively. A c.d. estimator is defined in Section 5.
An oracle inequality which shows how well the estimator matches an oracle that
knows an estimated c.d. is presented in Section 6. Minimax properties of the es-
timator are established in Section 7. Optimal design of predictors for controlled
experiments is explored in Section 8. Discussion of the results obtained, including
analysis of real datasets, can be found in Section 9. Proofs are deferred to Sec-
tion 10.

The following notation will be used throughout the article: i always denotes the
complex unit, that is, i2 = −1; Re{·} is the real part; o(1)’s are generic sequences
in n such that o(1) → 0 as n → ∞; Q is a positive constant; C’s are generic
positive constants; (x)+ := max(0, x); �x� is the integer part of x; I (·) is the in-
dicator; the cosine basis on [0,1] is denoted by ϕ0(x) := 1, ϕj := 21/2 cos(πjx),
j = 1,2 . . . . We shall use two different loss functions to study the performance of
an estimator f̃ (y|x): L2([0,1]2) loss, which is

∫
[0,1]2(f̃ (y|x) − f (y|x))2 dy dx,

and L2((−∞,∞) × [0,1]) loss, which is
∫ 1

0 [∫ ∞
−∞(f̃ (y|x) − f (y|x))2 dy]dx. If

these two loss functions are considered simultaneously, then the area of integra-
tion is not written with the understanding that it corresponds to an underlying
loss.

2. Considered model. Observations are n pairs {(Yl,Xl), l = 1, . . . , n} which
are generated according to one of the following two designs. (i) Random de-
sign. The pairs are independent samples from a pair (Y,X) of two random vari-
ables (the response and the predictor) with the joint density f (y, x). Set p(x) :=∫ ∞
−∞ f (y, x) dy for the marginal (design) density of the predictor X. Assume that

p(x) is positive over its support. Then the problem is to find a corresponding condi-
tional density (c.d.) f (y|x) := f (y, x)/p(x). (ii) Fixed design. Let X1, . . . ,Xn be
a deterministic sequence. Then a corresponding sequence of independent random
variables Y1, . . . , Yn is generated according to a c.d. f (y|x), that is, given Xl = x,
the response Yl is distributed according to the density f (y|x) which should be
estimated.

In what follows, it is always assumed that predictors take values from the unit in-
terval [0,1], which is also the support of the random predictor X. Further, in a fixed
design case, it is assumed that (X1, . . . ,Xn) is a permutation of (X(1), . . . ,X(n))

generated by the algorithm X(0) = 0,
∫ X(l+1)

X(l)
p(x) dx = (n + 1)−1, l = 0,1, . . . , n,

X(n+1) = 1, where p(x) is a positive probability density supported on [0,1]. Here-
after, p(x) will be referred to as the design density, regardless of an underlying
design.

The considered statistical problem is to estimate the c.d. f (y|x) as a bivariate
function under the Mean Integrated Squared Error (MISE) criterion with the two
types of loss functions defined in the last paragraph of the Introduction. Because
an underlying design (fixed or random) is unknown to the statistician, a suggested
estimator should be universal (not dependent on an underlying design).
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We are now in position to discuss possible assumptions about the c.d. and the
design density. It is traditional in the c.d. estimation literature to consider the prob-
lem as a particular example of estimation of a bivariate density, and this explains a
typical assumption that an estimated c.d. f (y|x) is isotropic, meaning that it is as
smooth in y as in x. Let us recall that the most popular assumption is the twofold
partial differentiability of f (y|x) with respect to y and x; see the literature men-
tioned in the Introduction. In general, such an assumption may be reasonable for
the joint density of two abstract random variables, but in a regression setting, there
are obvious differences between the predictor and the response. Only as an ex-
ample, which makes this point crystal clear, let us consider an additive regression
model Y = m(X) + ε, where ε is an independent error with density q(z). Then
f (y|x) = q(y − m(x)) and it is easy to realize that the smoothness of the c.d.
in y is dependent solely on the smoothness of q(z), while the smoothness of the
c.d. in x depends on the smoothness of q(z) and the smoothness of the under-
lying regression function m(x). Thus, it is prudent to assume that the c.d. may
be an anisotropic bivariate function whose smoothness depends on the direction;
corresponding classes of such functions will be introduced in Sections 3 and 4.

3. Sharp local-minimax lower bound for L2([0,1]2) loss. The main aim
of this section is to understand how an estimated c.d. together with an underly-
ing design density affect the MISE. To explain the employed local-minimax ap-
proach (which originated in [18]), let us recall, following that article, a classi-
cal lower local-minimax bound for estimation of a univariate density f (y) over
the unit interval [0,1]. It is assumed that the density is close to a given pivotal
density f0(y). Suppose that the pivotal density is continuous and bounded be-
low from zero on the interval [0,1] and no assumption about f0(y) for y be-
yond the unit interval is made. Introduce a class of densities S(m,Q,f0, ρ) :=
{f (y) :

∫ ∞
−∞ f (y) dy = 1, (y) ≥ 0, f (y) = f0(y) + g(y), y ∈ [0,1], g ∈ S(m,Q),

supy∈[0,1] |g(y)| < ρ}, where S(m,Q) is a Sobolev class of functions g(y) that are
m-times differentiable on [0,1] and S(m,Q) := {g(y) :g(y) = ∑∞

j=1 θjϕj (y), y ∈
[0,1],∑∞

j=1(πj)2mθ2
j ≤ Q}.

Following [12, 5, 7], consider estimation of a univariate density f (y) based on
a sample Y1, . . . , Yn generated according to this density, set aj := (πj)2m, define
dY := dY (f ) := ∫ 1

0 f (y) dy as the coefficient of difficulty, introduce a positive
sequence μYn such that dY n−1 ∑∞

j=0([aj/μYn]1/2 − aj )+ := Q, and then set

M∗
n := dY n−1

∞∑
j=0

(1 − [ajμYn]1/2)+.

Pinsker [33] evaluated M∗
n and showed that M∗

n = Mn(f )(1 + o(1)), where

Mn(f ) = [
P(m)Q1/(2m+1)][dY (f )/n]2m/(2m+1)(3.1)
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and

P(m) = (2m + 1)1/(2m+1)[m/
(
π(m + 1)

)]2m/(2m+1)
.(3.2)

Note that P(m) and/or P(m)Q1/(2m+1) may be referred to as the Pinsker constant.
Then, it is established in [18] that for a slowly vanishing positive sequence ρn, the
following local-minimax lower bound holds:

inf
f̌

sup
f ∈S(m,Q,f0,ρn)

M−1
n (f )Ef

{∫ 1

0

(
f̌ (x) − f (x)

)2
dx

}
≥ 1 + o(1),(3.3)

where the infimum is taken over all possible estimators f̌ based on n realizations
Y1, . . . , Yn, the pivotal density f0(y) and parameters m, Q and ρn. Moreover, this
lower bound is sharp because it is attained by data-driven estimators; see [3, 5, 9].

This is the approach that we would like to take for the c.d. problem, and this is
the result to match. To this end, we introduce a similar setting for conditional den-
sity estimation. Let mX and mY be positive integers. Consider a bivariate function
g(y, x), (y, x) ∈ [0,1]2 which is mY -times differentiable with respect to y and
mX-times differentiable with respect to x (here and in what follows, partial dif-
ferentiation is meant) and which belongs to a corresponding anisotropic Sobolev
class,

S(mY ,mX,Q) :=
{
g(y, x) :g(y, x) =

∞∑
j,r=0

θjrϕj (y)ϕr(x), (y, x) ∈ [0,1]2,

(3.4) ∞∑
j,r=0

[(πj)2mY + (πr)2mX ]θ2
jr ≤ Q

}
.

This Sobolev class is well known in the statistical literature; see the discussion
in [25]. Let f0(y|x), (y, x) ∈ (−∞,∞) × [0,1], be a pivotal conditional den-
sity which is continuous and bounded below from zero on [0,1]2, no assumption
about f0(y|x) for (y, x) beyond the unit square being made. Introduce a class
of conditional densities S(mY ,mX,Q,f0(y|x), ρ) := {f (y|x) :

∫ ∞
−∞ f (y|x)dy =

1, f (y|x) ≥ 0, (y, x) ∈ (−∞,∞) × [0,1];f (y|u) = f0(y|x) + g(y, x), (y, x) ∈
[0,1]2;g(y, x) ∈ S(mY ,mX,Q); sup(y,x)∈[0,1]2 |g(y, x)| < ρ}. Also, let p(x),∫ 1

0 p(x)dx = 1, be the design density which is continuous and bounded below
from zero on [0,1]. Then, similarly to the univariate density setting, the prob-
lem is to explore a local-minimax estimation over this c.d. class. Set ajr :=
(πj)2mY + (πr)2mX , introduce the coefficient of difficulty of estimation of the c.d.
over the unit square,

d := d(f,p) :=
∫
[0,1]2

f (y|x)p−1(x) dy dx,(3.5)
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define a positive ηn such that

dn−1
∞∑

j,r=0

([ajr/ηn]1/2 − ajr)+ := Q(3.6)

and then set

R∗
n(S) := dn−1

∞∑
j,r=0

(1 − [ajrηn]1/2)+.(3.7)

It will be shown in Section 10 that R∗
n(S) = Rn(f,p,S)(1 + o(1)), where

Rn(f,p,S) = [
P(α,β)Q1/(2τ+1)][d(f,p)n−1]2τ/(2τ+1),(3.8)

α = mY , β = mX , 1/(2τ) := 1/(2α) + 1/(2β), the new Pinsker constant for esti-
mation of the c.d. on [0,1]2 is

P(α,β) := π−4τ/(2τ+1)[J1(α,β)]−1/(2τ+1)J2(α,β)(3.9)

and

J1(α,β) :=
∫
{(u,v):u2α+v2β≤1;u,v≥0}

([u2α + v2β ]1/2 − [u2α + v2β ]) dv du,(3.10)

J2(α,β) :=
∫
{(u,v) : u2α+v2β≤1;u,v≥0}

(1 − [u2α + v2β ]1/2) dv du.(3.11)

We can now present a local-minimax lower bound for c.d. estimation. In what
follows, E(f (y|x),p(x)){·} denotes the expectation given the c.d. f (y|x) and the
design density p(x); note that this expectation is well defined for both random and
fixed design settings and we may omit the subscript whenever no confusion arises.

THEOREM 3.1. Random and fixed designs are considered simultaneously.
Consider L2([0,1]2) loss. Suppose that a known design density p(x) is contin-
uous and bounded below from zero on its support [0,1]. Then, for a slowly vanish-
ing positive sequence ρn, the local-minimax MISE of estimation of a conditional
density f (y|x) satisfies the lower bound

inf
f̌

sup
f (y|x)∈S(mY ,mX,Q,f0,ρn)

E(f (y|x),p(x))

{
R−1

n (f,p,S)

×
∫
[0,1]2

(
f̌ (y|x) − f (y|x)

)2
dy dx

}
(3.12)

≥ 1 + o(1),

where Rn(f,p,S) is defined in (3.8) and the infimum is taken over all possible
c.d. estimators f̌ (y|x) based on n independent pairs (Y1,X1), . . . , (Yn,Xn) of ob-
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servations, generated according to (f (y|x),p(x)), as well as on the pivotal con-
ditional density f0(y|x), the design density p(x) and the parameters mY , mX , Q

and ρn.

Sobolev function classes are classical in the regression literature. The density es-
timation literature also considers smoother function classes such as analytic ones;
see discussion in [5, 20, 28, 24, 36]. Thus we shall complement the class of differ-
entiable c.d.s considered above by two classical classes of smoother functions. Let
γ , γ1 and γ2 be positive real numbers and recall that Q is a positive real number.
We begin by introducing an analytic-Sobolev class of bivariate functions,

AS(γ,mX,Q) :=
{
g(y, x) :g(y, x) =

∞∑
j,r=0

θjrϕj (y)ϕr(x), (y, x) ∈ [0,1]2,

θjr =
∫
[0,1]2

g(y, x)ϕj (y)ϕr(x) dy dx,(3.13)

∞∑
j,r=0

[(
eπγj + (πr)2mX

)
I (j + r > 0)

]
θ2
jr ≤ Q

}
.

This class includes bivariate functions g(y, x) which are analytic in y and mX-fold
differentiable in x. It is also possible that the conditional density is analytic in both
y and x. Let us then define an (anisotropic) analytic class

A(γ1, γ2,Q) :=
{
g(y, x) :g(y, x) =

∞∑
j,r=0

θjrϕj (y)ϕr(x), (y, x) ∈ [0,1]2,

θjr =
∫
[0,1]2

g(y, x)ϕj (y)ϕr(x) dy dx,(3.14)

∞∑
j,r=0

[(eπγ1j + eγ2r )I (j + r > 0)]θ2
jr ≤ Q

}
.

Then, analogously to the local class S(mY ,mX,Q,f0(y|x), ρn) defined above,
we can introduce local classes AS(γ,mX,Q,f0(y|x), ρn) and A(γ1, γ2,Q,f0(y|
x), ρn). For these two classes relations (3.6)–(3.7), with corresponding ajr =
(eπγj + (πr)2mX)I (j + r > 0) and ajr = (eπγ1j + eγ2r )I (j + r > 0), imply

Rn(f,p,AS)

= P(mX)Q1/(2mX+1)(d(f,p)/n
)2mX/(2mX+1)(3.15)

× [
2mX ln(n)/

(
(2mX + 1)πγ

)]2mX/(2mX+1)
,

where P(mX) is defined in (3.2), and

Rn(f,p,A) = (πγ1γ2)
−1d(f,p)n−1 ln2(n).(3.16)
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To shorten the presentation of lower bounds, in the following proposition, we
will consider these two local classes of conditional densities together.

THEOREM 3.2. Random and fixed designs are considered simultaneously.
Consider L2([0,1]2) loss. Suppose that a known design density p(x) is con-
tinuous and bounded below from zero on its support [0,1]. Then, for a slowly
vanishing positive sequence ρn and F being either AS(γ,mX,Q,f0, ρn) or
AS(γ1, γ2,Q,f0, ρn), the local-minimax MISE of estimation of a conditional den-
sity f (y|x) satisfies the lower bound

inf
f̌

sup
f (y|x)∈F

E(f (y|x),p(x))

{
R−1

n (f,p,F )

∫
[0,1]2

(
f̌ (y|x) − f (y|x)

)2
dy dx

}
(3.17)

≥ 1 + o(1),

where Rn(f,p,F ) is defined in (3.15) or (3.16) depending on the considered class
F and the infimum is taken over all possible c.d. estimators f̌ (y|x) based on n

independent pairs (Y1,X1), . . . , (Yn,Xn) of observations generated according to
(f (y|x),p(x)), as well as on the pivotal conditional density f0(y|x), the design
density p(x) and all parameters defining the class F .

A plain analysis of the coefficient of difficulty d(f,p) defined in (3.5) in-
dicates that if

∫ 1
0 f (y|x)dy ≡ 1, then the coefficient of difficulty does not de-

pend on the underlying c.d. f (y|x). The latter is the case if [0,1]2 is the sup-
port of the joint density f (y|x)p(x). Let us stress that the main reason why
we are considering a local-minimax is to explore how an underlying c.d. affects
the coefficient of difficulty. Using a similar proof, it is straightforward to estab-
lish that if L2((−∞,∞) × [0,1]) loss is considered, then the coefficient of dif-
ficulty does not depend on an underlying c.d. since, in this case, we always have∫ ∞
−∞ f (y|x)dy ≡ 1. Due to this remark, we can omit the analysis of local-minimax

MISEs for L2((−∞,∞) × [0,1]) loss and consider a classical minimax approach
in the next section.

4. Sharp minimax lower bounds for L2((−∞,∞) × [0,1]) loss. The aim
of this section is to find minimax lower bounds for several anisotropic classes
of conditional densities and L2((−∞,∞) × [0,1]) loss. The latter is of special
interest in the case of unbounded responses. Because a loss function is given, no
ambiguity occurs if we use identical notation for function classes defined on [0,1]2

(as in the previous section) and those defined on (−∞,∞) × [0,1] (considered in
this section). The motivation for this abuse of notation is that corresponding spaces
are defined in such a manner that they imply the same MISE convergence for both
of the considered losses and this will allow us to shorten the presentation of results.
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We begin with a Sobolev anisotropic class of conditional densities,

S(mY ,mX,Q) :=
{
f (y|x) :f (y|x) =

∞∑
r=0

(2π)−1
∫ ∞
−∞

hr(u)e−iuy duϕr(x),

f (y|x) ≥ 0,

∫ ∞
−∞

f (y|x)dy ≡ 1,

(4.1)
(y, x) ∈ (−∞,∞) × [0,1],
∞∑

r=0

π−1
∫ ∞

0
[u2mY + (πr)2mX ]|hr(u)|2 du ≤ Q

}
.

To shed light on the functions hr(u), it may be helpful to note that if h(u|x) :=∫ ∞
−∞ f (y|x)eiyu dy denotes the conditional characteristic function, then

hr(u) :=
∫ 1

0
h(u|x)ϕr(x) dx(4.2)

is its r th Fourier coefficient and one can write h(u|x) = ∑∞
r=0 hr(u)ϕr(x). The

Sobolev class (4.1) contains bivariate functions g(y, x), (y, x) ∈ (−∞,∞) ×
[0,1], having the square integrable generalized mY -fold partial derivative with re-
spect to y and the square integrable generalized mX-fold partial derivative with
respect to x; see the discussion in [32, 36].

Another anisotropic class to consider is an analytic-Sobolev one,

AS(γ,mX,Q) :=
{
f (y|x) :f (y|x) =

∞∑
r=0

(2π)−1
∫ ∞
−∞

hr(u)e−iuy duϕr(x),

f (y|x) ≥ 0,

∫ ∞
−∞

f (y|x)dy ≡ 1,

(4.3)
(y, x) ∈ (−∞,∞) × [0,1],

∞∑
r=0

π−1
∫ ∞

0
[eγu + (πr)2mX ]|hr(u)|2 du ≤ Q

}
,

which is an analog of (3.13). Note that this class includes, among others, classi-
cal normal, Student and Cauchy conditional densities, as well as their mixtures
and one-to-one transformations which are typical in additive regression; see the
discussion in [20, 36].

Finally, similarly to (3.14), we define an anisotropic analytic class

A(γ1, γ2,Q) :=
{
f (y|x) : f (y|x) =

∞∑
r=0

(2π)−1
∫ ∞
−∞

hr(u)e−iuy duϕr(x),

f (y|x) ≥ 0,

∫ ∞
−∞

f (y|x)dy ≡ 1,(4.4)



CONDITIONAL DENSITY ESTIMATION 2513

(y, x) ∈ (−∞,∞) × [0,1],
∞∑

r=0

π−1
∫ ∞

0
[eγ1u + eγ2r ]|hr(u)|2 du ≤ Q

}
.

We can now present lower minimax bounds.

THEOREM 4.1. Random and fixed designs are considered simultaneously.
Consider the case of L2((−∞,∞) × [0,1]) loss. Suppose that a known design
density p(x) is continuous and bounded below from zero on its support [0,1].
Then

inf
f̌

sup
f (y|x)∈F

E(f (y|x),p(x))

{∫ 1

0

[∫ ∞
−∞

(
f̌ (y|x) − f (y|x)

)2
dy

]
dx

}
(4.5)

≥ Rn(p,F )
(
1 + o(1)

)
,

where the infimum is taken over all possible estimators f̌ based on the design
density p(x), the class F and n independent pairs of observations (Yl,Xl),
l = 1, . . . , n, generated according to (f (y|x),p(x)). The asymptotic minimax risk
Rn(p,F ) is defined as follows. For the considered loss, the coefficient of difficulty
is simplified to d := d(p) = ∫ 1

0 p−1(x) dx, and then,

(a) for an anisotropic Sobolev class F = S(mY ,mX,Q), the risk Rn(p,F ) is
equal to the right-hand side of (3.8), with α = mY , β = mX and d(f,p) replaced
by d(p);

(b) for an analytic-Sobolev class F = AS(γ,mX,Q), the risk Rn(p,F ) is
equal to the right-hand side of (3.15), with d(f,p) replaced by d(p);

(c) for an anisotropic analytic class F = A(γ1, γ2,Q), the risk Rn(p,F ) is
equal to the right-hand side of (3.16), with d(f,p) replaced by d(p).

We have obtained lower bounds for the MISE which allow us to introduce the
notion of sharp minimax estimation of the c.d. over a class F of c.d.s whenever
the MISE of an estimator attains a corresponding lower bound.

5. EP conditional density estimator. The objective of this section is to sug-
gest a conditional density estimator which is (i) adaptive to (in general unknown)
design of predictors; (ii) simultaneously sharp minimax over the aforementioned
anisotropic classes of conditional densities; (iii) at least univariate-rate minimax
when the c.d. is a univariate density, that is, under the classical null hypothesis
“the response is independent of the predictor.”

The last aim makes it reasonable to rewrite a c.d. as a sum of a univariate com-
ponent and a bivariate component,

f (y|x) = f (y) + ψ(y, x),(5.1)

where ψ(y, x) vanishes if the response is independent of the predictor. A pair
of these components is defined differently for the two studied loss functions and
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definitions will be presented shortly. (Let us stress that a loss function is known
to the statistician, so an estimator may be chosen accordingly.) Then a blockwise-
shrinkage Efromovich–Pinsker (EP) estimator will be developed for the estimation
of f (y) and ψ(y, x).

REMARK 5.1. The interested reader can find a comprehensive discussion
of the EP estimation procedure in [5]. Here we briefly recall its main idea.
Suppose that a bivariate function g(u, v) is estimated on a set A and sup-
pose that there exists an orthonormal basis {ϕjs(u, v); j, s ≥ 0} on A such that
g(u, v) = ∑∞

j,s=0 κjsϕjs(u, v), κjs = ∫
A g(u, v)ϕjs(u, v) dudv for (u, v) ∈ A.

Then a blockwise-shrinkage EP estimator is defined as follows. All indices (j, s)

are divided into nonoverlapping blocks Bk , k = 1,2, . . . . Also, a sequence of posi-
tive thresholds tk and a cutoff K are chosen. Blocks, thresholds and the cutoff may
depend on the sample size n. An EP estimator can then be written as

g̃(u, v) :=
K∑

k=1

μ̃k

∑
(j,s)∈Bk

κ̃jsϕjs(u, v), (u, v) ∈ A,

where κ̃js is an estimator of κjs , with a method of moments estimator being
a typical choice, and μ̃k = μ(Bk, tk, n, {κ̃js, (j, s) ∈ Bk}) is a shrinkage coeffi-
cient. Let us stress two facts about this estimator. First, neither blocks Bk , nor
thresholds tk , nor the cutoff K , nor the shrinkage-coefficient function μ de-
pends on observations; instead, they are chosen a priori. Second, adaptation to
the smoothness of an underlying function g is achieved solely by shrinkage coef-
ficients μ̃k via their dependence on observations. The underlying idea of using a
shrinkage procedure is to mimic Wiener’s optimal shrinkage coefficient (oracle)
μ∗

k := ∑
(j,s)∈Bk

κ2
js/[

∑
(j,s)∈Bk

(κ2
js + Var(κ̃js))].

Let us present assumptions and notation.

ASSUMPTION 1. An estimated conditional density f (y|x) belongs to a
Sobolev class S(1,1,C), C < ∞, defined either in (3.4) or (4.1) for L2([0,1]2)

loss or L2((−∞,∞) × [0,1]) loss, respectively.

REMARK 5.2. It is convenient to define the Sobolev class (3.4) as a class of
bivariate functions and the Sobolev class (4.1) as a class of conditional densities.
Nonetheless, because f (y|x) is the c.d., this difference plays no role in Assump-
tion 1.

ASSUMPTION 2. The design density p(x), x ∈ [0,1], is bounded below from
zero on its support [0,1] and its first derivative p(1)(x) exists and is bounded on
[0,1].

NOTATION. Whenever no ambiguity may arise, sets of integration are omit-
ted and, for instance, double integrals are taken over [0,1]2 or (−∞,∞) × [0,1],
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depending on the loss under consideration. N denotes the set of nonnegative
integers. Two given arrays of nonnegative numbers {0 = b1 < b2 < · · ·} and
{b′

1 = 0, b′
2 = 1 + �ln3/4(n)�, b′

s+1 = b′
s + �b′

2(1 + 1/ ln ln(n))s−2�, s = 2,3, . . .},
will be used to define blocks and two given arrays of positive numbers, {t1, t2, . . .}
and {tkτ := 1/ ln ln((k + 3)(τ + 3)), k, τ = 1,2, . . .}, will denote thresholds. Two
different arrays of blocks are used for estimation of univariate f (y) and bivari-
ate ψ(y, x) components of f (y|x); recall (5.1). The former is {Bk, k = 1,2, . . .},
where the blocks are either consecutive sets of nonnegative integers Bk := {j :bk ≤
j < bk+1, j ∈ N } or intervals Bk := [bk, bk+1) for L2([0,1]2) or L2((−∞,∞) ×
[0,1]) loss, respectively. The latter blocks are either sets of pairs of integers
Bkτ := {(j, r) :b′

k ≤ j < b′
k+1, b

′
τ < r ≤ b′

τ+1, j, r ∈ N } for the L2([0,1]2) loss or
sets of mixed pairs of real and integer numbers Bkτ := {(u, r) :u ∈ [b′

k, b
′
k+1), b

′
τ <

r ≤ b′
τ+1, r ∈ N } for the other loss. The corresponding lengths/cardinalities of

these blocks are Lk := bk+1 − bk and Lkτ := (b′
k+1 − b′

k)(b
′
τ+1 − b′

τ ). In oracle
inequalities, we shall also use so-called adjusted lengths

L∗
kτ := Lkτ∑

(j,r)∈Bkτ
[| ∫ 1

0 p−1(x)ϕ2r (x) dx| + ∫ 1
0 | ∫ 1

0 f (y|x)ϕj (y) dy|2 dx](5.2)

or

L∗
kτ := Lkτ

/( ∞∑
r=1

∫ ∞
0

I
(
(u, r) ∈ Bkτ

)[∣∣∣∣
∫ 1

0
p−1(x)ϕ2r (x) dx

∣∣∣∣
(5.3)

+
∫ 1

0

∣∣∣∣
∫ ∞
−∞

eiuyf (y|x)dy

∣∣∣∣
2

dx

]
du

)

for L2([0,1]2) loss or the other loss, respectively, and let L∗
k := Lk .

We can now define EP estimators for the two losses in turn.

EP estimator for L2([0,1]2) loss. Here, the c.d. f (y|x) is estimated over the
unit square [0,1]2 and then [recalling the decomposition (5.1)]

f (y) =
∞∑

j=0

θjϕj (y), θj :=
∫
[0,1]2

f (y|x)ϕj (y) dy dx.(5.4)

The Fourier series (5.4) implies a familiar univariate EP estimator,

f̃ (y) :=
K∑

k=1

μ̃k

∑
j∈Bk

θ̂jϕj (y),(5.5)

where the θ̂j are empirical Fourier coefficients,

θ̂j := n−1
n∑

l=1

I (Yl ∈ [0,1])ϕj (Yl)p̂
−1(Xl),(5.6)
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and the μ̃k are plugged-in Wiener shrinkage coefficients,

μ̃k := �̃k

�̃k + d̂n−1
I (�̃k > tkd̂n−1),(5.7)

where

�̃k := L−1
k

∑
j∈Bk

|θ̂j |2 − d̂n−1(5.8)

and

d̂ := n−1
n∑

l=1

I (Yl ∈ [0,1])p̂−2(Xl)(5.9)

estimates the coefficient of difficulty d = ∫
[0,1]2 f (y|x)p−1(x) dy dx. The truncat-

ed-from-zero design density estimator is

p̂(x) := max
(
1/ ln ln(n), p̃(x)

)
,(5.10)

the pivotal design density estimator p̃(x) is an orthogonal series estimator

p̃(x) := 1 + n−1
n1/3∑
r=1

n∑
l=1

ϕr(Xl),(5.11)

and the cutoff K used in (5.5) is the minimal integer such that bK+1 > n1/3 ln ln(n).
The underlying idea of EP estimation of the bivariate function ψ(y, x) is based

on the expansion

ψ(y, x) =
∞∑

j=0

∞∑
r=1

θjrϕj (y)ϕr(x),

(5.12)
θjr :=

∫
[0,1]2

f (y|x)ϕj (y)ϕr(x) dy dx.

Note that the bivariate function (5.12) vanishes (as it should) if f (y|x) does not
depend on x. The corresponding bivariate blockwise-shrinkage EP estimator is
then

ψ̃(y, x) :=
T∑

k,τ=1

μ̃kτ

∑
(j,r)∈Bkτ

θ̂jrϕj (y)ϕr(x),(5.13)

θ̂jr := n−1
n∑

l=1

I (Yl ∈ [0,1])ϕj (Yl)ϕr(Xl)p̂
−1(Xl),(5.14)

μ̃kτ := �̃kτ

�̃kτ + d̂n−1
I (�̃kτ > tkτ d̂n−1),(5.15)

�̃kτ := L−1
kτ

∑
(j,r)∈Bkτ

θ̂2
jr − d̂n−1,(5.16)
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where d̂ is defined in (5.9), p̂(x) in (5.10) and T is the minimal integer such
that b′

T +1 > n1/4 ln ln(n). The EP estimator is then defined as f̃ (y|x) := f̃ (y) +
ψ̃(y, x).

EP estimator for L2((−∞,∞)×[0,1]) loss. Here, in representation (5.1), we
have

f (y) = (2π)−1
∫ ∞
−∞

h0(u)e−iuy dy(5.17)

and

ψ(y, x) =
∞∑

r=1

(2π)−1
∫ ∞
−∞

hr(u)e−iuy duϕr(x),(5.18)

where

hr(u) :=
∫ 1

0
h(u|x)ϕr(x) dx, r = 0,1, . . . ,(5.19)

and

h(u|x) :=
∫ ∞
−∞

f (y|x)eiuy dy(5.20)

is the conditional characteristic function of Y given X = x. This approach implies
the following EP estimation of f (y):

f̃ (y) := π−1
∫ ∞

0
Re{h̃0(u)e−iuy}du,(5.21)

where

h̃0(u) :=
K∑

k=1

μ̃kĥ0(u)I (u ∈ Bk), u ≥ 0,(5.22)

ĥr (u) := n−1
n∑

l=1

eiuYlϕr(Xl)p̂
−1(Xl), r = 0,1, . . . ,(5.23)

μ̃k := �̃k

�̃k + d̃n−1
I (�̃k > tkd̃n−1),(5.24)

�̃k := L−1
k

∫
Bk

|ĥ0(u)|2 du − d̃n−1,(5.25)

and because for the considered loss the coefficient of difficulty simplifies to d =∫ 1
0 p−1(x) dx, we use the estimate p̂(x) defined in (5.10) and then set

d̃ :=
∫ 1

0
p̂−1(x) dx.(5.26)



2518 S. EFROMOVICH

Further, the EP estimator of ψ(y, x) is defined as

ψ̃(y, x)
(5.27)

:= π−1
T∑

k,τ=1

μ̃kτ

∞∑
r=1

∫ ∞
0

I
(
(u, r) ∈ Bkτ

)
Re{ĥr (u)e−iuy}duϕr(x),

where

μ̃kτ := �̃kτ

�̃kτ + d̃n−1
I (�̃kτ > tkτ d̃n−1)(5.28)

and

�̃kτ := L−1
kτ

∞∑
r=1

∫ ∞
0

I
(
(u, r) ∈ Bkτ

)|ĥr (u)|2 du − d̃n−1.(5.29)

The EP c.d. estimator is then defined as

f̃ (y|x) := f̃ (y) + ψ̃(y, x).(5.30)

Note that definition (5.30) of the EP c.d. estimator is the same for both losses, but
the two additive components are different. This abuse of notation will allow us to
consider the two losses simultaneously.

6. Oracle inequality. The aim of this section is to show that the MISE of the
EP estimator matches the MISE of an oracle that knows an estimated c.d. and has
excellent statistical properties. As in the previous section, we are simultaneously
considering two possible designs of predictors and two losses, L2([0,1]2) and
L2((−∞,∞) × [0,1]).

Let us introduce a blockwise-shrinkage oracle f̃ ∗(y|x), motivated by Wiener’s
filter, which serves as a benchmark for the EP c.d. estimator f̃ (y|x). It is defined as
the estimator (5.30) with estimated shrinkage coefficients replaced by coefficients
depending on (f,p),

μk := �k/[�k + d(f,p)n−1] and μkτ := �kτ/[�kτ + d(f,p)n−1],(6.1)

in place of the corresponding statistics μ̃k defined in (5.7) or (5.24) (for the two
losses) and μ̃kτ defined in (5.15) or (5.28) (for the two losses), respectively. Here
and in what follows, d(f,p) is defined in (3.5) for L2([0,1]2) loss, d(f,p) =
d(p) = ∫ 1

0 p−1(x) dx for L2((−∞,∞)×[0,1]) loss, and �k and �kτ are Sobolev
functionals defined as

�k := L−1
k

∑
j∈Bk

θ2
j , �kτ := L−1

kτ

∑
(j,r)∈Bkτ

θ2
jr(6.2)
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for L2([0,1]2) loss and

�k := L−1
k

∫
Bk

|h0(u)|2 du,

(6.3)

�kτ := L−1
kτ

∞∑
r=1

∫ ∞
0

I
(
(u, r) ∈ Bkτ

)|hr(u)|2 du

for the other loss.

THEOREM 6.1. The cases of bounded and unbounded responses, as well as
the cases of the two studied losses, are considered simultaneously. Suppose that
Assumptions 1 and 2 hold. Then the following oracle inequality holds for the EP
estimator f̃ (y|x):

E

∫ (
f̃ (y|x) − f (y|x)

)2
dy dx ≤ E

∫ (
f̃ ∗(y|x) − f (y|x)

)2
dy dx + δn,(6.4)

where

δn ≤ Cn−1

[
K∑

k=1

[Lkμk(t
1/2
k + L

−1/2
k t

−3/2
k ) + L−2

k t−5
k ]

(6.5)

+
T∑

k,τ=1

[
Lkτμkτ

(
t
1/2
kτ + (L∗

kτ )
−1/2t

−3/2
kτ

) + (L∗
kτ )

−2t−5
kτ

]]
,

and the oracle’s MISE satisfies

E

∫ (
f̃ ∗(y|x) − f (y|x)

)2
dy dx

= n−1c∗d(f,p)

[
K∑

k=1

Lkμk +
T∑

k,τ=1

Lkτμkτ

]
(6.6)

+ c∗
[ ∑

k>K

Lk�k +
∞∑

k,τ=1

I
(
(k, τ ) /∈ [1, T ]2)

Lkτ�kτ

]
+ δ∗

n,

where c∗ = 1 for L2([0,1]2) loss and c∗ = π−1 for L2((−∞,∞) × [0,1]) loss
and where, for any two arrays {νk ∈ (0,1), k = 1,2, . . .} and {νkτ ∈ (0,1), k, τ =
1,2, . . .},

|δ∗
n| ≤ c∗d(f,p)n−1

K∑
k=1

Lkμk[νk + Cν−1
k μk(L

−1
k + n−1/4)]

(6.7)

+ c∗d(f,p)n−1
T∑

k,τ=1

Lkτμkτ [νkτ + Cν−1
kτ μkτ (L

∗
kτ )

−1].
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The oracle inequality shows how well the EP estimator matches the oracle’s risk.
Note that it is a pointwise inequality (it is valid for a particular underlying c.d.)
and it is exact (not asymptotic). The oracle inequality also allows us to establish
minimax properties of the EP estimator, and this will be done in the next section.

7. Minimax properties of the EP c.d. estimator. The oracle inequality of
Theorem 6.1 allows us to establish a number of useful minimax results. We need
an extra assumption on blocks and thresholds which is common in the literature;
see the discussion in [3, 5, 6].

ASSUMPTION 3. Assume that tk → 0 and Lk+1/Lk → 1 as k → ∞ and that∑∞
k=1 L−2

k t−5
k < ∞.

REMARK 7.1. To simultaneously consider the minimax approaches of Sec-
tions 3 and 4, it is assumed that for the local-minimax approach of Section 3, only
an unknown additive component g(y, x) of the c.d. f (y|x) = f0(y|x) + g(y, x)

is estimated by the bivariate EP estimator based on empirical Fourier coefficients
(5.6) and (5.14) minus corresponding Fourier coefficients of the known pivotal
c.d. f0(y|x). Note that a pivotal c.d. traditionally studied in upper bounds is
f0(y|x) = c ≤ 1, (y, x) ∈ [0,1]2, for which there is no difference between the
local-minimax and minimax EP estimators, apart from estimation of the single
Fourier coefficient θ0.

THEOREM 7.1. The cases of fixed and random designs are considered simul-
taneously. Let Assumptions 1–3 hold. Then for each loss, a corresponding EP c.d.
estimator, defined in Section 5, is simultaneously sharp minimax over Sobolev,
analytic-Sobolev and analytic classes of conditional densities considered in Sec-
tions 3 and 4, that is, the MISE of the EP c.d. estimator attains the lower bounds
of Sections 3 and 4.

We are now in position to show how well the bivariate EP estimator will perform
in the case of the classical hypothesis, “the response is independent of the predic-
tor.” Under this hypothesis, suppose that an oracle f̌ ∗(y) knows that the response
is independent and then estimates the univariate density f (y) = f (y|x) based on n

i.i.d. responses Y1, Y2, . . . , Yn. Obviously, this univariate oracle can be considered
as a benchmark for any bivariate c.d. estimator given that the hypothesis is true.
Our aim is to compare the bivariate EP c.d. estimator developed above with such
an oracle.

We shall consider three classical classes of univariate densities. In what fol-
lows, α is a positive integer and γ , Q and q are positive real numbers. Let us begin
with a class of differentiable univariate densities. For L2((−∞,∞)) loss (recall
that now a univariate density is estimated), we introduce a familiar Sobolev class
S(α,Q) := {f (y) :

∫ ∞
−∞(f (α)(y))2 dy ≤ Q} = {h(u) :π−1 ∫ ∞

0 |u|2α|h(u)|2 du ≤
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Q}, where f (α) is the αth generalized derivative and h(u) := ∫ ∞
−∞ f (y)eiuy dy

is the characteristic function; see [19, 32, 36]. With some obvious abuse of nota-
tion, for the case of L2([0,1]) loss, we define a similar Sobolev class S(α,Q) :=
{f (y) :

∑∞
j=1(πj)2αθ2

j ≤ Q; θ0 ≥ c0 > 0, θj := ∫ ∞
0 f (y)ϕj (y) dy}.

Let us now consider analytic densities. For the case of L2((−∞,∞)) loss,
a class of such densities was introduced in [20]: A(γ,Q) := {f (y) :π−1 ∫ ∞

0 eγu ×
|h(u)|2 du < Q;h(u) = ∫ ∞

−∞ eiuyf (y) dy}. An L2([0,1]) counterpart of this

class is A(γ,Q) := {f :
∑∞

j=1 eπγj θ2
j ≤ Q,θ0 ≥ c0 > 0; θj = ∫ 1

0 f (y)ϕj (y) dy};
see [5].

Finally, a bounded spectrum class is defined as B(q) := {f (y) :h(u) = 0, |u| >
q;h(u) := ∫ ∞

−∞ eiuyf (y) dy} or B(q) := {f (y) : θj = 0, j > q, θ0 ≥ c0 > 0; θj :=∫ 1
0 f (y)ϕj (y) dy} for L2((−∞,∞)) or L2([0,1]) loss, respectively. A compre-

hensive discussion of this class can be found in [30]. Let us recall that Ibragimov
and Hasminskii [24, 28] have established that the minimax rate of convergence for
this class is parametric qn−1.

Note that in all these definitions it is assumed that f (y) is the density, that is,
that f (y) ≥ 0 and

∫ ∞
−∞ f (y) dy = 1.

The following univariate minimax result is well known; see [5, 8].

PROPOSITION 7.1. Suppose that the response is independent of the predic-
tor. We are simultaneously considering the cases of L2([0,1]) and L2((−∞,∞))

losses. There exists an oracle f̌ ∗(y), based on n i.i.d. observations Y1, Y2, . . . , Yn

of the response, which is simultaneously rate minimax for bounded spectrum den-
sities and sharp minimax for Sobolev and analytic densities. In particular, the EP
univariate density estimator of [3], with blocks and thresholds {(Lk, tk)} satisfying
Assumption 3, may serve as such an oracle and then

sup
f ∈B(q)

[d(f )]−1E

∫ (
f̌ ∗(y) − f (y)

)2
dy ≤ Cqn−1,(7.1)

sup
f ∈S(α,Q)

[d(f )]−2α/(2α+1)E

∫ (
f̌ ∗(y) − f (y)

)2
dy

(7.2)
= P(α)Q1/(2α+1)n−2α/(2α+1)(1 + o(1)

)
,

sup
f ∈A(γ,Q)

[d(f )]−1E

∫ (
f̌ ∗(y) − f (y)

)2
dy = (

πγn/ ln(n)
)−1(

1 + o(1)
)
,(7.3)

where P(α) is defined in (3.2), d(f ) is either
∫ 1

0 f (y) dy or 1 and the integrals in
(7.1)–(7.3) are taken over [0,1] or (−∞,∞) for L2([0,1]) loss or L2((−∞,∞))

loss, respectively.

We can now formulate a minimax assertion for the independent response case.
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THEOREM 7.2. The cases of fixed and random designs as well as the cases
of two studied losses are considered simultaneously. Suppose that the response is
independent of the predictor, that is, f (y|x) = f (y), x ∈ [0,1], and Assumptions
1–3 hold. Then the EP c.d. estimator f̃ (y|x) of Section 5 is simultaneously rate
minimax over bounded spectrum, analytic and Sobolev classes of univariate den-
sities, namely

sup
f ∈B(q)

[d(f,p)]−1E

∫ (
f̃ (y|x) − f (y)

)2
dy dx ≤ Cqn−1,(7.4)

sup
f ∈S(α,Q)

[d(f,p)]−2α/(2α+1)E

∫ (
f̃ (y|x) − f (y)

)2
dy dx

(7.5)
≤ P(α)Q1/(2α+1)(n)−2α/(2α+1)(1 + o(1)

)
,

sup
f ∈A(γ,Q)

[d(f,p)]−1E

∫ (
f̃ (y|x) − f (y)

)2
dy dx

(7.6)
≤ (

πγn/ ln(n)
)−1(

1 + o(1)
)
,

where d(f,p) = ∫ 1
0 f (y) dy

∫ 1
0 p−1(x) dx for the L2([0,1]2) loss and d(f,p) =∫ 1

0 p−1(x) dx for the L2((−∞,∞) × [0,1]) loss.

This theorem implies the following sharp-minimax result.

COROLLARY 7.1. Let the assumptions of Theorem 7.2 hold. Consider the
case of the uniform design density p(x) = 1, x ∈ [0,1]. Then the EP c.d. estima-
tor f̃ (y|x) is simultaneously sharp minimax over Sobolev and analytic univariate
density classes. Further, the MISE of this bivariate estimator matches the MISE of
the univariate oracle f̌ ∗(y) introduced in Proposition 7.1, namely,

E

∫ (
f̃ (y|x) − f (y)

)2
dy dx

(7.7)
= (

1 + o(1)
)
E

∫ (
f̌ ∗(y) − f (y)

)2
dy + o(1)n−1.

To avoid any possible confusion, let us explain the integrals in (7.7). Under
L2([0,1]2) loss, the left integral is taken over [0,1]2, while the right one is taken
over [0,1] and the additive components of the EP estimator f̃ (y|x) = f̃ (y) +
ψ̃(y, x) are defined in (5.5) and (5.13). Under L2((∞,∞) × [0,1]) loss, the left
integral in (7.7) is taken over (−∞,∞)×[0,1] with y ∈ (−∞,∞) and x ∈ [0,1],
while the right integral is taken over (−∞,∞). Also, in this case, the additive
components of the EP estimator are defined in (5.21) and (5.27).
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8. Optimal design of predictors for c.d. estimation. In a controlled exper-
iment, the statistician can choose an underlying design density. Obtained results
allow us to recommend a particular design density which minimizes the MISE of
c.d. estimation.

It is worthwhile to begin by recalling a known result for regression function es-
timation. Consider a classical heteroscedastic regression Y = m(X) + σ(X)ε with
the predictor X being supported on [0,1] and the error ε being standard normal. It
is shown in [13, 5] that the MISE of regression function estimation is minimized
by a design density

p∗
r (x) := σ(x)

/∫ 1

0
σ(u)du.(8.1)

At the same time, according to previous sections, to minimize the MISE of esti-
mation of the c.d., the statistician needs to minimize the coefficient of difficulty

d(f,p) =
∫ 1

0

[∫
A

f (y|x)dy

]
p−1(x) dx,

where A is either [0,1] or (−∞,∞), depending on the loss. A simple calculation
then shows that the optimal design density for c.d. estimation is

p∗
c.d.(x) :=

[∫
A

f (y|x)dy

]1/2/∫ 1

0

[∫
A

f (y|u)dy

]1/2

du.(8.2)

In general, optimal designs (8.1) and (8.2) are different, but there is one impor-
tant case where the two coincide. Consider a classical homoscedastic regression
[where the scale function σ(x) is constant] and suppose that

∫
A f (y|x)dy = 1,

x ∈ [0,1] [note that the latter always holds for A = (−∞,∞)]. Then the uniform
design is simultaneously optimal for the regression and c.d. estimation problems.
Furthermore, according to Corollary 7.1, if the design is uniform, then the sug-
gested bivariate EP estimator is sharp minimax under the hypothesis that the re-
sponse is independent of the predictor. We can conclude that the uniform design
has a very special place in controlled regression experiments.

Of course, in general, an underlying c.d. is unknown and cannot be used in
designing an optimal experiment. A sequential design of predictors may then be a
feasible option; the interested reader can find a discussion of sequential designs of
predictors in [11].

9. Discussion.

9.1. Effect of the design density. The obtained theoretical results show that if
the design density satisfies Assumption 2 (which is a mild assumption with the
main property for the design density being differentiability), then the rate of the
MISE convergence is determined solely by the smoothness of the c.d. The design
density may only affect the constant of the MISE convergence via the coefficient
of difficulty.
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9.2. Classical example. Consider an additive regression Y = m(x)+ ε, where
the regression error ε is independent of the predictor and its density is analytic
(infinitely differentiable with the normal density, Cauchy density and mixture of
normal densities being the main examples). In this case, the conditional density
f (y|x) is also analytic in y. Then, if the regression function is just α-fold differ-
entiable and Assumption 2 holds, for a corresponding analytic-Sobolev class the
minimax MISE converges with the rate [n/ ln(n)]−2α/(2α+1). This result is both
good and bad news. The good news is that up to a logarithmic penalty which is
a minor factor for the curse of dimensionality, the bivariate c.d. can be estimated
with the same MISE accuracy as the univariate regression function m(x). Further-
more, the design density can be very rough (just differentiable), even in the case of
an analytic error density. The bad news is that even if the error density is analytic
and can then, according to [8], be estimated with the MISE of order ln(n)/n (i.e.,
with almost parametric accuracy), the MISE of c.d. estimation is primarily defined
by the smoothness of the regression function and thus may be dramatically larger
than the MISE of error density estimation.

9.3. Fixed design. Fixed design regression is the classical setting in applied
regression analysis; see the discussion in [31]. For this setting, definition (1.1),
which has been the key for the random design case, is not valid. Fortunately, this
paper shows that a design affects neither lower bounds, nor upper bounds, nor the
minimax data-driven EP estimation procedure, nor oracle inequalities.

9.4. Dimension reduction. A traditional null hypothesis in regression analysis
is that a response and a predictor are unrelated, that is, f (y|x) = f (y). In this case,
the accuracy of estimation under an MISE criterion must be dramatically better
because the estimated function is univariate and no curse of dimensionality occurs.
It is established that the EP estimator provides an optimal univariate accuracy of
estimation when the null hypothesis is valid and thus solves the classical dimension
reduction problem.

9.5. C.d. estimation in other settings. The “regression” methodology thus far
developed can be used in other classical settings, for instance in the popular time
series one; see the discussion about this setting in [15]. The main complication
here is that pairs of observations are no longer independent; at the same time,
the setting is simpler because covariates cannot be deterministic. There are also
many interesting expansions in the regression setting considered. For instance, the
predictor can be a vector and the covariates may be qualitative and quantitative;
see the discussion of such a setting in [21]. Some new results for this setting can
be found in [10].

9.6. Minimax paradigm. This paper uses a classical minimax approach: an
estimator must be minimax whenever Y and X are dependent (the c.d. is a bivariate
function) and then, if Y and X are independent (the c.d. is a univariate function), it
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FIG. 1. Standard nonparametric regression analysis of two real datasets. The top-left diagram ex-
hibits a scattergram of 52 observations showing a relationship between the amount of a detergent in
a sludge and an index of centrifuging. The top-right diagram shows a scattergram of 183 observa-
tions showing a relationship between speed of rotation and an index of centrifuging. Scattergrams
are overlaid by nonparametric regression estimates. Dotted lines in the bottom diagrams show the
standard normal density.

is desirable that the estimator be also minimax over univariate estimators/oracles.
Note that the priorities are reversed in the dimension reduction literature.

9.7. Small datasets. Let us begin by exploring two datasets collected by BI-
FAR, a company with interests in waste water treatment; the interested reader can
find a complete account of these experiments in [9]. In what follows, freely avail-
able software from [5] is used; recall that it is based on mimicking EP estimators.
Two columns of diagrams in Figure 1 exhibit a standard nonparametric regression
analysis of two different datasets. The top-left diagram shows a scattergram with a
pronounced regression function. Diagrams below it indicate that the regression is
homoscedastic with normal regression errors. This dataset is a textbook example,
where the regression function allows one to quantify the impact of the predictor on
the response. The dataset analyzed in the right column of Figure 1 is more compli-
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FIG. 2. Conditional density estimate, multiplied by a factor of 3, for the speed-index dataset exhib-
ited in the top-right diagram in Figure 1; two views are shown.

cated, due to the stepwise shape of the scale function and the multimodal marginal
density of regression errors; thus, let us look at the c.d. estimate shown in Fig-
ure 2. The estimate exhibits pronounced ridges and large valleys. There are several
interesting features of the exhibited ridges: they are almost parallel to the speed-
axis; they rise and then collapse over the speed range; ridges with larger speeds
apparently have larger indices; the number of pronounced ridges increases from 1
to 3 over the range of speed. The interested reader can now return to Figure 1 and
understand why the scale and error density estimates have those interesting shapes.

Is it possible that estimates for the second dataset are just products of a “spu-
rious” realization of a classical regression indicated in the first example? Let us
check this by intensive Monte Carlo simulations based on the regression model
for the first example and n = 183. Visual analysis of 500 c.d. estimates revealed
that only 32 of those estimates exhibited more than one ridge, and in none of those
cases did the error density estimate exhibit more than one mode. In other words,
none of the Monte Carlo simulations revealed the pattern observed for the second
experiment. Moreover, the author analyzed two more experiments, identical to the
second one, and they exhibited similar patterns for the error density and the c.d.
These results show that a “spurious” nature of the estimates is unlikely.

Let us also present results of an interesting Monte Carlo study conducted un-
der the null hypothesis “the response and the predictor are independent.” Suppose
that Y and X are independent, Y is standard normal and X is standard uniform.
In this study the bivariate EP c.d. estimator is compared with two univariate ker-
nel oracles: (i) a super-oracle which knows that Y and X are independent and that
the estimated univariate c.d. f (y|x) ≡ f (y) is standard normal and which uses
a Gaussian kernel with the optimal (for the underlying standard normal density)
bandwidth (see [5], page 358); (ii) a sub-oracle which knows that Y and X are
independent but does not know the density of Y and which uses a Gaussian kernel,
but where choice of bandwidth is done by the S-PLUS function density. 500 simu-
lations were conducted for each sample size, medians of ratios of empirical ISE’s
of the nonparametric estimate to empirical ISE’s of oracles then being calculated.
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For sample sizes 50, 100, 150, 200 and 300, the corresponding medians were (the
numerator presenting a median ratio for the super-oracle and the denominator for
the sub-oracle) 6.6/0.83, 2.21/0.31, 1.95/0.37, 2.27/0.34 and 2.62/0.52. As we see,
the c.d. estimator cannot match the super-oracle which knows the underlying c.d.,
but it performs comparatively well when n ≥ 100. At the same time, it outperforms
the sub-oracle.

10. Proofs.

Proof of Theorem 3.1. We begin by dividing the unit square [0,1]2 into s2

subsquares, where the known densities p(x) and f0(y|x) are approximated by
constants. Lower bounds are then established for each subsquare and the total is
evaluated; this is the plan of the proof. Also, whenever possible, random and fixed
designs will be considered simultaneously.

Set s = 1 + �ln(ln(n + 20))� and define Hs = {f :f (y|x) = f0(y|x) +
[∑s−1

k,r=0 f(kr)(y|x) − ∑s−1
k,r=0

∫ 1
0 f(kr)(z|x)dz]I ((y, x) ∈ [0,1]2), f(kr)(y|

x) ∈ Hskr , f (y|x) ≥ 0}. The function classes Hskr are defined as follows. Let
φ̃(y) := φ(n, y) be a sequence of flat-top nonnegative kernels defined on the real
line such that for a given n, the kernel is zero beyond (0,1), it is mY -fold con-
tinuously differentiable on (−∞,∞), 0 ≤ φ̃(y) ≤ 1, φ̃(y) = 1 for 2(ln(n))−2 ≤
y ≤ 1 − 2(ln(n))−2 and its lth derivative satisfies maxy |φ̃(l)(y)| ≤ C(ln(n))2l ,
l = 1, . . . ,mY . For instance, such a kernel may be constructed using the so-
called mollifiers, discussed in [5]. Let φ̃sk(y) := φ̃(sy − k). Analogously define
φ̂sr (x), with mX replacing mY . Set ϕskj (y) := s1/2ϕj (sy − k). For a (k, r)th sub-
square, 0 ≤ k, r ≤ s − 1, define φskr(y, x) := φ̃(sy − k)φ̂(sx − r), ϕskrj t (y, x) :=
ϕskj (y)ϕsrt (x)φskr(y, x), f[kr](y|x) := ∑

(j,t)∈T (s,k,r) νskrj tϕskrj t (y, x) and
f(kr)(y|x) := f[kr](y|x)φskr(y, x). The set T (s, k, r) of pairs (j, i) is the dif-
ference between two sets defined as follows. Let ηn(Q) be defined by means
of the relation

∑
j,t≥0([ajt/ηn(Q)]1/2 − ajt )+ := nd−1Q with d defined in

(3.5), ajt = 1 + (πj)2mY + (πt)2mX and (x)+ = max(0, x). Then the larger set

is {(j, t) : ajt ≤ [ηn(Qskr)]−1/2} with Qskr := Q(1 − 1/s)(I−1
s Iskr)

−1, where

Iskr := p(rs−1)/f0(ks−1|rs−1), I−1
s = ∑s−1

k,r=0(1/Iskr). The smaller set con-
sists of pairs (j, t) such that max(j, t) ≤ lns(n). We can now define Hskr :=
{f(kr)(y|x) :

∑
(j,t)∈T (s,k,r)[1 + (πsj)2mY + (πst)2mX ]ν2

skrj t ≤ Qskr, |f[kr](y|
x)|2 ≤ s4 ln(n)Rn}, where Rn := Rn(f0,p,S) is defined in (3.8).

Let us verify that for sufficiently large n, we have Hs ⊂ S(mY ,mX,Q,f0, ρn).
The definition of the flat-top kernel implies that f (y|x)−f0(y|x), (y, x) ∈ [0,1]2,
is mY -fold differentiable with respect to y and mX-fold differentiable with respect
to x. Second, let us verify that for f ∈ Hs , the difference f (y|x)−f0(y|x) belongs
to S(mY ,mX,Q). Set m = mY and begin with the differentiation with respect to y;
in several of the following lines we use the notation ψ(l)(y, x) := ∂lψ(y, x)/∂yl .
By the Leibniz rule, (f[kr](y|x)φskr(y, x))(m) = ∑m

l=0 Cm
l f

(m−l)
[kr] (y|x)φ

(l)
skr (y, x),



2528 S. EFROMOVICH

where Cm
l := m!/((m − l)!l!). Note that for 0 < l ≤ m, we have (φ

(l)
skr (y, x))2 ≤

C(s(ln(n))2)2l and for f(kr) ∈ Hskr ,∫
[0,1]2

[
f

(m−l)
[kr] (y|x)φ

(l)
skr (y, x)

]2
dx dy

≤ Cs2l ln4l(n)

∫ (k+1)/s

k/s

(∫ (r+1)/s

r/s

[
f

(m−l)
[kr] (y|x)

]2
dx

)
dy

(10.1)
≤ Cs2l ln4l(n)

∑
(j,t)∈T (s,k,r)

j2(m−l)ν2
skrj t

≤ C ln4m+1(n) max
(j,t)∈T (s,k,r)

j2(m−l)

1 + j2m + t2mX
Qsrk = o(1) ln−2(n)Qskr .

In the last inequality we used the definition of Hskr and the assumption that
min(j, t : (j, t) ∈ Tskr) > lns(n). A similar conclusion can be arrived at for the
derivatives with respect to x. Then, using Parseval’s identity, we can write for
f(kr) ∈ Hskr ,∫

[0,1]2

[
f 2[kr](y|x) + (

∂mY f[kr](y|x)/∂ymY
)2

+ (
∂mXf[kr](y|x)/∂xmX

)2]
φ2

skr (y, x) dx dy(10.2)

≤ ∑
(j,t)∈T (s,k,r)

[1 + (πsj)2mY + (πst)2mX ]ν2
skrj t ≤ Qskr .

Using this, the fact that the function
∑s−1

k,r=1 fkr(y|x) and its corresponding
derivatives are zero at the boundary of [0,1]2, Proposition 1 of [7] and the
fact that

∑s−1
k,r=0 Qskr = Q(1 − s−1), we can conclude that

∑s−1
k,r=1 f(kr)(y|x) ∈

S(mX,mY ,Q(1 − s−1)). We are left with the verification that a function gs(x) :=∑s−1
k,r=1

∫ 1
0 f(k,r)(y|x)dy belongs to S(mX,mY , o(1)s−1). Write for f(kr) ∈ Hskr ,

gs(x) =
s−1∑

k,r=0

∫ (k+1)/s

k/s
f[kr](y|x)φskr(y, x) dy

=
s−1∑

k,r=0

∫ (k+1)/s

k/s
f[kr](y|x)[1 − φskr(y, x)]dy,

where we use
∫ (k+1)/s
k/s f[kr](y|x)dy ≡ 0. We then get∫ 1

0

[
g2

s (x) + (
g(mX)

s (x)
)2]

dx

≤ o(1) ln−2(n) +
∫ 1

0

[
s−1∑

k,r=0

∫ (k+1)/s

k/s
f

(mX)
[kr] (y|x)

(
1 − φskr(y, x)

)
dy

]2

dx
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= o(1) ln−2(n).

This verifies that Hs ⊂ S(mY ,mX,Q,f0, ρn) whenever ρn vanishes slowly.
Let us now establish a lower bound for f ∈ Hs and any estimate f̂n(y|x).

Denote f̂ (y|x) =: f0(y|x) + f̃ (y|x), bs(x) := ∑s−1
k,r=0

∫ 1
0 f(kr)(u|x)du =∑s−1

k,r=0

∫ 1
0 f[kr](x)(1 − φskr(u, x)) du and note that for f (y|x) ∈ Hs and any

γ > 0, ∫ (k+1)/s

k/s

∫ (r+1)/s

r/s

(
f̂ (y|x) − f (y|x)

)2
dx dy

=
∫ (k+1)/s

k/s

∫ (r+1)/s

r/s

(
f̃ (y|x) − f(kr)(y|x) + bs(x)

)2
dx dy

≥ (1 − γ )

∫ (k+1)/s

k/s

∫ (r+1)/s

r/s

(
f̃ (y|x) − f[kr](y|x)

)2
dx dy

− γ −1
∫ (k+1)/s

k/s

[
f[kr](y|x)

(
1 − φskr(y, x)

) + bs(x)
]2

dx

≥ (1 − γ )

∫ (k+1)/s

k/s

∫ (r+1)/s

r/s

(
f̃ (y|x) − f[kr](y, x)

)2
dx dy

+ o(1)γ −1(ln(n))−1/2Rn.

Then set γ = s−1 and write

sup
f ∈S(mY ,mX,Q,f0,ρ)

E

{∫
[0,1]2

(
f̂ (y|x) − f (y|x)

)2
dx dy

}

≥ sup
f ∈Hs

E

{∫
[0,1]2

(
f̂ (y|x) − f (y|x)

)2
dx dy

}

= sup
f ∈Hs

s−1∑
k,r=0

E

{∫ (k+1)/s

k/s

∫ (r+1)/s

r/s

(
f̂ (y|x) − f (y|x)

)2
dx dy

}
(10.3)

≥ (1 − s−1)

s−1∑
k,r=0

sup
f ∈Hskr

∑
(j,t)∈T (s,k,r)

E{(ν̃skrj t − νskrj t )
2} + o(1)Rn

=: (1 − s−1)

s−1∑
k=0

Akr + o(1)Rn,

where ν̃skrj t := ∫ (k+1)/s
k/s

∫ (r+1)/s
r/s f̃ (y|x)ϕskrj t (y, x) dx dy. As we see, the origi-

nal problem is converted into the problem of finding lower bounds for terms Akr

corresponding to a subsquare; recall that our underlying idea has been to approx-
imate the known conditional density f0(y|x) and the univariate density h(x) by
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constant functions on each subsquare. We continue with the following steps. First,
we introduce an array of independent normal random variables ζskrj t with zero
mean and variance (1 − γn)ν

2
skrj t , where the positive sequence γn tends to zero as

slowly as desired. We then introduce a stochastic process f ∗(y|x), defined as the
f (y|x) ∈ Hs previously studied, but with random ζskrj t used in place of fixed and
known νskrj t . The idea of considering such a stochastic process was suggested in
[33], and following along the lines of the establishment of (A.18) in that article,
we obtain

P
((

f ∗(y|x) − f0(y|x)
) ∈ S(mY ,mX,Q)

) = 1 + o(1).(10.4)

Now let us additionally suppose that ν2
skrj t ≤ sn−1. It is then easily verified that∑

(j,t)∈T (s,k,r)

sup
y,x

[νskrj tϕskrj t (y, x)]2 ≤ Cs3Rn.

Further, we can introduce a similarly defined stochastic process f ∗[kr]. This, to-
gether with Theorem 6.2.3 in [29], implies the inequality

P

(
sup

(y,x)∈[0,1]2

∣∣f ∗[kr](y|x)
∣∣2 ≤ s4 ln(n)Rn

)
≥ 1 − |o(1)|s−2.

Our next step is to compute the classical parametric Fisher information for f ∈
Hs . Here, different calculations are needed for random and fixed designs. Let us
begin with the former one where observations are i.i.d. pairs (Yl,Xl), l = 1, . . . , n,
and thus the Fisher information of n pairs is n times the Fisher information of a
single pair. For a parameter νskrj t , the “individual” Fisher information is

Iskrj t := E(f0,p){[∂ ln(f (Y |X)p(X))/∂νskrj t ]2}.(10.5)

Note that
∂ lnf (y|x)

∂νskrj t

=
[
∂ ln

([
f0(y|x) +

s−1∑
k,r=0

f(kr)(y|x)

(10.6)

−
s∑

k,r=0

∫ 1

0
f(kr)(z|x)dz

]
I
(
(y, x) ∈ [0,1]2))]/

∂νskrj t

= ϕskrj t (y, x) − ∫ 1
0 ϕskrj t (y, z) dz

f (y|x)
I
(
(y, x) ∈ [0,1]2)

.

Recall that f0(y|x)p(x) is continuous on the unit square and write

Iskrj t =
∫
[0,1]2

f0(y|x)p(x)

[
ϕskrj t (y, x) − ∫ 1

0 ϕskrj t (z, x) dz

f (y|x)

]2

dx dy.(10.7)
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Further, ∫
[0,1]2

f0(y|x)p(x)

[
ϕskj (y)ϕsrt (x)φskr(y, x)

f (y|x)

]2

dx dy

=
∫ (k+1)/s

k/s

∫ (r+1)/s

r/s
f0(y|x)p(x)

ϕ2
skj (y)ϕ2

srt (x)

f 2(y, x)
dx dy

+
∫ (k+1)/s

k/s

∫ (r+1)/s

r/s
f0(y|x)p(x)

× ϕ2
skj (y)ϕ2

srt (x)[φ2
skr (x, y) − 1]

f 2(y|x)
dx dy

(10.8)

=
∫ (k+1)/s

k/s

∫ (r+1)/s

r/s
[f0(ks−1|rs−1)p(ks−1) + o(1)]

× ϕ2
skj (y)ϕ2

srt (x)

f 2
0 (ks−1|rs−1)(1 + o(1))

dx dy

+ o(1) ln−1(n) = p(rs−1)

f0(ks−1|rs−1)

(
1 + o(1)

)
= Iskr

(
1 + o(1)

)
.

Note that here o(1) → 0 as n → ∞ uniformly over the considered (k, j, t). Also,
for j > 0 and all sufficiently large n, we obtain

∫
[0,1]2

f0(y|x)p(x)

[∫ 1
0 ϕskj (z)ϕsrt (x)φskr(z, x) dz

f (y|x)

]2

dx dy

≤ C

∫ 1

0

[∫ 1

0
ϕskj (z)ϕsrt (x)φskr(z, x) dz

]2

dx

(10.9)

≤ C

∫ 1

0

[∫ (k+1)/s

k/s
ϕskj (z)ϕsrt (x) dz

]2

dx

+ Cs2
∫ 1

0

[∫ 1

0

(
1 − ϕskr(z, x)

)
dz

]2

dx ≤ C ln−3(n).

Combining the obtained results in (10.5), we get Iskrj t = Iskr (1 + o(1)) with
o(1) → 0 as n → ∞ uniformly over the considered (k, r, j, t). Now let us cal-
culate Fisher information for the fixed design case. Here, observations are pairs
(Yl,Xl), l = 1, . . . , n, where the predictors are deterministic and the responses
are independent but not identically distributed. Without loss of generality, we can
assume that X1 < X2 < · · · < Xn. Note that the Fisher information of n pairs is
equal to the sum of the “individual” Fisher information values. Let us calculate this
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“individual” information for a pair (Yl,Xl) with respect to the parameter νskrj t ,

Iskrj t (l) := E(f0,p)[∂ ln(f (Y |Xl))/∂νskrj t ]2.(10.10)

Use of a calculation similar to (10.6)–(10.9) shows that Iskrj t (l) = f −1
0 (ks−1|rs−1)

ϕ2
srt (xl)(1 + o(1)) if Xl ∈ [rs−1, (r + 1)s−1) and that it is zero otherwise. This

yields
n∑

l=1

Iskrj t (l) = f −1
0 (ks−1|rs−1)s−1

∑
{l:Xl∈[rs−1,(r+1)s−1),1≤l≤n}

ϕ2
srt (Xl)

(
1 + o(1)

)

= f −1
0 (ks−1|rs−1)s−1

× ∑
{l:Xl∈[rs−1,(r+1)s−1),1≤l≤n}

(Xl+1 − Xl)ϕ
2
srt (Xl)p(rs−1)n

(
1 + o(1)

)

= nf −1
0 (ks−1|rs−1)p(rs−1)

(
1 + o(1)

) = nIskr

(
1 + o(1)

)
.

We can conclude that asymptotically the average Fisher information is the same
for both designs. With this remark in mind, we can again continue our analysis of
both cases simultaneously.

We are now evaluating ηn and R∗
n as defined in (3.6)–(3.7). Set α := mY , β :=

mX , N := 1/ηn and rewrite (3.6) as∑
{(j,t):0<ajt<N}

[(ajtN)1/2 − ajt ] = Qd−1n.(10.11)

The sum in (10.11) can be approximated for large N (or equivalently for large n)
by the integral

GN :=
∫
{(y,x) : (πy)2α+(πx)2β≤N;y,x>0}

([(πy)2α + (πx)2β ]1/2N1/2

− [(πy)2α + (πx)2β ])dx dy.

Let us apply the change of variables u = πyN−1/(2α) and v = πxN−1/(2β). Then

GN = (π)−2N1/(2α)N1/(2β)N

×
∫
{(u,v):u2α+v2β≤1;u,v>0}

([u2α + v2β ]1/2 − [u2α + v2β ]) dv du.

This yields ηn = ([Qπ2J−1
1 (α,β)][d−1n])−2τ/(2τ+1)(1 + o(1)). To evaluate R∗

n ,
we again approximate the sum in (3.7) by a corresponding integral and then em-
ploy the change of variables described above,

G′
N :=

∫
{(y,x):(πy)2α+(πx)2β≤N;y,x>0}

(
1 − [(πy)2α + (πx)2β ]1/2N−1/2)

dx dy

= (π)−2N1/(2τ)
∫
{(u,v):u2α+v2β≤1;u,v>0}

(1 − [u2α + v2β ]1/2) dv du.
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This implies that R∗
n = P(α,β)Q1/(2τ+1)(d/n)2τ/(2τ+1)(1 + o(1)).

We have established all propositions to proceed along the lines of the proof of
Theorem 1 in [4]. This yields that uniformly over k, r ∈ {0,1, . . . , s − 1},

infAkr ≥ (s−4τQskr)
1/(2τ+1)(nIskr )

−2τ/(2τ+1)P (mY ,mX)
(
1 + o(1)

)
,(10.12)

where the infimum is over all possible nonparametric estimates of f considered
in the theorem. Recalling the definition of Qskr and the fact that s = s(n) → ∞,
n → ∞, we get

inf
s−1∑

k,r=0

Akr ≥ P(mY ,mX)Q1/(2τ+1)n−2τ/(2τ+1)s−4τ/(2τ+1)

(10.13)

×
[

s−1∑
k,r=0

(I−1
s Iskr)

−1/(2τ+1)I
−2τ/(2τ+1)
skr

](
1 + o(1)

)
.

Further,

s−1∑
k,r=0

(I−1
s Iskr)

−1/(2τ+1)I
−2τ/(2τ+1)
skr = (I−1

s )−1/(2τ+1)
s−1∑

k,r=0

I−1
skr

= (I−1
s )2τ/(2τ+1)(10.14)

=
[

s−1∑
k,r=0

f0(ks−1|rs−1)

p(rs−1)

]2τ/(2τ+1)

.

Using our assumption about continuity of f0(y|x) and p(x) on the unit square, we
obtain

s−4τ/(2τ+1)

[
s−1∑

k,r=0

f0(ks−1|rs−1)

p(rs−1)

]2τ/(2τ+1)

=
[
s−2

s−1∑
k,r=0

f0(ks−1|rs−1)

p(rs−1)

]2τ/(2τ+1)

=
[∫

[0,1]2

f0(y|x)

p(x)
dx dy

]2τ/(2τ+1)(
1 + o(1)

)
.

We conclude that

inf
s−1∑

k,r=0

Akr ≥ P(mY ,mX)Q1/(2τ+1)

×
[
n−1

∫
[0,1]2

f0(y|x)

p(x)
dx dy

]2τ/(2τ+1)(
1 + o(1)

)
.
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This, together with (10.3), verifies Theorem 3.1.
Proofs of the lower bounds in Theorems 3.2 and 4.1 are similar. Proofs of the

upper bounds can be found in the technical report [9].
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