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STEPUP PROCEDURES CONTROLLING GENERALIZED FWER
AND GENERALIZED FDR1

BY SANAT K. SARKAR

Temple University

In many applications of multiple hypothesis testing where more than one
false rejection can be tolerated, procedures controlling error rates measuring
at least k false rejections, instead of at least one, for some fixed k ≥ 1 can
potentially increase the ability of a procedure to detect false null hypothe-
ses. The k-FWER, a generalized version of the usual familywise error rate
(FWER), is such an error rate that has recently been introduced in the liter-
ature and procedures controlling it have been proposed. A further general-
ization of a result on the k-FWER is provided in this article. In addition, an
alternative and less conservative notion of error rate, the k-FDR, is introduced
in the same spirit as the k-FWER by generalizing the usual false discovery
rate (FDR). A k-FWER procedure is constructed given any set of increasing
constants by utilizing the kth order joint null distributions of the p-values
without assuming any specific form of dependence among all the p-values.
Procedures controlling the k-FDR are also developed by using the kth order
joint null distributions of the p-values, first assuming that the sets of null
and nonnull p-values are mutually independent or they are jointly positively
dependent in the sense of being multivariate totally positive of order two
(MTP2) and then discarding that assumption about the overall dependence
among the p-values.

1. Introduction. Having realized that the traditional idea of controlling the
familywise error rate (FWER), which is the probability of rejecting at least one
true null hypothesis, is too stringent to use when a large number of hypotheses
are simultaneously tested, researchers have focused in the last decade on defining
alternative less stringent error rates and developing methods that control them. The
false discovery rate (FDR), which is the expected proportion of falsely rejected
null hypotheses and which was introduced by Benjamini and Hochberg [1], is the
first of these that has received considerable attention [2–6, 12, 15–17, 21, 22].
Recently, the ideas of controlling the probabilities of falsely rejecting at least k

null hypotheses, which is the k-FWER, and the false discovery proportion (FDP)
exceeding a certain threshold γ ∈ [0,1) have been introduced as alternatives to the
FWER and methods controlling these new error rates have been suggested [10, 11,
13, 18, 23].
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Sarkar [18] developed single-step and stepwise k-FWER procedures utilizing
the kth order joint null distributions of the test statistics. He generalized the Bon-
ferroni single-step procedure and obtained its Holm [8] type improvement, thereby
providing a generalized k-FWER stepdown procedure. These are different from
the corresponding procedures of Lehmann and Romano [11]. He then generalized
the procedure of Hochberg [7] by using a stepup procedure with the same critical
values as those of his generalized Holm procedure. He proved that this generalized
version of Hochberg’s procedure controls the k-FWER by making use of a general-
ized Simes’ inequality he obtained for statistics that are positively dependent in the
sense of being multivariate totally positive of order two (MTP2), a condition due to
Karlin and Rinott [9] and often shared by test statistics in multiple testing. These
alternative procedures are often more powerful than those in [11] based on mar-
ginal distributions, especially when the statistics are close to being independent.

In this article we continue our research in the line of [18] and develop newer
procedures using kth order joint null distributions of the test statistics. First, we
generalize the method of Romano and Shaikh [13] and construct a stepup k-FWER
procedure given any set of increasing constants. Second, which is more interesting,
we introduce a less conservative notion of error rate than the k-FWER, which is
the k-FDR (to be defined later in this section), by generalizing the usual FDR in
the same spirit as the k-FWER, and provide newer stepup procedures that control
it. The k-FWER procedure is constructed without assuming any specific overall
dependence among the test statistics. The k-FDR procedures are derived under two
scenarios–first, under the assumption that either the test statistics corresponding to
the true null hypotheses are independent of those corresponding to the false null
hypotheses or they are jointly MTP2, and then without that assumption.

Let us denote by V and R the total number of false rejections and the total
number of rejections, respectively, of null hypotheses. Then

k-FWER = Pr{V ≥ k}.(1.1)

We will generalize it further in this article in terms of the following measure:

k-FDR = E(k-FDP), where k-FDP =
⎧⎨
⎩

V

R
, if V ≥ k,

0, otherwise.
(1.2)

The concept of k-FDR has not been considered before, as far as we know, even
though consideration of it, instead of the k-FWER, appears to be a more natural
extension of the idea of using the FDR as a less restrictive error rate than the
FWER. Clearly, it reduces to the usual FDR when k = 1, and, more importantly,
as k-FDR ≤ k-FWER, controlling it would be a less conservative approach than
controlling the k-FWER.

The construction of the k-FWER stepup procedure is provided in Section 2.
Section 3 is devoted to the derivation of the k-FDR stepup procedures. The k-FDR
procedures are generalized versions of the usual FDR procedures of Benjamini and
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Hochberg [1] and Benjamini and Yekutieli [2], referred to as the generalized BH
and generalized BY procedures, respectively, in this paper. The generalized BH
version of the k-FDR procedure provides uniformly better control of the k-FDR, as
it is intended to do so, than the generalized Hochberg procedure in [18] that, being
a k-FWER procedure, controls the k-FDR under the same distributional setup. As
k-FDR ≤ FDR, an FDR procedure, such as the original BH procedure, also con-
trols the k-FDR. However, as our simulation studies indicate, although the general-
ized BH k-FDR procedure does not seem to outperform the original BH procedure
when the number of true null hypotheses is small, its performance is much better
when this number is relatively large and the test statistics are not highly dependent
on each other.

Sarkar [18] generalized Simes’ test [20] by controlling the probability of at least
k, instead of one, false rejections under the intersection of the null hypotheses.
Interestingly, unlike the usual BH procedure, its generalized version that controls
the k-FDR is not based on these generalized Simes’ critical values. In fact, we
prove that the stepup procedure with the generalized Simes’ critical values does
not control the k-FDR.

Before we proceed to develop procedures with a control of the k-FWER or
k-FDR, we recall here the definitions of stepdown and stepup procedures. Con-
sider testing n null hypotheses H1, . . . ,Hn simultaneously against certain al-
ternatives using their p-values P1, . . . ,Pn, respectively. Let P1:n ≤ · · · ≤ Pn:n
denote the ordered p-values. Then, given some critical values α1 ≤ · · · ≤ αn,
a stepdown procedure accepts Hi for all i ≥ jSD and rejects the rest, where
jSD = min1≤i≤n{i :Pi:n ≥ αi}, if the minimum exists; otherwise, it rejects all the
hypotheses. A stepup procedure, on the other hand, rejects Hi for all i ≤ jSU and
accepts the rest, where jSU = max1≤i≤n{i :Pi:n ≤ αi}, if the maximum exists; oth-
erwise, it will accept all the hypotheses. These can be generalized by considering
α1 = · · · = αk , for some fixed 1 ≤ k ≤ n.

2. k-FWER controlling stepup procedure. In this section we consider de-
veloping a stepup procedure with a control of the k-FWER at α starting with any
increasing set of constants and using the kth order joint null distribution of the
p-values. This is an attempt to generalize the idea of Romano and Shaikh [13] that
uses only the marginal p-values. First, we recall the following inequality from [18]
that holds for any set of random variables X1, . . . ,Xn, not necessarily p-values.

LEMMA 2.1. Let Ck = {J :J ⊆ {1, . . . , n}, |J | = k} and ai = (i
k

)
, i =

k, . . . , n. Then, given any set of constants ck ≤ · · · ≤ cn, and 1 ≤ k ≤ n, we have

Pr

{
n⋃

i=k

(Xi:n ≤ ci)

}
≤ ∑

J∈Ck

Pr
{

max
j∈J

Xj ≤ ck

}
(2.1)

+
n∑

i=k+1

a−1
i

∑
J∈Ck

Pr
{
ci−1 < max

j∈J
Xj ≤ ci

}
.
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REMARK 2.1. The above lemma generalizes Lemma 3.1 of Lehmann and
Romano [11]. When the kth-order joint distributions are identical with Gk(x) =
Pr{maxi∈J Xi ≤ x} for all J ∈ Ck , then it reduces to

Pr

{
n⋃

i=k

(Xi:n ≤ ci)

}
≤

(
n

k

)[
Gk(ck) +

n∑
i=k+1

a−1
i {Gk(ci) − Gk(ci−1)}

]
.(2.2)

Considering k = 1 and uniform p-values, one gets the inequality given in [11].

We are now ready to describe our method of constructing a k-FWER stepup
procedure given any set of increasing constants α′

1 ≤ · · · ≤ α′
n. We will, however,

assume that the kth-order joint null distributions of the p-values are identical. Let
Fk(x) = Pr

{
maxi∈J Pi ≤ x

}
for all J ∈ Ck and

D′
k,n = max

k≤n0≤n
S′

k,n(n0),(2.3)

where

S′
k,n(n0) =

(
n0
k

)[
Fk(α

′
n−n0+k)

(2.4)

+
n0∑

i=k+1

a−1
i {Fk(α

′
n−n0+i) − Fk(α

′
n−n0+i−1)}

]

and the probabilities are determined under the null hypotheses.

THEOREM 2.1. Given any set of constants α′
k ≤ · · · ≤ α′

n and 0 < α < 1,
consider the stepup procedure with the critical values α1 ≤ · · · ≤ αn satisfying
Fk(αi) = αFk(α

′
i∨k)/D

′
k,n, i = 1, . . . , n, where i ∨ k = max(i, k). This controls

the k-FWER at α.

PROOF. Assume without any loss of generality that the first n0 p-values cor-
respond to the true null hypotheses. Let P1:n0 ≤ · · · ≤ Pn0:n0 be the ordered ver-
sions of these p-values. Assume that n0 ≥ k; otherwise, the k-FWER is zero and,
hence, is trivially controlled. From [13] and using inequality (2.2), we see that the
k-FWER of the stepup procedure in the theorem satisfies

k-FWER ≤ Pr

{
n0⋃
i=k

(Pi:n0 ≤ αn−n0+i )

}

≤
(

n0
k

)[
Fk(αn−n0+k) +

n0∑
i=k+1

a−1
i {Fk(αn−n0+i ) − Fk(αn−n0+i−1)}

]
(2.5)

= α
S′

k,n(n0)

D′
k,n

≤ α,
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which proves the theorem. �

REMARK 2.2. Sarkar [18] proposed a stepdown procedure with the critical
values α1 ≤ · · · ≤ αn satisfying Fk(αi) = α/an+k−i∨k, i = 1, . . . , n, and proved
that it controls the k-FWER without assuming any overall dependence structure
among the test statistics. It is alternative to, and often more powerful than, the
stepdown procedure with the critical values αi = kα/(n + k − i ∨ k), i = 1, . . . , n,
that Lehmann and Romano [11] proposed. Sarkar [18] also showed that a stepup
procedure with the same critical values as those of his k-FWER stepdown proce-
dure can also control the k-FWER when the test statistics are all jointly MTP2.
This generalizes Hochberg’s procedure and its FWER control property under sim-
ilar positive dependence condition; see [7, 14, 19]. When such MTP2 condition
does not hold for the overall joint distribution of the test statistics, Theorem 2.1
says that one can appropriately rescale these critical values before using the stepup
procedure in order to control the k-FWER.

3. k-FDR controlling stepup procedures. In this section we will construct
stepup procedures that control the k-FDR using the kth-order joint null distribution
of the p-values under two different scenarios, first when the sets of null and non-
null p-values are known to be either mutually independent or are jointly dependent
in the sense being MTP2 and second when no such condition is known.

3.1. Generalized BH procedure. Toward developing the generalized BH ver-
sion of our k-FDR procedure, we first obtain a result providing a convenient ex-
pression for the upper bound of the k-FDR of a general stepup procedure. To that
end, we will be using the following notation.

For a stepup procedure with the critical values α1 ≤ · · · ≤ αn, let R
(−i1,...,−iq )
n−q

and V
(−i1,...,−iq )
n−q denote respectively the number of rejections and the number of

false rejections of null hypotheses when the stepup procedure based on the subset
of p-values {P1, . . . ,Pn} \ {Pi1, . . . ,Piq } and the critical values αq+1 ≤ · · · ≤ αn is
used. Let {Hi, i ∈ I0} be the set of true null hypotheses (|I0| = n0). It is assumed
that n0 ≥ k; otherwise, the k-FDR = 0, and hence, there is nothing to prove.

Moreover, we will be using the following inequality.

LEMMA 3.1. In testing n null hypotheses, of which n0 ≥ k are true, let Vn

and Rn denote the number of false rejections and the total number of rejections,
respectively. Then, we have

I (Rn = r,Vn ≥ k) ≤ (n − r + k)Vn

n0k
I (Rn = r,Vn ≥ k),(3.1)

for all 1 ≤ k ≤ r ≤ n.
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PROOF. The lemma follows by combining the following two inequalities:
(i) Vn(n0 − Vn + k) ≥ n0k, which holds when k ≤ Vn ≤ n0, and (ii) n0 − Vn ≤
n − Rn, which is true as Rn − Vn ≤ n − n0. �

Since V = ∑
i∈I0

I (Hi rejected), we have

k-FDP

= V

R
I (V ≥ k) =

n∑
r=k

1

r

∑
i∈I0

I (Pi ≤ αr, R = r, V ≥ k)

=
n∑

r=k

1

r

∑
i∈I0

I
(
Pi ≤ αr, R

(−i)
n−1 = r − 1, V

(−i)
n−1 ≥ k − 1

)

≤
n∑

r=k

(n − r + k − 1)

r(k − 1)(n0 − 1)

× ∑
i∈I0

V
(−i)
n−1 I

(
Pi ≤ αr, R

(−i)
n−1 = r − 1, V

(−i)
n−1 ≥ k − 1

)

=
n∑

r=k

(n − r + k − 1)

r(k − 1)(n0 − 1)

× ∑
i �=j∈I0

I
(
max(Pi,Pj ) ≤ αr, R

(−i,−j)
n−2 = r − 2, V

(−i,−j)
n−2 ≥ k − 2

)
(3.2)

≤
...

=
n∑

r=k

(n − r + k − 1)(n − r + k − 2) · · · (n − r + 1)

r(k − 1)(k − 2) · · ·1(n0 − 1) · · · (n0 − k + 1)

× ∑
i1 �=···�=ik∈I0

I
(
max(Pi1, . . . ,Pik ) ≤ αr,R

(−i1,...,−ik)
n−k = r − k,

V
(−i1,...,−ik)
n−k ≥ 0

)
= kn0

an0

n∑
r=k

an+k−r

r(n + k − r)

∑
J∈C0

k

I

(
max
i∈J

Pi ≤ αr, R
(−J )
n−k = r − k

)
,

where C0
k = {J :J ⊆ I0, |J | = k} and R

(−J )
n−k is the number of rejections for the

stepup procedure based on {Pi, i ∈ J c} and the critical values αk+1 ≤ · · · ≤ αn.
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LEMMA 3.2. For a stepup procedure with critical values α1 ≤ · · · ≤ αn, we
have

k-FDR ≤ n0an

nan0

∑
J∈C0

k

Pr
{

max
i∈J

Pi ≤ αk

}

+ kn0

an0

n∑
r=k+1

∑
J∈C0

k

E

[
Pr

{
R

(−J )
n−k ≥ r − k |Pi, i ∈ J

}

×
{
an+k−rI (maxi∈J Pi ≤ αr)

r(n + k − r)
(3.3)

− an+k−r+1I (maxi∈J Pi ≤ αr−1)

(r − 1)(n + k − r + 1)

}]
.

PROOF. The inequality (3.2) yields

k-FDP

≤ kn0

an0

n∑
r=k

an+k−r

r(n + k − r)

∑
J∈C0

k

I

(
max
i∈J

Pi ≤ αr, R
(−J )
n−k ≥ r − k

)

− kn0

an0

n−1∑
r=k

an+k−r

r(n + k − r)

∑
J∈C0

k

I

(
max
i∈J

Pi ≤ αr, R
(−J )
n−k ≥ r − k + 1

)

= n0an

nan0

∑
J∈C0

k

I

(
max
i∈J

Pi ≤ αk

)
(3.4)

+ kn0

an0

n∑
r=k+1

∑
J∈C0

k

[
I
(
R

(−J )
n−k ≥ r − k

)

×
{
an+k−rI (maxi∈J Pi ≤ αr)

r(n + k − r)

− an+k−r+1I (maxi∈J Pi ≤ αr−1)

(r − 1)(n + k − r + 1)

}]
,

from which we get the lemma by taking expectations on both sides. �

We now construct a stepup procedure that controls the k-FDR assuming that
the p-values have identical kth-order joint null distributions and that the sets of
p-values corresponding to the true and false null hypotheses are either independent
or all the p-values are jointly MTP2. The MTP2 property is a positive dependence
property that holds for many multivariate distributions arising in multiple testing,
for example, multivariate normal with a common nonnegative correlation, certain
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mixtures of independent random variables, and so on; see, for example, [14–16,
19]. For the definition of MTP2 and some of the related results to be used to prove
the next result, one can see [9, 18].

THEOREM 3.1. Consider the stepup procedure with the critical values α1 ≤
· · · ≤ αn satisfying

Fk(αi) =

⎧⎪⎪⎨
⎪⎪⎩

α

an

, for i = 1, . . . , k,

i(n + k − i)α

knan+k−i

, for i = k, . . . , n.
(3.5)

The k-FDR of this procedure is controlled at α if either the null p-values are
independent of the nonnull p-values or the p-values are jointly MTP2.

PROOF. Assuming first that the null and nonnull p-values are mutually inde-
pendent, we have from Lemma 3.2 that

k-FDR ≤ n0an

n
Fk(αk)

+ kn0

an0

n∑
r=k+1

∑
J∈C0

k

Pr
{
R

(−J )
n−k ≥ r − k

}
(3.6)

×
{
an+k−rFk(αr)

r(n + k − r)
− an+k−r+1Fk(αr−1)

(r − 1)(n + k − r + 1)

}
,

which is less than or equal to n0α/n, and hence controlled at α, if Fk(αr) is chosen
as in (3.5) for r = 1, . . . , n.

When the null and nonnull p-values are not mutually independent, but are
jointly MTP2, we will prove the theorem as follows.

Let g(pi, i ∈ J ) be the density of Pi, i ∈ J , for any fixed J ∈ C0
k . Then, each

expectation in (3.3) can be expressed as

E

[
Pr

{
R

(−J )
n−k ≥ r − k|Pi, i ∈ J

}{an+k−rI (maxi∈J Pi ≤ αr)

r(n + k − r)

− an+k−r+1I (maxi∈J Pi ≤ αr−1)

(r − 1)(n + k − r + 1)

}]
(3.7)

= E

{
φr,J (Pi, i ∈ J )ψr,J (Pi, i ∈ J )I

(
max
i∈J

Pi ≤ αr

)}

= Fk(αr)E
∗{φr,J (Pi, i ∈ J )ψr,J (Pi, i ∈ J )},

where the last expectation is taken with respect to the density

g(pi, i ∈ J )I (maxi∈J pi ≤ αr)

Fk(αr)
,(3.8)
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and

φr,J (pi, i ∈ J ) = Pr
{
R

(−J )
n−k ≥ r − k|Pi = pi, i ∈ J

}
,

ψr,J (pi, i ∈ J ) = an+k−r

r(n + k − r)
− an+k−r+1I (maxi∈J pi ≤ αr−1)

(r − 1)(n + k − r + 1)
.(3.9)

Since

{
R

(−J )
n−k ≥ r − k

} =
n−k⋃

i=r−k

{
pi:J c ≤ αk+i

}
,(3.10)

where p1:J c ≤ · · · ≤ pn−k:J c are the ordered values of the set {pi, i ∈ J c} that
are all increasing in each pi, i ∈ J c, the indicator function I (R

(−J )
n−k ≥ r − k) is

a decreasing (coordinatewise) function of the pi ’s. Also, the function ψr,J is an
increasing function of the pi’s.

The marginal density g(pi, i ∈ J ) of {Pi, i ∈ J } is MTP2. As I (maxi∈J pi ≤
αr) is also MTP2, the density (3.8), being the product of two MTP2 functions,
is MTP2. We will now invoke the following property of MTP2 random variables.
Random variables that are MTP2 are positively associated; that is, any pair of
functions of these random variables, both increasing or decreasing, are positively
correlated. As I (R

(−J )
n−k ≥ r − k) is a decreasing function, the conditional probabil-

ity of this function given Pi = pi, i ∈ J , which is φr,J , is a decreasing function of
each pi, i ∈ J , because of the MTP2 property of the p-values. Therefore, we have

E∗{φr,J (Pi, i ∈ J )ψr,J (Pi, i ∈ J )}
(3.11)

≤ E∗{φr,J (Pi, i ∈ J )
}
E∗{ψr,J (Pi, i ∈ J )},

where

E∗{ψr,J (Pi, i ∈ J )}
(3.12)

= an+k−r

r(n + k − r)
− an+k−r+1

(r − 1)(n + k − r + 1)

Fk(αr−1)

Fk(αr)
,

yielding the following inequality, again from Lemma 3.2:

k-FDR ≤ n0an

n
Fk(αk)

+ kn0

an0

n∑
r=k+1

∑
J∈C0

k

E∗{φr,J (Pi, i ∈ J )}(3.13)

×
{
an+k−rFk(αr)

r(n + k − r)
− an+k−r+1Fk(αr−1)

(r − 1)(n + k − r + 1)

}
,

which is less than or equal to n0α/n for Fk(αr) satisfying (3.5). This proves the
theorem. �
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When k = 1, Theorem 3.1 reduces to the result establishing the usual FDR con-
trolling property of the BH procedure; see [2, 15]. Of course, the result for the
BH procedure is slightly stronger in that its FDR is less than or equal to n0α/n

under positive regression dependence, a slightly weaker condition than the MTP2
condition, and is exactly n0α/n under the independence case.

More explicit expressions of the critical values in Theorem 3.1 are

Fk(αi) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

k(k − 1) · · ·1α

n(n − 1) · · · (n − k + 1)
,

for i = 1, . . . , k,

i(k − 1)(k − 2) · · ·1α

n(n − i + k − 1)(n − i + k − 2) · · · (n − i + 1)
,

for i = k, . . . , n.

(3.14)

With k = 2,

F2(αi) =

⎧⎪⎪⎨
⎪⎪⎩

2α

n(n − 1)
, for i = 1,2,

iα

n(n − i + 1)
, for i = 2, . . . , n.

(3.15)

In our procedure, the critical values corresponding to the smallest k − 1 p-values
could be chosen arbitrarily. In other words, we can always reject the null hypothe-
ses corresponding to the smallest k − 1 p-values and still control the k-FDR. Nev-
ertheless, we have considered rejecting these null hypotheses based on certain crit-
ical values. By choosing these critical values all equal to αk , we not only preserve
the monotonicity of the critical values, but also have the least conservative choice
among such critical values.

It is important to see that our procedure provides uniformly better control of the
k-FDR, as it is intended to do so, than the generalized Hochberg procedure in [18]
(see Remark 2.2) that, being a k-FWER procedure, also controls the k-FDR. This
is because

i(n + k − i)α

nkan+k−i

≥ α

an+k−i

,(3.16)

for all i = k, . . . , n. The extent of this improvement can be seen in Figures 1 and 2
that are based on a numerical study to be discussed later in this section.

As mentioned in the Introduction, the original BH FDR procedure also controls
the k-FDR. To see how it compares with our procedure, let us consider independent
p-values and k = 2. The ith critical value of our procedure, [iα/n(n − i + 1)]1/2,
exceeds the corresponding critical value iα/n of the BH procedure as long as
n/i(n− i + 1) ≥ α, which holds for each i if 4n/(n+ 1)2 ≥ α. For instance, when
α = 0.05 and n does not exceed 80, or when α = 0.01 and n does not exceed
400, our procedure has larger critical values, and hence, provides uniformly better
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control of the 2-FDR, than the BH procedure. Thus, in this case, our procedure
often performs better than the BH procedure. Figures 1 and 2 provide some insight
into this comparison in other cases.

Sarkar [18] has generalized Simes’ test for testing the overall hypothesis
H0 :

⋂n
i=1 Hi . He proposed rejecting H0 if Pi:n ≤ αi∨k for at least one i = 1, . . . , n,

for a fixed 1 ≤ k ≤ n, where

Fk(αi) = ai

an

α = i(i − 1) · · · (i − k + 1)

n(n − 1) · · · (n − k + 1)
α, i = k, . . . , n,(3.17)

and proved that it controls the probability of at least k false rejections under the
intersection null hypothesis at α exactly under independence and conservatively
if the p-values are MTP2. Interestingly, unlike what is known when k = 1, the
generalized Simes’ critical values do not always control the k-FDR. We provide a
proof of this in the following.

Let n1 = n − n0 be the number of false null hypotheses. Consider a situation
where these n1 hypotheses are false to the extent that the corresponding p-values
are all < α1. In other words, consider a procedure that with probability one re-
jects n1 null hypotheses before proceeding as a stepup procedure based on the n0
p-values that are all known to correspond to the null hypotheses and using the crit-
ical values αn1+1, . . . , αn. Let R0 be the number of true null hypotheses that are
rejected. Then the k-FDR of this procedure is

k-FDR = E

{
R0

n1 + R0
I (R0 ≥ k)

}
≥ k

n1 + k
P {R0 ≥ k},

(3.18)

= k

n1 + k
Pr

{
n0⋃
i=k

(Pi:I0 ≤ αn1+i )

}
≥ k

n1 + k
Pr{Pk:I0 ≤ αn1+k}.

Let us now consider k = 2 and assume that the null p-values are i.i.d. U(0,1).
Then, the right-hand side of (3.18) simplifies to

2

n1 + 2
[1 − (1 − αn1+2)

n0 − n0αn1+2(1 − αn1+2)
n0−1],(3.19)

which may exceed α for the generalized Simes critical values in some instances.
For example, with α = 0.05, n0 = 100 and n1 = 1, we have

αn1+2 =
[
(n1 + 2)(n1 + 1)α

n(n − 1)

]1/2

= 0.00545,

from which we see that (3.19) is equal to 0.0692.

3.2. Generalized BY procedure. We now derive a k-FDR procedure only un-
der the assumption of identical kth-order joint null distributions of the p-values,
which generalizes the BY procedure in [2]. We proceed as in the construction of
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the generalized BH procedure, but modify those results to facilitate the develop-
ment of a k-FDR procedure under the present scenario. First, we have the following
upper bound for the k-FDP that follows from (3.2):

k-FDP ≤ kn0an

nan0

n∑
r=k

1

r

∑
J∈C0

k

I

(
max
i∈J

Pi ≤ αr,R
(−J )
n−k = r − k

)
,(3.20)

which yields the following modification of Lemma 3.2.

LEMMA 3.3. For a stepup procedure with critical values α1 ≤ · · · ≤ αn, we
have

k-FDR ≤ n0an

nan0

∑
J∈C0

k

Pr
{

max
i∈J

Pi ≤ αk

}

+ kn0an

nan0

n∑
r=k+1

∑
J∈C0

k

E

[
Pr

{
R

(−J )
n−k ≥ r − k|Pi, i ∈ J

}
(3.21)

×
{
I (maxi∈J Pi ≤ αr)

r

− I (maxi∈J Pi ≤ αr−1)

r − 1

}]
.

Assuming now that the k-th order joint null distributions are identical, we have
the following theorem.

THEOREM 3.2. The stepup procedure with the critical values α1 ≤ · · · ≤ αn

satisfying

Fk(αi) = (i ∨ k)α

k
(n
k

)∑n
r=k 1/r

, i = 1, . . . , n,(3.22)

controls the k-FDR at α.

PROOF. Lemma 3.3 yields the inequality

k-FDR ≤ n0an

n
Fk(αk) + kn0an

n

n∑
r=k+1

1

r
[Fk(αr) − Fk(αr−1)],(3.23)

which is equal to n0α/n when the critical values satisfying (3.22) are used. �

When k = 1, Theorem 3.2 reduces to the known result establishing the FDR
control of the BY procedure [2]. When k = 2, the critical values of the generalized
BY procedure are given by

F2(αi) = (i ∨ 2)α

n(n − 1)
∑n

r=2 1/r
, i = 1, . . . , n.(3.24)
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3.3. A numerical study. We conducted a numerical study to investigate the
extent of improvement offered by the generalized BH version of our k-FDR pro-
cedure in controlling the k-FDR over the generalized Hochberg and the original
BH procedures when k = 2.

We generated n = 100 dependent random variables Xi ∼ N(μi,1), i =
1, . . . ,100, with the same variance 1 and a common correlation ρ, which are
known to be MTP2, and performed 100 hypothesis tests of μ = 0 against μ = 2,

using each of these three procedures with α = 0.05. The value of 2-FDP was then
calculated for each procedure by setting n0 of the μi’s to zero and the remain-
ing n1 of the μi’s to the value 2. The 2-FDR then was estimated by averaging
the 2-FDP values over 5000 iterations. We did these calculations in two differ-
ent scenarios, when the Xi’s are independent (ρ = 0) and when they are weakly
dependent (ρ = 0.10). Figures 1 and 2 compare the simulated 2-FDRs of these

FIG. 1. Comparison of 2-FDRs with ρ = 0.0 (Generalized BH: - - - ; Generalized Hochberg: · · ·;
Original BH: —).
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FIG. 2. Comparison of 2-FDRs with ρ = 0.10 (Generalized BH: - - - ; Generalized Hochberg: · · ·;
Original BH: —).

procedures for different values n0 when ρ = 0 and 0.10, respectively.
Figures 1 and 2 indicate that while our procedure provides uniformly better con-

trol of the k-FDR than the generalized Hochberg procedure, which we expected,
the difference is, however, quite significant when n0 is neither very small nor very
large. Compared to the original BH procedure, we notice that our procedure works
quite well when the test statistics are independent or close to being independent
and n0 is relatively large, that is, when relatively few of the null hypotheses are
expected to be false. With increasing dependence among the test statistics, our
procedure loses its edge over the BH procedure for small n0.

4. Concluding remarks. Generalizing traditional error rates to make them
more appropriate in situations where one is willing to tolerate more than one false
rejection and is wishing to increase the ability of procedures to detect false null
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hypotheses using error rates that allow such rejections has become an increasingly
important idea in multiple testing, because of its relevance in testing a large num-
ber of hypotheses, as in microarray studies. The work done in this article makes
an important contribution in this area. In addition to generalizing previous work
on the k-FWER, the notion of FDR has been generalized for the first time and
procedures controlling it have been developed in this article. We believe we have
opened the door in this article for further research in multiple testing, particularly
toward developing the theory and methodology of false discovery rate. There are
several interesting generalizations of results related to the original concept of FDR
that could potentially be developed along the line of this article.
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