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ASYMPTOTICALLY OPTIMAL MULTISTAGE TESTS OF
SIMPLE HYPOTHESES

BY JAY BARTROFF1

University of Southern California

A family of variable stage size multistage tests of simple hypotheses is
described, based on efficient multistage sampling procedures. Using a loss
function that is a linear combination of sampling costs and error probabil-
ities, these tests are shown to minimize the integrated risk to second order
as the costs per stage and per observation approach zero. A numerical study
shows significant improvement over group sequential tests in a binomial test-
ing problem.

1. Introduction and summary. Multistage hypothesis tests have practical
advantages over fully-sequential tests in many situations since it is often more
costly to perform n single experiments than a single experiment of size n. The the-
ory of efficient multistage tests has been developed in essentially two directions.
The first is general existence and uniqueness results of Schmitz [20], who shows
that optimal multistage procedures do exist for a large class of problems and that
the optimum has the renewal-type property that at each stage it behaves as if it were
starting from scratch given the data so far, and Morgan and Cressie [5, 18], who
prove the existence of a multistage competitor of the SPRT. However, these general
results do not tell us anything more specific about the optimal tests and certainly
not how to apply them without resorting to backward induction-type computer al-
gorithms or artificial truncations. The second direction is truncated (predetermined
number of stages) and group sequential (constant stage size) tests, of which many
have been developed for clinical trials; see Pocock [19], Wang and Tsiatis [21],
Kim and DeMets [12], Eales and Jennison [7, 8], Jennison and Turnbull [11], Bar-
ber and Jennison [1] and Lai and Shih [13]. These authors do provide specific tests
that successfully address many practical issues arising in clinical trials, but are not
concerned with optimality in a general setting, and those that do prove optimality
do so under severe restrictions of truncation or constant stage sizes. Lorden [17]
presents a three-stage test that has asymptotically the same total sample size as the
SPRT and shows that three stages are necessary for any multistage test to have this
property.
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These previous results do not address a fundamental question in multistage test-
ing: How does one choose the size of the next stage optimally, given the data ob-
served so far and free of oversimplifying restrictions? This paper aims to answer
this question by introducing a family of variable stage size multistage tests which
can be described by simple, closed-form equations and are asymptotically opti-
mal, without relying on truncations or group sequential restrictions. We focus here
on testing simple hypotheses; extension of these ideas to composite hypotheses is
discussed in the author’s Ph.D. thesis [2].

A common theme in sequential testing is that testing hypotheses can often be
reduced to a “power one” test, that is, a test that stops sampling as soon as there is
sufficient evidence that the null hypothesis is true but is content to continue sam-
pling forever if it appears that the alternative hypothesis is true. For example, in
the fully-sequential setting, Lorden [15, 16] shows that once a substantial number
of observations have been taken, asymptotic optimality considerations for testing
simple hypotheses can be reduced to considering only power one tests involving
the estimated true state of nature versus the opposing hypothesis. Moreover, find-
ing an optimal power one test typically reduces to solving a boundary crossing
problem for the relevant test statistic. This suggests the following informal hierar-
chy:

Test of simple hypotheses
reduces to

Power one test
reduces to

Boundary crossing problem.

In order to derive optimal multistage tests, we consider these three problems in
reverse order. In Section 2 we present asymptotically optimal multistage samplers,
procedures that sample a random process in stages until it crosses a predetermined
boundary. This problem was considered for Brownian motion by Bartroff [3] and
we extend those results here to i.i.d., nonnormal data. In Section 3 we use the op-
timal multistage samplers to design efficient power one tests. In Section 4 we use
combinations of these power one tests to design efficient hypothesis tests. Here
efficiency is measured by a linear combination of expected sample size, expected
number of stages and error probabilities. Our tests are shown to be second order
optimal as the costs per stage and per observation approach zero, which corre-
sponds to a large sample size. In marked contrast to constant stage-size group
sequential tests, the asymptotically optimal tests and samplers presented here nec-
essarily have stage sizes that decrease roughly as successive iterations of the func-
tion x �→ √

x logx with probability close to 1, while the average number of stages
used is determined by the asymptotics of the ratio of the cost per stage to cost per
observation. In Section 5 we propose a finite-sample procedure and present the re-
sults of a simulation study comparing it with group sequential tests of hypotheses
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about the probability of success of Bernoulli trials. The variable stage size tests
show substantial improvement over the constant stage size tests.

2. Multistage samplers. Consider sampling X1,X2, . . . in stages until∑
Xi ≥ a > 0 at the end of a stage, and in such a way as to minimize

c · EN + d · EM,(2.1)

where N,M are the total sample size and number of stages used. Here c, d > 0
represent the costs per observation and per stage, so the sum (2.1) is the average
cost incurred in crossing the boundary. On one hand, taking a large number of
small stages would make c · EN small but d · EM large; on the other hand, taking
a small number of large stages would make c · EN large but d · EM small. Thus,
the sampler that minimizes (2.1) can be thought of as the optimal compromise
between these two extreme sampling strategies. In this section, after some neces-
sary preliminaries, we define a multistage sampling strategy, show in Theorem 2.1
that it asymptotically minimizes this sampling cost, and show conversely in Theo-
rem 2.2 that any efficient sampler must behave similarly; all theorems are proved
in the Appendix. This sampler will be used to construct efficient multistage tests
in Sections 3 and 4.

Assume that X,X1,X2, . . . are i.i.d. We say that X is strongly nonlattice if the
characteristic function v(t) of X satisfies

lim inf
x→∞

{
x2

1 − supη≤t≤x |v(t)| − 2 logx − 2 log logx

}
> −∞(2.2)

for some η > 0. We assume that one of the following three conditions holds:

The distribution of X is strongly nonlattice and EX4 < ∞.(2.3)

The distribution of X is lattice and EX4 < ∞.(2.4)

There is an H > 0 such that EetX < ∞ for |t | < H .(2.5)

These conditions are what is needed for the necessary sharp large deviation esti-
mates; see Lemma A.1. We essentially require X to have a finite fourth moment
plus to be lattice or strongly nonlattice [(2.3)–(2.4)]. However, if this doesn’t hold,
then our results are still valid if the moment generating function is finite in a neigh-
borhood of the origin [(2.5)]. Assume that µ = EX > 0. Since the problem is not
changed by multiplying the Xi and the boundary a > 0 by a positive constant, we
assume without loss of generality that VarX = 1.

We will describe the stage sizes of a multistage sampler by a sequence of non-
negative integer-valued random variables N = (N1,N2, . . .) such that

Nk+1 · 1{N1 + · · · + Nk = n} ∈ En for all n ≥ 1,(2.6)

where En is the class of all random variables determined by X1, . . . ,Xn. The
interpretation of the measurability requirement (2.6) is that by the time Nk =



2078 J. BARTROFF

N1 + · · · + Nk , the end of the first k stages, an observer who knows the values
X1, . . . ,XNk also knows Nk+1, the size of the (k + 1)st stage. We also let N de-
note the total sample size NM , where M = inf{m ≥ 1 :X1 + · · · + XNm ≥ a}, the
total number of stages. A multistage sampler is a pair δ(x) = (N,M), where the
argument x > 0 is the initial distance to the boundary. When there is no confusion
as to which sampler is being used, we will write Sk = X1 + · · · + XNk , S0 = 0.

After dividing (2.1) through by c, minimizing (2.1) is seen to be equivalent to
minimizing

EN + h · EM,(2.7)

where h = d/c. By Wald’s equation,

EN = ESM/µ = a/µ + E(SM − a)/µ ≥ a/µ,(2.8)

so the sampler that minimizes

E(N − a/µ) + h · EM(2.9)

also minimizes (2.7). Also, using (2.9) instead of (2.7) will lead to a more refined
“first-order” asymptotic theory.

The problem of describing the sampler that asymptotically minimizes (2.9) to
first-order essentially reduces to considering only certain classes of sequences
{(a,h)}, defined with respect to the critical functions

hm(x) = x(1/2)m(logx)1/2−(1/2)m for m ≥ 1, h0(x) = x.(2.10)

To describe a sampler that asymptotically minimizes (2.9) to first-order, it suffices
to consider sequences {(a,h)} such that a → ∞. Letting “�” denote asymptoti-
cally of smaller order, it will turn out that good samplers use m stages (with prob-
ability approaching 1) if {(a,h)} satisfies

hm(a) � h � hm−1(a)(2.11)

as a → ∞ and use m or m + 1 stages (with probability approaching 1) if {(a,h)}
satisfies

lim
h

hm(a)
∈ (0,∞).(2.12)

A sequence {(a,h)} satisfying (2.11) is said to be in the mth critical band, while
one satisfying (2.12) is said to be on the boundary between critical bands m and
m + 1. Since it will prove convenient to treat h as a function of a, we thus con-
sider (2.9) with h replaced by a function h(a) such that {(a,h(a))} is either in the
mth critical band or on the boundary between critical bands m and m+1 (for every
sequence of a’s approaching ∞). That is, let

Bo
m = {h : (0,∞) → (0,∞)|hm � h � hm−1},

B+
m =

{
h : (0,∞) → (0,∞)

∣∣∣ lim
x→∞h(x)/hm(x) ∈ (0,∞)

}
,

Bm = Bo
m ∪ B+

m
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and assume h ∈ Bm for some m ≥ 1. Our notation reflects that, as a → ∞, the
average number of stages of an efficient sampler approaches

m if h ∈ Bo
m,

m + ε if h ∈ B+
m,

where ε ∈ (0,1) is a function of limx→∞ h(x)/hm(x); Figure 1 summarizes this
relationship. We define the risk of a sampler δ(a) = (N,M) to be

Rh(δ(a)) = E(N − a/µ) + h(a)EM.(2.13)

Note that, by (2.8), the definition of risk (2.13) is equivalent to the expectation of a
linear combination of the overshoot SM − a and the number of stages used. Define
the Bayes sampler δ∗ = (N∗,M∗) to be one that achieves R∗

h(a) = infδ Rh(δ(a)).
For x > 0 and z ∈ R, let t = t (x, z) be the unique solution of (x − µt)/

√
t = z,

that is,

t (x, z) = x/µ − z

√
4xµ + z2 − z2

2µ2(2.14)

by some simple algebra. Let zp be the upper p-quantile of the standard normal
distribution. If the Xi are i.i.d. N(µ,1) and t (x, zp) = n is an integer, then the
probability that X1 + · · · + Xn exceeds x is p. This holds approximately when the

FIG. 1. The critical functions hm.
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Xi are not normal by large deviations and this is why t is useful in parameterizing
stage sizes. Let � and φ denote the standard normal distribution function and
density. Let

um(z) = m + �(z) + ψ+(z) · φ(z)

1 − �(z)
,(2.15)

where ψ+(z) = φ(z) − �(−z)z was defined by Chernoff [4]. We extend the do-
main of um to [−∞,∞) by adopting the convention um(−∞) =
limz→−∞ um(z) = m. The function um appears in the second-order term of the
Bayes risk; see Theorem 2.1.

Before defining the asymptotically optimal samplers δo
m,h and δ+

m,z, we define an

auxiliary sampler δ̂n that will be used for the final stages of δo
m,h and δ+

m,z. For n ∈
N, δ̂n samples a first stage of size n, followed (if necessary) by stages of constant
size �n1/2�. It is shown in Lemma A.2 in the Appendix that n = n(a) → ∞ can
be chosen so that the overshoot of δ̂n is not too large but its expected number of
stages approaches 1 as a → ∞; for this reason, we refer to δ̂n as bold sampling.

Finally, we define the samplers δo
m,h and δ+

m,z, which are shown to be asymptot-
ically optimal below under different conditions. Namely, the sampler δo

m,h will be
optimal when h ∈ Bo

m and δ+
m,z will be optimal when h ∈ B+

m . These samplers are
extensions to nonnormal i.i.d. data of the samplers of Bartroff [3] for Brownian
motion. Let n(x, z) = �t (x, z)� and f (x) = (4/

√
µ)

√
x log(x + 1). Note that f −1

is well defined since f is increasing. The samplers δo
m,h(x) are indexed by a posi-

tive integer m and a positive function h, and the argument x is the initial distance
to the boundary. Define δo

m,h inductively on m as

δo
1,h(x) = δ̂n(x,ζ(x))(x), where ζ(x) = −(√

h(x)/x ∧
√

(3/2) log(x + 1)
)
,

δo
m+1,h(x) = 1st stage n

(
x,

√
(1 − 2−m) log(x + 1)

)
followed (if necessary) by δo

m,h◦f −1(x − S1).

The samplers δ+
m,z(x), indexed by a positive integer m and a number z ∈ R, are

defined inductively on m as

δ+
1,z(x) = 1st stage n(x, z), followed (if necessary) by

δ̂ν(x−S1)(x − S1), where ν(y) = n
(
y,−

√
log(y + 1)

)
,

δ+
m+1,z(x) = 1st stage n

(
x,

√
(1 − 2−m) log(x + 1)

)
,

followed (if necessary) by δ+
m,z(x − S1).

THEOREM 2.1. Assume h ∈ Bm. Let z∗ ∈ [−∞,∞) be the unique solution of

φ(z∗)
1 − �(z∗)

= lim
x→∞

κmhm(x)

h(x)
,(2.16)
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where

κm = µ−2+(1/2)m
m−1∏
i=1

[(1/2)m−1−i − (1/2)m−1](1/2)i+1
.(2.17)

Then R∗
h(a) ∼ um(z∗)h(a) as a → ∞. If

δ =
{

δo
m,h, if h ∈ Bo

m,
δ+
m,z∗, if h ∈ B+

m ,

then as a → ∞,

Rh(δ(a)) ∼ um(z∗)h(a).(2.18)

Theorem 2.2 provides a converse to Theorem 2.1, showing that the type of
sampling used by δo

m,h and δ+
m,z is necessary for any efficient procedure. Let

Fy(x) =
√

x log(y/y2) and for a function h and k ∈ N define

F
(k)
h (x) = F (k)

y (x)|y=h(x),

where the superscript (k) on the right-hand side denotes the kth iterate. Bartroff
([3], Lemma 8) showed that F

(k)
h (a) is the order of magnitude of how far δo

m,h

and δ+
m,z are from the boundary (with probability approaching 1) after the kth

stage. Theorem 2.2 shows that any sampler that does not follow this “schedule”
is necessarily suboptimal.

THEOREM 2.2. Assume that h ∈ Bm and let

δ =
{

δo
m,h, if h ∈ Bo

m,
δ+
m,z∗, if h ∈ B+

m ,

where z∗ is as in (2.16). If δ′ = (N,M) is a sampler such that there is a sequence
ai → ∞ with

P
(
ai − Sk ≥ (1 − ε)(1/µ)1−2−k

F
(k)
h (ai)

)
bounded below 1(2.19)

for some 1 ≤ k < m and ε > 0, then

R(δ′(ai)) − R(δ(ai))

h(ai)
→ +∞(2.20)

as i → ∞. In particular, (2.20) holds if P(M ≥ m) �→ 1.
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3. Power one tests. Consider the problem of deciding between two densi-
ties f0 and f1 by sampling data in stages. Suppose that if f0 is the true density,
sampling costs are high and so we want to stop sampling as soon as possible and
reject the hypothesis f1. On the other hand, if f1 is the true density, suppose that
sampling costs nothing and we are content to observe the data ad infinitum. As
an example, suppose a new drug is being marketed under the hypothesis that its
side effects are insignificant. Physicians prescribing the drug record and report on
the side effects and if they appear unacceptably high (f0), this must be announced
and the drug withdrawn from use. But as long as the hypothesis of insignificant
side effects (f1) remains tenable, no action is required. Although this is an ide-
alized example, power one tests are important theoretical tools because we will
use combinations of them to derive optimal hypothesis tests; see Section 1 and the
paragraph preceding Section 4.1.

Let X1,X2, . . . be i.i.d. with density either f0 or f1, two distinct densities with
respect to some nondegenerate σ -finite measure. Define a power one test of f0
versus f1 to be a pair δ = (N,M) such that N = (N1,N2, . . .) is a sequence of
nonnegative integer-valued random variables satisfying the measurability require-
ment (2.6), with Nk , Nk and M defined as in Section 2. Note that a “power one test
of f0 versus f1” may only reject f1. If one pays costs per observation and per stage
under f0, plus a cost for terminating sampling under f1, then a natural measure of
the performance of a power one test of f0 versus f1 is the expected sum of these
costs. Hence, we define the risk of a power one test δ = (N,M) of f0 versus f1 to
be

Rc,d(δ) = cE0N + dE0M + P1(N < ∞),(3.1)

where c, d > 0. Let δ∗ = (N∗,M∗) be a Bayes test which achieves risk R∗
c,d =

infδ Rc,d(δ).
In this section we define a family of power one tests and show in Theorem 3.1

that they minimize the risk to second-order as c, d → 0. Obviously the risk (3.1)
depends on the rates at which c and d approach 0, much in the same way that
in Section 2 the efficiency of a multistage sampler depended on the asymptotic
properties of the function h, representing the ratio of the cost per stage to the
cost per observation, with respect to the critical functions (2.10). It will turn out
that the behavior of efficient hypothesis tests will be determined by an analogous
relationship, but with d/c in place of h and a multiple of logd−1 in place of the
boundary a in (2.11) and (2.12). That is, it will turn out that efficient hypothesis
tests use m stages (with probability approaching 1) if c, d → 0 in such a way that

hm(logd−1) � d/c � hm−1(logd−1)(3.2)

and will use m or m + 1 stages (with probability approaching 1) if

lim
c,d→0

d/c

hm(logd−1)
∈ (0,∞).(3.3)
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By analogy with Section 2, we give an essentially complete description of the
problem while assuming c, d → 0 at rates satisfying (3.2) or (3.3). To update
our notation, let Bo

m be the set of all sequences {(c, d)} such that 1 ≥ c, d → 0
and satisfying (3.2), let B+

m be the set of all such sequences satisfying (3.3), and
let Bm = Bo

m ∪ B+
m . We prove our main asymptotic results below for sequences

{(c, d)} ∈ Bm for some m ≥ 1. Note that {(c, d)} ∈ Bm implies hm(logd−1) =
O(d/c); hence, a consequence of this assumption is that d/c → ∞. If it were that
d/c were bounded below ∞, it can be shown that a test with constant stage size
and number of stages approaching ∞ minimizes the risk (3.1) to second-order.
Since our main interest here is variable stage size tests with a small number of
stages, we can be sure that the assumption {(c, d)} ∈ Bm does not exclude any
interesting cases.

In this section we use the multistage samplers of Section 2 as power one tests
by sampling the log-likelihood process log(f0(Xi)/f1(Xi)) until

∑
log(f0(Xi)/

f1(Xi)) exceeds a predetermined boundary. Let

σ 2 = Var0 log(f0(X1)/f1(X1)),
(3.4)

Yi = σ−1 log(f0(Xi)/f1(Xi)),

so that E0Yi = σ−1I0 > 0 and Var0 Yi = 1, where I0 = E0 log(f0(X1)/f1(X1)) is
the Kullback–Leibler information number. Whenever we use a multistage sampler
as a power one test in what follows, we mean with respect to Y1, Y2, . . . , which
we assume satisfy one of (2.3)–(2.5). Our main result in this section is that the
asymptotically optimal multistage samplers derived in Section 2 are second-order
optimal as power one tests.

THEOREM 3.1. Assume that the Yi satisfy one of (2.3)–(2.5), {(c, d)} ∈ Bm,
and let z∗ ∈ [−∞,∞) be the unique solution of

φ(z∗)
1 − �(z∗)

= lim
c,d→0

κm(σ−1I0)hm(σ−1 logd−1)

d/c
,(3.5)

where km(µ) is as in (2.17). Then R∗
c,d = cI−1

0 logd−1 +um(z∗)d+o(d) as c, d →
0. If δ is the power one test

δ =
{

δo
m,d/c(σ

−1 logd−1), if {(c, d)} ∈ Bo
m,

δ+
m,z∗(σ−1 logd−1), if {(c, d)} ∈ B+

m ,

then as c, d → 0,

Rc,d(δ) = cI−1
0 logd−1 + um(z∗)d + o(d).(3.6)
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4. Tests of simple hypotheses. In this section we use the optimal power one
tests from the previous section to derive optimal multistage tests of two simple hy-
potheses. Consider the problem of deciding between two distinct densities f0 and
f1 by sampling the i.i.d. X1,X2, . . . in stages, while incurring a cost per observa-
tion c, a cost per stage d and a penalty wi for incorrectly rejecting fi . Specifically,
a test of the hypotheses H0 :f0 versus H1 :f1 is a triple δ = (N,M,D), where
N,M are as in Section 3 and D is the “decision” variable taking values in {0,1}.
The event {D = i} means rejection of H1−i . Define the integrated risk of a test
δ = (N,M,D) with respect to the prior π to be

rc,d(δ) =
1∑

i=0

πi[cEiN + dEiM + wiPi(D = 1 − i)],

where πi, c, d,wi > 0. Let δ∗ = (N∗,M∗,D∗) denote a Bayes test, one that
achieves integrated risk r∗

c,d = infδ rc,d(δ). In this section we define a family of
tests and show in Theorems 4.1 and 4.2 that they minimize the integrated risk to
second-order as c, d → 0. Moreover, the proofs of these results in the Appendix
show that the integrated risk of efficient procedures is dominated by sampling and
staging costs; hence, this Bayesian setup can be thought of as a stepping stone to
finding tests that are efficient in the frequentist sense as well.

As in Section 3, we assume that c, d → 0 at rates such that {(c, d)} ∈ Bm

for some m ≥ 1. For i = 0,1, let σ 2
i = Vari log(fi(X1)/f1−i (X1)) and Y

(i)
j =

σ−1
i log(fi(Xj )/f1−i (Xj )) for j = 1,2, . . . so that EiY

(i)
j = σ−1

i Ii and Vari Y
(i)
j =

1, where Ii = Ei log(fi(X1)/f1−i (X1)). Whenever we speak of a power one test
of fi versus f1−i (i.e., a test which can only reject Hi−1 :f1−i ) below, we will al-
ways mean the one defined with respect to Y

(i)
1 , Y

(i)
2 , . . . , which we assume satisfy

one of (2.3)–(2.5). Let ln = ∏n
i=1(f0(Xi)/f1(Xi)) denote the likelihood ratio, and

when there is no confusion which N we are considering, we will let lk = lNk .
To describe the family of optimal tests, we must consider separately two cases

of the relationship between f0 and f1. The first case, considered in Section 4.1,
is when I0 = I1 and Var0 Xi = Var1 Xi . This is the “symmetric” case in the sense
that the two corresponding power one tests dictate the same initial stage size, and
hence, their first stages can be applied simultaneously. This case is of interest be-
cause it contains, most notably, the Normal mean problem, H0 :µ = µ0 versus
H1 :µ = µ1, about the mean µ of Normal random variables with known variance,
and the symmetric Binomial case, H0 :p = 1/2 − � versus H1 :p = 1/2 + �,
about the probability p of success of a Bernoulli trial. If I0 �= I1, the nature of a
Bayes test is fundamentally different. In this case, considered in Section 4.2, the
ratio of the two initial stages given by the power one tests does not tend to 1, and it
is not obvious what the size of the initial stage should be. This gives rise to a neces-
sary “exploratory” first stage, equal to the smaller of the two initial stages dictated
by the two corresponding power one tests. The remaining case, where I0 = I1 and
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Var0 Xi �= Var1 Xi , is at present unsolved, but the popular examples contained in
the former and the generality of the latter make our analysis sufficient for most
purposes.

For simplicity, we present our results here for tests of two simple hypotheses,
but these methods and results generalize immediately to tests of s ≥ 2 simple hy-
potheses. The asymptotically optimal test for s > 2 or for either subcase considered
below for s = 2 may be loosely described as follows: Sample at the first stage the
size of the smallest first stage of the corresponding s(s − 1) power one tests, then
continue sampling with the power one test of the most likely hypothesis versus the
second most likely, according to the results of the first stage.

4.1. Case I: I0 = I1 and Var0 Xi = Var1 Xi . Let (N(0),M(0)) be the power
one test of f0 versus f1 defined in Theorem 3.1 and let (N(1),M(1)) be the cor-
responding power one test of f1 versus f0. Under the assumptions I0 = I1 and
Var0 Xi = Var1 Xi , the two procedures (N(0),M(0)) and (N(1),M(1)) dictate the
same first stage size. Define the first stage of δ = (N,M,D) to be this common first
stage size, N1 = N

(0)
1 = N

(1)
1 . If lN1 ≥ 1, continue with (N(0),M(0)), stopping the

first time lNk ≥ d−1 to reject H1, as dictated by (N(0),M(0)), or lNk ≤ d to reject
H0. Otherwise, lN1 < 1, so switch and continue sampling with (N(1),M(1)) with
the same stopping rule. This test is second-order asymptotically optimal, recorded
as Theorem 4.1.

THEOREM 4.1. If the Y
(i)
j satisfy one of (2.3)–(2.5), I0 = I1, Var0 Xi =

Var1 Xi , and {(c, d)} ∈ Bm, then

r∗
c,d = cI−1

0 logd−1 + um(z∗)d + o(d),(4.1)

rc,d(δ) = cI−1
0 logd−1 + um(z∗)d + o(d)(4.2)

as c, d → 0, where z∗ ∈ [−∞,∞) is the unique solution of

φ(z∗)
1 − �(z∗)

= lim
c,d→0

κm(σ−1
0 I0)hm(σ−1

0 logd−1)

d/c
.

4.2. Case II: I0 �= I1. Assume I0 < I1. For i = 0,1 let δi(c, d, z) denote the
power one test of fi versus f1−i (i.e., the test that can only reject f1−i ) defined in
Theorem 3.1 with generic parameters c, d, z. Given {(c, d)} ∈ Bm, define z∗

0, z
∗
1 to

be the unique solutions of the equations

φ(z∗
0)

1 − �(z∗
0)

= lim
c,d→0

κm(σ−1
0 I0)hm(σ−1

0 [1 − I0/I1] logd−1)

d/c
,(4.3)

φ(z∗
1)

1 − �(z∗
1)

= lim
c,d→0

κm(σ−1
1 I1)hm(σ−1

1 logd−1)

d/c
.(4.4)
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Define δ = (N,M,D) as follows: Let the first stage of δ equal the

1st stage of δ1(c, d, z∗
1) = min

i
{1st stage of δi(c, d, z∗

i )}.

After the first stage,

if l1 < 1, continue sampling with δ1(c, d, z∗
1),

if l1 ≥ 1, switch and continue sampling with δ0(l
1c, l1d, z∗

0),

with the stopping rule

stop after the kth stage and reject H0 if lk ≤ d,(4.5)

stop after the kth stage and reject H1 if lk ≥ d−1.(4.6)

Note that δ stops no later than whichever power one test it chooses after the first
stage since δ1(c, d, z∗

1) stops when
∑Nk

1 Y
(1)
j ≥ σ−1

1 logd−1, which is equivalent

to (4.5), while δ0(l
1c, l1d, z∗

0) stops when
∑Nk

N1+1 Y
(0)
j ≥ σ−1

0 log(l1d)−1, which is
equivalent to (4.6). However, δ may stop before the corresponding power one test
because of the stopping rule (4.5)–(4.6). Theorem 4.2 establishes the second-order
optimality of δ.

THEOREM 4.2. If the Y
(i)
j satisfy one of (2.3)–(2.5), I0 < I1, and {(c, d)} ∈

Bm, then

r∗
c,d =

1∑
i=0

πi{cI−1
i logd−1 + d[1 − i + um(z∗

i )]} + o(d),(4.7)

rc,d(δ) =
1∑

i=0

πi{cI−1
i logd−1 + d[1 − i + um(z∗

i )]} + o(d)(4.8)

as c, d → 0, where z∗
i is given by (4.3) and (4.4).

5. A numerical example. The tests proved asymptotically optimal in Theo-
rems 4.1 and 4.2 are asymptotic not only in the sense that their optimality is proved
in the limit as c, d → 0, but also in that they are defined in terms of the rates at
which c, d → 0. Thus, in practice, there may be more than one asymptotically op-
timal procedure for a statistician to choose from. In this section we describe one
such procedure and give the results of a numerical experiment comparing it to a
sampling with constant stage size.
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Given values 0 < c,d < 1, let

m∗
i = inf{m ≥ 1 :κm(µi)hm(ai + 1) − κm+1(µi)hm+1(ai + 1) ≤ d/c}(5.1)

for i = 0,1, where µi = Ii/σi and ai = σ−1
i logd−1. Let δ be the test whose first

stage is the smaller of the two first stages of the samplers δo
m∗

i ,d/c
(σ−1

i logd−1),
and then continues sampling according to

δo
m∗

0,d/c(σ
−1
0 logd−1) if l1 > 1,

(5.2)
δo
m∗

1,d/c(σ
−1
1 logd−1) if l1 ≤ 1.

The test δ is asymptotically optimal by Theorem 4.1 when c, d → 0 such that
{(c, d)} ∈ Bo

m since, clearly, m∗
i will equal m for sufficiently small c, d .

We consider testing the hypotheses H0 :p = 0.4 versus H1 :p = 0.6 about the
probability p of success of i.i.d. Bernoulli trials. To isolate the effects of using
variable stage sizes, we compare δ with the test δk that uses stage sizes of con-
stant size k but with the same stopping rule (4.5)–(4.6), that is, stop when the
log-likelihood exceeds logd−1 in absolute value. Table 1 contains the expected
sample size, expected number of stages and integrated risk of δ and δk for vari-
ous k, c and d , each of which is computed by 100,000 Monte Carlo replications.
For each value of d/c, the operating characteristics of δk are given in Table 1 for
the following five values of k: k = 1 (fully-sequential sampling), the (rounded)
“average stage size” EN/EM of δ, the size of the first stage of δ, the (rounded)
expected sample size EN of δ and the optimal value k = k∗ minimizing rc,d(δk),
found by exhaustion. Here E(·) denotes

∑1
i=0 πiEi(·). Since both δ and δk sam-

ple until the absolute value of the log-likelihood ratio exceeds logd−1, the cost
of the average number of observations required to do this and the cost of the first
stage represent “fixed costs,” which it is shown in Lemma A.4 in the Appendix
that any efficient test must incur. We obtain a more accurate comparison of the
efficiency due to variable stage size sampling by considering the second-order risk
r ′
c,d = rc,d −(cEN(1) +d), where N(1) is the sample size of δk=1. The fifth column

of Table 1 contains the second-order risk and its percent decreases by δ in the sixth
column. Also included in Table 1 are the asymptotic approximations m∗

i [given
by (5.1)] of the optimal expected number of stages and r̃c,d = c logd−1/I + m∗

i d

of the Bayes integrated risk.
The results show that δ has substantially smaller risk and second-order risk than

the δk . Since δ and δk use the same stopping rule, this is due to the variable stage
sizes of δ, versus the constant stage sizes of δk . Even when compared to δk∗ with
the optimal fixed stage size k∗ (which requires fitting an additional parameter),
δ has roughly 40%, 30% and 20% smaller second-order risk for d/c = 5, 10 and
25, respectively. The degree of improvement decreases for larger values of d/c

as is anticipated since the expected number of stages of any reasonable test ap-
proaches 1 in this limit. Note that for each value of d/c, the expected number of
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TABLE 1
Expected sample size, number of stages, integrated risk and 2nd order risk of δ and δk for the

binomial testing problem p = 0.4 vs. p = 0.6 with logd−1 = 10, πi = 1/2, wi = 1

Test EN EM rc,d/d r ′
c,d/d 1 − r ′

c,d (δ)/r ′
c,d

d/c = 5
m∗

i = 7.0 r̃c,d/d = 31.7
δ 125.1 5.9 30.9 5.33 –
δ1 124.9 124.9 151.0 125.43 95.8%
δ21 141.3 6.7 35.4 9.83 45.8%
δ59 163.3 2.8 35.9 10.33 48.3%
δ125 189.0 1.5 39.7 14.13 62.2%
δk∗=43 154.2 3.6 34.4 8.83 39.6%

d/c = 10
m∗

i = 5.0 r̃c,d/d = 17.3
δ 130.9 4.3 17.4 4.07 –
δ1 125.1 125.1 138.5 125.17 96.7%
δ30 149.3 5.0 20.0 6.67 39.0%
δ70 171.2 2.4 20.1 6.77 39.9%
δ130 195.4 1.5 21.0 7.67 46.9%
δk∗=49 157.7 3.2 19.0 5.67 28.2%

d/c = 25
m∗

i = 2.0 r̃c,d/d = 6.9
δ 144.4 2.6 8.36 2.43 –
δ1 124.9 124.9 131.0 125.07 98.1%
δ56 163.8 2.9 9.92 3.99 39.1%
δ89 176.8 2.0 9.06 3.13 22.4%
δ144 201.0 1.4 9.66 3.73 34.9%
δk∗=95 178.8 1.9 9.04 3.11 21.9%

stages of δ is larger than that of δk∗ , while the expected sample size is smaller.
Thus, the way δ varies its stage sizes allows it to have more interim looks (stages),
while keeping its overshoot, and hence, expected sample size, small. The expected
number of stages and integrated risk of δ are close to their approximations m∗

i

and r̃c,d . Here the test δ was constructed from the samplers δo
m,d/c. However, tests

designed from the samplers δ+
m,z also perform well in practice and behave almost

identically to those constructed from the samplers δo
m,d/c.

A natural question to ask is what values of c, d should be used in practice if
one is not comfortable specifying them as “costs”? The theory of the tests in Sec-
tion 4 yields that logd−1/I is an asymptotic approximation of the expected sample
size and that d is an asymptotic upper bound on the type I and II error probabili-
ties. Hence, one could first choose d to be the desired error probability or so that
logd−1/I is an acceptable expected sample size, and then choose c so that m∗

i is
an acceptable expected number of stages, using (5.1).
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APPENDIX

A.1. Proof of Theorems 2.1 and 2.2. As mentioned above, the samplers δo
m,h

and δ+
m,z are extensions of Bartroff’s [3] samplers for Brownian motion, and other-

wise only differ slightly in their final stages. Moreover, Theorems 2.1 and 2.2 are
extensions of Theorems 2.3 and 2.4 of Bartroff [3], requiring only two additional
tools: first, justification for replacing the expected overshoot E(

∑
Xi − a;∑

Xi ≥
a) by that of the normal distribution; second, bounds on the operating characteris-
tics of the bold sampling δ̂n used in the final stages. With these two tools, the proofs
of the corresponding theorems in Bartroff [3] can be followed almost exactly. We
therefore state and prove these two needed tools here as Lemmas A.1 and A.2 and
refer the reader to Bartroff [3] for the rest of the proof of Theorems 2.1 and 2.2.
We also state without proof the auxiliary Lemma A.3 needed in the sequel, which
is a simple extension of Lemma 2.4 of Bartroff [3] in the same manner.

Recall that ψ+(z) = φ(z) − z�(−z) = ∫ ∞
z �(−x)dx. If Xi are i.i.d. N(µ,1)

and n = ∑n
i=1 Xi , then

E(n − x;n ≥ x) =
∫ ∞
x

P (n > y)dy = √
n · ψ+

(
x − nµ√

n

)
.

Lemma A.1 shows that these two quantities are asymptotically equivalent in a
certain range even when the Xi are not normal, given that one of (2.3)–(2.5) holds.

LEMMA A.1. Let the Xi be i.i.d. and satisfy one of (2.3)–(2.5). Let an be a
sequence such that

lim
n→∞

an − nµ√
n

∈ (−∞,∞) or
√

(2 − ε) logn ≥ an − nµ√
n

→ ∞

for some ε ∈ (0,1) as n → ∞. Then as n → ∞,

P(n ≥ an) ∼ 1 − �

(
an − nµ√

n

)
,(A.3)

E(n − an;n ≥ an) ∼ √
n · ψ+

(
an − nµ√

n

)
.(A.4)

PROOF. Let Tn = (n −nµ)/
√

n and bn = (an −nµ)/
√

n. Assume that bn →
∞; otherwise, (A.3) holds by the central limit theorem. If (2.3) or (2.4) holds, then
Theorem 4.6 of Hall [10] shows that |P(Tn ≥ x) − �(−x)| = O(1/n) uniformly
in x. Then∣∣∣∣P(Tn ≥ bn)

�(−bn)
− 1

∣∣∣∣ = O(1/n)

�(−bn)
≤ O(1/n)

�(−√
(2 − ε) logn)

= O(1/n)

n−(2−ε)/2/
√

logn
= O

(
n−ε/2

√
logn

) = o(1).
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If (2.5) holds, then (A.3) holds by Cramér’s theorem (e.g., see Feller [9], Theorem
XVI.7.1).

Since E(n − an;n > an) = √
n

∫ ∞
bn

P (Tn > x)dx, to establish (A.4) it
suffices to show that

∫ ∞
bn

P (Tn > x)dx ∼ ψ+(bn). First assume that bn →
∞ such that bn ≤ √

(2 − ε) logn. Choose cn → ∞ such that bn + ε′ ≤ cn ≤√
(2 − ε′′) logn, some ε′, ε′′ > 0. Then

φ(cn)

ψ+(bn)
∼ b2

n

φ(cn)

φ(bn)
≤ b2

ne
−ε′cn → 0(A.5)

since ψ+(x) ∼ φ(x)/x2 as x → ∞. Write
∫ ∞
bn

= ∫ cn

bn
+ ∫ ∞

cn
. By (A.3),∫ cn

bn

P (Tn > x)dx ∼
∫ cn

bn

�(−x)dx = ψ+(bn) − ψ+(cn) ∼ ψ+(bn)(A.6)

since ψ+(cn) ≤ φ(cn) = o(ψ+(bn)). For the other term,∫ ∞
cn

P (Tn > x)dx = E(Tn;Tn > cn) − cnP (Tn > cn)

by integration by parts and cnP (Tn > cn) ∼ cn�(−cn) = o(ψ+(bn)) by Mills’
ratio and (A.5). By Schwarz’s inequality, the other piece is

E(Tn;Tn > cn) ≤
√

ET 2
n · E1{Tn > cn}2

= √
1 · P(Tn > cn) ∼ √

�(−cn) = o(ψ+(bn))

by an argument like (A.5). These last two estimates give
∫ ∞
cn

P (Tn > x)dx =
o(ψ+(bn)), which with (A.6) gives

∫ ∞
bn

P (Tn > x)dx ∼ ψ+(bn).
If bn → b ∈ (−∞,∞), there is T ′

n with the same distribution as Tn such that
T ′

n → Z ∼ N(0,1) a.s. by weak convergence, and hence also in L1 by uniform
integrability (e.g., see Durrett [6], Theorems 2.1 and 5.2). Thus,∫ ∞

bn

P (Tn > x)dx = E(T ′
n − bn;T ′

n ≥ bn) → E(Z − b;Z ≥ b) = ψ+(b). �

LEMMA A.2. Let n(x) be a positive integer-valued function and let z(x) =
(x − µn(x))/

√
n(x). If n(x) is such that z(x) → −∞ and

|z(x)| ≤ [√
(2 − ε) logn(x) ∧ √

x
]

(A.7)

for some ε ∈ (0,1) as x → ∞, then δ̂n(a)(a) = (N,M) satisfies

EN ≤ a/µ + O
(|z(a)|√a

)
(A.8)

and EM → 1 as a → ∞.
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PROOF. Denote n = n(a), n2 = �n1/2� and z = z(a). Suppose y > 0. It is well
known from sequential theory that

E(M − 1|a − S1 = y) ≤ y/(µn2) + O(1) = y/
(
µ

√
n
) + O(1)

as n → ∞ uniformly in y. Thus,

EM − 1 = E(M − 1;S1 < a)
(A.9)

≤ (√
n · µ)−1

E(a − S1;S1 < a) + O(1)P (S1 < a)

and (−a + µn)/
√

n = |z| ≤ √
(2 − ε) logn, so by Lemma A.1,

E(a − S1;S1 < a) ∼ √
n · ψ+(|z|) ∼ √

n · φ(z)

z2 .(A.10)

Also, since P(S1 < a) = P(
S1−µn√

n
< z) → 0, (A.9) becomes EM → 1. To show

that (A.8) holds, write EN = n + n2 · E(M − 1) = n + o(
√

n). We have n =
a/µ + O(|z|√a) by (A.7), so

EN = a/µ + O
(|z|√a

) + o
(√

a
) = a/µ + O

(|z|√a
)
. �

LEMMA A.3. If h ∈ Bm and δ is any sampler such that Rh(δ) = O(h(a)),
then for any ε > 0 and 0 ≤ k < m, as a → ∞,

P
(
a − Sk ≥ (1 − ε)(1/µ)1−(1/2)kF

(k)
h (a)

) → 1.

A.2. Proof of Theorem 3.1. Let a = σ−1 logd−1 and {(c, d)} ∈ Bo
m so that

um(z∗) = m. Let a∗ = logd−1 + o(1) be that given by Lemma A.4 below. Then

hk(σ
−1a∗) ∼ σ−(1/2)khk(a

∗) ∝ hk

(
logd−1 + o(1)

) ∼ hk(logd−1)

since (d/dx)hk(x) is bounded for large x; thus,

hm(σ−1a∗) � d/c � hm−1(σ
−1a∗)(A.11)

as a consequence of {(c, d)} ∈ Bo
m. Let δ∗ = (N∗,M∗) denote a Bayes power one

test. By Lemma A.4, we know that
∑N∗

i=1 Yi = σ−1 log lN∗ ≥ σ−1a∗, so δ∗ is a
multistage sampler with boundary σ−1a∗. Theorem 2.1 gives

R∗
c,d ≥ cE0N

∗ + dE0M
∗

= c[E0(N
∗ − a∗/I0) + (d/c)E0M

∗] + ca∗/I0

≥ c[m(d/c) + o(d/c)] + cI−1
0

(
logd−1 + o(1)

)
(A.12)

= cI−1
0 logd−1 + d · m + o(d)

= cI−1
0 logd−1 + d · um(z∗) + o(d).
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Also by the Bo
m case of Theorem 2.1, for δ = (N,M),

E0(N − I−1
0 logd−1) + (d/c)E0M ≤ m(d/c) + o(d/c).(A.13)

Then

Rc,d(δ) − P1(N < ∞)

= c[E0(N − I−1
0 logd−1) + (d/c)E0M] + cI−1

0 logd−1

≤ c[m(d/c) + o(d/c)] + cI−1
0 logd−1 [by (A.13)](A.14)

= cI−1
0 logd−1 + d · m + o(d)

= cI−1
0 logd−1 + d · um(z∗) + o(d),

so it suffices to show that P1(N < ∞) = o(d). The right-hand side of (A.13) is
O(d/c), so by Lemma A.3 (with σ−1I0 in place of µ),

P0
(
a − Sm−1 ≥ (1/2)(σ−1I0)

−1+(1/2)m−1
F

(m−1)
d/c (a)

) → 1

as c, d → 0. On the above event U ,

a − Sm−1 ≥ (1/2)(σ−1I )−1+(1/2)m−1
F

(m−1)
d/c (a) ≥ ηhm(a)2

for some η > 0 by Lemma 2.5 of Bartroff [3]. On U , the mth stage of δ = δo
m,d/c(a)

begins bold sampling. Letting ρm = [(Sm − Sm−1) − σ−1I0Nm]/√Nm,

P0
(
Sm ≥ a +√

hm(a)|U ) = P0

(
ρm ≥ a − Sm−1 − σ−1I0Nm√

Nm

+
√

hm(a)

Nm

∣∣∣U)
→ 1

if hm(a) � Nm on U , since (a − Sm−1 − σ−1I0Nm)/
√

Nm → −∞ by definition
of δo

m,d/c(a). This holds since

Nm ≥ a − Sm−1

σ−1I0
≥ ηhm(a)2

σ−1I0
� hm(a)(A.15)

on U . Let V = U ∩ {Sm ≥ a + √
hm(a)} so that P0(V ) → 1. Using Wald’s likeli-

hood ratio identity, the relation ln = exp(σ
∑n

1 Yi), and letting primes denote com-
plements,

P1(N < ∞) = E0(l
−1
N ;N < ∞) ≤ E0l

−1
N

= E0[exp(−σSm);V ] + E0[exp(−σSM);V ′]
≤ exp

(− logd−1 − σ
√

hm(a)
) + E0[exp(− logd−1);V ′]

= d · exp
(−σ

√
hm(a)

) + d · P0(V
′)

= d · o(1) + d · o(1) = o(d),

proving that (3.6) holds in the {(c, d)} ∈ Bo
m case.
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Now let {(c, d)} ∈ B+
m . By using the corresponding B+

m cases of the results used
in the arguments leading to (A.12) and (A.14),

R∗
c,d ≥ cI−1

0 logd−1 + d · um(z∗) + o(d) ≥ Rc,d(δ) − P1(N < ∞),

so it again suffices to show that P1(N < ∞) = o(d). Let U be as above and W1 =
{Sm ≥ a + √

hm(a)}, W2 = {Sm ≤ a − √
hm(a)}, W3 = {Sm+1 ≥ a + (hm(a))1/5}

and W = (U ∩ W1) ∪ (U ∩ W2 ∩ W3). We will show that P0(W) → 1 as d → 0,
which will allow us to say that the likelihood ratio is large enough at the end of the
mth stage (on W1) or at the end of the (m + 1)st stage (on W3) that P1(N < ∞) =
o(d):

P0(U ∩ W1) = P0(W1|U)P0(U) ∼ P0(W1|U)

= P0

(
ρm ≥ a − Sm−1 − σ−1I0Nm√

Nm

+
√

hm(a)

Nm

∣∣∣U)
and (a − Sm−1 − σ−1I0Nm)/

√
Nm → z∗ on U by definition of δ+

m,z∗(a). Then
P0(U ∩ W1) → 1 − �(z∗) by the central limit theorem if

√
hm(a) � √

Nm on U ,
which holds by (A.15). Next, write

P0(U ∩ W2 ∩ W3) = P0(U)P0(W2|U)P0(W3|U ∩ W2)

∼ P0(W2|U)P0(W3|U ∩ W2).

We have P(W2|U) → �(z∗) by an argument like that above. Also,

P0(W3|U ∩ W2) = P0

(
ρm+1 ≥ a − Sm − σ−1I0Nm+1√

Nm+1
+ (hm(a))1/5

√
Nm+1

∣∣∣U ∩ W2

)
,

which approaches 1 since√
Nm+1 ≥

√
a − Sm

σ−1I0
≥ (hm(a))1/4√

σ−1I0
� (hm(a))1/5

and (a −Sm −σ−1I0Nm+1)/
√

Nm+1 → −∞ on U ∩W2 by definition of δ+
m,z∗(a).

Combining these, we have P0(U ∩ W2 ∩ W3) → �(z∗) and, hence,

P0(W) = P0(U ∩ W1) + P0(U ∩ W2 ∩ W3) → 1 − �(z∗) + �(z∗) = 1.

Note that on W , SM − a ≥ √
hm(a) ∧ (hm(a))1/5 = (hm(a))1/5, so

P1(N < ∞) = E0(l
−1
N ;N < ∞) ≤ E0l

−1
N

= E0[exp(−σSM);W ] + E0[exp(−σSM);W ′]
≤ exp

(− logd−1 − σ(hm(a))1/5) + E0[exp(− logd−1);W ′]
= d · exp(−σ(hm(a))1/5) + d · P0(W

′)
= d · o(1) + d · o(1) = o(d),

finishing the proof.



2094 J. BARTROFF

LEMMA A.4. There exists a∗ = logd−1 + o(1) such that log lN∗ ≥ a∗.

PROOF. Suppose that a Bayes procedure has sampled X1, . . . ,Xn in m stages.
By the Bayes property, δ∗ will stop at this point only if the stopping risk is no
greater than the continuation risk, that is, only if

l−1
n ≤ ρ(c, d, l−1

n ),(A.16)

where

ρ(u, v,w) = inf
(N,M):N≥1

{E0(uN + vM) + wP1(N < ∞)}.
Multiplication of (A.16) by ln yields 1 ≤ ρ(lnc, lnd,1); hence, we consider the
function ρ(t) = ρ(tc, td,1) for t > 0, and note that (A.16) implies that ρ(lN∗) ≥
1. The function ρ(t) is the infimum of a set of lines, each of slope at least c +
d by virtue of the restriction on the infimum. Thus, ρ(t) is continuous, strictly
increasing and satisfies ρ(t) ≥ t (c + d), so that

ρ(t) ≥ 1 when t ≥ (c + d)−1.(A.17)

If (N ′,M ′) is the procedure that samples with constant stage size one (i.e., fully-
sequential sampling) and an appropriately chosen boundary, then it is well known
(e.g., see Lorden [16]) that P1(N

′ < ∞) < 1 and E0N
′ = E0M

′ < ∞, and hence,
ρ(t) ≤ t (c + d)E0N

′ + P1(N
′ < ∞) < 1 for sufficiently small t . This and (A.17)

imply that there is a unique number ea∗
such that ρ(ea∗

) = 1. Then log lN∗ =
logρ−1(ρ(lN∗)) ≥ logρ−1(1) = a∗. To show that a∗ = logd−1 + o(1), let Yi be
as in (3.4) and δo

1,h(a) = (N,M), the multistage sampler described in Section 2
with h(a) = a3/4 and a = σ−1 log(d/c). Since

√
a � h(a) � a, by Lemma A.2,

E0N − a(σ−1I0)
−1 = o(h(a)) and E0M → 1. Also, l−1

N = exp[−σ(Y1 + · · · +
YN)] ≤ exp[−σa] = c/d , so that

ρ(t) ≤ E0[t (cN + dM) + l−1
N 1{N < ∞}]

≤ tc
[
E0

(
N − a(σ−1I0)

−1) + a(σ−1I0)
−1 + (d/c)E0M

] + E0l
−1
N

≤ tc
[
o(h(a)) + a(σ−1I0)

−1 + (d/c)
(
1 + o(1)

)] + c/d

= tc
[
o(d/c) + d/c

(
1 + o(1)

)] + c/d = td
(
1 + o(1)

) + c/d.

This implies that ρ(t) ≤ 1 when t ≤ d−1(1 + o(1)); hence,

a∗ = logρ−1(1) ≥ logρ−1(
ρ

(
d−1(

1 + o(1)
))) = logd−1 + o(1).

On the other hand,

a∗ = logρ−1(1) ≤ logρ−1(
ρ([c + d]−1)

)
[by (A.17)]

= log(c + d)−1 = logd−1 + o(1)

since d/c → ∞, establishing a∗ = logd−1 + o(1). �
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A.3. Proof of Theorems 4.1 and 4.2.

LEMMA A.5. Assume {(c, d)} ∈ Bm and let z∗ ∈ [−∞,∞) be the unique
solution of

φ(z∗)
1 − �(z∗)

= lim
c,d→0

κm(σ−1
0 I0)hm(σ−1

0 logd−1)

d/c
.

Then

cE0N
∗ + dE0M

∗ + P1(D
∗ = 0) ≥ cI−1

0 logd−1 + um(z∗)d − o(d)(A.18)

as c, d → 0.

PROOF. We extend δ∗ to a power one test of f0 versus f1 on the event
{D∗ = 1}. Let N = M = inf{n ≥ 1 : ln ≥ d−2} be fully-sequential sampling with
likelihood ratio boundary d−2. Define N ′ = N∗ + N · 1{D∗ = 1} and M ′ =
M∗ + M · 1{D∗ = 1}, the power one test that coincides with δ∗ on {D∗ = 0} but
continues with the power one test (N,M) on {D∗ = 1}. Since {N ′ < ∞} = {D∗ =
0} ∪ {D∗ = 1,N < ∞}, we have

cE0N
∗ + dE0M

∗ + P1(D
∗ = 0)

= c[E0N
′ − E0(N;D∗ = 1)] + d[E0M

′ − E0(M;D∗ = 1)]
+ P1(N

′ < ∞) − P1(D
∗ = 1,N < ∞)

= [cE0N
′ + dE0M

′ + P1(N
′ < ∞)]

− [cE0(N;D∗ = 1) + dE0(M;D∗ = 1) + P1(D
∗ = 1,N < ∞)]

= R1 − R2.

By Theorem 3.1, R1 ≥ cI−1 logd−1 + um(z∗)d + o(d), so to show that (A.18)
holds, it suffices to show that R2 = o(d). Write

R2 ≤ [cE0(N |D∗ = 1) + dE0(M|D∗ = 1)]P0(D
∗ = 1)

(A.19)
+ P1(N < ∞|D∗ = 1).

It is well known that

E0(N |D∗ = 1) = E0(M|D∗ = 1) = I−1
0 logd−2 + O(1) = O(logd−1).

We will show below that there is a K < ∞ such that

lN∗ ≤ Kd on {D∗ = 1}.(A.20)

Using this and Wald’s likelihood identity,

P0(D
∗ = 1) = E1(lN∗;D∗ = 1,N∗ < ∞) ≤ Kd = O(d).
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Combining these two estimates gives

[cE0(N |D∗ = 1) + dE0(M|D∗ = 1)]P0(D
∗ = 1)

= [c · O(logd−1) + d · O(logd−1)]O(d)(A.21)

= O(d2 logd−1).

By definition of (N,M),

P1(N < ∞|D∗ = 1) = E0(l
−1
N 1{N < ∞}|N > 0)

≤ E0(d
21{N < ∞}|N > 0) ≤ d2.

Plugging this and (A.21) into (A.19) gives R2 ≤ O(d2 logd−1) + d2 = o(d).
To verify (A.20), write the posterior risk rik of rejecting Hi after the kth stage

as

r0k = w0π0lN∗k

π0lN∗k + π1
, r1k = w1π1

π0lN∗k + π1
,(A.22)

and let rk = r0k ∧ r1k , the stopping risk after the kth stage. A Bayes test stops sam-
pling if the stopping risk is less than all possible continuation risks. One possible
continuation is fully-sequential sampling. By Lemma 2 of Lorden [14] there is a
constant K∗ < ∞ such that a Bayes procedure can only stop when the continua-
tion risk of fully-sequential sampling is less than K∗ times the cost per observa-
tion, c + d in this case. Thus, rM∗ ≤ K∗(c + d) ≤ 2K∗d , meaning r0M∗ ≤ 2K∗d
or r1M∗ ≤ 2K∗d . If r0M∗ ≤ 2K∗d , then by the first relation in (A.22) and some
simple algebra,

lN∗ ≤ π1 · 2K∗d
π0(w0 − 2K∗d)

≤ 4π1K
∗

π0w0
d

for small enough d . Clearly, r0M∗ < r1M∗ in this case, so we can be sure D∗ = 1.
Otherwise, r1M∗ ≤ 2K∗d < r0M∗ for small d , so D∗ = 0. �

PROOF OF THEOREM 4.1. Let I = I0 = I1 and σ = σ0 = σ1. Rearranging
terms,

r∗
c,d =

1∑
i=0

π1−iw1−i[ciEiN
∗ + diEiM

∗ + P1−i(D
∗ = i)],(A.23)

where ci = cπi/(π1−iw1−i) and di = dπi/(π1−iw1−i ). It is simple to verify that
{(ci, di)} ∈ Bm and

lim
c,d→0

κm(σ−1I )hm(σ−1 logd−1
i )

di/ci

= φ(z∗)
1 − �(z∗)

.

By Lemma A.5,

ciEiN
∗ + diEiM

∗ + P1−i(D
∗ = i) ≥ ciI

−1 logd−1
i + um(z∗)di + o(di),
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and plugging this into (A.23) gives

r∗
c,d ≥

1∑
i=0

π1−iw1−i[ciI
−1 logd−1 + um(z∗)di + o(di)]

=
1∑

i=0

πi[cI−1 logd−1 + um(z∗)d + o(d)]

= cI−1 logd−1 + um(z∗)d + o(d),

establishing (4.1). For an event A, denote

rc,d(δ;A) =
1∑

i=0

πi[cEi(N;A) + dEi(M;A) + wiPi(D = 1 − i,A)].(A.24)

Obviously rc,d(δ;A) + rc,d(δ;A′) = rc,d(δ). Let

A0 = {| log l1 − IN1| ≤ σ
√

βN1 logN1
}
,

A1 = {| − log l1 − (−IN1)| ≤ σ
√

βN1 logN1
}
,

where β = 2 − (1/2)m−1. The following bounds are proved below:

cE0(N;A0) ≤ cE0N
(0) + o(d),(A.25)

dE0(M;A0) ≤ dE0M
(0) + o(d),(A.26)

P0(D = 1,A0) = o(d),(A.27)

cE1(N;A0) = o(d),(A.28)

dE1(M;A0) = o(d),(A.29)

P1(D = 0,A0) ≤ P1
(
N(0) < ∞) + o(d).(A.30)

Using these bounds,

rc,d(δ;A0)

=
1∑

i=0

πi[cEi(N;A0) + dEi(M;A0) + wiPi(D = 1 − i,A0)]

≤ π0
[
cE0N

(0) + dE0M
(0) + o(d)

] + π1
[
w1P1

(
N(0) < ∞) + o(d)

]
= π1w1

[
c0E0N

(0) + d0E0M
(0) + P1

(
N(0) < ∞)] + o(d)

= π1w1[c0I
−1 logd−1

0 + um(z∗)d0 + o(d0)] + o(d) (by Theorem 3.1)

= π0[cI−1 logd−1 + um(z∗)d] + o(d)
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and the same argument with the indices reversed yields

rc,d(δ;A1) ≤ π1[cI−1 logd−1 + um(z∗)d] + o(d).(A.31)

Now we consider rc,d(δ;A′
0 ∩ A′

1). Let A = A′
0 ∩ A′

1. The bounds

cE0(N;A) = o(d),(A.32)

dE0(M;A) = o(d),(A.33)

P0(D = 1,A) = o(d),(A.34)

are also proved below. These bounds give rc,d(δ;A) = o(d). Combining this
with (A.31) gives

rc,d(δ) = rc,d(δ;A0) + rc,d(δ;A1) + rc,d(δ;A)

≤
1∑

i=0

πi[cI−1 logd−1 + um(z∗)d] + o(d)

= cI−1 logd−1 + d · um(z∗) + o(d),

establishing (4.2). All that remains is to verify the bounds (A.25)–(A.30) and
(A.32)–(A.34).

Let Yj = Y
(0)
j and n(x, z) be as in Section 2 with σ−1I in place of µ. We begin

by proving the crude bound

Ei(N |U) = O(logd−1) for any U such that Ei(M|U) = O(1),(A.35)

i = 0,1. If {(c, d)} ∈ Bo
m, the mth stage begins bold sampling, in which each stage

is bounded by maxx∈{x+,x−} n(x,−[√d/c/x1/4 ∧ √
(3/2) log(x + 1)]), where

x+ = σ−1 logd−1 − ∑
Yj and x− = ∑

Yj − (−σ−1 logd−1). If δ does not stop at
the end of a stage, then it must be that |∑Yj | < σ−1 logd−1; hence, x+ and x−
are both bounded above by 2σ−1 logd−1. Then the sizes of stages m,m + 1, . . .

are all bounded by

n
(
x,−[√

d/c/x1/4 ∧ (1/2)
√

logx
])|x=2σ−1 logd−1 = O(logd−1).

The sizes of the first m − 1 stages are likewise bounded by

max
x∈{x+,x−}n

(
x,

√
(1 − 2k) log(x + 1)

) ≤ n
(
x,

√
(1/2) log(x + 1)

)|x=2σ−1 logd−1

= O(logd−1)

for some k ≥ 1. Thus, the size of each stage of δ is uniformly O(logd−1) and
therefore, Ei(N |U) ≤ O(logd−1)Ei(M|U) = O(logd−1). This holds if {(c, d)} ∈
B+

m as well since then the (m + 1)st stage begins bold sampling. Next let B =
{log lk > − logd−1 for all 1 ≤ k ≤ M} and note that δ and (N(0),M(0)) coincide
on A0 ∩ B since log l1 ≥ IN1 − σ−1√βN1 logN1 > 0 for small d on A0 and
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log lk never crosses the lower boundary − logd−1 on B . Clearly, E0(M|A0 ∩B ′) =
O(1), so using this crude bound and Wald’s likelihood identity,

P0(A0 ∩ B ′) ≤ P0(B
′) = E1(l

M ;B ′) ≤ E1(d;B ′) ≤ d

and E0(N;A0 ∩ B) ≤ E0N
(0) since δ and (N(0),M(0)) coincide on A0 ∩ B , so

that

cE0(N;A0) = cE0(N;A0 ∩ B) + cE0(N;A0 ∩ B ′)
≤ cE0N

(0) + c · O(d logd−1)

= cE0N
(0) + o(c) = cE0N

(0) + o(d),

which proves (A.25). Similarly, E0(M;A0 ∩ B) ≤ E0M
(0) and E0(M|A0 ∩ B ′) =

O(1), so that

dE0(M;A0) ≤ dE0(M;A0 ∩ B) + dE0(M|A0 ∩ B ′)P0(A0 ∩ B ′)
≤ dE0M

(0) + d · O(1) · d = dE0M
(0) + o(d),

proving (A.26). Letting γ (d) = IN1 − σ
√

βN1 logN1,

P0(D = 1,A0) ≤ P0(D = 1|A0) = P0
(
lM ≤ − logd−1| log l1 ≥ γ (d)

)
≤ exp

[−(
logd−1 + γ (d)

)] = o(d),

proving (A.27), and a similar argument proves (A.34). Since γ ∼ IN1 ∼ logd−1,
we have

P1(A0) = E0
(
l−1
1 ; log l1 ≥ γ (d)

) ≤ E0
(
e−γ (d); log l1 ≥ γ (d)

)
≤ e−γ (d) ≤ exp[−(1/2) logd−1] = √

d.

Also, E1(N |A0) = O(logd−1) by (A.35) so

cE1(N;A0) = cE1(N |A0)P1(A0) ≤ c
√

d · O(logd−1) = c · o(1) = o(d),

proving (A.28). (A.29) holds since E1(M|A0) = O(1) and P1(A0) → 0 and simi-
larly for (A.33). Since δ and (N(0),M(0)) coincide on A0 ∩ B ,

P1(D = 0,A0 ∩ B) = P1
(
N(0) < ∞,A0 ∩ B

) ≤ P1
(
N(0) < ∞)

.

Also,

P1(D = 0,A0 ∩ B ′) = E0[(lM)−1;D = 0,A0 ∩ B ′]
≤ E0[d;D = 0,A0 ∩ B ′]
≤ dP0(B

′) = o(d)

since clearly P0(B
′) → 0. Combining these two gives

P1(D = 0;A0) = P1(D = 0;A0 ∩ B) + P1(D = 0;A0 ∩ B ′)
≤ P1

(
N(0) < ∞) + o(d),
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proving (A.30). Now

P0(A) ≤ P0(A
′
0) = P0

(
log l1 < γ (d)

) = P0

(− log l1 + IN1

σ
√

N1
>

IN1 − γ (d)

σ
√

N1

)
and (IN1 − γ (d))/(σ

√
N1) = √

β logN1, so by (A.3),

P0(A) � �
(−√

β logN1
) ∼ N

−β/2
1√

logN1
= o((logd−1)−β/2)

since IN1 ∼ logd−1. Then since d/c = O(hm(logd−1)),

cE0(N;A) = cE0(N |A)P0(A) = c · O(logd−1) · o((logd−1)−β/2)

= o(d) · (logd−1)1−β/2

d/c
= o(d) · (logd−1)(1/2)m

hm(logd−1)
(A.36)

= o(d) · (logd−1)(1/2)m

(logd−1)(1/2)m
= o(d),

proving (A.32) and finishing the proof. �

PROOF OF THEOREM 4.2. Let T = {t > 0 : | log t −I0N1| ≤ σ0
√

βN1 logN1},
where β = 2 − (1/2)m−1 and A0 = {l1 ∈ T }. Let δ = (N,M,D) and δ0(l

1c, l1d,

z∗
0) = (N(0),M(0)). We will use the rc,d(δ;A) notation as in (A.24). Clearly, l1 ≥ 1

on A0 for sufficiently small c, d , so that δ will switch and continue sampling ac-
cording to δ0(l

1c, l1d, z∗
0) after the first stage; hence,

N ≤ N(0) + N1 and M ≤ M(0) + 1.(A.37)

Also note that

{D = 0} ∩ A0 ⊆ {
N(0) < ∞}

,(A.38)

since on {D = 0} ∩ A0 the likelihood ratio will cross the boundary d−1, which is
equivalent to the stopping rule of δ0(l

1c, l1d, z∗
0), as discussed above. Using the

bounds (A.27)–(A.29),

rc,d(δ;A0) = π0cE0(N;A0) + π0dE(M;A0)

+ π1w1P1(D = 0,A0) + o(d)

= E0[π0cN + π0dM + π1w1(l
M)−1 · 1{D = 0};A0] + o(d)

≤ E0
[
π0cN

(0) + π0dM(0)(A.39)

+ π1w1(l
1)−1(lM/l1)−1 · 1{N(0) < ∞};A0

]
+ π0cN1 + π0d + o(d) [by (A.37) and (A.38)]

= E0[ϕ(l1); l1 ∈ T ] + π0cN1 + π0d + o(d),
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where

ϕ(t) = cE0
[
π0

(
cN(0) + dM(0))|l1 = t

] + π1w1t
−1P1

(
N(0) < ∞|l1 = t

)
.

By rearranging terms,

ϕ(t) = π0t
−1{

E0
[
(tc)N(0) + (td)M(0)|l1 = t

] + P1
(
N(0) < ∞|l1 = t

)}
+ (π1w1 − π0)t

−1P1
(
N(0) < ∞|l1 = t

)
(A.40)

= π0t
−1Rtc,td(δ(tc, td, z∗

0)) + (π1w1 − π0)t
−1P1

(
N(0) < ∞|l1 = t

)
.

For any t ∈ T , log(td)−1 ∼ (1 − I0/I1) logd−1, which implies that

hm(log(td)−1) ∼ hm

(
(1 − I0/I1) logd−1) ∼ (1 − I0/I1)

(1/2)mhm(logd−1),

and hence, {(tc, td)} ∈ Bm uniformly for t ∈ T . Moreover, by this last,

lim
c,d→0

κm(σ−1
0 I0)hm(σ−1

0 log(td)−1)

(td)/(tc)
= φ(z∗

0)

1 − �(z∗
0)

.(A.41)

By Theorem 3.1,

Rtc,td(tc, td, z∗
0) ≤ tcI−1

0 log(td)−1 + um(z∗
0)td + o(td)

and the proof of Theorem 3.1 shows that P1(N
(0) < ∞|l1 = t) = o(td) uniformly

for t ∈ T . Plugging these last two into (A.40),

ϕ(t) ≤ π0t
−1[tcI−1

0 log(td)−1 + um(z∗
0)td + o(td)] + (π1w1 − π0)t

−1o(td)

= π0[cI−1
0 logd−1 + um(z∗

0)d] − π0cI
−1
0 log t + o(d),

uniformly on T , and, in turn, plugging this into (A.39) gives

rc,d(δ;A0) ≤ π0
[
cI−1

0 logd−1 + (
1 + um(z∗

0)
)
d
]

(A.42)
+ π0cI

−1
0 [I0N1 − E(log l1; l1 ∈ T )] + o(d).

By repeating the argument leading to (A.36), we have E0(log l1;A0) = o(d/c);
hence, (A.42) becomes

rc,d(δ;A0) ≤ π0
[
cI−1

0 logd−1 + (
1 + um(z∗

0)
)
d
] + o(d).(A.43)

Letting A1 = {| log(1/l1) − I1N1| ≤ σ1
√

βN1 logN1} and repeating arguments in
the proof of Theorem 4.1 give

rc,d(δ;A1) ≤ π1[cI−1
1 logd−1 + d · um(Q1, σ

−1
1 I1)] + o(d)

and rc,d(δ;A′
0 ∩ A′

1) = o(d). Combining with (A.43) gives (4.8) with a “≤.”
Next we show that (4.7) holds with a “≥.” Let l∗k = lN∗k , T ∗ = {t > 0 : | log t −

I0N
∗
1 | ≤ σ0

√
βN∗

1 logN∗
1 } and A∗

0 = {l∗1 ∈ T ∗}. Let

r∗
i = πi(cEiN

∗ + dEiM
∗) + π1−iw1−iP1−i (D

∗ = i), i = 0,1.
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Since δ∗ follows its first stage with the optimal continuation (Ṅ∗, Ṁ∗, Ḋ∗), we
can write

r∗
0 = E0[π0(cN

∗ + dM∗) + π1w1(l
∗M∗

)−11{D∗ = 0}]
= E0[π0(cE0Ṅ

∗ + dE0Ṁ
∗) + π1w1(l

∗1)−1P1(Ḋ
∗ = 0)](A.44)

+ π0(cN
∗
1 + d).

Define ϕ∗(t) = π1w1t
−1{E0[c(t)Ṅ∗ + d(t)Ṁ∗|l∗1 = t] + P1(Ḋ

∗ = 0|l∗1 = t)},
where c(t) = ctπ0/(π1w1) and d(t) = dtπ0/(π1w1). It will be shown below that
N∗

1 ∼ I−1
1 logd−1. Assuming this holds, the arguments leading to (A.41) show that

it holds with (tc, td) replaced by (c(t), d(t)). Then by Lemma A.5,

ϕ∗(t) ≥ π1w1t
−1[c(t)I−1

0 logd(t)−1 + um(z∗
0)d(t) + o(d(t))]

(A.45)
= π0[cI−1

0 logd−1 + um(z∗
0)d − π0cI

−1
0 log t + o(d)

uniformly for t ∈ T ∗, and hence,

r∗
0 = E0[ϕ∗(l∗1)] + π0(cN

∗
1 + d)

≥ E0[ϕ∗(l∗1);A∗
0] + π0(cN

∗
1 + d) (since ϕ∗ ≥ 0)

≥ π0[cI−1
0 logd−1 + um(z∗

0)d]P0(A
∗
0) − π0cI

−1
0 E0[log l∗1;A∗

0](A.46)

+ π0(cN
∗
1 + d) + o(d) [by (A.45)]

≥ π0
[
cI−1

0 logd−1 + (
1 + um(z∗

0)
)
d
] + o(d),

this last by the arguments leading to (A.36). A straightforward application of
Lemma A.5 gives r∗

1 ≥ π1[cI−1
1 logd−1 + um(z∗

1)d] + o(d), and adding these last
two gives (4.7).

All that remains is to verify that N∗
1 ∼ I−1

1 logd−1. Suppose instead that

L = lim inf
c,d→0

N∗
1

logd−1 < I−1
1 .(A.47)

Then there is a sequence {(c, d)} approaching (0,0) on which the lim inf is
achieved, and by repeating the above arguments on this sequence,

r∗
0 ≥ π0

[
cI−1

0 logd−1 + (
1 + um(z′

0)
)
d
] + o(d),(A.48)

where z′
0 is the unique solution of

φ(z′
0)

1 − �(z′
0)

= lim
c,d→0

κm(σ−1
0 I0)hm(σ−1

0 (1 − I0L) logd−1)

d/c
.

By writing

hm

(
σ−1

0 (1 − I0L) logd−1) =
(

1 − I0L

1 − I0/I1

)(1/2)m

× hm

(
σ−1

0 (1 − I0/I1) logd−1)
,



OPTIMAL MULTISTAGE TESTS 2103

we have

φ(z′
0)

1 − �(z′
0)

=
(

1 − I0L

1 − I0/I1

)(1/2)m

× lim
c,d→0

κm(σ−1
0 I0)hm(σ−1

0 (1 − I0/I1) logd−1)

d/c

=
(

1 − I0L

1 − I0/I1

)(1/2)m

× φ(z∗
0)

1 − �(z∗
0)

≥ φ(z∗
0)

1 − �(z∗
0)

.

Hence, z′
0 ≥ z∗

0 since z �→ φ(z)/[1 − �(z)] is increasing, so (A.48) becomes

r∗
0 ≥ π0

[
cI−1

0 logd−1 + (
1 + um(z∗

0)
)
d
] + o(d),(A.49)

since um is strictly increasing. By reversing indices and repeating this argument,

conditioning on {| log(1/l∗1)−I1N
∗
1 | ≤ σ1

√
βN∗

1 logN∗
1 } instead of A∗

0, we obtain

r∗
1 ≥ π1

[
cI1 logd−1 + (

1 + um(z′
1)

)
d
] + o(d).(A.50)

Using (A.49), (A.50) and (4.7), we would then have

r∗
c,d − rc,d(δ) = r∗

0 + r∗
1 − rc,d(δ)

≥ π1d[1 + um(z′
1) − um(z∗

1)] + o(d)

≥ εd + o(d) > 0

for some ε > 0 and sufficiently small c, d since m ≤ um < m + 1. This obviously
contradicts r∗

c,d ≤ rc,d(δ) so (A.47) cannot hold. On the other hand, if

η = lim sup
c,d→0

N∗
1

logd−1 − I−1
1 > 0,(A.51)

then again on a sequence {(c, d)} approaching (0,0), we would have

r∗
c,d − rc,d(δ) ≥ π0cI

−1
0 logd−1 + π1cN

∗
1 − rc,d(δ) (by Lemma A.5)

≥ π0cI
−1
0 logd−1 + π1c(η + I−1

1 ) logd−1(
1 + o(1)

)
− [(π0/I0 + π1/I1)c logd−1 + O(d)] [by (A.51) and (4.8)]

= π1
(
η + o(1)

) · c logd−1 + O(d)

≥ π1(η/2) · c logd−1 + o(c logd−1) > 0

for sufficiently small c, d , again a contradiction. Thus, (A.51) cannot hold either,
showing that N∗

1 ∼ I−1
1 logd−1 and completing the proof. �
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