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Let (Xi)i=1,...,n be a possibly nonstationary sequence such that
L (Xi) = Pn if i ≤ nθ and L (Xi) = Qn if i > nθ , where 0 < θ < 1 is
the location of the change-point to be estimated. We construct a class of es-
timators based on the empirical measures and a seminorm on the space of
measures defined through a family of functions F . We prove the consistency
of the estimator and give rates of convergence under very general conditions.
In particular, the 1/n rate is achieved for a wide class of processes including
long-range dependent sequences and even nonstationary ones. The approach
unifies, generalizes and improves on the existing results for both parametric
and nonparametric change-point estimation, applied to independent, short-
range dependent and as well long-range dependent sequences.

1. Introduction. The change-point problem, in which one must detect
a change in the marginal distribution of a random sequence, is important in a
wide range of applications and has therefore become a classical problem in sta-
tistics. A comprehensive review of the subject can be found in [5]. In this paper
we consider the general case of nonparametric estimation that must be used when
no a priori information regarding the marginal distributions before and after the
change-point is known. Although this problem has been widely studied for inde-
pendent sequences, studying dependent sequences has importance for both the-
oretical reasons and numerous practical applications. In this paper we consider
this challenging problem and develop a unified framework in which we can deal
with sequences with quite general dependence structures. We prove that the rate
of convergence of a broad family of nonparametric estimators is Op(n−1). This is
a particularly surprising result because the dependence structure of the sequence
plays absolutely no role in determining the rate of convergence. The rate Op(n−1)

is clearly optimal because there are only n points in the sequence.
For independent sequences there is a wide literature, and both parametric and

nonparametric methods have been widely studied. The nonparametric problem was
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considered by Carlstein [4], who proposed an estimator, proved its consistency and
determined a rate of convergence. Dümbgen [6] embedded the estimator proposed
by Carlstein in a more general framework, improved the rate of convergence in
probability and derived the limiting distributions for certain models. Ferger [7]
considered the almost sure convergence for Dümbgen’s estimators. Yao, Huang
and Davis [15] considered the case in which the location of the change-point can
tend to either 0 or 1 as the sequence length tends to infinity. Ferger [8, 9] has
investigated a number of features of change-point estimators including probability
bounds and rates of weak and almost sure convergence. Since then several works
have generalized these results to a weakly dependent or short-range dependent
setting.

In recent years the importance of long-memory or long-range dependent (LRD)
processes has been realized in a wide range of applications, especially in the
analysis of financial and telecommunication data. For the purposes of this pa-
per we define real sequences (Xi)i=1,...,n to be short-range dependent (SRD) if
lim supn→∞ n−1

E[∑n
i=1(Xi − E[Xi])]2 < ∞ and LRD otherwise. Several works

are concerned with the generalization of the results for independent sequences to a
SRD setting. However, estimating change-points for LRD sequences poses a num-
ber of significant challenges and there are much fewer known results in this case.

Parametric change-point estimation for LRD sequences, in which one typically
has a priori knowledge about the marginal distributions, has been considered by a
number of authors. Kokoszka and Leipus [12] considered the change in the mean
for dependent observations for LRD sequences. They obtained rates in probabil-
ity for the cumulative sum (CUSUM) change-point estimator and gave a rate of
convergence of the estimator that gets worse as the strength of the dependence in-
creases. The problem with a jump in the mean that tends to zero was considered
by Horváth and Kokoszka [11]. They proved the consistency of the estimator and
gave the limiting distribution. For sequences that have a change in the mean, Ben
Hariz and Wylie [2] showed that the rate of convergence does not get worse as
the strength of the dependence increases and that the rate of convergence for in-
dependent sequences is also achieved for both SRD and LRD sequences. In the
nonparametric setting Giraitis, Leipus and Surgailis [10] derived a number of re-
sults that focused mainly on hypothesis testing. However, to our knowledge, there
are no results regarding rates of convergence of nonparametric change-point esti-
mation for LRD sequences.

In this paper we adopt a very general framework that allows us to consider a
very general class of dependence structures. In particular, we make no assump-
tion about stationarity in the dependence structure. This is especially important
in practice because one can confidently make use of the proposed estimators on
a sequence without checking for such stationarity (which is typically extremely
difficult in practice). This framework represents a unified setting in which inde-
pendent, SRD and LRD sequences can be treated. We prove the consistency of a
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Dümbgen-type estimator and show that the Op(n−1) rate of convergence for inde-
pendent sequences is also achieved for both SRD and LRD sequences. In addition,
we consider the case in which the difference between the distributions before and
after the change-point tends to zero.

2. Main results. Let (Xi)i=1,...,n be a sequence in a measurable space E. The
marginal distribution (which may depend on the sequence length n) is given by

L (Xi) =
{

Pn, if i ≤ nθ ,
Qn, if i > nθ ,

where 0 < θ < 1 is the location of the change-point. This means that we assume
first-order stationarity on either side of the change-point, but make no assumption
about stationarity in the dependence structure of the sequence.

Given the sequence (Xi)i=1,...,n, we aim to estimate the location of the change-
point θ using an estimator of the general type

θ̂n = 1

n
min

(
arg max

1≤k<n

{N(Dk)}
)
,(2.1)

where N is a (possibly random) seminorm on the space M of signed finite mea-
sures on E,

Dk =
[
k

n

(
1 − k

n

)]1−γ
(

1

k

k∑
i=1

δXi
− 1

n − k

n∑
i=k+1

δXi

)
,(2.2)

and γ is a parameter satisfying 0 ≤ γ < 1. The estimator proposed in [6] corre-
sponds to the case of γ = 1/2.

Estimators of this type consider all possible locations of the change-point, k.
For each possible k they compute the difference between the empirical probability
distributions for the data points on either side of the proposed change-point. This
difference is then multiplied by the weighting factor [k/n(1 − k/n)]1−γ . We then
require a seminorm, N , to measure the difference between the empirical probabil-
ity distributions. The estimator θ̂n is chosen to maximize the difference between
the empirical probability distributions under the given seminorm. The weighting
factor is required, otherwise values of k near the end points give rise to empirical
distributions that contain few data points and therefore give very large statistical
errors.

In the theorems stated below we will develop a framework that can deal with
a very general class of estimators. Different seminorms represent using different
measures of the difference between the distributions before and after the change-
point. In the following, we give some examples of seminorms that have been used
to estimate change-points for independent data. We will show that these estima-
tors, and a much wider class, are also appropriate for estimating change-points in
dependent data. For a measure ν on E and f :E → R, we define ν(f ) as

ν(f ) ≡
∫

f (x)ν(dx).(2.3)
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For each choice of seminorm, we require a family of functions that we denote
by F . For example, for parametric estimators that only consider a single moment,
F will only contain a single function.

EXAMPLE 1. For a family of functions F = {1·<Xi
, i = 1, . . . , n}, we define

norms of a measure ν via the quantities di = ν(1·<Xi
). This corresponds to the

setting of [4]. For example,

N(ν) = sup
1≤i≤n

|di |(2.4)

corresponds to the L∞ or Kolmogorov–Smirnov norm and

Np(ν) =
(

1

n

n∑
i=1

|di |p
)1/p

(2.5)

corresponds to the Lp norm. The cases p = 1 and p = 2, correspond to the most
commonly used L1 and L2 norms. Observe that in this example the family is ran-
dom and therefore the seminorm is also random.

EXAMPLE 2. For F ={f p :x → xp,p = 1, . . . ,+∞} we define the semi-
norm by

N(ν) ≡ ∑
f ∈F

d(f )|ν(f )|,

where d(f ) is a sequence of positive weights. This includes the parametric esti-
mators in which we estimate a change in some moments. For example, differences
in the pth moment can be detected using the seminorm that applies the measure
(2.2) to the function f p :x → xp . This framework can also deal with a weighted
sum of all moments. This family requires high moments of the marginal law to
be finite. To overcome this restriction, one can consider truncated moments, that
is, a family given by F ={f p

M :x → xp1|x|<M,p = 1, . . . ,+∞}, where M is a
constant which can be arbitrarily large.

EXAMPLE 3. F ={1D,D ∈ D}, where D is a family of sets which satisfies
certain conditions, such as the family being a VC subclass (see [6]). This means
that the family of sets has a covering number which grows polynomially (see [14]).

We now turn our attention to the dependence structure of the sequence. We note
that for any given norm, one must apply the measure (2.2) to a family of functions.
In this paper we will consider a very general class of dependence structures. For a
given sequence we will allow the estimator to use families of functions that satisfy
the following condition.
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ASSUMPTION 1. There exist constants C > 0 and ρ > 0 that are independent
of the sequence length such that

sup
f ∈F

sup
1≤i≤n−m

∣∣corr
(
f (Xi), f (Xi+m)

)∣∣ ≤ Cm−ρ.(2.6)

This assumption simply states that for each of the functions f in F the corre-
lation between f (Xi) and f (Xi+m) must decay algebraically or faster with m as
m → ∞. This assumption is satisfied for a very general class of data. We now give
some examples for which Assumption 1 is satisfied.

EXAMPLE 4. Let G1 and G2 be any measurable functions and (Zi) be a (pos-
sibly nonstationary) Gaussian sequence such that sup1≤i≤n−m | corr(Zi,Zi+m)| ≤
Cm−ρ and Xi = G1(Zi) if i ≤ nθ and Xi = G2(Zi) if i > nθ . Then for any fam-
ily F such that E(f 2(Xi)) < ∞ for f ∈ F ,

sup
f ∈F

sup
1≤i≤n−m

| corr(f (Xi), f (Xi+m))| ≤ Cm−ρ(2.7)

(see, e.g., [1]). In fact, this example can be extended to functions of Gaussian
vectors using the results of [1].

EXAMPLE 5. Let (Xi) be defined by Xi ≡ Z
(1)
i ≡ ∑+∞

k=−∞ b
(1)
k ε

(1)
i−k if i ≤ nθ

and Xi ≡ Z
(2)
i ≡ ∑+∞

k=−∞ b
(2)
k ε

(2)
i−k if i > nθ , where (b

(1)
k ) and (b

(2)
k ) are real se-

quences and (ε
(1)
k ) and (ε

(2)
k ) are random stationary sequences with zero mean and

finite variance. If
∑+∞

k,l=−∞ |b(i)
k b

(j)
l E(ε

(i)
0 ε

(j)
k−l)| < ∞ for i, j = 1,2, then (Z

(j)
i )

exists almost surely and E((Z
(j)
i )2) < ∞. Let r(k) = supi,j=1,2 |E(ε

(i)
0 ε

(j)
k )|. If we

assume that supk | r(k+m)
r(k)

| ≤ Cm−α, for α > 0, then |cov(Xi,Xi+m)| ≤ C′m−α.

This example includes FARIMA processes with correlated innovations such as
GARCH processes. It allows us to model long-range dependence and time-
dependent conditional variance. These two features are frequently encountered in
financial time series. So, Assumption 1 is satisfied when F is the set of the identity
function.

In Theorem 1 we develop conditions that can deal with countable families of
functions and norms that are bounded by weighted moments. In Theorem 2 we
consider the case of uncountable families. In this case we need to control the size of
the family. This will be done by using covering numbers defined in Assumption 2.

We begin by considering the case where the class of functions F is countable
and the difference between the distributions before and after the change-point may
tend to zero as the sequence length, n, tends to infinity. This theorem essentially
handles the case in which the norm is bounded by a sum of weighted moments and
hence includes most commonly used parametric estimators.
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For f in F we set

‖f ‖ ≡ sup
n∈N

(
Pn(f

2) + Qn(f
2)

)1/2 = sup
n∈N

(EPn[f 2] + EQn[f 2])1/2.(2.8)

THEOREM 1. Assume that the norm N satisfies

N(ν) ≤ ∑
f ∈F

d(f )|ν(f )|,(2.9)

where F is a countable family of functions satisfying (2.6) and d(f ) are positive
constants such that

∑
f ∈F d(f )‖f ‖ < ∞. We assume that there exists a positive

sequence bn such that

P[N(Pn − Qn) > bn] → 1 as n → ∞.(2.10)

Let ρ̄ = min(1 − ε, ρ) for any ε > 0, where ρ is given in (2.6). If

b−1
n

[
n−ρ̄/2(

1 + ln(n)1γ−1+ρ̄/2=0
) + nγ−1] → 0 as n → ∞,(2.11)

then we have

θ̂n − θ = Op(n−1b−2/ρ̄
n ).(2.12)

We note that the largest possible value of ρ̄ is strictly less than unity and so as
long as γ < 1/2 we will always have γ − 1 + ρ̄/2 �= 0, in which case we obtain a
less restrictive condition than [6] on the speed at which the difference between the
distributions before and after the jump tends to zero. Moreover, if the sequence is
LRD (ρ < 1), then we have more freedom in the choice of γ , namely γ ≤ 1−ρ/2.

This theorem takes a simpler form when N(Pn − Qn) is bounded away from
zero. This is stated in following corollary.

COROLLARY 1. Under Assumption 1, assume that the seminorm N satisfies
(2.9) and (2.10) with bn ≥ b > 0. Then

θ̂n − θ = Op(n−1).(2.13)

Corollary 1 includes the commonly encountered case in which the distributions
Pn and Qn do not depend on the sequence length and the seminorm is nonrandom.

Equation (2.10) controls the rate at which the seminorm of the difference be-
tween the two distributions decays to zero by stating that it decays more slowly
than some sequence bn. In particular, if the seminorm is nonrandom, one can take
bn = 2−1N(Pn − Qn). Equation (2.11) requires that random fluctuations arising
from sums of the type (2.2), which have size O(n−ρ/2 +nγ−1), decay to zero faster
than the sequence bn and consequently decay faster than the distance between the
two distributions. This is a natural condition to be able to detect a change-point.

We now turn our attention to the case when the family F contains an uncount-
able infinity of functions. The following theorem deals with an extremely general
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set of norms including all of those considered by Carlstein [4]. In this case, under
the assumptions that the family has a finite covering number, we obtain the same
rate of convergence as in (2.13) when Pn and Qn are independent of n. For the case
in which the size of the difference between Pn and Qn tends to zero as n → ∞
we obtain a rate that depends on the covering number that will typically represent
some loss on (2.12).

ASSUMPTION 2. Given two functions l and u, the bracket [l, u] is the set of
all functions f with l ≤ f ≤ u. Given a norm ‖ · ‖ on a space containing F , an
ε-bracket for ‖ · ‖ is a bracket [l, u] with ‖l − u‖ < ε. The bracketing number
N[·](ε,F ,‖ · ‖) is the minimal number of ε-brackets needed to cover F .

A family F is said to satisfy Assumption 2 if

∀ε > 0 N[·](ε,F ,‖ · ‖X) < ∞,(2.14)

where ‖ · ‖X is a norm satisfying supn∈N |Pn(|f |)| + |Qn(|f |)| ≤ ‖f ‖X .

We refer the reader to the monograph of van der Vaart and Wellner [14] for
examples about bracketing numbers.

The following theorem considers the case when the difference between the dis-
tributions before and after the change-point may tend to zero.

THEOREM 2. Assume that the seminorm satisfies

N(ν) ≤ sup{|ν(f )|, f ∈ F },(2.15)

where F is a family of functions that satisfies sup{‖f ‖, f ∈ F } < ∞ and Assump-
tions 1 and 2. Let ρ̄ = min(1 − ε, ρ) for any ε > 0, where ρ is given in (2.6), and
εn be any positive sequence that tends to zero as n → ∞. We assume that there
exists a positive sequence bn such that

P
(
N(Pn − Qn) > bn

) → 1 as n → ∞(2.16)

and

b−1
n N[·](bnεn,F ,‖ · ‖X)

[
n−ρ̄/2(

1 + ln(n)1γ−1+ρ̄/2=0
) + nγ−1] → 0.

Then we have

θ̂n − θ = Op

(
n−1[

b−1
n N[·](bnεn,F ,‖ · ‖X)

]2/ρ̄)
.(2.17)

The following corollary considers the case in which the norm between the dis-
tributions before and after the change-point is strictly positive. Provided that the
bracketing number is finite, the n−1 convergence rate is achieved for any norm
within a class of functions satisfying Assumptions 1 and 2.

COROLLARY 2. Under Assumptions 1 and 2, assume that the seminorm sat-
isfies (2.10) with bn ≥ b > 0 and (2.15). Then (2.13) is satisfied.
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REMARK 1. In the case bn > b > 0, Theorems 1 and 2 both give the same
Op(n−1) rate for both ρ < 1 and ρ ≥ 1. For Theorem 1, in the case bn → 0 with
ρ ≥ 1, it is possible to obtain the rate Op(n−1b−2

n ln2(nb2
n)) which can represent

a marginally better result. A similar result can be obtained for Theorem 2 with
bn → 0 and ρ ≥ 1. These results can be obtained by modifying Lemma 1 of our
proof using Theorem 3 in [13].

REMARK 2. Assumption 1 can be replaced by the following more general,
but less intuitive, condition: there exist constants C > 0 and ρ > 0, such that for
any m

sup
f ∈F

sup
k,m,k+m≤n

E

(
k+m∑
i=k

[f (Xi) − E(f (Xi))]
)2

≤ Cm2−ρ.(2.18)

In this case ‖f ‖ can be replaced by unity in the assertions of Theorems 1 and 2.
Observe that this assumption is particularly weak and satisfied by a large class of
processes and families of functions. We now present more examples of commonly
used time series models and families of functions that satisfy (2.18) and Assump-
tion 2.

EXAMPLE 6. We begin by considering a linear process with a family of func-
tions that satisfies a Lipschitz condition. Let F be a family of uniformly bounded
functions such that supf ∈F |f (x) − f (y)| ≤ C1|x − y|η1 for some η1 > 0 and
C1 > 0. Then according to [14] F satisfies Assumption 2 for any Lp norm. We
now show that if the sequence is drawn from Example 5, then (2.18) is satisfied
under additional weak conditions. Let Xv

i ≡ ∑
|k|<v

b
(j)
k ε

(j)
i−k with j = 1 if i ≤ nθ

and j = 2 if i > nθ. Assume that (ε
(1)
k , ε

(2)
k ) are q-dependent and

∃η2 > 0 ∀v E[Xi − Xv
i ]2 ≤ C2v

−η2 .(2.19)

For example, if |b(1)
k | + |b(2)

k | ≤ C|k|−β and β > 1/2, then one can readily show
that (2.19) is satisfied. The sequence Xv

i is 3v-dependent for v > q , and so by
using a blocking technique we have E(

∑k+m
i=k f̄ (Xv

i ))
2 ≤ Cmv, where f̄ (X) =

f (X) − E[f (X)]. Letting v = m1/(1+η1η2), we obtain

E

(
k+m∑
i=k

f̄ (Xi)

)2

≤ 2E

(
k+m∑
i=k

f̄
(
X

v(m)
i

))2

+ 2E

(
k+m∑
i=k

(
f̄ (Xi) − f̄

(
X

v(m)
i

)))2

≤ Cm2−η1η2/(1+η1η2).

So (2.18) is also satisfied and hence Theorem 2 applies.

EXAMPLE 7. In this example we consider a linear process given in Example 5
with a family composed of indicator functions, namely F = {fx(·) ≡ 1·≤x, x ∈ R}.
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This family is relevant to the commonly used Lp and L∞ norms in Example 1 for
which Assumption 2 is satisfied. We assume that (ε

(1)
k , ε

(2)
k ) are q-dependent and

|b(1)
k | + |b(2)

k | ≤ C|k|−β with β > 1/2. We begin by assuming that q = 1. Then we
have

E

(
k+m∑
i=k

f̄x(Xi)

)2

≤ 2E

(
k+m∑
i=k

f̄x(X
v
i )

)2

+ 2m2 sup
i

E[f̄x(Xi) − f̄x(X
v
i )]2,

where f̄x(X) = fx(X) − E[fx(X)]. Again, using the blocking technique, we
have E(

∑k+m
i=k f̄x(X

v
i ))

2 ≤ Cmv. One can also show that for some η1 > 0,

supx supi E[fx(Xi)−fx(X
v
i )]2 ≤ Cv−η1 . Then by choosing v ∼ m1/(1+η1) we ob-

tain E(
∑k+m

i=k f̄x(Xi))
2 ≤ Cm2−η1/(1+η1). The case of q > 1 can be handled by

dividing the sum
∑k+m

i=k f̄x(Xi) into q blocks such that within each block the in-
novations are independent. Hence (2.18) is satisfied and Theorem 2 applies.

Before presenting the proofs, we give an intuitive explanation of why the rate of
convergence of the estimator does not depend on the dependence structure of the
sequence. We define tk ≡ k/n. Then Dk ≡ Dn(tk), where

Dn(t) = t1−γ (1 − t)1−γ

(
1

nt

[nt]∑
i=1

δXi
− 1

n(1 − t)

n∑
i=[nt]+1

δXi

)

and w(t) = tγ (1 − t)γ . We rewrite Dn(t) as the sum of its mean and a centered
random component, Bn(t),

Dn(t) = 1

w(t)
[(Pn − Qn)g(t) + Bn(t)],(2.20)

where g(t) = t (1 − θn)1t≤θn + θn(1 − t)1t>θn is a piecewise linear function that
takes its maximum at the point θn ≡ [nθ ]/n and Bn is the empirical bridge measure
given by

Bn(t) = Wn(t) − tWn(1),(2.21)

Wn(t) = 1

n

[nt]∑
i=1

[δXi
− L (Xi)].(2.22)

Our main results stated in Theorems 1 and 2 occur because of the cancellation
of two competing effects. One of the effects is concerned with the absolute magni-
tude of the random noise in Dn(t). The mean component of Dn(t) is monotonically
increasing for t < θn and monotonically decreasing for t > θn and therefore takes
its maximum at t = θn. The estimator is chosen by maximizing N(Dn(t)), so if
the noise is sufficiently small we would expect to obtain a good estimate. For in-
dependent or SRD sequences the partial sums in the centered random component
of Dn(t), namely Bn(t), typically have a magnitude of order n−1/2 as n → ∞.
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As shown by Dümbgen, this gives rise to typical errors of order n−1 in the esti-
mator. For LRD sequences the partial sums decay more slowly. This means that
the stronger the dependence the larger the random component in (2.2). This ef-
fect makes the estimation more difficult. One might naively expect that this would
mean that LRD sequences have a slower rate of convergence than SRD or inde-
pendent sequences. However, there is another effect that is concerned with the
variations in the noise in the vicinity of the change-point. Correlations in LRD se-
quences imply that the random noise Bn(t) becomes correlated. This means that
the random noise has less rapid variation and local fluctuations become smaller.
Estimation requires one to find the global maximum of N(Dn(t)) and this de-
pends critically on the local variations in the vicinity of the change-point rather
than on the absolute magnitude of the noise. Hence the smaller the local fluctua-
tions are, the easier the estimation becomes. These two effects exactly compensate
and give the surprising feature that the overall rate of convergence is the same for
all dependence structures.

3. Simulations. In this section we present the results of numerical simula-
tions that investigate some of the important practical features of change-point es-
timation. We confirm that the rate of convergence is Op(n−1) for LRD, SRD and
independent sequences. We also determine how large the sequence length needs to
be before the Op(n−1) rate is observed.

We considered the estimation of the change-point for a sequence that is a func-
tion of a dependent Gaussian variable, (Yi)i=1,...,n with zero mean and unit vari-
ance. We generated a sequence with a change in the marginal distribution by taking

Xi =
{

Y 2
i − 1, if i ≤ nθ ,

1 − Y 2
i , if i > nθ .

The sequence (Xi) has the property that the marginal distributions before and
after the jump have the same mean and variance, but have different skewness.
We generated the Gaussian sequences (Yi) with a covariance given by r(n) =
(1 + n2)(−α/4) ∼ n−α/2 using the Durbin–Levinson algorithm (see, e.g., [3]). The
sequence (Xi) satisfies Assumption 1 with ρ = α. We note that the Durbin–
Levinson algorithm has complexity O(n2) and so generating long sequences can
be quite computationally expensive.

We show results for the estimator that uses the Kolmogorov–Smirnov norm (KS)
(2.4) and the L1 norm defined in (2.5) with p = 1. The parameter γ is equal to 0.5.
We note, however, that taking different norms, such as p = 2 in equation (2.5),
yields qualitatively similar results. We considered independent sequences, SRD
sequences with α = 1.5 and LRD sequences with values of α = 1.0,0.8,0.6
and 0.4. We present simulations in which the sequence length, n, varies between
1000 and 7000. The mean absolute error MAE ≡ E(|(θ̂n − θ)|) for each value
of α was estimated using 10,000 different sequences. In Figure 1 we plot n(MAE)
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against n with 95% confidence intervals. Since θ̂n − θ = Op(n−1), we anticipate
that n(MAE) should tend to a constant as n tends to infinity. This is clearly seen in
Figure 1 for independent, SRD and LRD sequences. As the range of dependence
becomes longer, the value of n required to obtain the Op(n−1) scaling becomes
larger. This is because the leading order correction to the Op(n−1) rate contains
partial sums that are a factor n−α/2 smaller than the leading term. So for small α,

(a)

(b)

FIG. 1. The MAE of n(θ̂n − θ) for different values of α: under (a) the L1 norm and (b) the KS
norm.
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large values of n are required for the leading order term to dominate the correc-
tions.

4. Proofs. We will begin by proving that the estimators are consistent. For
Theorem 1 this is straightforward, but for Theorem 2 we require a projection ar-
gument to deal with the uncountable size of the family F . Having proved con-
sistency, we then turn our attention to the rates proofs. The rates proofs follow
a similar pattern to the consistency proof and the techniques used are similar.
In the proofs, C,C1,C2, . . . denote generic constants that are independent of n

for n large enough whose values may differ in different equations. In general,
θ /∈ {k/n :k = 1, . . . , n} so we have defined θn ≡ [nθ ]/n. To prove Proposition 1
below and Theorems 1 and 2 it suffices to prove the assertions with θ replaced
by θn. In all of the proofs, we will assume ρ < 1 since the proofs can be easily
adapted for the case ρ ≥ 1 by replacing ρ with ρ̄.

We require the following lemmas for the proofs. The first one is a maximal
inequality which is a special case of Theorem 1 in [13].

LEMMA 1. Assume (2.6) with ρ < 1. Then there exists a constant D(ρ) > 0
such that

E

(
max

1≤k≤n

∣∣∣∣∣
k∑

i=1

[f (Xi) − E(f (Xi))]
∣∣∣∣∣
)2

≤ D2(ρ)‖f ‖2n2−ρ.(4.1)

The second lemma controls the size of the empirical bridge and is a simple
consequence of (4.1).

LEMMA 2. Assume (2.6) holds with 0 < ρ < 1. Then there exists a constant
D(ρ) > 0 such that for any 0 < κ ≤ 1

E

[
sup

|t−θn|≤κ

∣∣(Wn(t) − Wn(θn)
)
(f )

∣∣] ≤ D(ρ)‖f ‖n−ρ/2κ1−ρ/2(4.2)

and

E

[
sup
|t |≤κ

|(Wn(t))(f )| + sup
|t |≤κ

|(Bn(t))(f )|
]

≤ D(ρ)‖f ‖(n−ρ/2κ1−ρ/2).(4.3)

The third lemma controls the size of oscillations of the weighted empirical
bridge which we define as

Bw
n (t) ≡ w−1(t)Bn(t).

LEMMA 3. Assume (2.6) with ρ < 1. Then there exist constants C(θ, η) and
D(ρ) such that for κ < η,

E

(
sup

|t−θn|≤κ

∣∣(Bw
n (t) − Bw

n (θn)
)
(f )

∣∣) ≤ C(θ, η)D(ρ)‖f ‖n−ρ/2κ1−ρ/2.(4.4)
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PROOF. Using Taylor’s theorem to expand w−1(t) near t = θn, we obtain

Bw
n (t) − Bw

n (θn)

= w−1(θn)
(
Wn(t) − Wn(θn)

)
− (t − θn)

[
w−1(θn)Wn(1) + (

w−2(ξ)w′(ξ)
)(

Wn(t) − tWn(1)
)]

,

where ξ ∈ (t, θn). Therefore, for η small enough and |t − θn| ≤ η, there exists a
constant C(θ, η) such that∣∣(Bw

n (t) − Bw
n (θn)

)
(f )

∣∣
(4.5)

≤ w−1(θn)
∣∣(Wn(t) − Wn(θn)

)
(f )

∣∣ + C(θ, η)|t − θn| sup
0≤t≤1

|Wn(t)(f )|.

Hence it suffices to control the size of the oscillations of Wn(t). By (4.2) and (4.3)
of Lemma 2, we have

E

(
sup

|t−θn|≤κ

∣∣(Bw
n (t) − Bw

n (θn)
)
(f )

∣∣)

≤ w−1(θn)E

(
sup

|t−θn|≤κ

∣∣(Wn(t) − Wn(θn)
)
(f )

∣∣)

+ C(θ, η)κE

(
sup

0≤t≤1
|Wn(t)(f )|

)

≤ w−1(θn)D(ρ)‖f ‖n−ρ/2κ1−ρ/2 + D(ρ)‖f ‖C(θ, η)κn−ρ/2

≤ C(θ, η)D(ρ)‖f ‖n−ρ/2κ1−ρ/2,

where C(θ, η) may change in each occurrence, and the relation (4.4) follows. �

4.1. Consistency proofs. We first recall some notation and introduce some ad-
ditionally. Let δn = Pn − Qn,

h(t) = w−1(t)
(
t (1 − θn)1t≤θn + θn(1 − t)1t>θn

)
and Bw

n (t) = w−1(t)Bn(t), where Bn(t) is defined in (2.21) and w(t) = tγ (1− t)γ .

For t in Gn ≡ {k/n,1 ≤ k < n} we rewrite Dn(t) defined in (2.20) as

Dn(t) = Bw
n (t) + h(t)δn.

We also recall that θ̂n is a maximum of {N(Dn(t)), t ∈ Gn}. The following propo-
sition states the consistency of the estimators.

PROPOSITION 1. Let X be a sequence and F a family such that (2.6) is sat-
isfied. Assume that the conditions of Theorem 1 or Theorem 2 are satisfied. Then

∀η > 0 P(|θ̂n − θn| > η) → 0 as n → ∞.
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PROOF OF THEOREM 1. By definition θ̂n is a maximum of N(Dn(t)). So

N(Dn(θ̂n)) ≥ N(Dn(θn)).(4.6)

Using (2.20), we obtain

N
(
Bw

n (θ̂n) + δnh(θ̂n)
) ≥ N

(
Bw

n (θn) + δnh(θn)
)
.

Repeated use of the triangle inequality yields

N(Bw
n (θ̂n)) ≥ N

(
Bw

n (θn) + δnh(θn)
) − N(δnh(θ̂n))

≥ N(δnh(θn)) − N(δnh(θ̂n)) − N(Bw
n (θn)).

Hence,

N(Bw
n (θ̂n)) + N(Bw

n (θn)) ≥ N(δn)
(
h(θn) − h(θ̂n)

)
.(4.7)

We define an = inf|t−θn|>η{h(θn) − h(t)}. Then an > a > 0 for n large enough,
because h is monotonically increasing for t < θn and monotonically decreasing for
t > θn. Since an is defined to be an infimum we obtain

P[|θ̂n − θn| > η]
= P[N(Bw

n (θ̂n)) + N(Bw
n (θn)) ≥ aN(δn), |θ̂n − θn| > η]

(4.8)
≤ P[N(Bw

n (θ̂n)) + N(Bw
n (θn)) ≥ abn, |θ̂n − θn| > η]

+ P[N(δn) ≤ bn].
We use the fact that P[X + Y ≥ ε,B] ≤ P[|X| ≥ ε/2,B] + P[|Y | ≥ ε/2,B], for
any random variables X and Y , set B and ε > 0, to obtain

P[|θ̂n − θn| > η] ≤ P

[
N(Bw

n (θ̂n)) ≥ abn

2
, |θ̂n − θn| > η

]

+ P

[
N(Bw

n (θn)) ≥ abn

2

]
+ P[N(δn) ≤ bn](4.9)

≡ A1 + A2 + A3.

We begin by controlling A1. We will assume that η is sufficiently small such
that θn − η > 0 and 1 − θn − η > 0, since other cases can be dealt with similarly.
For the sake of brevity we introduce the notation βmin = min(θn − η,1 − θn − η)

and βmax = max(θn − η,1 − θn − η). We introduce sets S1, . . . , SJ given by

Sj = {t : 2−j ≤ t (θn −η)−1 < 2−j+1} ∪ {t : 2−j ≤ (1− t)(1−θn −η)−1 < 2−j+1}.
The integer J is chosen so that n−12J−1 ≤ βmax < n−12J . As j increases these
sets become increasingly close to the end points of the domain and J is chosen to
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be large enough so that the smallest and largest possible values of the change point
(i.e., θ̂n = 1/n and θ̂n = 1 − 1/n) are included in one of the sets. Then

A1 =
J∑

j=1

P

[
θ̂n ∈ Sj ,N(Bw

n (θ̂n)) ≥ abn

2

]
≡

J∑
j=1

Ã1(n, j),(4.10)

where

Ã1(n, j) ≤ P

[
sup
t∈Sj

N(Bn(t)) ≥ abn

2
inf
t∈Sj

w(t)

]
.(4.11)

A simple calculation shows that inft∈Sj
w(t) = min(w((θn − η)2−j ),

w((1 − θn − η)2−j ) > β
γ
min2−jγ−1. Hence applying the Markov inequality to

(4.11) we obtain

Ã1(n, j) ≤ β
−γ
min2jγ+2a−1b−1

n E

[
sup
t∈Sj

N(Bn(t))

]
.

In order to control E[supt∈Sj
N(Bn(t))] we need to control E[supt∈Sj

|Bn(t)(f )|]
for f ∈ F . We use (2.9) to prove Proposition 1 under the conditions of Theorem 1
and use a chaining argument for Proposition 1 under the conditions of Theorem 2.
The control of E[supt∈Sj

|Bn(t)(f )|] is formulated in Lemma 2. Using (2.9) and
applying Lemma 2, we obtain

Ã1(n, j) ≤ β
−γ
min2jγ+2a−1b−1

n E

[
sup
t∈Sj

∑
f ∈F

d(f )|Bn(t)(f )|
]

≤ β
−γ
min2jγ+3a−1b−1

n

∑
f ∈F

d(f )D(ρ)‖f ‖n−ρ/2(βmax2−j )1−ρ/2.

Substituting the above inequality into (4.10), we obtain

A1 ≤ 8β
−γ
minβ

1−ρ/2
max a−1b−1

n D(ρ)n−ρ/2
∑
f ∈F

d(f )‖f ‖
J∑

j=1

2(γ−1+ρ/2)j .(4.12)

It is easy to show that

J∑
j=1

2(γ−1+ρ/2)j

(4.13)
≤ C(ρ, γ )(1 + nγ−1+ρ/21γ−1+ρ/2�=0 + lnn1γ−1+ρ/2=0).

Substituting (4.13) into (4.12) and relabeling the constant yields

A1 ≤ C1b
−1
n

(
n−ρ/2(1 + lnn1γ−1+ρ/2=0) + nγ−1) ∑

f ∈F

d(f )‖f ‖.(4.14)
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To control A2 we make similar use of the Lemma 2 to obtain

A2 ≤ C2D(ρ)b−1
n n−ρ/2

∑
f ∈F

d(f )‖f ‖.(4.15)

Finally from (4.9), (4.14) and (4.15) we deduce

P[|θ̂n − θn| > η]
≤ Cb−1

n

∑
f ∈F

d(f )D(ρ)‖f ‖(
nγ−1(1 + lnn1γ−1+ρ/2=0) + n−ρ/2)

+ P
(
N(δn) ≤ bn

)
.

Taking the limit n → ∞ under the conditions (2.10) and (2.11) and the condition∑
f ∈F d(f )‖f ‖ < ∞ completes the proof. �

PROOF OF THEOREM 2. The consistency proof under the assumptions of
Theorem 2 is identical to that of Theorem 1 up until (4.9). Then we proceed by us-
ing a projection argument to bound A1,A2, and A3. This projection argument is to
deal with the uncountable family of functions. Since N(K) ≡ N[·](2−K,F ,‖ · ‖X)

is finite for any integer K , there exists a finite sequence of pairs of functions
(f K

i ,K
i )1≤i≤N(K), such that ∀f ∈ F there exists i such that |f − f K

i | ≤ K
i ,

and ‖K
i ‖X ≤ 2−K . For each K we define a map M from F to F ×F by M(f ) =

(f K
i(f ),

K
i(f )) ≡ (πK(f ),K(f )), where i(f ) = inf{1 ≤ i ≤ N(K)|f K

i − K
i ≤

f ≤ f K
i + K

i }.
We assume that γ −1+ρ/2 �= 0 (the case γ −1+ρ/2 = 0 can be handled simi-

larly and is hence omitted). We apply the Markov inequality to A1 in equation (4.9)
and then use the assumption (2.15) on the seminorm N to obtain

A1 ≤ 2a−1b−1
n E

(
sup
f ∈F

|Bw
n (θ̂n)(f )|1|θ̂n−θn|>η

)
.

To control A1 we will consider two cases: θ̂n > θn and θ̂n < θn, hence

A1 ≤ 2a−1b−1
n

(
E

(
sup
f ∈F

|Bw
n (θ̂n)(f )|10<θ̂n<θn−η

)

+ E

(
sup
f ∈F

|Bw
n (θ̂n)(f )|1

θn+η<θ̂n<1

))

≡ A′
1 + A′′

1.

We first control A′
1. Writing f = f − πK(f ) + πK(f ) gives

A′
1 ≤ 2a−1b−1

n E

(
sup
f ∈F

∣∣Bw
n (θ̂n)

(
f − πK(f )

)∣∣10<θ̂n<θn−η

)
(4.16)

+ 2a−1b−1
n E

(
sup
f ∈F

|Bw
n (θ̂n)(πK(f ))|10<θ̂n<θn−η

)
.
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Using the definitions of Bn and Wn, we observe that if |φ| ≤ g, then

|Bn(t)(φ)| ≤ |Wn(t)(g)| + |tWn(1)(g)| + 4
∣∣∣∣t sup

i

E(|g(Xi)|)
∣∣∣∣.(4.17)

Using the fact that |f − πK(f )| ≤ K(f ), applying (4.17) to the first term in
(4.16) and the triangle inequality to the second term in (4.16), we obtain

A′
1 ≤ 2a−1b−1

n E

(
sup
f ∈F

|w−1(θ̂n)Wn(θ̂n)(K(f ))|10<θ̂n<θn−η

)

+ 2a−1b−1
n E

(
sup
f ∈F

|w−1(θ̂n)θ̂nWn(1)(K(f ))|10<θ̂n<θn−η

)

+ 8a−1 sup
0<t<θn−η

|w−1(t)t |b−1
n sup

f ∈F
sup

P∈{Pn,Qn}
EP (|K(f )|)

+ 2a−1b−1
n E

(
sup
f ∈F

|w−1(θ̂n)Wn(θ̂n)(πK(f ))|10<θ̂n<θn−η

)

+ 2a−1b−1
n E

(
sup
f ∈F

|w−1(θ̂n)θ̂nWn(1)(πK(f ))|10<θ̂n<θn−η

)

≡ A′
1,1 + A′

1,2 + A′
1,3 + A′

1,4 + A′
1,5.

Following a similar procedure used in the proof of Proposition 1 under the condi-
tions of Theorem 1, we introduce the sets S′

1, . . . , S
′
J

′ defined as

S′
j = {t : 2−j < tβ ′−1 ≤ 2−j+1}.

Without loss of generality we assume β ′ ≡ θn − η > 0 and choose J ′ to be the

integer such that n−1 ∈ S′
J ′ , hence β ′2−J

′
< n−1 ≤ β ′2−J ′+1

. The proof proceeds
in a similar way to that of Proposition 1 under the conditions of Theorem 1. We
control A′

1,1 using Lemma 2 to obtain

A′
1,1 ≤ C1b

−1
n

N(K)∑
i=1

D(ρ)‖K
i ‖(nγ−1 + n−ρ/2).(4.18)

Similar use of Lemma 2 on A′
1,2 yields

A′
1,2 ≤ C(γ, θn, η)b−1

n

N(K)∑
i=1

D(ρ)‖K
i ‖n−ρ/2.(4.19)

Similar bounds hold for A′
1,4 and A′

1,5. Combining these four bounds with the
fact that supf ∈F supP∈{Pn,Qn} EP (|K(f )|) ≤ 2−K we obtain

A′
1 ≤ C1b

−1
n

N(K)∑
i=1

D(ρ)[‖K
i ‖ + ‖f K

i ‖](nγ−1 + n−ρ/2) + C1b
−1
n 2−K.(4.20)
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A similar bound can be derived for A
′′
1. Hence, we conclude that

A1 ≤ C1b
−1
n

N(K)∑
i=1

D(ρ)[‖K
i ‖ + ‖f K

i ‖](nγ−1 + n−ρ/2) + C1b
−1
n 2−K,(4.21)

where C1 is a constant that depends only on γ, θ and η.
To control A2 we write

A2 ≤ 2a−1b−1
n E

(
sup
f ∈F

∣∣∣∣Bn(θn)

w(θn)

(
f − πK(f )

)∣∣∣∣
)

+ 2a−1b−1
n E

(
sup
f ∈F

∣∣∣∣Bn(θn)

w(θn)
(πK(f ))

∣∣∣∣
)
.

Applying (4.17) to the first term on the right-hand side of the above equation gives

A2 ≤ 2a−1b−1
n E

(
sup
f ∈F

∣∣∣∣Wn(θn)

w(θn)
(K(f ))

∣∣∣∣
)

+ 2a−1b−1
n E

(
sup
f ∈F

∣∣∣∣θnWn(1)

w(θn)
(K(f ))

∣∣∣∣
)

+ 8θnw
−1(θn)a

−1b−1
n 2−K + 2a−1b−1

n E

(
sup
f ∈F

|Bw
n (θn)(πK(f ))|

)
.

Hence, again by Lemma 2 we have

A2 ≤ C2b
−1
n

N(K)∑
i=1

D(ρ)[‖K
i ‖ + ‖f K

i ‖]n−ρ/2 + C2b
−1
n 2−K,(4.22)

where C2 is some constant depending only on γ, θ and η. Finally, from (4.9),
(4.21) and (4.22) we have

P(|θ̂n − θn| > η) ≤ C3b
−1
n D(ρ)N(K) sup

1≤i≤N(K)

[‖K
i ‖ + ‖f K

i ‖](nγ−1 + n−ρ/2)

+ C3b
−1
n 2−K + P

(
N(δn) ≤ bn

)
.

We choose K such that 2−K ∼ bnεn, where εn is any positive sequence that
tends to zero. Since bn satisfies b−1

n N[·](bnεn,F ,‖ · ‖X)(nγ−1 + n−ρ/2) → 0 and
P(N(δn) ≤ bn) → 0, taking the limit as n → ∞ completes the proof. �

REMARK 3. When bn > b > 0, we choose K to be independent of n. We let n

tend to infinity and K tend to infinity. This completes the proof without posing any
restriction on the rate of N[·](ε,F ,‖ · ‖X).
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4.2. Proof of Theorem 1. Let M be a positive integer, b and c be positive real
numbers and rn be a positive sequence. We first show that for n large enough

P(rn|θ̂n − θn| > 2M) ≤ E1 + E2 + E3 + P(|θ̂n − θn| > η),(4.23)

where

E1 ≤ P
[
r−1
n 2M < |θ̂n − θn| ≤ η,N

(
Bw

n (θ̂n) − Bw
n (θn)

) ≥ C̃|θ̂n − θn|],
E2 ≡ P

(
N(Bw

n (θn)) > c
)
,(4.24)

E3 ≡ P
(
N(δn) ≤ b

)
,

C̃ ≡ Ch(bh(θn) − 2c) and Ch is a constant depending only on θ and γ.

Recall that δn = Pn − Qn and Bw
n (t) = w−1(t)Bn(t), where Bn(t) is defined

in (2.21). Then

Dn(t) = Bw
n (t) + h(t)δn.(4.25)

For all t we have

Dn(t) = Bw
n (t) − Bw

n (θn) + Bw
n (θn)

(
1 − h(t)

h(θn)

)
+ h(t)

h(θn)
Dn(θn).

Applying the seminorm and the triangle inequality to the above expression yields

N(Dn(t)) ≤ N
(
Bw

n (t) − Bw
n (θn)

) +
(

1 − h(t)

h(θn)

)
N(Bw

n (θn))

+ h(t)

h(θn)
N(Dn(θn)).

Therefore

N(Dn(t)) − N(Dn(θn)) ≤ N
(
Bw

n (t) − Bw
n (θn)

)
(4.26)

+
(

h(t)

h(θn)
− 1

)(
N(Dn(θn)) − N(Bw

n (θn))
)
.

Let θ̂n be a maximum of {N(Dn(t)), t ∈ Gn}, where Gn ≡ {k/n,1 ≤ k < n}. Since
θ̂n is a maximum, we have

N
(
Bw

n (θ̂n) − Bw
n (θn)

) ≥
(

1 − h(θ̂n)

h(θn)

)
[N(Dn(θn)) − N(Bw(θn))].

Applying the triangle inequality to (4.25) gives N(Dn(θn)) ≥ N(δnh(θn)) −
N(Bw

n (θn)) and therefore we obtain

N
(
Bw

n (θ̂n) − Bw
n (θn)

) ≥
(

1 − h(θ̂n)

h(θn)

)
[N(δnh(θn)) − 2N(Bw

n (θn))].
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There exists Ch which depends only on θ and γ such that for all t ∈ (0,1),(
1 − h(t)

h(θn)

)
≥ Ch|t − θn|.

Therefore we obtain
N

(
Bw

n (θ̂n) − Bw
n (θn)

) ≥ Ch|θ̂n − θn|(N(δnh(θn)) − 2N(Bw
n (θn))

)
.(4.27)

For any positive integer M and any positive constants b and c, we have

P(rn|θ̂n − θn| > 2M) ≤ P
(
r−1
n 2M < |θ̂n − θn| ≤ η,N(δn) > b,N(Bw

n (θn)) ≤ c
)

+ P
(
N(Bw

n (θn)) > c
) + P(N(δn) ≤ b) + P(|θ̂n − θn| > η)

≡ E1 + E2 + E3 + P(|θ̂n − θn| > η).

Now from (4.27) we infer that

E1 ≤ P
[
r−1
n 2M < |θ̂n − θn| ≤ η,

N
(
Bw

n (θ̂n) − Bw
n (θn)

) ≥ Ch

(
bh(θn) − 2c

)|θ̂n − θn|].
This completes the proof of (4.23).

In order to control E1 we define the shells

Sn,j = {t : 2j < rn|t − θn| ≤ 2j+1},(4.28)

where rn is a positive sequence to be chosen later. Let 0 < η < min(θn,1 − θn)/2
and J ≡ J (n, η) be chosen such that 2J < rnη ≤ 2J+1. From the definitions of the
shells Sn,j and J we obtain

E1 ≤
J∑

j=M

P
[
θ̂n ∈ Sn,j ,N

(
Bw

n (θ̂n) − Bw
n (θn)

) ≥ C̃|θ̂n − θn|].(4.29)

Now, for θ̂n ∈ Sn,j , we have |θ̂n −θn| ≥ 2j r−1
n . Hence using (2.9) and (4.4), we get

E1 ≤ C̃−1C(θ, η)

J∑
j=M

∑
f ∈F

d(f )‖f ‖D(ρ)2(−1/2)jρrρ/2
n n−ρ/2.(4.30)

For E2, using (2.9) and Lemma 2, we obtain

E2 ≤ (cw(θn))
−1

∑
f ∈F

d(f )‖f ‖D(ρ)n−ρ/2.(4.31)

Now, from (4.23), (4.30) and (4.31) we obtain

P(rn|θ̂n − θn| > 2M)

≤ (
bh(θn) − 2c

)−1
C(θ, η)

J∑
j=M

∑
f ∈F

d(f )‖f ‖D(ρ)2−1/2jρr1/2ρ
n n−ρ/2

+ (cw(θn))
−1D(ρ)

∑
f ∈F

d(f )‖f ‖n−ρ/2

+ P
(
N(δn) ≤ b

) + P(|θ̂n − θn| > η).
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This inequality holds for any b, c and rn, so choosing b = bn, c = h(θn)bn/4 and
rn = nb

2/ρ
n and relabeling the constants yields

P(rn|θ̂n − θn| > 2M) ≤ C(θ, η)D(ρ)
∑
f∈F

J∑
j=M

d(f )‖f ‖2−1/2jρ

+ C(θ)D(ρ)
∑
f ∈F

d(f )‖f ‖b−1
n n−ρ/2

+ P(|θ̂n − θn| > η) + P
(
N(δn) ≤ bn

)
.

Finally letting n, then M tend to infinity completes the proof of Theorem 1.

4.3. Proof of Theorem 2. The proof of Theorem 2 is identical to that of Theo-
rem 1 up until (4.23). We proceed by using a projection argument to bound E1,E2

and E3. From (2.15) and (4.24) we have

E1 ≤ P

[
r−1
n 2M < |θ̂n − θn| ≤ η, sup

f∈F

∣∣(Bw
n (θ̂n) − Bw

n (θn)
)
(f )

∣∣ ≥ C̃|θ̂n − θn|
]

≤ C̃−1
E

[
|θ̂n − θn|−11

r−1
n 2M<|θ̂n−θn|≤η

sup
f ∈F

∣∣(Bw
n (θ̂n) − Bw

n (θn)
)
(f )

∣∣].
Then from (4.5) we obtain

E1 ≤ C̃−1
E

[
|θ̂n − θn|−11

r−1
n 2M<|θ̂n−θn|≤η

× sup
f ∈F

∣∣∣∣ 1

w(θn)

∣∣(Wn(θ̂n) − Wn(θn)
)
(f )

∣∣∣∣∣∣
]

(4.32)

+ C̃−1
E

[
sup
f ∈F

∣∣∣∣C(θ, η) sup
0≤t≤1

|Wn(t)(f )|
∣∣∣∣
]

≡ F1 + G1.

Using the same projection as in the consistency proof we obtain

F1 ≤ C̃−1
E

[
|θ̂n − θn|−11

r−1
n 2M<|θ̂n−θn|≤η

× sup
f ∈F

∣∣∣∣ 1

w(θn)

(
Wn(θ̂n) − Wn(θn)

)(
f − πK(f )

)∣∣∣∣
]

+ C̃−1
E

[
|θ̂n − θn|−11

r−1
n 2M<|θ̂n−θn|≤η

× sup
f ∈F

∣∣∣∣ 1

w(θn)

(
Wn(θ̂n) − Wn(θn)

)
(πK(f ))

∣∣∣∣
]
.
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We observe that for any φ and g such that |φ| ≤ g,

∣∣(Wn(t) − Wn(θn)
)
(φ)

∣∣ ≤ ∣∣(Wn(t) − Wn(θn)
)
(g)

∣∣
+ 2(|t − θn| + n−1) sup

i

E(g(Xi)).

Since |f − πK(f )| ≤ K(f ), by choosing φ = f − πK(f ) and g = K(f ) in
the above inequality, we have

F1 ≤ C̃−1
E

[
|θ̂n − θn|−11

r−1
n 2M<|θ̂n−θn|≤η

× sup
f ∈F

∣∣∣∣ 1

w(θn)

(
Wn(θ̂n) − Wn(θn)

)
(K(f ))

∣∣∣∣
]

+ 2C̃−1(1 + n−1rn2−M) sup
f ∈F

sup
P∈{Pn,Qn}

EP (|K(f )|)

+ C̃−1
[
|θ̂n − θn|−11

r−1
n 2M<|θ̂n−θn|≤η

× sup
f ∈F

∣∣∣∣ 1

w(θn)

(
Wn(θ̂n) − Wn(θn)

)
(πK(f ))

∣∣∣∣
]

≡ F1,1 + F1,2 + F1,3.

Using the decomposition of {t : r−1
n 2M < |θ̂n − θn| ≤ η} over the shells defined in

(4.28), we obtain

F1,1 ≤ C̃−1
J∑

j=M

E

[
|θ̂n − θn|−11

θ̂n∈Sn,j
sup
f ∈F

∣∣∣∣ 1

w(θn)

(
Wn(θ̂n) − Wn(θn)

)
(K(f ))

∣∣∣∣
]

≤ C̃−1
J∑

j=M

E

[
(2j r−1

n )−1 sup
f ∈F

∣∣∣∣ 1

w(θn)

(
Wn(θ̂n) − Wn(θn)

)
(K(f ))

∣∣∣∣
]

≤ C̃−1
N(K)∑
i=1

J∑
j=M

(2j r−1
n )−1

E

[
sup

t∈Sn,j

∣∣∣∣ 1

w(θn)

(
Wn(t) − Wn(θn)

)
(K

i )

∣∣∣∣
]
.

By (4.2) of Lemma 2 we get

F1,1 ≤ C̃−1w−1(θn)D(ρ)

N(K)∑
i=1

J∑
j=M

‖K
i ‖n−ρ/22−(1/2)jρ+1rρ/2

n .(4.33)
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A similar bound holds for F1,3, and since supf ∈F supP∈{Pn,Qn} EP (|K(f )|) ≤
2−K we get

F1 ≤ C̃−1
(

rn

n

)ρ/2

w−1(θn)D(ρ)

N(K)∑
i=1

J∑
j=M

[‖K
i ‖ + ‖f K

i ‖]2(−1/2)jρ+1

(4.34)
+ C̃−1(1 + n−1rn2−M)2−K.

Similarly, we have

G1 ≤ (
bh(θn) − 2c

)−1
C(θ, η)D(ρ)

N(K)∑
i=1

[‖K
i ‖ + ‖f K

i ‖]n−ρ/2

(4.35)
+ (

bh(θn) − 2c
)−1

C(θ, η)2−K.

For rn ≤ n, we have n−1rn2−M ≤ 1. From (4.32), (4.34) and (4.35) we obtain

E1 ≤ (
Ch

(
bh(θn) − 2c

))−1
(

rn

n

)ρ/2

w−1(θn)D(ρ)

×
N(K)∑
i=1

J∑
j=M

[‖K
i ‖ + ‖f K

i ‖]2(−1/2)jρ+1

(4.36)

+ (
bh(θn) − 2c

)−1
C(θ, η)D(ρ)

N(K)∑
i=1

[‖K
i ‖ + ‖f K

i ‖]n−ρ/2

+ (
bh(θn) − 2c

)−1
C(θ, η)2−K.

For E2 we use a similar argument to obtain

E2 ≤ (cw(θn))
−1

N(K)∑
i=1

D(ρ)[‖K
i ‖ + ‖f K

i ‖]n−ρ/2 + 2(cw(θn))
−12−K.(4.37)

By taking b = bn and c = bnh(θn)/4 and substituting (4.36) and (4.37) into (4.23),
we have

P(rn|θ̂n − θn| > 2M)

≤ C(θ, η)D(ρ)b−1
n

(
rn

n

)ρ/2

N(K) sup
f ∈F

‖f ‖
J∑

j=M

2(−1/2)jρ

(4.38)
+ C(θ, η)D(ρ)N(K)b−1

n n−ρ/2 sup
f ∈F

‖f ‖

+ C(θ, η)b−1
n 2−K + P(|θ̂n − θn| > η) + P

(
N(δn) ≤ bn

)
.
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Choosing K such that b−1
n 2−K ∼ εn and rn such that N(K)b−1

n r
ρ/2
n n−ρ/2 = 1,

we obtain

lim
n→+∞ P(rn|θ̂n − θn| > 2M) ≤ C(θ, η)D(ρ) sup

f∈F
‖f ‖

+∞∑
j=M

2(−1/2)jρ.(4.39)

Finally, letting M tend to infinity ends the proof.

REMARK 4. If bn ≥ b > 0, we choose rn = n. Firstly, let n go to in-
finity, then let M go to infinity and finally let K go to infinity to obtain
limM→+∞ limn→+∞ P(n|θ̂n − θn| > 2M) = 0, without posing any restriction on
the covering numbers.
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