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Let v be a vector field in a bounded open set G ⊂ R
d . Suppose that v

is observed with a random noise at random points Xi, i = 1, . . . , n, that are
independent and uniformly distributed in G. The problem is to estimate the
integral curve of the differential equation

dx(t)

dt
= v(x(t)), t ≥ 0, x(0) = x0 ∈ G,

starting at a given point x(0) = x0 ∈ G and to develop statistical tests for the
hypothesis that the integral curve reaches a specified set � ⊂ G. We develop
an estimation procedure based on a Nadaraya–Watson type kernel regression
estimator, show the asymptotic normality of the estimated integral curve and
derive differential and integral equations for the mean and covariance func-
tion of the limit Gaussian process. This provides a method of tracking not
only the integral curve, but also the covariance matrix of its estimate. We also
study the asymptotic distribution of the squared minimal distance from the
integral curve to a smooth enough surface � ⊂ G. Building upon this, we de-
velop testing procedures for the hypothesis that the integral curve reaches �.

The problems of this nature are of interest in diffusion tensor imaging,
a brain imaging technique based on measuring the diffusion tensor at discrete
locations in the cerebral white matter, where the diffusion of water mole-
cules is typically anisotropic. The diffusion tensor data is used to estimate the
dominant orientations of the diffusion and to track white matter fibers from
the initial location following these orientations. Our approach brings more
rigorous statistical tools to the analysis of this problem providing, in particu-
lar, hypothesis testing procedures that might be useful in the study of axonal
connectivity of the white matter.
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1. Introduction. Let G ⊂ R
d be a bounded open set. Suppose a vector field

v :G �→ R
d is observed at points Xi ∈ G, i = 1, . . . , n, with random errors; that is,

the observations are

Vi = v(Xi) + ξi,

where ξ, ξ1, . . . , ξn are i.i.d. bounded random vectors (r.v.) Eξ = 0 and
Cov(ξ, ξ) = �.

We are interested in the Cauchy problem for the differential equation (ODE)

dx(t)

dt
= v(x(t)), t ≥ 0, x(0) = x0 ∈ G,(1.1)

which of course can be equivalently written in an integral form,

x(t) = x0 +
∫ t

0
v(x(s)) ds.

Our goal is to provide an estimate X̂(t), t ≥ 0, of its solution based on the data
(Xi,Vi), i = 1, . . . , n, and, most importantly, to study the asymptotic behavior as
n → ∞ of statistics such as inf0≤t≤T d2(X̂(t),�), where � ⊂ G is a given subset
of G (most often, it will be the boundary of a specified region in G) and d(x,�) :=
inf{|x − y| :y ∈ �} is the usual Euclidean distance from x to �. This would allow
us to suggest tests of the hypothesis that the true trajectory x(t),0 ≤ t ≤ T , reaches
a certain region in G.

Our main interest in this problem is related to its potential applications to diffu-
sion tensor imaging (DTI), a technique in brain research introduced several years
ago and often combined with conventional MRI (see, e.g., [7]). The diffusion of
water molecules at a given location is characterized by a symmetric positive def-
inite 3 × 3 diffusion matrix (diffusion tensor). The principal eigenvector of this
matrix shows the dominant direction of the diffusion. In cerebral white matter, the
diffusion is typically anisotropic and DTI allows one to recover its dominant di-
rections by measuring the diffusion tensor field within voxels at a discrete set of
locations and computing principle eigenvectors of diffusion matrices (thus trans-
forming the tensor field into a vector field, see Figure 1). The fiber tract then can
be reconstructed by following the directions of the vectors in small steps from a
specified initial location, which essentially means solving numerically the ODE
generated by the vector field. This provides a noninvasive approach to study the
axonal connectivity of white matter fiber inside a brain region. The method is often
referred to as white matter fiber tractography.

Since the diffusion tensor field is being measured at a discrete set of locations
and each matrix in the field represents an average within a voxel corrupted with
noise, it becomes crucial to use some methods of smoothing of tensor or vec-
tor fields or regularization techniques that restrict fibers to smooth paths. For in-
stance, Basser et al. [2] applied B-spline smoothing to the tensor field; Poupon
et al. [18] used Markov random field models to obtain a regularized estimate of
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FIG. 1. Shows the 3D vector field based on DTI data. The left graph is a fractional anisotropic
(FA) map; the right graph gives the 3D visualization of the vector field inside a rectangular region of
the FA map.

the vector field. However, even fiber track estimates involving smoothing would
possess a certain degree of variability and very little is known about quantitative
ways to assess the variability of fiber track estimates (although Parker, Barker and
Buckley [14] and Jones [10] suggest some Monte Carlo and bootstrap approaches
to the problem), which would facilitate the development of more rigorous ap-
proaches to statistical analysis of DTI data (the situation is somewhat different
in conventional MRI and fMRI where approaches based on rather deep statisti-
cal understanding of the problem are becoming more common; see, e.g., [19] and
[17]). This seems to be an important task especially because the mathematical
models used in fiber tractography are rather involved and the existing methods
utilize tools coming from very different areas (see [2, 1, 3, 12, 6, 13, 16, 15, 18,
20]).

The goal of the paper is to make the first (and rather modest) step toward bet-
ter theoretical understanding of statistical problems in DTI. Our approach to es-
timation of x(t), t ≥ 0, is based on the Nadaraya–Watson type kernel regression
estimate (NWE) V̂ (x), x ∈ G, of the vector field v(x), x ∈ G, which then is sub-
stituted for v into the ODE (1.1). The solution of the resulting Cauchy problem
is an estimate X̂(t), t ≥ 0. (This approach is somewhat akin to that of Basser
et al. [2]: the difference is that we are applying smoothing to the vector field
and not to the tensor field; also, we are using kernel regression based smooth-
ing instead of splines.) We establish in Section 2 (the proofs are given in Section
3) the asymptotic normality of this estimator, that is, the weak convergence (in
the space of continuous functions) of the properly normalized deviation process
X̂(t) − x(t), t ∈ [0, T ], to a vector-valued Gaussian process on [0, T ] with mean
and (matrix-valued) covariance function that depend on the vector field v, on the
covariance matrix � of the noise ξ and on the kernel of NWE. We derive dif-
ferential equations for the covariance function of the limit process, which allows
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us to develop a technique of simultaneous tracking of the fiber path and its co-
variance (see Section 4). We also study (Section 2) the asymptotic distribution (as
n → ∞) of the distance inf0≤t≤T d2(X̂(t),�) from the estimated integral curve
X̂(t), t ∈ [0, T ], to a set � ⊂ G. The asymptotic distributions for such distances
happen to be especially simple in the case when the minimum of the function
[0, T ] � t �→ d(x(t),�) is attained at a single point. In this case, the distributions
are either normal or χ2-type, and they depend on the geometry of � and on whether
the true integral curve x(t), t ∈ [0, T ] reaches � and in which way. These results
allow one to bring into the analysis of DTI data some tools of rigorous statistical
inference. In particular, one can use the asymptotic normality of X̂(t) to construct
confidence ellipsoids for x(t) for a fixed t; one can go further and try to use the
results on Gaussian processes to develop nonparametric confidence bands and hy-
potheses tests for the whole integral curve x(t), t ∈ [0, T ]; one can develop sta-
tistical tests for the hypothesis that the true integral curve x(t), t ∈ [0, T ], reaches
a specified subregion of G; one can develop confidence intervals for the distance
from x(t), t ∈ [0, T ], to a subregion. The last two possibilities are especially im-
portant since they are related to the problem of axonal connectivity which is one
of the central issues in DTI. In Section 4, some of these possibilities are studied
both for simulated and for real data.

There is a number of issues that (in our view) go beyond the scope of the paper,
but that needs to be addressed to develop a comprehensive methodology based on
our approach. First of all, the choice of NWE of the vector field v is relatively
arbitrary. Similar theory could, in principle, be developed for a number of other
smoothing techniques. Moreover, it might be more natural and statistically more
appealing to do smoothing of the underlying tensor field and only then to compute
the principal eigenvectors creating a vector field. However, methods of perturba-
tion theory will be needed to develop the asymptotic theory of such estimators,
which would make the mathematical analysis of the problem more involved. Also,
it is not common in DTI (at least, to our knowledge) to measure direction vectors
at random locations, so, regression models with fixed design would be more ap-
propriate than the model with random design (which is used in the paper primarily
because the mathematics looks nicer). The vectors Vi are usually unit eigenvectors
of diffusion matrices, so, it would be more natural to consider nonparametric re-
gression models for directional data rather than additive noise models. We are not
exploring many important aspects of kernel-type nonparametric estimation (such
as data-driven choice of the bandwidth, minimax lower bounds, optimal conver-
gence rates, adaptation, etc.). Finally, in fiber tractography it is of great impor-
tance to take into account the possibility of fiber paths branching or intersecting
one another. This is not covered by our model (because of the uniqueness of the
solution of ODE) and the extension of our results to this case poses some nontrivial
problems.

Realizing the importance of all these and some other issues, we, however, be-
lieve that the results we obtained so far might be of some interest for further de-
velopment of a comprehensive statistical theory of DTI.
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2. A kernel estimate of integral curves and its asymptotic normality. We
will assume that G ⊂ R

d is a bounded open set of Lebesgue measure 1 and, for
simplicity, that Xi are i.i.d. uniformly distributed in G and that the r.v.’s {ξi} are
independent of {Xi}. We also assume that supp(v) := {x :v(x) 	= 0} ⊂ G, which
allows us to set v = 0 outside of G. Furthermore, we need a smoothness assump-
tion on the vector field v. Unless stated otherwise, we assume that it is twice con-
tinuously differentiable.

We will use the following NWE of the vector field v (see, e.g., Efromovich [4]):

V̂ (x) = V̂n(x) = 1

nhd

n∑
i=1

K

(
x − Xi

h

)
Vi,

with a kernel K satisfying standard assumptions, in particular,∫
Rd

K(x) dx = 1,

∫
Rd

K(x)x dx = 0,

and with some bandwidth parameter h = hn. It will be also convenient to assume
that K has bounded support, where it is twice continuously differentiable (the last
assumption can be replaced by a more mild one in most of the results, but it is not
of great importance in the context of the paper). As a result, the estimate V̂ (x) = 0
outside a bounded neighborhood of G. Comparing with the standard NWE, our
estimate is simpler: since the distribution of Xi is known (it is uniform), we do
not need to use the kernel density estimator in the denominator of V̂ . In the case
of nonuniform design some other smoothing techniques, such as local polynomial
models (see [5]), might also be of interest.

Then, we define a plug-in estimate of the solution x(t), t ≥ 0, as the solution
X̂(t) = X̂n(t), t ≥ 0, of the Cauchy problem

dX̂(t)

dt
= V̂ (X̂(t)), t ≥ 0, X̂(0) = x0 ∈ G,(2.1)

which is equivalent to the integral equation

X̂(t) = x0 +
∫ t

0
V̂ (X̂(s)) ds.(2.2)

Note that since both v and V̂ vanish outside a neighborhood of G (v actually
vanishes outside G itself), x(t) and X̂(t) will remain in this neighborhood for all
t > 0.

To be specific, we assume that all vectors are vector columns; the sign ∗ will
denote transposition of vectors or matrices. Whenever it is convenient, we use the
notation 〈·, ·〉 for the inner product in R

d and I denotes the identity matrix. Also
N (µ,�) denotes the normal distribution with mean µ and covariance matrix �

and Z ∼ N (µ,�) denotes a r.v. with this distribution.
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In what follows, we also need an estimate of the derivative of v and we use for
this purpose

V̂ ′(x) = 1

nhd+1

n∑
i=1

Vi

(
K ′

(
x − Xi

h

))∗
.

Under the above assumptions, V̂ , V̂ ′ are consistent estimates of v, v′ uniformly in
R

d (see Lemma 1 below).
Our first goal is to show that under the assumptions h → 0 and nhd+3 → β ≥ 0

the sequence of stochastic processes
√

nhd−1(X̂(t) − x(t)),0 ≤ t ≤ T , converges
weakly in the space C[0, T ] = C([0, T ],R

d) of R
d -valued continuous functions

on [0, T ] to the Gaussian process ξ(t) satisfying the SDE

dξ(t) =
√

β

2

∫
Rd

K(u)〈v′′(x(t))u,u〉dudt + v′(x(t))ξ(t) dt

(2.3)
+ (

ψ
(
v(x(t))

)[
� + v(x(t))v∗(x(t))

])1/2
dW(t)

with initial condition ξ(0) = 0, where W(t), t ≥ 0, is a standard Brownian motion
in R

d ,

ψ(v) :=
∫

R

�(vτ) dτ, �(y) :=
∫

Rd
K(z)K(z + y)dz.

Note also that v′′(x(t)) involved in (2.3) is a d × d × d-tensor and 〈v′′(x(s))z, z〉
is a vector-valued quadratic form. In what follows, Mβ(t) denotes the mean and
C(t) the covariance matrix of ξ(t) (which does not depend on β). In Section 4 we
provide differential equations for Mβ(t) and C(t).

THEOREM 1. Suppose that hn → 0 and nhd+2
n → ∞ as n → ∞. Then for all

T > 0

sup
0≤t≤T

|X̂n(t) − x(t)| → 0 as n → ∞,

in probability. Suppose also that nhd+3
n → β ≥ 0 as n → ∞. Let T > 0 and sup-

pose that for some γ = γT > 0 and for all 0 ≤ s ≤ t ≤ T∣∣∣∣ 1

t − s

∫ t

s
v(x(λ)) dλ

∣∣∣∣ ≥ γ.

Then the sequence of stochastic processes
√

nhd−1
n (X̂n(t)− x(t)),0 ≤ t ≤ T , con-

verges weakly in the space C[0, T ] to the Gaussian process ξ(t),0 ≤ t ≤ T .

REMARK. The condition of boundedness of the support of the kernel K can
be replaced by the conditions that the functions �̄ and � (defined in the proof of
Theorem 1) are integrable. The proof of Theorem 1 goes through and the theorem
applies to such kernels as the Gaussian.
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We turn now to some consequences of the asymptotic normality. In par-
ticular, we are interested in asymptotic properties of statistics of the type
inft∈[0,T ] m(d(X̂(t),�)), where � is a subset of G, d(x,�) is a distance from
x to � and m is a monotone function [e.g., m(u) = u2 or m(u) = u, u > 0]. In
other words, we want to study the asymptotic behavior of the minimal distance
from the estimated integral curve X̂ to a target set �. Such results are of statisti-
cal significance since they allow one to develop tests for hypotheses that the true
integral curve x(t) is passing through a given region or to construct confidence
intervals for the distance to the region. We will study this problem under the as-
sumption that the function ϕ(x) := m(d(x,�)) is smooth enough, which leads to
a somewhat more general question about convergence in distribution (subject to a
proper normalization) of the sequence inft∈[0,T ] ϕ(X̂(t)) − inft∈[0,T ] ϕ(x(t)).

THEOREM 2. Let x(t), t ≥ 0, be an integral curve starting at x(0) = x0 ∈ G.

Suppose that ϕ :G �→ R is continuously differentiable. Denote

M :=
{
τ ∈ [0, T ] :ϕ(x(τ)) = inf

0≤t≤T
ϕ(x(t))

}

and suppose that M ⊂ (0, T ). Finally, suppose the conditions of Theorem 1 hold.
Then the sequence of r.v.s√

nhd−1
n

[
inf

t∈[0,T ]ϕ(X̂(t)) − inf
t∈[0,T ]ϕ(x(t))

]

converges in distribution to the r.v. infτ∈M ξ(τ)∗ϕ′(x(τ )). In particular, if the mini-
mal set M consists of only one point τ ∈ (0, T ), then the above sequence is asymp-
totically normal with mean Mβ(τ) and variance σ 2 = (ϕ′(x(τ )))∗C(τ)ϕ′(x(τ )).

Suppose now that ϕ is twice continuously differentiable. If, for all τ ∈ M,

ϕ′(x(τ )) = 0 and ϕ′′(x(τ ))(v(x(τ )), v(x(τ ))) > 0, then the sequence of r.v.s

nhd−1
n

[
inf

t∈[0,T ]ϕ(X̂(t)) − inf
t∈[0,T ]ϕ(x(t))

]

converges in distribution to the r.v.

1

2
inf

τ∈M

[
ϕ′′(x(τ ))(ξ(τ ), ξ(τ )) − (ϕ′′(x(τ ))(v(x(τ )), ξ(τ )))2

ϕ′′(x(τ ))(v(x(τ )), v(x(τ )))

]
.

If the minimal set consists only of one point τ, then the limit becomes

1

2

[
ϕ′′(x(τ ))(Z,Z) − (ϕ′′(x(τ ))(v(x(τ )),Z))2

ϕ′′(x(τ ))(v(x(τ )), v(x(τ )))

]
,

Z ∼ N (Mβ(τ),C(τ)) in R
d .

On the other hand, if for all u ∈ R
d , ϕ′′(x(τ ))(v(x(τ )), u) = 0, then the distribu-

tional limit of the sequence

nhd−1
n

[
inf

t∈[0,T ]ϕ(X̂(t)) − inf
t∈[0,T ]ϕ(x(t))

]
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is 1
2 infτ∈M ϕ′′(x(τ ))(ξ(τ ), ξ(τ )), which in the unique minimum case is 1

2ϕ′′(x(τ ))×
(Z,Z).

Consider two typical examples.

COROLLARY 1. Let a ∈ G and x(t), t ≥ 0, be an integral curve starting
at x(0) = x0 ∈ G. Suppose that for some τ ∈ (0, T ) inf0≤t≤T |x(t) − a|2 =
|x(τ) − a|2, and, moreover, suppose that τ is the only point where the infimum
is attained. Suppose also the conditions of Theorem 1 hold. If x(τ) 	= a, then the
sequence

√
nhd−1

n

[
inf

0≤t≤T
|X̂(t) − a|2 − inf

0≤t≤T
|x(t) − a|2

]

is asymptotically normal with mean 2Mβ(τ)∗(x(τ ) − a) and variance σ 2 =
4(x(τ ) − a)∗C(τ)(x(τ ) − a). If x(τ) = a, then the sequence
nhd−1

n inf0≤t≤T |X̂(t) − a|2 converges in distribution to the r.v.

|Z|2 − (v(x(τ ))∗Z)2

|v(x(τ ))|2 , Z ∼ N (Mβ(τ),C(τ)) in R
d .

COROLLARY 2. Let � := {x : |x − a| = r} ⊂ G be a sphere. Let

d(x,�) := inf
y∈�

|x − y| = ∣∣|x − a| − r
∣∣

be the distance from x to � and let x(t), t ≥ 0, be an integral curve starting at
x(0) = x0 ∈ G. Suppose that for some τ ∈ (0, T )

inf
0≤t≤T

d2(x(t),�) = d2(x(τ ),�) =: D2,

and, moreover, suppose that τ is the only point where the infimum is attained.
Suppose also the conditions of Theorem 1 hold. If D2 > 0, then the sequence

√
nhd−1

n

[
inf

0≤t≤T
d2(X̂(t),�) − D2

]

is asymptotically normal with mean 2DMβ(τ)∗n(x(τ)) and variance

σ 2 = 4D2n(x(τ))∗C(τ)n(x(τ )),

where n(x) := x−a
|x−a| . If D2 = 0 and, moreover, the vector v(x(τ )) is tangent to

�, then the sequence nhd−1
n inf0≤t≤T d2(X̂(t),�) converges in distribution to the

r.v. γ 2, where γ is a normal random variable with mean Mβ(τ)∗n(x(τ)) and vari-
ance n(x(τ))∗C(τ)n(x(τ )).
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REMARKS. 1. The result can be extended to more general smooth surfaces �.

In this case, n(x) would be the unit normal vector to � at the point x′ ∈ � that is
the closest to x (assuming the uniqueness of such a point).

2. Suppose H ⊂ G is an open nonempty subset of G with boundary ∂H = �.

Let x(t), t ∈ [0, T ], be the integral curve with initial condition x(0) = x0,

x0 /∈ H ∪ �. If for some t ∈ [0, T ] x(t) ∈ H, then inf0≤t≤T d2(x(t),�) = 0
since x(t), t ∈ [0, T ], is a continuous function. Also, it easily follows from
the first statement of Theorem 1 that with probability tending to 1 we have
inf0≤t≤T d2(X̂(t),�) = 0 (since X̂, being close to x uniformly in [0, T ], must
enter the set H and hence cross its boundary �). As a result, for any sequence
an → ∞

an

[
inf

0≤t≤T
d2(X̂(t),�) − inf

0≤t≤T
d2(x(t),�)

]
= an inf

0≤t≤T
d2(X̂(t),�)

tends to 0 in probability and in distribution.

3. Proofs of the main results. We will need the following quite standard
statement which is given without proof.

LEMMA 1. Suppose that h → 0 and nhd+2 → ∞ as n → ∞. Under the as-
sumptions above, we have in probability

sup
x∈Rd

|V̂ (x) − EV̂ (x)| → 0,

sup
x∈Rd

|V̂ (x) − v(x)| → 0 and sup
x∈Rd

|V̂ ′(x) − v′(x)| → 0.

PROOF OF THEOREM 1. Consistency. Let y(t) := X̂(t) − x(t). We have

y(t) =
∫ t

0

[
V̂ (X̂(s)) − v(x(s))

]
ds

=
∫ t

0
(V̂ − v)(X̂(s)) ds +

∫ t

0

[
v(X̂(s)) − v(x(s))

]
ds,

which implies (using a Lipschitz condition on v and the fact that both X̂ and x

remain in a bounded neighborhood of G) that with some constant L for all t ∈
[0, T ]

|y(t)| ≤ T sup
x∈Rd

|V̂ (x) − v(x)| + L

∫ t

0
|y(s)|ds.

Using Lemma 1 and this Gronwall–Bellman inequality (see [8]), this easily implies
consistency.

Asymptotic representation of X̂ − x. We will establish that

X̂(t) − x(t) = z(t) + δ(t), t ∈ [0, T ],(3.1)
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where z(t) = zn(t), δ(t) = δn(t) are sequences of stochastic processes such that
the sequence

√
nhd−1zn(t),0 ≤ t ≤ T , converges in distribution to the Gaussian

process ξ(t) and

sup
0≤t≤T

|δ(t)| = op

(
1√

nhd−1

)
.(3.2)

The following representation is obvious:

y(t) =
∫ t

0

[
V̂ (X̂(s)) − v(x(s))

]
ds

(3.3)

=
∫ t

0
(V̂ − v)(x(s)) ds +

∫ t

0
v′(x(s)) · y(s) ds + R(t),

where the remainder is defined as

R(t) :=
∫ t

0

[
V̂ (X̂(s)) − V̂ (x(s)) − v′(x(s)) · y(s)

]
ds

=
∫ t

0

[
(V̂ − v)(X̂(s)) − (V̂ − v)(x(s))

]
ds

+
∫ t

0

[
v(X̂(s)) − v(x(s)) − v′(x(s)) · y(s)

]
ds.

Note that

|(V̂ − v)(X̂(s)) − (V̂ − v)(x(s))|
=

∣∣∣∣
∫ 1

0
(V̂ − v)′

(
aX̂(s) + (1 − a)x(s)

)
da · y(s)

∣∣∣∣
≤ sup

0≤a≤1

∣∣(V̂ − v)′
(
aX̂(s) + (1 − a)x(s)

)∣∣ · |y(s)|

≤ sup
x∈Rd

|V̂ ′(x) − v′(x)||y(s)|.
Also, ∣∣v(X̂(s)) − v(x(s)) − v′(x(s))y(s)

∣∣
=

∣∣∣∣
∫ 1

0

[
v′(aX̂(s) + (1 − a)x(s)

) − v′(x(s))
]
da · y(s)

∣∣∣∣
≤ sup

0≤a≤1

∣∣v′(aX̂(s) + (1 − a)x(s)
) − v′(x(s))

∣∣ · |y(s)|

≤ r
(|y(s)|) · |y(s)|,

where r(δ) := supx∈Rd sup|y|≤δ |v′(x + y) − v′(x)| → 0 as δ → 0, since v′ is uni-
formly continuous on G. Then for all t ∈ [0, T ]

|R(t)| ≤
(

sup
x∈Rd

|V̂ ′(x) − v′(x)| + r

(
sup

0≤s≤T

|y(s)|
))∫ t

0
|y(s)|ds.(3.4)
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Since sup0≤s≤T |y(s)| → 0 in probability and by Lemma 1 supx∈Rd |V̂ ′(x) −
v′(x)| → 0 in probability, we have for all T > 0

sup
0≤t≤T

|R(t)| = op

(∫ T

0
|y(s)|ds

)
,(3.5)

which also implies

sup
0≤t≤T

|R(t)| = op

(
sup

0≤t≤T

|y(t)|
)
.(3.6)

Denote by z(t), t ≥ 0, the solution of the integral equation

z(t) :=
∫ t

0

[
V̂ (x(s)) − v(x(s))

]
ds +

∫ t

0
v′(x(s))z(s) ds.

In other words, z satisfies the equation

dz(t)

dt
= V̂ (x(t)) − v(x(t)) + v′(x(t))z(t), z(0) = 0.

Let δ(t) := y(t) − z(t). We have

δ(t) =
∫ t

0
v′(x(s)) · δ(s) ds + R(t),

which implies

|δ(t)| ≤ |R(t)|+
∫ t

0
|v′(x(s))| · |δ(s)|ds ≤ sup

0≤t≤T

|R(t)|+
∫ t

0
|v′(x(s))| · |δ(s)|ds.

Applying again the Gronwall–Bellman inequality, we get

|δ(t)| ≤ sup
0≤t≤T

|R(t)| exp
{∫ t

0
|v′(x(u))|du

}
≤ C sup

0≤t≤T

|R(t)|, 0 ≤ t ≤ T ,

with some constant C > 0, since the exponent is bounded. As a result, by (3.5),

sup
0≤t≤T

|δ(t)| = op

(∫ T

0
|y(t)|dt

)
as n → ∞.

Since y(t) = z(t) + δ(t), we also have

sup
0≤t≤T

|δ(t)| = op

(∫ T

0
|z(t)|dt

)
as n → ∞.

It follows from the weak convergence of
√

nhd−1zn to the continuous stochastic
process ξ (established below) that

∫ T

0
|z(t)|dt = Op

(
1√

nhd−1

)
.(3.7)
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Therefore, we also have (3.2).
Consider now the following differential equation in R

d :

du(t)

dt
= dF(t)

dt
+ v′(x(t))u(t), u(0) = 0,

where F is a continuously differentiable function from [0, T ] into R
d with

F(0) = 0. This equation has the unique solution u(t) = UF(t), where U is a
linear mapping from the space C

(1)
0 [0, T ] of all continuously differentiable func-

tions F on [0, T ] with F(0) = 0 into C[0, T ]. Another routine application of the
Gronwall–Bellman inequality shows that U is a continuous (in fact, even Lip-
schitz) mapping with respect to the uniform distance.

Denote

ηn(t) :=
√

nhd−1
∫ t

0

(
V̂ (x(s)) − v(x(s))

)
ds,

ξn(t) :=
√

nhd−1zn(t), t ≥ 0.

Then ξn = Uηn. We will show that the sequence of stochastic processes ηn

converges weakly in the space C[0, T ] to the stochastic process η satisfying
the SDE

dη(t) =
√

β

2

∫
K(u)〈v′′(x(t))u,u〉dudt

+ (
ψ

(
v(x(t))

)[
� + v(x(t))v∗(x(t))

])1/2
dW(t)

with initial condition η(0) = 0. (Here and in what follows we often do not write
the limits of integration for the integrals over R or over R

d .) Since U is a con-
tinuous mapping from (C

(1)
0 [0, T ],‖ · ‖∞) into (C[0, T ],‖ · ‖∞), this implies that

ξn = Uηn also converges weakly to the Gaussian process Uη, which satisfies (2.3)
and the initial condition ξ(0) = 0. Hence, Uη = ξ.

Computation of mean and covariance. Define ft (s) := I[0,t](s). Then

ηn(t) =
√

nhd−1
∫

ft (s) · [
V̂ (x(s)) − v(x(s))

]
ds

=
√

nhd−1
∫ (

Xn(ft ) −
∫

ft (s) · v(x(s)) ds

)
,

where

Xn(f ) :=
∫

f (s) · V̂ (x(s)) ds

= 1

nhd

n∑
j=1

∫
f (s)K

(
x(s) − Xj

h

)
ds · (

v(Xj ) + ξj

)
.
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Let L denote the set of all bounded functions f on R such that the support of f is a
subset of [0, T ] and f is continuous almost everywhere in R. Note that L is a linear
space and ft ∈ L, t ∈ [0, T ]. In asymptotic representations for the expectation and
covariance of Xn(f ), we assume that f ∈ L. We start with EXn(f ):

EXn(f ) = 1

hd

∫
f (s)EK

(
x(s) − X

h

)
· v(X)ds

= 1

hd

∫
f (s)

∫
K

(
x(s) − y

h

)
· v(y) dy ds

=
∫

f (s)

∫
K(z) · v(

x(s) − zh
)
dzds

=
∫

f (s)

∫
K(z)

[
v(x(s)) − hv′(x(s)) · z(3.8)

+ h2

2
〈v′′(x(s))z, z〉 + o(h2)

]
dzds

=
∫

f (s) · v(x(s)) ds − h

∫
f (s) · v′(x(s)) ·

(∫
K(z)z dz

)
ds

+ h2

2

∫
f (s) ·

∫
K(z)〈v′′(x(s))z, z〉dzds + o(h2),

where we have used the substitution z = x(s)−y
h

. Note that under the assumption
nhd+3 → β ≥ 0 we have

Eηn(t) →
√

β

2

∫ t

0

∫
K(z)〈v′′(x(s))z, z〉dzds = Eη(t).

Also,

Cov(Xn(f ),Xn(g)) = 1

nh2d
Cov

(∫
f (s)K

(
x(s) − X

h

)
ds · (

v(x) + ξ
)
,

∫
g(s)K

(
x(s) − X

h

)
ds · (

v(X) + ξ
))

.

Since

Cov
(∫

f (s)K

(
x(s) − X

h

)
ds · v(X),

∫
g(s)K

(
x(s) − X

h

)
ds · ξ

)
= 0,

Cov
(∫

f (s)K

(
x(s) − X

h

)
ds · ξ,

∫
g(s)K

(
x(s) − X

h

)
ds · v(X)

)
= 0,

we have

Cov(Xn(f ),Xn(g))

= (I) + (II)
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= 1

nh2d
Cov

(∫
f (s)K

(
x(s) − X

h

)
ds · ξ,

∫
g(s)K

(
x(s) − X

h

)
ds · ξ

)

+ 1

nh2d
Cov

(∫
f (s)K

(
x(s) − X

h

)
ds · v(X),

∫
g(s)K

(
x(s) − X

h

)
ds · v(X)

)
.

To handle (I), we write

(I) = 1

nh2d
E

{∫
f (s)K

(
x(s) − X

h

)
ds · ξ · ξ∗

∫
K

(
x(u) − X

h

)
g(u)du

}

= 1

nh2d

∫ ∫
E

{
K

(
x(s) − X

h

)
K

(
x(u) − X

h

)}
f (s)�g(u)ds du.

Note that

E

{
K

(
x(s) − X

h

)
K

(
x(u) − X

h

)}

=
∫

K

(
x(s) − y

h

)
K

(
x(u) − y

h

)
dy

= hd
∫

K(z)K

(
z + x(u) − x(s)

h

)
dz

= hd�

(
x(u) − x(s)

h

)
.

Changing variable as u = s + τh, we get

(I) = 1

nhd−1

∫ ∫
�

(
x(s + τh) − x(s)

h

)
f (s)�g(s + τh)dτ ds.(3.9)

Note that (x(s + τh) − x(s))/h → v(x(s)) as n → ∞ and also for all τ and a.s.
for s g(s + τh) → g(s) as n → ∞ (recall that the functions f,g ∈ L and hence
are continuous a.e. in R). By assumptions K has bounded support, implying that
the support of � is also bounded. At the same time, we have

0 < γ ≤
∣∣∣∣ 1

u − s

∫ u

s
v(x(λ)) dλ

∣∣∣∣ ≤ sup
x∈Rd

|v(x)| < +∞.

Therefore, the function

τ �→ �̄(τ ) = sup
0≤s≤u≤T

�

(
τ

1

u − s

∫ u

s
v(x(λ)) dλ

)

also has bounded support and, since it is bounded, it is integrable. Thus, we can
use Lebesgue dominated convergence to prove that∫ ∫

�

(
x(s + τh) − x(s)

h

)
f (s)�g(s + τh)dτ ds
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→
∫ ∫

�(v(x(s))τ ) dτ f (s)�g(s) ds =
∫

ψ
(
v(x(s))

)
f (s)�g(s) ds,

which along with (3.9) yields

(I) = 1 + o(1)

nhd−1

∫
ψ

(
v(x(s))

)
f (s)�g(s) ds.

[Indeed, the integration with respect to s is in a finite range, the function (s, τ ) �→
f (s)�g(s + τh) is uniformly bounded and

∣∣∣∣�
(

x(s + τh) − x(s)

h

)∣∣∣∣ ≤ �̄(τ ),

so the dominated convergence can be used under the assumption that �̄ is inte-
grable in R.]

Similarly, the expression (II) can be written as

(II) = 1

nh2d

∫ ∫
f (s)E

{
K

(
x(s) − X

h

)
K

(
x(u) − X

h

)
v(X) · v∗(X)

}
g(u)ds du

− 1

n

∫
f (s) · v(x(s)) ds

∫
g(u) · v(x(u)) du

(
1 + o(1)

)
.

Note that

E

{
K

(
x(s) − X

h

)
K

(
x(u) − X

h

)
v(X) · v∗(X)

}

=
∫

K

(
x(s) − y

h

)
K

(
x(u) − y

h

)
v(y) · v∗(y) dy

= hd
∫

K(z)K

(
z + x(u) − x(s)

h

)
v
(
x(s) − zh

) · v∗(
x(s) − zh

)
dz,

where we use the substitution z = x(s)−y
h

, dy = hddz. Therefore,

1

nh2d
E

{∫
f (s)K

(
x(s) − X

h

)
ds · v(X) · v∗(X)

∫
K

(
x(u) − X

h

)
g(u)du

}

= 1

nhd

∫ ∫
f (s)

∫
K(z)K

(
z + x(u) − x(s)

h

)
v
(
x(s) − zh

)

× v∗(
x(s) − zh

)
dzg(u)ds du,

which after the change of variable u = s + τh becomes

1

nhd−1

∫ ∫
f (s)

∫
K(z)K

(
z + x(s + τh) − x(s)

h

)
v
(
x(s) − zh

)

× v∗(
x(s) − zh

)
dzg(s + τh)dτ ds.
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As before, we use the dominated convergence (under the same conditions) to show
that the last expression is equal to

1 + o(1)

nhd−1

∫ ∫
f (s)

∫
K(z)K

(
z + τv(x(s))

)
dzdτ v(x(s)) · v∗(x(s))g(s) ds

= 1 + o(1)

nhd−1

∫
f (s)ψ

(
v(x(s))

)
v(x(s)) · v∗(x(s))g(s) ds,

implying that

(II) = 1 + o(1)

nhd−1

∫
f (s)ψ

(
v(x(s))

)
v(x(s)) · v∗(x(s))g(s) ds.

Finally, the covariance

Cov(Xn(f ),Xn(g))

= (I) + (II)(3.10)

= 1 + o(1)

nhd−1

∫
ψ

(
v(x(s))

)
f (s) · [

� + v(x(s)) · v∗(x(s))
] · g(s) ds.

Thus,

Cov(ηn(t1), ηn(t2)) → Cov(η(t1), η(t2))

=
∫ t1∧t2

0
ψ

(
v(x(s))

)[
� + v(x(s)) · v∗(x(s))

]
ds.

Convergence of finite dimensional distributions (f.d.d.). We now turn to the
proof of asymptotic normality of ηn(t),0 ≤ t ≤ T , in the sense of convergence
of finite dimensional distributions. First we show that for all f ∈ L

√
nhd−1

(
Xn(f ) −

∫
f (s)v(x(s)) ds

)

converges to a normal distribution. Since by (3.8)
√

nhd−1
(

EXn(f ) −
∫

f (s)v(x(s)) ds

)

→
√

β

2

∫
f (s) ·

∫
K(z)〈v′′(x(s))z, z〉dzds,

it is enough to establish the CLT for

√
nhd−1

(
Xn(f ) − EXn(f )

) = 1√
nhd+1

n∑
j=1

(χj − Eχj ),

where

χj :=
∫

f (s)K

(
x(s) − Xj

h

)
ds · (

v(Xj ) + ξj

)
.
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Under the assumptions we have made it is easy to check Lyapunov’s conditions
for the CLT, and to this end we bound the fourth moment of χj ,

E|χj |4 = E(χ∗
j χj )

2

= E

(∫ ∫
K

(
x(s) − Xj

h

)
K

(
x(s1) − Xj

h

)
f (s)

× (
v(Xj ) + ξj

)∗(
v(Xj ) + ξj

)
f (s1) ds ds1

)2

.

Under the assumption that v and ξ are bounded, this gives with some constant
C > 0,

E|χj |4 ≤ CE

(∫ ∫
K

(
x(s) − X

h

)
K

(
x(s1) − X

h

)
|f (s)||f (s1)|ds ds1

)2

= CE

∫
R4

K

(
x(s) − X

h

)
K

(
x(s1) − X

h

)
K

(
x(s2) − X

h

)
K

(
x(s3) − X

h

)

× |f (s)||f (s1)||f (s2)||f (s3)|ds ds1 ds2 ds3.

By change of variable, we then get

E|χj |4 ≤ Chd
∫

R5
K(z)K

(
z + x(s1) − x(s)

h

)
K

(
z + x(s2) − x(s)

h

)

× K

(
z + x(s3) − x(s)

h

)
dz |f (s)||f (s1)||f (s2)|

× |f (s3)|ds ds1 ds2 ds3

= Chd+3
∫

R5
K(z)K

(
z + τ1

x(s + τ1h) − x(s)

τ1h

)

× K

(
z + τ2

x(s + τ2h) − x(s)

τ2h

)

× K

(
z + τ3

x(s + τ3h) − x(s)

τ3h

)

× dz|f (s)||f (s + τ1h)||f (s + τ2h)|
× |f (s + τ3h)|ds dτ1 dτ2 dτ3.

Denote

�(τ1, τ2, τ3) := sup
∫

K(z)K

(
z + τ1

x(s1) − x(s)

s1 − s

)

× K

(
z + τ2

x(s2) − x(s)

s2 − s

)
K

(
z + τ3

x(s3) − x(s)

s3 − s

)
dz,
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where the supremum is taken over all s, s1, s2, s3 ∈ [0, T ]. It follows from the
conditions that the function � is integrable in R

3.

As a result, we get

E|χj |4 ≤ Chd+3
∫ ∫ ∫

�(τ1, τ2, τ3)

(∫
|f (s)|4 ds

)1/4(∫
|f (s + τ1h)|4 ds

)1/4

×
(∫

|f (s + τ2h)|4 ds

)1/4

×
(∫

|f (s + τ3h)|4 ds

)1/4

dτ1 dτ2 dτ3

= Chd+3
∫

|f (s)|4 ds

∫ ∫ ∫
�(τ1, τ2, τ3) dτ1 dτ2 dτ3.

It follows that with some constant C

1

n2h2(d+1)

n∑
j=1

E|χj − Eχj |4 ≤ Cnhd+3

n2h2(d+1)
= C

nhd−1 → 0,

implying Lyapunov’s conditions for the CLT. This shows the asymptotic normality
of √

nhd−1
(
Xn(f ) − EXn(f )

)
and

√
nhd−1

(
Xn(f ) −

∫
f (s)v(x(s)) ds

)

for all f ∈ L. Hence, if f1, . . . , fm ∈ L (which is a linear space), the CLT holds for
any linear combination of f1, . . . , fm. Using the standard characteristic function
argument, this shows that the joint distribution of (Xn(f1), . . . ,Xn(fm)) is also
asymptotically normal. Applying this to f = ft proves the convergence of finite
dimensional distributions (f.d.d.) of the stochastic processes ηn(t),0 ≤ t ≤ T , to
f.d.d. of the Gaussian process η(t),0 ≤ t ≤ T .

Asymptotic equicontinuity. To prove the weak convergence of the sequence of
processes ηn(t),0 ≤ t ≤ T , in the functional space C[0, T ], it remains to check
the asymptotic equicontinuity condition. Since

ηn(t) =
√

nhd−1
(
Xn(ft ) − EXn(ft )

) +
√

nhd−1
(

EXn(ft ) −
∫

ft (s)v(x(s)) ds

)

and the bias term
√

nhd−1(EXn(ft ) − ∫
ft (s)v(x(s)) ds) tends to Eη(t) uni-

formly in t ∈ [0, T ] due to (3.8), we have to consider only the process ζn(t) :=√
nhd−1(Xn(ft ) − EXn(ft )). To this end, we bound the fourth moment of

Xn(f ) − EXn(f ),

E|Xn(f ) − EXn(f )|4

= 1

n4h4d
E

∣∣∣∣∣
n∑

j=1

(χj − Eχj )

∣∣∣∣∣
4

(3.11)

= 1

n4h4d

[
n(n − 1)

2
(E|χ − Eχ |2)2 + nE|χ − Eχ |4

]
.
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As before,

E|χ − Eχ |2
≤ E|χ |2

= E

∫ ∫
K

(
x(s) − X

h

)
K

(
x(s1) − X

h

)
f (s)

× (
v(X) + ξ

)∗(
v(X) + ξ

)
f (s1) ds ds1

≤ C

∫ ∫
EK

(
x(s) − X

h

)
K

(
x(s1) − X

h

)
|f (s)||f (s1)|ds ds1

≤ Chd
∫ ∫ ∫

K(z)K

(
z + x(s1) − x(s)

h

)
dz |f (s)||f (s1)|ds ds1

≤ Chd+1
∫ ∫ ∫

K(z)K

(
z + τ

x(s + τh) − x(s)

τh

)
dz

× |f (s)||f (s + τh)|ds dτ

≤ Chd+1
∫ ∫

�̄(τ )|f (s)||f (s + τh)|ds dτ

≤ Chd+1
∫

�̄(τ )

(∫
|f (s)|2 ds

)1/2(∫
|f (s + τh)|2 ds

)1/2

dτ

≤ Chd+1
∫

�̄(τ ) dτ

∫
|f (s)|2 ds.

Plugging the bounds on E|χ − Eχ |2 and on E|χ − Eχ |4 in (3.11) yields with a
large enough constant C > 0,

E
(√

nhd−1|Xn(f ) − EXn(f )|)4

≤ C

[
n2h2d+2

n2h2d+2

(∫
|f (s)|2 ds

)2

+ nhd+3

n2h2d+2

∫
|f (s)|4 ds

]

≤ C

[(∫
|f (s)|2 ds

)2

+ 1

nhd−1

∫
|f (s)|4 ds

]
.

We will apply it to f := ft1 − ft2 with t1, t2 ∈ [0, T ]. It easily follows that with
some L > 0,

∫ |ft1(s) − ft2(s)|2 ds ≤ L|t1 − t2| and
∫ |ft1(s) − ft2(s)|4 ds ≤

L|t1 − t2|. Therefore we have (with some C > 0)

E|ζn(t1) − ζn(t2)|4 ≤ C

[
|t1 − t2|2 + 1

nhd−1 |t1 − t2|
]
,

which gives E|ζn(t1) − ζn(t2)|4 ≤ 2C|t1 − t2|2 for |t1 − t2| ≤ 1
nhd−1 . If now An is a

maximal 1
nhd−1 -separated subset of [0, T ], then the standard Kolmogorov type of
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chaining argument shows that for all ε > 0

lim
δ→0

lim sup
n→∞

P

{
sup

t1,t2∈An,|t1−t2|≤δ

|ζn(t1) − ζn(t2)| ≥ ε

}
= 0.(3.12)

Let πn be a mapping from [0, T ] into An such that ∀t ∈ [0, T ] : |t − πnt | ≤
1/nhd−1. Using the definition of ζn(t), we easily get (with some constant C > 0)

|ζn(t1) − ζn(t2)| ≤ CT
√

nhd−1 sup
x∈Rd

|V̂ (x) − EV̂ (x)||t1 − t2|.

Therefore,

sup
t∈[0,T ]

|ζn(t) − ζn(πnt)| ≤ CT
1√

nhd−1
sup
x∈Rd

|V̂ (x) − EV̂ (x)|.

Using Lemma 1,

sup
t∈[0,T ]

|ζn(t) − ζn(πnt)| = oP (1).(3.13)

It immediately follows from (3.12) and (3.13) that

lim
δ→0

lim sup
n→∞

P

{
sup

t1,t2∈[0,T ]|t1−t2|≤δ

|ζn(t1) − ζn(t2)| ≥ ε

}
= 0,

which is the asymptotic equicontinuity condition for the process ζn. �

The proof of Theorem 2 can be found in [11].

4. Numerical implementation and examples.

4.1. Remarks on numerical implementation. It is not hard to show that the
mean of the limiting Gaussian process ξ(t) defined by (2.3) can be written as
Mβ(t) = √

βM(t), where M satisfies the differential equation

dM(t)

dt
= v′(x(t))M(t) + 1

2

∫
K(z)〈v′′(x(t))z, z〉dz, M(0) = 0.(4.1)

The covariance matrix C(t) of ξ(t) does not depend on β and it satisfies the ODE

dC(t)

dt
= ψ

(
v(x(t))

)[
� + v(x(t)) · v∗(x(t))

]

+ v′(x(t))C(t) + C(t)v′(x(t))∗,(4.2)

C(0) = 0.

It is also easy to derive partial differential equations for the covariance function of
the process ξ(t), but they are not used in what follows.
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We will use a simple Euler type method to solve the ODEs numerically (obvi-
ously, more sophisticated numerical methods can also be useful here, with poten-
tial improvement of the results). Let δ be a step size. Then the following recurrent
relationships provide an approximation of equations (4.1) and (4.2):

X̂k+1 := X̂k + V̂ (X̂k)δ with X̂0 = x0,(4.3)

Ĉ0 := 0,(4.4)

Ĉk+1 := Ĉk + δ
[
ψ(V̂ (X̂k))

(
�̂ + V̂ (X̂k)V̂ (X̂k)

∗)
+ V̂ ′(X̂k)Ĉk + ĈkV̂

′(X̂k)
∗]

,

where �̂ := n−1 ∑n
j=1(Vi − V̂ (Xi))(Vi − V̂ (Xi))

∗ is an estimate of the covari-

ance matrix � of the noise ξi . Consistency of the estimator �̂ easily follows from
Lemma 1. In practice, the noise ξi is not necessarily homogeneous and it might
make sense to use localized versions of the above estimate. Obviously, the recur-
rent relationships (4.3) and (4.4) can be solved simultaneously, so, in fact, our
approach is based on simultaneous tracking of the “fiber path” and its covariance
matrix. We are doing this for k = 1, . . . ,N, N := [T

δ
].

It easily follows from the definition of the function ψ (see Section 2) that if the
kernel K is spherically symmetric, then ψ is also spherically symmetric, so it is a
constant on the unit sphere in R

d . In applications, the vector field v consists of unit
vectors. Hence, for a spherically symmetric kernel K, the ψ-factor in the ODE for
C(t) and in (4.4) can be replaced by a constant, simplifying the equations. In what
follows, we use the standard Gaussian kernel K, which of course is spherically
symmetric.

To estimate the function M(t), one needs an estimator of v′′. This can be done,
for instance, by utilizing kernel estimators one more time. The entries of the esti-
mator V̂ ′′ (which is a d × d × d-tensor) are defined as

V̂ ′′
jkl(x) = 1

nh̃d+2

n∑
i=1

∂2K

∂xj ∂xk

(
x − Xi

h̃

)
V

(l)
i ,

V
(l)
i , l = 1, . . . , d , being the components of the vector Vi. The kernel K can be

taken to be the same as in the estimate of V̂ , but the bandwidth parameter h̃ = h̃n

is different (so V̂ ′′ is not the second derivative of V̂ ). To make V̂ ′′ a consistent
estimator of v′′ the assumptions h̃ → 0 and nh̃d+4 → ∞ are needed. The second
assumption does not hold for the bandwidth h needed in Theorem 1. If K is the
standard Gaussian kernel, then

Ŵ (x) :=
∫

K(z)〈V̂ ′′(x)z, z〉dz = 1

nh̃d+2

n∑
i=1

(∣∣∣∣x − Xi

h̃

∣∣∣∣
2

+ d

)
K

(
x − Xi

h̃

)
Vi.

The following recurrence relation [i.e. to be solved simultaneously with (4.3)
and (4.4)] provides a numerical approximation of equation (4.1):

M̂k+1 = M̂k + δ
[
V̂ ′(X̂k)M̂k + 1

2Ŵ (X̂k)
]

with M̂0 = 0.(4.5)
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Solving (4.3), (4.4) and (4.5) yields numerical approximations of X̂(t), Ĉ(t),

and M̂(t),0 ≤ t ≤ T , that can be now used to compute min1≤k≤N d2(X̂k,�),
which is a numerical approximation of inf0≤t≤T d2(X̂(t),�), for a given set �,
and also to compute other quantities needed for implementation of testing pro-
cedures. If the above minimum is attained at k̂ and τ̂ := k̂δ, then τ̂ can be used
as an estimate of τ for which the minimal distance from the true integral curve
x(t),0 ≤ t ≤ T , to � is attained. If such a τ is unique (as was assumed in Corol-
laries 1 and 2), then it is not hard to show consistency of τ̂ (under proper assump-
tions on δ). This provides an approximation of the limit distributions in Corollaries
1 and 2.

The above considerations allow us to implement the testing procedures based
on Corollaries 1 and 2. For instance, in the case of Corollary 1, the test statistic is
approximated by

�̂ := nhd−1 min
1≤k≤N

|X̂k − a|2.(4.6)

Given a significance level α ∈ (0,1), the hypothesis that the integral curve
x(t),0 ≤ t ≤ T , passes through the point a (against the alternative that it does not)
is rejected if �̂ ≥ �α, where �α is determined from the equation P{�̄ ≥ �α} = α.
Here

�̄ := |Z|2 − (V̂ (X̂
k̂
)∗Z)2

|V̂ (X̂
k̂
)|2 , Z ∼ N

(√
βM̂

k̂
, Ĉ

k̂

)
in R

d .

We assume that h = (
β
n
)1/(d+3) with β > 0; we set β = 0 if h = hn is such that

nhd+3
n → 0.
Corollaries 1 and 2 can be also used to derive asymptotic approximations of the

power of the test and to study how it depends on D (the minimal distance from the
true integral curve to �). For instance, in the case of Corollary 1, the power can be
approximated by the expression

1 − �

(
(nhd−1)−1/2�α − (nhd−1)1/2D2 − 2

√
βDM(τ)∗n(x(τ))

2D(n(x(τ))∗C(τ)n(x(τ )))1/2

)
,

where � is the standard normal distribution function, D2 := inf0≤t≤T |x(t) − a|2
and n(x) := x−a

|x−a| . Replacing M(τ), C(τ) and x(τ) by their “estimates” leads
to the following expression describing the dependence of the power on the true
distance D:

1 − �

((nhd−1)−1/2�α − (nhd−1)1/2D2 − 2
√

βDM̂∗
k̂
n(X̂

k̂
)

2D(n(X̂
k̂
)∗Ĉ

k̂
n(X̂

k̂
))1/2

)
.(4.7)

We are not addressing in any detail an important problem of choosing the band-
width parameter h. For a fixed t and h = (

β
n
)1/(d+3) the asymptotic formula for
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the mean squared error matrix of X̂ is (see Theorem 1)

E
(
X̂(t) − x(t)

)(
X̂(t) − x(t)

)∗
≈ n−4/(d+3)[C(t)β−4/(d+3) + M(t)M(t)∗β4/(d+3)]

(note that the convergence rate n−4/(d+3) is optimal in a minimax sense provided
that the vector field v is twice continuously differentiable; this can be shown, e.g.,
following the approach of [9], Theorem IV.5.1). This immediately implies the fol-
lowing formula for the mean integrated squared error:

E

∫ T

0
|X̂(t) − x(t)|2 dt

≈ n−4/(d+3)

[∫ T

0
Tr(C(t)) dt β−(d−1)/(d+3)

+
∫ T

0
Tr(M(t)M(t)∗) dt β4/(d+3)

]
,

which can be easily minimized with respect to β , and the minimal point β̄ can be
estimated based on the data (using the estimates of C and M). Since one might
be interested in optimizing not the global deviation of X̂ from x but rather the
distance from x to a set � (as in Corollaries 1 and 2), an alternative is to use the
asymptotics of these corollaries rather than the global result of Theorem 1. For
instance, based on Corollary 1, the following asymptotic formula might be used:

E

[
inf

0≤t≤T
|X̂(t) − a|2 − inf

0≤t≤T
|x(t) − a|2

]2

≈ n−4/(d+3)[4(
x(τ) − a

)∗
C(τ)

(
x(τ) − a

)
β−(d−1)/(d+3)

+ 4
(
M(τ)∗

(
x(τ) − a

))2
β4/(d+3)],

which again can be easily minimized with respect to β , and the minimal point β̄1
can be estimated based on the data. One can also try to develop an approach based
on maximizing the power of the hypothesis tests considered above.

4.2. Several experiments with simulated and real data. We turn now to some
of the results of our experiments with simulated and real data. First, we simulated
a vector field with circular integral curves (Figure 2). It was observed at a finite
number of random points uniformly distributed inside a rectangular domain in R

2

with random noise. We used NWE to smooth the vector field and then computed
an estimate of an integral curve starting at a given point by solving numerically the
ODE generated by the smoothed field using Euler’s method. Simultaneously with
tracking the estimate of the integral curve, we have also tracked the covariance
matrix of the estimate and used it to plot the 95 percent confidence ellipses along
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FIG. 2. The top left figure shows the true vector field whose x- and y-coordinates are given by
formulas vx = − y√

x2+y2
, vy = x√

x2+y2
(“the circular field”). The top right figure represents the

noisy vector field obtained by adding to the true field independent copies of 0.5Z, Z ∼ N (0, I)

in R
2. The bottom left figure shows the results of smoothing of the noisy vector field and integral

curve estimation using NWE. The total number of points in the rectangle n = 322. The NWE was
computed with h = 0.85 and the step size used in the numerical solution of ODE was δ = 0.02.

Finally, the bottom right figure depicts 95 percent confidence ellipses along the integral curve.

the integral curve. The results are shown in Figure 2 (see [11] for more experiments
of similar nature).

Next, by means of Monte Carlo simulation we studied the accuracy of normal
approximation of the distribution of the distance from the estimated integral curve
to a given point or to a given sphere (see Corollaries 1, 2). To this end, we simulated
the random points and the noisy vector field as in Figure 2 and computed the
estimated integral curve based on NW regression smoothing. We repeated these
simulations independently N = 2000 times and each time computed the square
of the distance D̂2 to the point (0,2) (labeled with + in Figure 3). The squared
distance from this point to the true integral curve was D2 = 1. Each time we also
computed the estimate σ̂ 2 of the variance σ 2 (see Corollary 1) and the standardized

version of D̂2, given by the expression
√

nh
σ̂

(D̂2 − D2) (recall that d = 2 in our
case). The histogram of the last variable is shown in the top part of Figure 4 in
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FIG. 3. Shows a circular true integral curve and locations of points and balls of interest in a Monte
Carlo study of the distribution of distances (see Figures 4 and 5 below).

comparison with the standard normal curve. The bottom part of Figure 4 shows the
results of a similar simulation in the case of the distance from the estimated integral
curve to a sphere (a circle in our case; see Corollary 2). There is deviation of the
histograms from normality that is quite understandable for a number of reasons:
the fact that we ignored the bias Mβ in the normal approximation; in the case
when D2 = 0, Corollary 1 suggests that the asymptotic distribution should be of
χ2-type rather than normal and because of this for small values of D2 one can start
seeing some deviations from normality for a finite sample; the variance σ 2 needed
in normalization was replaced by its estimate σ̂ 2; the numerical approximation
we are using to compute the distance has a certain impact on the distribution;
and, last but not least, the sample size n in our simulations is rather small for this
type of CLT (n = 77). The Kolmogorov–Smirnov test clearly shows that these
deviations from normality are very significant (p ≤ 0.001). However, when n =
500 the p-value of the test becomes of the order 0.0542 and for larger values of n

the deviations from normality are no longer statistically significant.
Quite similarly, Figure 5 shows histograms of squared distances from the es-

timated integral curve to a specified point (the top figure) or to a specified circle
(the bottom figure) in the case when the true integral curve passes through the
point or is tangent to the circle. In this case, according to Corollaries 1 and 2, the
asymptotic distribution of the squared distance should be of χ2-type.
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FIG. 4. The top figure presents the histogram of standardized minimal squared distances from
the estimated integral curves to the point x = (0,2) obtained by the Monte Carlo simulations
(N = 2000); the bottom figure shows the histogram of standardized minimal squared distances from
the estimated integral curve to the ball with center x = (0,2) and radius 0.1 obtained again by
the Monte Carlo simulations (N = 2000). The histograms are compared with the standard normal
distribution.

Next we studied the power of testing the null hypothesis that the integral curve
passes through a specified point of interest. The test is based on the second state-
ment of Corollary 1. The test statistic is �̂ given by (4.6). The top part of Figure 6
shows the true integral curve and also ten points of interest: one of them is on the
curve (so that the null hypothesis is satisfied for this point) and nine other points
represent alternatives. We estimated this integral curve based on n = 77 observa-
tions of a noisy vector field as in Figure 2. We repeated the experiment 1000 times,
each time simulating the data, estimating the integral curve and testing the hypoth-
esis with significance level α = 0.05. The red curve shown in the bottom part of
Figure 6 represents the empirical estimation of the power of our test (the frequency
of rejecting the null hypothesis) for each of the alternatives. The blue curve repre-
sents the value of the power based on the theoretical formula (4.7) (which seems
to consistently overestimate the power).

Figures 7(a)–(c) give some examples of fiber tracking and visualization of 95%
confidence ellipsoids for real DTI data and Figure 8 represents what we call the
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FIG. 5. The top figure presents the histogram of the minimal squared distances from the estimated
integral curve to the point x = (0,3) obtained by the Monte Carlo simulations (N = 2000) in com-
parison with a χ2-type curve based on the theory. Note that now the point is on the true integral
curve. The bottom figure shows the histogram of the minimal squared distances from the estimated
integral curve to the ball with center x = (0,2.9) and radius 0.1 obtained by the Monte Carlo sim-
ulations (N = 2000) again in comparison with a χ2-type curve based on the theory. The empirical
distributions in this case are much closer to χ2-type than the distributions shown in Figure 4.

p-value map. It can be used to assess the degree of connectivity of points with a
given path.

Although it is not the goal of this paper to develop a comprehensive method-
ology of statistical analysis of DTI data that takes into account more complicated
issues, such as crossings or branchings of fibers, some of our results suggest possi-
ble ways to address these problems (as well as the problem of stopping criteria of
the tracking). Usually the vector fields involved in DTI problems satisfy the con-
dition |v(x)| = 1 since this is the field of unit principal eigenvectors of diffusion
matrices. If the vector field is smooth around a given point x ∈ G, then V̂ (x), as
a weighted local average of unit vectors v(Xi) of approximately the same direc-
tion plus a small noise, should have norm close to 1 (for large enough n). On the
other hand, if two or more trajectories intersect at the point x, then V̂ (x) becomes
a weighted local average of unit vectors of several different directions and, as a
result, |V̂ (x)| will be, with high probability, significantly smaller than 1. Based
on these heuristics, one can try to test the null hypothesis that a trajectory x(t)

starting at a given point x0 does not intersect another trajectory at a given moment
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FIG. 6. The top part shows the true integral curve and selected points of interest for measuring the
power. The bottom part represents graphs of the power function based on Monte Carlo study (the red
curve) and based on the theoretical formula (4.7) (the blue curve).

t > 0. It is natural to use the deviation |V̂ (X̂(t))|2 − 1 as a test statistic and to
reject the null hypothesis if the value of this statistic is small enough. To make
it more precise, one can use the following asymptotic result that easily follows
from the CLT via a version of the delta method (and the result of Theorem 1, is
also needed to handle the remainder terms): under the assumptions of Theorem 1,
if hn → 0, nhd+2

n → ∞ and nhd+3
n → 0 as n → ∞, then the sequence of r.v.s√

nhd
n(|V̂ (X̂(t))|2 − 1) converges in distribution to the normal random variable

with mean 0 and variance σ 2 := 4
∫

K2(u) du(1 + v(x(t))∗�v(x(t))), which can
be replaced by a plug-in estimate σ̂ 2 in a straightforward way. The statistic

νn :=
√

nhd
n

|V̂ (X̂(t))|2 − 1

σ̂

becomes asymptotically standard normal and the test can be designed in the usual
way. However, it should be pointed out that the convergence rate in this asymptotic
result is rather slow and the impact of the remainder terms is significant. Moreover,
when instead of the additive noise model one considers a more realistic model in
which |Vi | = 1 (this is the case in DTI applications), the asymptotic distribution of
νn is no longer standard normal.

The computation of the test statistic can be included in the fiber tracking algo-
rithm. If the test detects an intersection at some moment t, the computation of the
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(a)

(b)

(c)

FIG. 7. Illustrates the use of the proposed tracking procedure on real DTI data. (a) presents a single
estimated fiber trajectory. The blue point shows the starting seed point. (b) shows the visualization
of the 3-D confidence ellipsoid (C.E.) of the tracking procedure. (c) is an enlarged visualization of a
3-D fiber tracking trajectory in a given region of the brain.

weighted local average V̂ (X̂(t)) can be replaced by local clustering of vectors Vi

around this point. For instance, one can use for this purpose a weighted version
of k-means clustering. As a result, there will be more than one continuation of
the trajectory from the point X̂(t). A simulated example of testing and tracking a
branching trajectory using this approach is given in Figure 9. The branching point
of the true trajectory is (0,0). The figure also shows the values of the test statistic
at several points along the trajectory.
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FIG. 8. p-value map of the trajectory shown in Figure 7(c): for each point it shows the p-value of
testing the null hypothesis that the true integral curve passes through this point.

FIG. 9. Shows the results of tracking a branching trajectory (for simulated 2-D data).
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A detailed discussion of this and other applications of our methodology to DTI
and its comparison with other methods goes beyond the scope of this paper and will
be given in further publications in more specialized journals on neuroimaging.

Acknowledgments. The authors are thankful to the referees for several inter-
esting suggestions.
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