
The Annals of Statistics
2007, Vol. 35, No. 4, 1535–1558
DOI: 10.1214/009053607000000028
© Institute of Mathematical Statistics, 2007

A RIDGE-PARAMETER APPROACH TO DECONVOLUTION

BY PETER HALL AND ALEXANDER MEISTER

Australian National University and Universität Stuttgart

Kernel methods for deconvolution have attractive features, and prevail in
the literature. However, they have disadvantages, which include the fact that
they are usually suitable only for cases where the error distribution is infi-
nitely supported and its characteristic function does not ever vanish. Even in
these settings, optimal convergence rates are achieved by kernel estimators
only when the kernel is chosen to adapt to the unknown smoothness of the
target distribution. In this paper we suggest alternative ridge methods, not in-
volving kernels in any way. We show that ridge methods (a) do not require
the assumption that the error-distribution characteristic function is nonvan-
ishing; (b) adapt themselves remarkably well to the smoothness of the target
density, with the result that the degree of smoothness does not need to be di-
rectly estimated; and (c) give optimal convergence rates in a broad range of
settings.

1. Introduction. Density estimation with observation error is almost always
based on kernel methods, where the kernel depends on the error distribution. See,
for example, the early contributions of Carroll and Hall [4], Liu and Taylor [22],
Stefanski [27], Stefanski and Carroll [28], Zhang [30] and Fan [12–14]. More re-
cent work, which also surveys earlier research, includes that of van Es, Spreij and
van Zanten [29], Delaigle and Gijbels [8–10], Meister [23, 24] and Comte, Rozen-
holc and Taupin [6, 7].

However, kernel methods have disadvantages, not least being the fact that for
effective implementation they require the characteristic function of the error distri-
bution to have no zeros on the real line. In particular, the error distribution should
not be compactly supported.

Motivated partly by this difficulty, in the present paper we introduce a new esti-
mation procedure based on ridging. Since this technique does not involve a kernel,
the optimal choice of which depends on the unknown smoothness of the target den-
sity, then our new method can have a relatively high degree of adaptivity. It does
not require the regularity of the target function to be known in advance, and admits
elementary cross-validation approaches to smoothing-parameter choice. See Fan
and Koo [16] for discussion of adaptive methods in the setting of wavelet-based
deconvolution.

Received June 2005; revised October 2006.
AMS 2000 subject classifications. 62G07, 62F05.
Key words and phrases. Cross-validation, density deconvolution, errors in variables, kernel meth-

ods, minimax optimality, optimal convergence rates, smoothing-parameter choice.

1535

http://www.imstat.org/aos/
http://dx.doi.org/10.1214/009053607000000028
http://www.imstat.org
http://www.ams.org/msc/


1536 P. HALL AND A. MEISTER

Importantly, ridging allows us to work with error distributions that have non-
positive characteristic functions. In particular, using the new method we can read-
ily treat problems where the error distribution is compactly supported. Ridging
also eliminates discontinuities in integrals, which occur (for example) when using
the sinc kernel, and so avoids the need for tapers.

The ridge-based method enjoys optimal convergence rates, both in standard, or
“nonoscillatory,” cases where characteristic functions do not vanish, and in “oscil-
latory” cases where those functions have infinitely many zeros. In the latter setting,
neither convergence rates nor optimality properties have been established before.
The rates turn out to be particularly interesting.

For example, although as a rule optimal rates depend on the smoothnesses of
both the target and the error distributions, for all sufficiently smooth target distrib-
utions, they depend only on the smoothness of the error distribution. This property
is not observed in the nonoscillatory case. It makes choice of the ridge parame-
ter remarkably straightforward; the parameter can be chosen quite easily, within a
very wide range, without adversely affecting the rate of convergence.

Ridging is also adaptable to errors-in-variables problems, where it enjoys simi-
lar advantages.

2. Methodology. Suppose we observe data W1, . . . ,Wn generated by the
model

Wj = Xj + δj ,(2.1)

where Xj, δj , for 1 ≤ j < ∞, are mutually independent random variables, the
sequences X1,X2, . . . and δ1, δ2, . . . are identically distributed, and δj has known
density fδ . We wish to estimate the density, fX , say, of X.

Conventional estimators in this problem are given by

f̌X(x) = 1

nh

n∑
j=1

L

(
x − Wj

h

)
,(2.2)

where

L(u) = 1

2π

∫
e−itu K ft(t)

f ft
δ (t/h)

dt,(2.3)

K is a kernel function, K ft(t) = ∫
eitxK(x) dx is its Fourier transform, h > 0 is a

bandwidth and we have K ft(0) = 1. Usually, K is chosen so that K ft is compactly
supported, but in order for good convergence rates to be achieved, it must also take
account of the unknown smoothness of the distribution of W . In particular, if fW

has d derivatives, then K should be chosen so that K ft(t) = 1 + O(|t |d) as t → 0.
See, for example, Fan [12].

Thus, effective choice of K requires difficult, adaptive estimation of the smooth-
ness of fX . This problem can be alleviated by employing the sinc kernel, K(x) =
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(sinx)/(πx); then, K ft(t) = 1 on the interval [−1,1] and vanishes elsewhere.
However, in such cases the integral at (2.3) stops abruptly, before the integrand
has a chance to descend to zero. That causes oscillations of Gibbs phenomenon
type in the final estimator; the oscillations can usually only be removed by fitting
a taper to the integrand. An approach of this type has recently been discussed by
Butucea and Tsybakov [3].

A particularly significant difficulty with kernel methods arises when f ft
δ van-

ishes at one or more points on the real line. Then there are poles in the inte-
gral at (2.3). Typically, the integrand behaves like a nonzero constant multiple of
(t − p)−1 in the neighborhood of a pole at p, and so the integral does not exist.

To avoid having to address this problem, it is customary in the literature to
assume that f ft

δ does not vanish anywhere. However, that constraint excludes all
the conventional compactly supported models for the distribution of δ, such as
uniform and beta distributions, as well as some infinitely supported models. De-
vroye [11] shows that consistency is achievable whenever the set {t :f ft

δ (t) = 0}
has Lebesgue measure zero. The underlying estimator requires selection of three
parameter sequences, of which one excises a neighborhood of each pole from the
integral in (2.3). This technique is arguably not attractive from a practical view-
point. Another approach, where the condition f ft

δ (t) �= 0 is relaxed, is suggested by
Groeneboom and Jongbloed [18]. However, their method is restricted to the case
where δ has a uniform distribution.

The reason for introducing the factor K ft(t) to the integrand at (2.3) is to avoid
difficulties when t is relatively large and the denominator, f ft

δ (t), is small. We sug-
gest ridging the integrand instead. This is not completely straightforward, since
the denominator in (2.3) might be negative. We propose overcoming this problem
via an indirect approach, which involves first making the denominator positive and
then inserting the ridge, as follows. Note that, if we multiply both the numera-
tor and denominator at (2.3) by f ft

δ (−t), we convert the denominator to |f ft
δ (t)|2,

a real-valued and nonnegative function. This suggests taking the integral in (2.3)
over the whole real line, and incorporating a positive ridge function, h(t), say,
generally depending on n and sometimes also on t .

The last step may be implemented in a variety of ways, of which one is to use

f̃X(x) = 1

2π

∫
f ft

δ (−t)|f ft
δ (t)|r f̂ ft

W(t)

{|f ft
δ (t)| ∨ h(t)}r+2

e−itx dt,(2.4)

where f̂ ft
W(t) = n−1 ∑

j eitWj denotes the empirical characteristic function of W ,
r ≥ 0 describes the “shape” of the smoothing regime, and x ∨ y represents the
maximum of x and y. In practice, we would confine attention to the real part of f̃X ,
which we write as f̂X = �f̃X . The connection between f̃X , defined at (2.4), and a
kernel-type estimator f̌X , at (2.2), can be seen by taking the kernel, L, in (2.2) to
have Fourier transform Lft given by

Lft(t) =
{

h−(r+2)f ft
δ (−t)|f ft

δ (t)|r , if |f ft
δ (t)| ≤ h,

fδ(t)
−1, if |f ft

δ (t)| > h.
(2.5)
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In the nonoscillatory case, where f ft
δ does not vanish on the real line, we may

take h(t) equal to a constant depending on n. In particular, optimal convergence
rates, for a wide range of different smoothnesses of fX , are obtained when h(t)

does not depend on t . Therefore, in such settings our approach has removed the
need to choose a kernel whose shape is adapted to the unknown smoothness of fX .
Even when f ft

δ vanishes at points on the line, it is usually straightforward to deter-
mine h(t); in such cases that function is a constant multiplied by a power of |t |,
and the power can generally be obtained from knowledge of fδ .

Note too that the approach at (2.4) removes the need for tapers, and in fact, the
integrand in (2.4) is a uniformly continuous function for each x.

In order for (2.4) to be well defined, the integrability of |f ft
δ |r+1 needs to be

assured. This is straightforward, however. Indeed, if fδ is square-integrable, then
r ≥ 1 is sufficient.

In “standard” errors-in-variables problems we combine the model (2.1) with a
regression model, and observe data (W1, Y1), . . . , (Wn,Yn), generated as

Yj = g(Xj ) + εj , Wj = Xj + δj ,(2.6)

where Xj, δj , εj , for 1 ≤ j < ∞, are mutually independent random variables, the
variables Xj and δj are as in the model (2.1) and ε1, ε2, . . . are identically distrib-
uted with E(εj ) = 0. We wish to estimate the smooth function g. There is a large
literature on kernel methods in this problem; see Fan and Truong [17] for theory
and Carroll, Ruppert and Stefanski [5] for a survey.

A ridge-based estimator is given by ĝ = �g̃, where, for any r ≥ 0,

g̃(x) =

∫
f ft

δ (−t)|f ft
δ (t)|r v̂(t)/{|f ft

δ (t)| ∨ h(t)}r+2e−itx dt∫
f ft

δ (−t)|f ft
δ (t)|r f̂ ft

W(t)/{|f ft
δ (t)| ∨ h(t)}r+2e−itx dt

,(2.7)

again f̂ ft
W(t) = n−1 ∑

j eitWj , and v̂(t) = n−1 ∑
j Yj e

itWj .
In Berkson’s errors-in-variables problem the observed data are (X1, Y1),

. . . , (Xn,Yn), generated as

Yj = g(Xj + δj ) + εj ,

where, as before, Xj, δj , εj are mutually independent for 1 ≤ j < ∞, the Xj , δj

and εj sequences are each identically distributed, E(εj ) = 0 and δj has known
density fδ .

There is apparently no published account of nonparametric methods in this
problem, which dates from Berkson [1] and is generally addressed using para-
metric or semiparametric techniques (see, e.g., Reeves et al. [26] and Buonaccorsi
and Lin [2]). Using our ridge-based approach, an estimator of g can be taken to be
the real part of g̃, where

g̃(x) = 1

2π

∫
f ft

δ (t)|f ft
δ (t)|r ŵ(t)

{|f ft
δ (t)| ∨ h(t)}r+2

e−itx dt,
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ŵ(t) = ∑
j DjYj e

itXj and Dj > 0 denotes the distance from Xj to the nearest
other data value. The function ŵ(t) estimates cft(t)/f ft

δ (t), where cft is the Fourier
transform of the function c(x) = ∫

fδ(x − u)E(Y |X = u)du.

3. Smoothing-parameter choice. When f ft
δ does not vanish on the real line

and also in the case of supersmooth fδ , where f ft
δ decreases exponentially fast to

zero in the tails, it is usually adequate to take h = h(t) in (2.4) to be a constant
depending on n. In this case, h is the single smoothing parameter on which the
methodology depends. In contexts where fδ is ordinary-smooth (i.e., f ft

δ decreases
only polynomially fast) and is compactly supported, we usually need to take h to
be a polynomial in t . Taking these cases together, we might consider

h(t) = hn(t) = n−ζ |t |ρ,(3.1)

where ζ > 0 and ρ ≥ 0.
Section 4 will discuss choices of ζ and ρ that lead to optimal rates of conver-

gence. The case where fδ is compactly supported is particularly interesting; we
treat it here through an example, as follows. If fδ is the µ-fold convolution of a
symmetric uniform density, where µ ≥ 2, and if fX has an integrable second deriv-
ative, then optimal convergence rates are achieved with ρ = 2 and ζ = 1

2 in (3.1).
In this setting we might take ρ = 2 and choose the constant ξ in the ridge-

parameter formula h(t) = ξ t2 empirically; in the context where f ft
δ does not van-

ish, we can take ρ = 0 and choose ξ in h(t) = ξ empirically. Therefore, we should
address the case where h(t) ≡ ξ |t |ρ , with ρ ≥ 0 known, and discuss selection of ξ .
Our approach to solving this problem will be via cross-validation; see Hesse [20]
for an account of this method in the case of kernel-based deconvolution.

Let f̂X(ξ, x) denote the density estimator at (2.4) for this choice of the ridge.
The aim is to minimize ∫

|f̂X(ξ ;x) − fX(x)|2 dx,

or equivalently, using the Plancherel identity, to minimize the function J (ξ) −
2�I (ξ), where J (ξ) = ∫ |f̂X(ξ ;x)|2 dx and

I (ξ) =
∫

f̂X(ξ ;x)fX(x) dx = 1

2π

∫ |f ft
δ (t)|r

{|f ft
δ (t)| ∨ ξ |t |ρ}r+2

f̂ ft
W(t)f ft

W(−t) dt.

While J (ξ) is known, we have to produce an accessible version of I (ξ) to elimi-
nate the unknown f ft

W . That is given by

Î (ξ) = 1

2πn(n − 1)

∫ |f ft
δ (t)|r

{|f ft
δ (t)| ∨ ξ |t |ρ}r+2

∑∑
j �=k

exp{it (Wj − Wk)}dt,

and so we use as our criterion

CV(ξ) = J (ξ) − 2�Î (ξ).(3.2)
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(Note that r > 0 has to be chosen sufficiently large to ensure the integrability of
|f ft

δ |r , and that, provided fδ is square-integrable, this requires only r ≥ 2.) Finally,
we select the smoothing parameter

ξ̂ = arg min
ξ>0

CV(ξ).(3.3)

Sections 4 and 5 will briefly discuss theoretical and numerical properties, respec-
tively, of this technique.

This approach has a straightforward analogue for determining smoothing pa-
rameters in the “standard” errors-in-variables problem (2.6). In that case we treat
separately the numerator and denominator in (2.7), and so the estimator g̃ is com-
puted using two different smoothing parameters. The case of Berkson’s errors-in-
variables problem is more difficult to address, however.

4. Theoretical properties.

4.1. The nonoscillatory case. Here we consider the case where the character-
istic function of δ does not vanish on the real line. Given β > 1/2,C > 0, define
F 1

βC to be the Sobolev class of all densities fX for which∫
|f ft

X(t)|2(1 + t2)β dt ≤ C.(4.1)

Concerning the error density, fδ , we consider ordinary-smooth densities

C1(1 + t2)−ν ≤ |f ft
δ (t)|2 ≤ C2(1 + t2)−ν, for −∞ < t < ∞,(4.2)

with ν > 0 and 0 < C1 < C2 < ∞, as well as supersmooth densities

exp(−c1|t |γ ) ≤ |f ft
δ (t)| ≤ exp(−c2|t |γ ), for −∞ < t < ∞,(4.3)

with c1 ≥ c2 > 0 and γ > 0.
We take the ridge function h(t) to be a scalar, that is, ρ = 0 in the notation

of (3.1). Let EXδ denote expectation under the assumption that X1, . . . ,Xn and
δ1, . . . , δn have densities fX and fδ , respectively. Write | · | for the L2 norm on the
space of square-integrable, real-valued functions.

THEOREM 4.1. In (3.1) take ρ = 0 and ζ as given below. (a) If fδ satisfies
(4.2), and if r > 0 ∨ (ν−1 − 1) and ζ = ν/(2β + 2ν + 1), then the estimator
f̂X = �f̃X , with f̃X defined at (2.4), satisfies

sup
fX∈F 1

βC

EXδ‖X − fX‖2 = O
(
n−2β/(2β+2ν+1)).

(b) If fδ satisfies (4.3), and if r = 0 and 0 < ζ < 1
4 , then

sup
fX∈F 1

βC

EXδ‖X − fX‖2 = O{(logn)−2β/γ }.
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Optimality of these convergence rates follows from results of Fan [12, 15] for
Hölder classes. Under additional regularity assumptions on fδ , they can be ex-
tended to Sobolev classes; see Neumann [25] and Hesse and Meister [21]. A proof
of Theorem 4.1 is included in a longer version of this paper (Hall and Meister [19])

4.2. The oscillatory case. Given β > 1/2,C > 0, define F 2
βC and F 3

βC to be,
respectively, the classes of densities fX for which∫ {|f ft

X(t)|2 + |f ft
X(t)||(f ft

X)′(t)|}(1 + t2)β dt ≤ C

and |f ft
X(t)| ≤ C|t |−β−(1/2). [In the case of F 2

βC we assume that (f ft
X)′ is well

defined.] These conditions amount to upper bounds on the smoothness of fX , al-
ternative to that given by (4.1). To appreciate the connections among F 1

βC , F 2
βC

and F 3
βC , note that F 2

βC ⊆ F 1
βC , and that, provided

|(f ft
X)′|/|f ft

X | ≤ C1(4.4)

(which condition is typically true for Laplace-type distributions, for which |f ft
X(t)|

decreases in a polynomial way as |t | increases), fX ∈ F 1
βC entails fX ∈ F 2

βC2
,

where C2 = C(1+C1). Also, if fX ∈ F 3
βC3

and ε ∈ (0, β − 1
2), then fX ∈ F 2

β−ε,C3
,

where

C3 =
∫ 1

0
(1 + t2)β dt + C2

∫ ∞
1

|t |−2β−1(1 + t2)β dt;

and if fX ∈ F 3
βC and (4.4) holds, then fX ∈ F 1

β−ε,C4
, where

C4 = (C1 + 1)

∫ 1

0
(1 + t2)β dt + C(C1 + C)

∫ ∞
1

|t |−2β−1(1 + t2)β dt.

To give a more intuitive description of the densities in F 3
βC , we mention that,

for integer β + 1
2 , the relation fX ∈ F 3

βC follows if the derivatives f
(l)
X (x) tend to

zero as |t | → ∞, for all l ≤ β + 1
2 , and

∫ |f (β+1/2)(x)|dx ≤ C. Hence, F 3
βC might

be interpreted as an L1(R)-analogue of the Sobolev class F
1
βC .

Given µ ≥ 1, ν > 0, 0 < C1 < C2 < ∞, λ > 0 and T > 0, denote by Gνµλ the
class of probability densities fδ for which

C1| sin(λt)|µ|t |−ν ≤ |f ft
δ (t)| ≤ C2| sin(λt)|µ|t |−ν for all |t | > T(4.5)

and f ft
δ (t) does not vanish for |t | ≤ T .

The parameter µ describes the “order” of the isolated zeros of f ft
δ . Note that all

self-convolved uniform densities are in Gνµλ for appropriate parameter choices,
as too are their convolutions with any ordinary-smooth density. Accordingly, we
introduce the class G′

dγµλ of all densities satisfying (4.5) when |t |−ν is replaced by



1542 P. HALL AND A. MEISTER

exp(−d|t |γ ), with d, γ > 0. For instance, convolutions of uniform densities with
normal densities are included in G′

dγµλ for suitably chosen parameters.
Preparing for Theorem 4.2(a), put

ρ



∈
(

µ + ν

2µ − 1
,2µβ − ν

)
, if 2β + 2ν + 1 < 4µβ,

= µ + ν

2µ − 1
, if 2β + 2ν + 1 = 4µβ,

∈
(

2µβ − ν,
µ + ν

2µ − 1

)
, otherwise,

(4.6)

ζ =


1

2
, if 2β + 2ν + 1 ≤ 4µβ,

ν + ρ

2β + 2ν + 1
, otherwise.

(4.7)

THEOREM 4.2. (a) Define h(t) as at (3.1), with ρ and ζ as in (4.6) and (4.7),
respectively. If fδ ∈ Gνµλ where ν > 0 and µ ≥ 1, and if r > 0 ∨ (ν−1 − 1), then,
for f̂X = �f̃X and j = 2,3, we have

sup
fX∈F

j
βC

EXδ‖f̂X − fX‖2

(4.8)

=


O
(
n−1/(2µ)

)
, if 2β + 2ν + 1 < 4βµ,

O
(
n−1/(2µ) logn

)
, if 2β + 2ν + 1 = 4βµ,

O
(
n−2β/(2β+2ν+1)

)
, otherwise.

(b) Define h(t) as at (3.1), with ρ = 0 and ζ ∈ (0, 1
4). If fδ ∈ G′

dγµλ, and if
r = 0, then for j = 1,2,3,

sup
fX∈F

j
βC

EXδ‖f̂X − fX‖2 = O{(logn)−2β/γ }.

To interpret part (a) of the theorem, note that for ordinary-smooth fδ , the non-
classical rate n−1/(2µ) arises if µ is large enough in relation to ν and β . Then the
difficulty created by the isolated zeros of f ft

δ dominates the difficulty caused by the
decay of f ft

δ in the tails. Part (b) implies that, unlike the case of ordinary-smooth
densities, the existence of isolated zeros of f ft

δ does not cause any deterioration
of convergence rates for supersmooth error densities, even for the comprehensive
smoothness class F 1

βC .
Next we show that the convergence rates in Theorem 4.2(a) are optimal, or

nearly optimal in the case 2β + 2ν + 1 = 4βµ.

THEOREM 4.3. Let f̂ be an arbitrary estimator of f based on the sample
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W1, . . . ,Wn. Assume the existence of at least one T > 0 such that

lim sup
t→T

|f ft
δ (t)|/|t − T |µ < ∞ and

(4.9)
lim sup

t→T

|(f ft
δ )′(t)|/|t − T |µ−1 < ∞.

Then for j = 2,3,

lim sup
n→∞

sup
fX∈F

j
βC

n1/(2µ)EXδ‖f̂ − fX‖2 > 0.(4.10)

If, in addition, fδ ∈ Gνµλ and |(f ft
δ )′(t)| ≤ c|t |−ν for some c > 0 and all t , and C

is sufficiently large, then

lim sup
n→∞

sup
fX∈F 3

βC

n2β/(2β+2ν+1)EXδ‖f̂ − fX‖2 > 0.(4.11)

Note that, for integer µ, (4.9) is satisfied if f ft
δ is µ-times continuously dif-

ferentiable in a neighborhood of T , and (f ft
δ )(0)(T ) = · · · = (f ft

δ )(µ−1)(T ) = 0.
Due to the greater stringency of the smoothness classes when j = 2,3, the lower
bound (4.11) does not follow from earlier results for j = 1.

Note that (4.9), in contradistinction to (4.5), requires f ft
δ to decrease to zero at

only a single point. Hence, if f ft
δ decreases to zero at different polynomial rates

at different points, and if the fastest of these rates is κ , say, then the convergence
rate of an arbitrary estimator f̂ to fX can be no faster than n−1/(2κ). Also note
that (4.10) remains valid if we replace fX ∈ F

j
βC by stronger smoothness assump-

tions, for instance, classes of supersmooth fX where f ft
X shows exponential decay

or densities whose Fourier transforms are compactly supported as long as the end-
point of their support is larger than T .

Assumption (4.9) is weaker in other respects than (4.5), in particular, with re-
gard to tail behavior of f ft

δ . Although the second part of (4.9) involves an assump-
tion on the derivative of f ft

δ , that condition is a natural reflection of the first part
of (4.9).

We mention that slower minimax results are derived for the estimator (2.4) un-
der classes of ordinary smooth densities which are weaker than F 2

βC or F 3
βC ; see

the long version of this paper for details (Hall and Meister [19]).

4.3. Adaptivity. Here we state an optimality result for data-driven selection of
the smoothing parameter, ξ̂ , defined at (3.3). For simplicity, we confine attention
to the nonoscillatory case and a special oscillatory case.

THEOREM 4.4. Assume either the conditions of Theorem 4.1(a) with fX ∈
F 1

βC , or the conditions of Theorem 4.2(a) with fX ∈ F 2
βC ∪F 3

βC , and r ≥ 2∨(2/ν),
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4µβ < β + 2ν + 1 and ρ < (2µ + ν)/(4µ − 1). Then, with probability 1,

‖f̂
ξ̂
− fX‖2

infξ>0 E‖f̂ξ − fX‖2
→ 1.(4.12)

Note that the parameters r and ρ do not depend on β , and give the “scale” of
smoothness classes to which the choice of ξ adapts.

A proof of Theorem 4.4 is included in the long version of this paper (Hall and
Meister [19]).

In related work, although in the setting of kernel methods, Delaigle and Gij-
bels [9] compare plug-in and bootstrap methods for choosing the bandwidth, and
Delaigle and Gijbels [10] suggest a bootstrap technique. The approaches discussed
in both articles produce, like our cross-validation algorithm, asymptotic optimal-
ity. A major difference, however, is that in our setting, for our nonkernel method,
the level of smoothness is not supposed known in advance. In this context, Theo-
rem 4.4 shows that cross-validation can choose the degree of smoothness adap-
tively. By way of contrast, the selection of the kernel, in the case of a kernel
method, is made in the light of the assumed level of smoothness of the target
density, and theoretical arguments are predicated on that level being correct.

5. Numerical properties. Here we present simulation results addressing the
performance of our estimators. We give graphs in two cases, (a) the regular-
smooth, nonoscillatory case, and (b) the regular-smooth, oscillatory case.

In each setting, and for each parameter setting, we drew 100 random samples
and ranked them in order of the size of integrated squared error (ISE). In each
figure the five unbroken curves are density estimates corresponding to the largest,
25th largest, 50th largest, 75th largest and smallest value of ISE; the dashed curve
depicts the true density, fX . Sample size, n, is given below each figure. As dis-
cussed in Sections 3 and 4, in cases (a) and (b) we fixed ρ at 0 and 2, respectively,
and chose the only remaining smoothing parameter, ξ in the formula h(t) = ξ |t |ρ ,
by cross-validation.

Numerical results in case (a), but using methods quite different from our own,
are widely available in the literature. For recent examples, see Delaigle and Gij-
bels [9, 10] in the setting of kernel techniques, and Comte, Rozenholc and Taupin
[6, 7] for penalization methods. Case (a) is also addressed in Figures 1–6, where
we take fδ to be the Laplace density. As the target density fX we used the bi-
modal 1

2{N(2,1) + N(−2,1)} density for Figures 1 and 2, the two-fold convo-
lution of the Laplace density for Figures 3 and 4, and the shifted χ2-density
fX(x) = (1/16)(x + 4)2 exp{−1

2(x + 4)}, for x > −4, for Figures 5 and 6.
In Figures 7–12 we illustrate case (b), for the same respective densities fX as in

case (a). In case (b), fδ was the uniform density on [−1,1].
It can be deduced from the figures for cases (a) and (b) that: (i) our estimator

has a little more difficulty with the bimodal density, compared with the unimodal
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FIG. 1. n = 400, r = 2, ρ = 0, ξ by CV average integrated squared error = 0.013.

FIG. 2. n = 700, r = 2, ρ = 0, ξ by CV average integrated squared error = 0.0009.



1546 P. HALL AND A. MEISTER

FIG. 3. n = 400, r = 2, ρ = 0, ξ by CV average integrated squared error = 0.006.

FIG. 4. n = 700, r = 2, ρ = 0, ξ by CV average integrated squared error = 0.004.
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FIG. 5. n = 400, r = 2, ρ = 0, ξ by CV average integrated squared error = 0.005.

ones; (ii) the estimator finds the nonoscillatory case (a) more challenging than
the oscillatory case (b); and (iii) performance gradually improves with increasing
sample size. Property (i) is to be expected, since case (a) is characterized by greater
structure, which the estimator is pressed to discover; property (ii) is the result of f ft

δ

decreasing more rapidly in the tails in case (a) than in case (b); and property (iii)
reflects a steady decline in values of averaged integrated squared error as n grows.
Simulations in the case of supersmooth error, more precisely, fδ = N(0,1) and fδ

equal to the convolution of a normal and a uniform density, show that n = 1000
gives results broadly similar to those for n = 400 in case (b).

Figures 13 and 14 show results for the kernel estimator in the setting of Figures 1
and 2. Sample sizes are n = 400 and 700 for the respective figures, the density in
each case is the normal mixture defined three paragraphs above, and the smoothing
parameter (this time, the bandwidth) was chosen by cross-validation. The kernel
for these results has Fourier transform (1 − t2)3 for |t | ≤ 1; this choice is popular
in kernel deconvolution. For both sample sizes the kernel estimator is more erratic
than its ridge competitor, reflecting the fact that it has consistently higher values of
average mean integrated squared error. This is observed in the case of the unimodal
density too.

6. Outline proofs. In this section we write const. for a generic positive con-
stant.
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FIG. 6. n = 700, r = 2, ρ = 0, ξ by CV average integrated squared error = 0.004.

6.1. Preparatory lemma. The following result can be proved by Parseval’s
identity and Fubini’s theorem. Define Gn = {t ∈ R : |f ft

δ (t)|2 < h(t)2}, and write
Gc

n for the complement of Gn.

LEMMA 6.1. The mean integrated squared error of our estimator is bounded
above by Vn + Bn and by V1,n + V2,n + Bn, where

Vn = 1

2π
n−1

∫
|f ft

δ (t)|2+2rh(t)−(4+2r) dt,

V1,n = 1

2π
n−1

∫
Gn

|f ft
δ (t)|2+2rh(t)−(4+2r) dt,

V2,n = 1

2π
n−1

∫
Gc

n

|f ft
δ (t)|−2 dt, Bn = 1

2π
sup
fX

∫
Gn

|f ft
X(t)|2 dt.

The bounds Vn +Bn and V1,n +V2,n +Bn will be used to derive rates for super-
smooth and ordinary-smooth error densities, respectively. In particular, Lemma 6.1
leads directly to Theorem 4.1.

6.2. Proof of Theorem 4.2(a). Define Gn,j = Gn ∩ Ij and Ij = [tj,−, tj,+],
where tj,± = (j ± 1

2)π/λ. Since Gn is symmetric about zero, and Gn,0 is empty
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FIG. 7. n = 400, r = 2, ρ = 2, ξ by CV average integrated squared error = 0.003.

FIG. 8. n = 700, r = 2, ρ = 2, ξ by CV average integrated squared error = 0.001.
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FIG. 9. n = 400, r = 2, ρ = 2, ξ by CV average integrated squared error = 0.002.

FIG. 10. n = 700, r = 2, ρ = 2, ξ by CV average integrated squared error = 0.001.
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FIG. 11. n = 400, r = 2, ρ = 2, ξ by CV average integrated squared error = 0.001.

for n sufficiently large, we may restrict attention to j ≥ 1. Now, for t ∈ Gn,j ,

| sin(λt)| ≤ C
−1/µ
1 n−ζ/µ|t |(ρ+ν)/µ = ϕ1,n(t),

say. It may be shown using a geometric argument that Gn,j ⊆ [t ′n,j,−, t ′n,j,+],
where, taking the plus and minus signs, respectively, t ′n,j,± denotes the intersection
of the horizontal line y = ϕ1,n(tj,+) and the line connecting the points (jπ/λ,0)

and (tj,+,1) [(jπ/λ,0) and (tj,−,1)]. Therefore,

t ′n,j,± = j
π

λ
± C∗

1n−ζ/µ

(
j + 1

2

)(ρ+ν)/µ

,

where C∗
1 > 0.

In the arguments immediately below, leading to a bound on V1,n, we use the
property Gn,j ⊆ [t ′n,j,−, t ′n,j,+] for j ≤ j ′

n ∼ nζ/(ρ+ν), where j ′
n denotes the largest

j for which the inclusion relation holds. For larger values of j , we use the property
Gn,j ⊆ Ij , thus obtaining

V1,n ≤ O
(
n2ζ(r+2)−1)[ j ′

n∑
j=1

∫ t ′n,j,+

t ′n,j,−
{sin(λt)}2µ(r+1)|t |−2(ν+2ρ)−2r(ν+ρ) dt

+
∫
t>t ′

j ′
n,−
{sin(λt)}2µ(r+1)|t |−2(ν+2ρ)−2r(ν+ρ) dt

]
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FIG. 12. n = 700, r = 2, ρ = 2, ξ by CV average integrated squared error = 0.0007.

≤ O
(
n2ζ(r+2)−1) j ′

n∑
j=1

j−2(ν+2ρ)−2r(ν+ρ)
∫ t ′n,j,+−jπ/λ

t ′n,j,−−jπ/λ
t2µ(r+1) dt

+ O
(
n2ζ(r+2)−1j ′1−2(ν+2ρ)−2r(ν+ρ)

n

)
≤ O

(
n−1+ζ(2µ−1)/µ) j ′

n∑
j=1

j−2ρ+(ρ+ν)/µ + O
(
n−1+ζ(2ν+1)/(ν+ρ)).

From this bound it may be proved that

V1,n =


O
(
n−1+ζ(2µ−1)/µ

)
, if ρ > (µ + ν)/(2µ − 1),

O
(
n−1+ζ(2µ−1)/µ logn

)
, if ρ = (µ + ν)/(2µ − 1),

O
(
n−1+ζ(2ν+1)/(ν+ρ)

)
, otherwise.

A similar argument can be used to bound the bias term Bn:

Bn ≤ 1

2π
sup
fX

j ′
n∑

j=1

∫ t ′n,j,+

t ′n,j,−
|f ft

X(t)|2 dt + O(j ′−2β
n ).
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FIG. 13. n = 400, bandwidth by CV average integrated squared error = 0.0012.

FIG. 14. n = 700, bandwidth by CV average integrated squared error = 0.009.



1554 P. HALL AND A. MEISTER

At this point it is necessary to treat separately the cases fX ∈ F
j
βC , for j = 2,3.

When j = 3,

Bn ≤ 1

2π
sup
fX

j ′
n∑

j=1

j−2β−1(t ′n,j,− − t ′n,j,+) + O
(
n−2ζβ/(ρ+ν))

=


O(n−ζ/µ), if ρ + ν < 2µβ,
O(n−ζ/µ logn), if ρ + ν = 2µβ,
O

(
n−2βζ/(ρ+ν)

)
, otherwise.

When j = 2,

max
t∈[tn,j,−,tn,j,+] |f

ft
X(t)|2 =

{
max

t∈[tn,j,−,tn,j,+] |f
ft
X(t)|2 − min

t∈[tn,j,−,tn,j,+] |f
ft
X(t)|2

}
+ min

t∈[tn,j,−,tn,j,+] |f
ft
X(t)|2

≤ O(j−2β)

∫ t ′n,j,+

t ′n,j,−
(1 + t2)β{|f ft

X(t)|2 + |f ft
X(t)||f ft

X
′(t)|}dt.

This leads to the same upper bound on Bn as in the case j = 3.
Finally we bound V2,n. There, we need a lower bound for Gn, obtained as fol-

lows. Then t ∈ Gn,j is implied by

| sin(λt)| ≤ C
−1/µ
2 n−ζ/µ|t |(ρ+ν)/µ = ϕ2,n(t),

say. Let t ′′n,j,− < t ′′n,j,+ denote the intersections of the horizontal line y = ϕ2,n(tj,−)

and both tangent lines at t = jπ/λ of the curve with equation y = | sin(λt)|. Then,
for sufficiently small j , [t ′′n,j,−, t ′′n,j,+] ⊆ Gn,j , and so

t ′′n,j,± = j
π

λ
± C∗

2n−ζ/µ

(
j − 1

2

)(ρ+ν)/µ

,

where C∗
2 > 0.

Let j ′′
n ∼ nζ/(ρ+ν) denote the largest j for which [t ′′n,j,−, t ′′n,j,+] ⊆ Gn,j . We use

this inclusion relation if j ≤ j ′′
n , and the relation Ij ⊆ Gn,j otherwise. This leads

to the property

[0,∞) ∩ Gc
n ⊆

j ′′
n⋃

j=1

(Ij\[t ′′n,j,−, t ′′n,j,+]) ∪ I0.

To bound V2,n we apply this formula to the integral over t ∈ Gc
n with t > 0. The

contribution from I0 can be shown to equal O(n−1), and so is negligible. Defining
I ′′
n,j = Ij\[t ′′n,j,−, t ′′n,j,+], and the shifted set I sh

n,j = [−π/(2λ), t ′′n,j,− − jπ/λ] ∪
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[t ′′n,j,+ − jπ/λ,π/(2λ)], it may be proved that

V2,n ≤ O(n−1)

j ′′
n∑

j=1

∫
I ′′
n,j

| sin(λt)|−2µ|t |2ν dt

≤ O(n−1)

j ′′
n∑

j=1

j2ν
∫
I sh
n,j

| sin(λt)|−2µ dt

= O
(
n−1+ζ(2µ−1)/µ) j ′′

n∑
j=1

j2ν+(ρ+ν)(1−2µ)/µ.

This leads to the same upper bound for V2,n that we derived earlier for V1,n. Sub-
stituting for ρ and ζ from (4.6) and (4.7), we obtain Theorem 4.2(a).

6.3. Proof of Theorem 4.2(b). Using Lemma 6.1, it may be shown that Vn =
O(n−1+4ζ ). Note too that, for t ∈ Gn,

| sin(λt)| ≤ C
−1/µ
1 n−ζ/µ exp{(d/µ)|t |γ }.(6.1)

Define tn = {ζ/(2d)}1/γ (logn)1/γ . If |t | ≤ tn, then | sin(λt)| ≤ C
−1/µ
1 n−ζ/(2µ),

and hence, using (6.1), |t − kπ/λ| ≤ {πC−1/µ/(2λ)}n−ζ/(2µ) for integers k. From
these properties it may be proved that, for fX ∈ F

j
βC for j = 1,2 or 3,

Bn = O
(
tnn

−ζ/(2µ) + t−2β
n

) = O{(logn)−2β/γ }.
6.4. Proof of Theorem 4.3. First we derive (4.10). We introduce the density

f0(x) = (1 − cosx)/(πx2), having the “tent”-shaped Fourier transform, f ft
0 (t) =

1 − |t | for |t | ≤ 1, and the supersmooth Cauchy density f1(x) = (1/π)(1 + x2)−1.
Define too the densities

fn,θ (x) = 1
2εnf1(εnx) + 1

2εnf0(εnx){1 + ηθ cos(T x)},
with η ∈ (0, 1

2 ], θ ∈ {0,1} and a positive-valued sequence εn ↓ 0, to be defined
later. The characteristic function corresponding to fn,θ is

f ft
n,θ (x) = 1

2f ft
1 (t/εn) + 1

2f ft
0 (t/εn) + 1

4ηθf ft
0 {(t + T )/εn} + 1

4ηθf ft
0 {(t − T )/εn}.

Using the fact that εn ↓ 0, it can be shown that if η is sufficiently small, then
fn,θ ∈ F

j
βC can be verified for any C and β .

Write f1 ∗ f2 for the convolution of functions f1 and f2. It was proved by
Fan [12] that if the χ2-distance between the densities fn,0 ∗fδ and fn,1∗fδ satisfies

χ2(fn,1 ∗ fδ, fn,0 ∗ fδ)
(6.2)

=
∫ |(fn,0 ∗ fδ)(x) − (fn,1 ∗ fδ)(x)|2

(fn,0 ∗ fδ)(x)
dx = O(n−1),
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then, for a constant c > 0, for any estimator f̂ and for all sufficiently large n,

sup
f ∈F

j
βC

E‖f̂ − f ‖2 ≥ c‖fn,1 − fn,0‖2.(6.3)

It may be shown from the definition of fn,0(x) that

χ2(fn,1 ∗ fδ, fn,0 ∗ fδ) ≤ 2ε−1
n

∫ [{(fn,0 − fn,1) ∗ fδ}(x)]2

{f1(εn·) ∗ fδ}(x)
dx.

Also, if q is so large so that
∫
|y|≤q fδ(y) dy > 0,

{f1(εn·) ∗ fδ}(x) ≥ π−1
∫
|y|≤q

fδ(y){1 + 2ε2
n(x

2 + y2)}−1 dy

≥ const.(1 + ε2
nx

2)−1.

Therefore,

χ2(fn,1 ∗ fδ, fn,0 ∗ fδ) ≤ const.
∫

{(fn,0 − fn,1) ∗ fδ}2(x)(ε−1
n + εnx

2) dx.

To bound the right-hand side, use the identity (f ft)′ = i{·f (·)}ft and the Parseval
identity to obtain

χ2(fn,1 ∗ fδ, fn,0 ∗ fδ) ≤ const.
[
ε−1
n

∫
|(fn,0 − fn,1)

ft(t)|2|f ft
δ (t)|2 dt

+εn

∫
|{(fn,0 − fn,1)

ft}′(t)|2|f ft
δ (t)|2 dt

+εn

∫
|(fn,0 − fn,1)

ft(t)|2|(f ft
δ )′(t)|2 dt

]
.

Therefore, using the fact that (fn,0 − fn,1)
ft and {(fn,0 − fn,1)

ft}′ are both sup-
ported on [−T − εn,−T + εn] ∪ [T − εn, T + εn], we may show that χ2(fn,1 ∗
fδ, fn,0 ∗ fδ) equals

O

{
ε−1
n

∫ T +εn

T −εn

|f ft
δ (t)|2 dt + εn

∫ T +εn

T −εn

|(f ft
δ )′(t)|2 dt + ε−1

n

∫ T +εn

T −εn

|f ft
δ (t)|2 dt

}
.

Using (4.9) to bound the right-hand side, we may thus show that χ2(fn,1 ∗fδ, fn,0∗
fδ) = O(ε

2µ
n ). Hence, choosing εn = n−1/(2µ) guarantees the validity of (6.3).

Again, Parseval’s identity may be used to prove that

‖fn,1 − fn,0‖2 ≥ const.εn,

which implies (4.10).
Finally we turn to (4.11). With the densities f0, f1 as above, we construct the

subclass of densities

f̃n,θ (x) = 1
2{f1(x) + f0(x)} + const.

∑
kn≤j≤2kn

θj j
−β−(1/2) cos(2jx)f0(x),
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with kn an integer satisfying kn ↑ ∞, and θj ∈ {0,1}. The class F 3
βC contains all

densities f̃n,θ . By modeling the θj ’s as independent random variables with P(θj =
0) = 1

2 , the lower bound (4.11) may be established using arguments similar to those
in the proof of Fan [15].
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