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SIZE, POWER AND FALSE DISCOVERY RATES

BY BRADLEY EFRON

Stanford University

Modern scientific technology has provided a new class of large-scale si-
multaneous inference problems, with thousands of hypothesis tests to con-
sider at the same time. Microarrays epitomize this type of technology, but
similar situations arise in proteomics, spectroscopy, imaging, and social sci-
ence surveys. This paper uses false discovery rate methods to carry out both
size and power calculations on large-scale problems. A simple empirical
Bayes approach allows the false discovery rate (fdr) analysis to proceed with
a minimum of frequentist or Bayesian modeling assumptions. Closed-form
accuracy formulas are derived for estimated false discovery rates, and used
to compare different methodologies: local or tail-area fdr’s, theoretical, per-
mutation, or empirical null hypothesis estimates. Two microarray data sets
as well as simulations are used to evaluate the methodology, the power di-
agnostics showing why nonnull cases might easily fail to appear on a list of
“significant” discoveries.

1. Introduction. Large-scale simultaneous hypothesis testing problems, with
hundreds or thousands of cases considered together, have become a familiar fea-
ture of current-day statistical practice. Microarray methodology spearheaded the
production of large-scale data sets, but other “high throughput” technologies are
emerging, including time of flight spectroscopy, proteomic devices, flow cytome-
try and functional magnetic resonance imaging.

Benjamini and Hochberg’s seminal paper [3] introduced false discovery rates
(Fdr), a particularly useful new approach to simultaneous testing. Fdr theory re-
lies on p-values, that is on null hypothesis tail areas, and as such operates as an
extension of traditional frequentist hypothesis testing to simultaneous inference,
whether involving just a few cases or several thousand. Large-scale situations,
however, permit another approach: empirical Bayes methods can bring Bayesian
ideas to bear without the need for strong Bayesian or frequentist assumptions. This
paper pursues large-scale false discovery rate analysis from an empirical Bayes
point of view, with the goal of providing a versatile methodology for both size and
power considerations.

The left panel of Figure 1 concerns a microarray example we will use to in-
troduce our main ideas. 102 microarrays, 50 from nontumor subjects and 52 from
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FIG. 1. Histograms of z values from two microarray experiments. Left panel, prostate data, com-
parison of 50 nontumor subjects with 52 tumor patients for each of 6033 genes; Singh et al. [31].
Right panel, HIV data, comparison of 4 HIV negative subjects with 4 HIV positive patients for
7680 genes; van’t Wout et al. [34], discussed in [16]. The central peak of the prostate data histogram
closely follows the theoretical N(0,1) null density (solid curve), but the HIV histogram is substan-
tially too narrow. Short vertical bars are estimated nonnull counts, useful for power calculations, as
discussed in Section 3. Estimated null proportion p0 equals 0.93 in both experiments.

prostate cancer patients, each measured expression levels for the same N = 6033
genes. Each gene yielded a two-sample t-statistic ti comparing tumor versus non-
tumor men, which was then transformed to a z value,

zi = �−1(F100(ti)),(1.1)

where F100 is the cumulative distribution function (c.d.f.) of a Student’s t distrib-
ution with 100 degrees of freedom, and � is the standard normal c.d.f.

We expect zi to have nearly a N(0,1) distribution for “null” genes, the ones
behaving similarly in tumor and nontumor situations. The left histogram looks
promising in this regard: its large central peak, which is nicely proportional to
a N(0,1) density, charts the presumably large majority of null genes, while the
heavy tails suggest some interesting “nonnull” genes, those responding differently
in the two situations, the kind the study was intended to detect.

NOTE. It is not necessary that the zi ’s be obtained from t-tests or that the
individual cases correspond to genes. Each of the N cases might involve a sepa-
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FIG. 2. Local false discovery rate fdr(z), (1.2) for prostate data, solid curve. 51 genes, 25 on the
left and 26 on the right, have fdr(zi) ≤ 0.2, a reasonable threshold for reporting nonnull cases.
Solid bars show estimated nonnull histogram (plotted negatively, divided by 50), constructed as in
Section 3. Most of the nonnull cases will not be reported.

rate linear regression for example, with the ith case yielding p-value pi for some
parameter of interest, and zi = �−1(pi).

Section 2 reviews Fdr theory with an emphasis on the local false discovery rate,
defined in a Bayesian sense as

fdr(zi) = Prob{gene i is null|zi = z}.(1.2)

An estimate of Fdr (z) for the prostate data is shown by the solid curve in Figure 2,
constructed as in Section 2, where it is suggested that a reasonable threshold for
reporting likely nonnull genes is fdr(zi) ≤ 0.2. 51 of the 6033 genes have fdr ≤ 0.2,
25 on the left and 26 on the right. A list of these genes could be reported to the
investigators with assurances that it contains less than 20% null cases. Here fdr
methods are being used to control size, or Type I errors.

The solid bars in Figures 1 and 2 are estimates of the nonnull histogram, what
we would see if we had z values only for the nonnull genes, constructed as in
Section 3. Combined with the fdr curve, the nonnull histogram helps assess power,
the ability of the data to identify nonnull genes. Figure 2 suggests low power for
the prostate data: most of the nonnull cases have large values of fdr (zi), and cannot
be reported on a list of interesting genes without also reporting a large percentage
of null cases. Section 3 constructs some simple power diagnostics based on fdr
considerations.
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Following [3], most of the Fdr literature has focussed on tail area false discovery
rates,

Fdr(zi) = Prob{gene i is null|zi ≤ z}(1.3)

(or Prob{null|zi ≥ z} depending on the sign of z). Section 2 discusses the rela-
tionship of fdr to Fdr, with relative efficiency calculations presented in Section 5.
Local fdr’s fit in better with empirical Bayes development, and are featured here,
but most of the ideas apply just as well to tail area Fdr’s.

The discussion in Sections 2 and 3 assumes that the appropriate null distribution
is known to the statistician, perhaps being the theoretical N(0,1) null suggested
by (1.1), or its permutation-based equivalent [also nearly N(0,1) for both data sets
in Figure 1]. This is tenable for the prostate data, but not for the HIV data. Sections
4 and 5 consider the more difficult and common large-scale testing situation where
there is evidence against the theoretical null. Efron [8–10] discusses estimating an
empirical null in situations like that for the HIV data where the central histogram
does not match N(0,1). Some methodology for constructing empirical nulls is de-
scribed in Section 4, and its efficiency investigated in Section 5. [It gives empirical
null N(−0.011,0.752) for the HIV data, as shown in Figure 1.]

Three pairs of related ideas are considered here:

• Size and power calculations for large-scale simultaneous testing.
• Local and tail-area false discovery rates.
• Theoretical and empirical null hypotheses.

All combinations are possible, a power analysis using local fdr with a theoretical
null distribution for instance, but only a few are illustrated in the text.

A substantial microarray statistics literature has developed in the past few years,
much of it focused on the control of frequentist Type I errors; see, for example,
[7], and the review article by Dudoit, Shaffer and Boldruck [6]. Bayes and em-
pirical Bayes methods have also been advocated, as in [18, 19] and [27], while
Benjamini and Hochberg’s Fdr theory is increasingly influential; see [15] and [33].
Lee et al. [22] and Kerr, Martin and Churchill [20] discuss large-scale inference
from ANOVA viewpoints. Local fdr methods, which this article argues can play
a useful role, were introduced in [14]; several references are listed at the end of
Section 2. The paper ends with a brief summary in Section 6.

2. False discovery rates. Local false discovery rates [13, 14], are a variant of
[3] “tail area” false discovery rates. This section relates the two ideas, reviews a
few basic properties, and presents some general guidelines for interpreting fdr’s.

Suppose we have N null hypotheses to consider simultaneously, each with its
own test statistic,

Null hypothesis: H1,H2, . . . ,Hi, . . . ,HN,
(2.1)

Test statistic : z1, z2, . . . , zi, . . . , zN ;
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N must be large for local fdr calculations, at least in the hundreds, but the zi need
not be independent. (At least not for getting consistent Fdr estimates, though cor-
relations can decrease the accuracy of such estimates, as detailed in Section 5.)
A simple Bayesian “two-class” model, [14, 22, 26], underlies the theory: we as-
sume that the N cases are divided into two classes, null or nonnull, occurring with
prior probabilities p0 or p1 = 1 − p0, and with the density of the test statistic z

depending upon its class,

p0 = Pr{null}, f0(z) density if null,
(2.2)

p1 = Pr{nonnull}, f1(z) density if nonnull.

It is natural to take f0(z) to be a standard N(0,1) density in context (1.1),
the theoretical null. Here and in Section 3 we assume that f0(z) is known to the
statistician, deferring until Section 4 its estimation in situations like that for the
HIV data where the theoretical null is not believable. Fdr theory does not require
specification of f1(z), which is only assumed to be longer-tailed than f0(z), with
the nonnull zi ’s tending to occur farther away from 0. Proportion p0, the Bayes a
priori probability of a gene being null, is also supposed known here, its estimation
being discussed in Sections 4 and 5. Practical applications of large-scale testing
usually assume p0 large, say

p0 ≥ 0.9,(2.3)

the goal being to identify a relatively small set of interesting nonnull cases. Under
assumption (2.3), p0 has little practical effect on the usual false discovery rate
calculations, that is, on the control of Type I errors, but it will become more crucial
for the power diagnostics of Section 3.

Define the null subdensity

f +
0 (z) = p0f0(z)(2.4)

and the mixture density

f (z) = p0f0(z) + p1f1(z).(2.5)

The Bayes posterior probability that a case is null given z, by definition the local
false discovery rate, is

fdr(z) ≡ Pr{null|z} = p0f0(z)/f (z) = f +
0 (z)/f (z).(2.6)

The Benjamini–Hochberg false discovery rate theory relies on tail areas rather
than densities. Letting F0(z) and F1(z) be the c.d.f.’s corresponding to f0(z) and
f1(z) in (2.2), define F+

0 (z) = p0F0(z) and F(z) = p0F0(z) + p1F1(z). Then the
posterior probability of a case being null given that its z-value “Z” is less than
some value z is

Fdr(z) ≡ Pr{null|Z ≤ z} = F+
0 (z)/F (z).(2.7)
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FIG. 3. Geometrical relationship of Fdr to fdr; heavy curve plots F+
0 (z) versus F(z); fdr(z) is

slope of tangent, Fdr(z) slope of secant.

(It is notationally convenient to consider events Z ≤ z but we could just as well
consider tail areas to the right, two-tailed events, etc.) Figure 3 illustrates the geo-
metrical relationship between Fdr and fdr.

Analytically, Fdr is a conditional expectation of fdr [13],

Fdr(z) =
∫ z

−∞
fdr(Z)f (Z)dZ

/∫ z

−∞
f (Z)dZ

(2.8)
= Ef {fdr(Z)|Z ≤ z},

“Ef ” indicating expectation with respect to f (z) [13]. That is, Fdr(z) is the aver-
age of fdr(Z) for Z ≤ z; Fdr(z) will be less than fdr(z) in the usual situation where
fdr(z) decreases as |z| gets large. For example fdr(−3.39) = 0.20 in Figure 2 while
Fdr(−3.39) = 0.105. If the c.d.f.’s F0(z) and F1(z) are Lehmann alternatives,

F1(z) = F0(z)
α [α < 1],(2.9)

it is straightforward to show that

log
{

fdr(z)

1 − fdr(z)

}
= log

{
Fdr(z)

1 − Fdr(z)

}
+ log

(
1

α

)
,(2.10)

giving

fdr(z) .= Fdr(z)/α(2.11)

for small values of Fdr. The prostate data of Figure 1 has α roughly 1/2 in each
tail.

Benjamini and Hochberg’s [3] Fdr control rule depends on an estimated version
of (2.7) where F(z) is replaced by the empirical c.d.f. “F̄ ” of the z values,

F̂dr(z) = p0F0(z)/F̄0(z) [F̄ (z) = #{zi ≤ z}/N].(2.12)
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Storey [32] and Efron and Tibshirani [13] discuss the connection of the frequentist
Fdr control procedure with Bayesian form (2.7). Fdr(z) corresponds to Storey’s
“q-value,” the tail-area false discovery rate attained at a given observed value
zi = z. F̂dr(z) is biased upward as an estimate of Fdr(z); see Section 4 of [13].

The estimated fdr curve in Figure 2 is

f̂dr(z) = p0f0(z)/f̂ (z),(2.13)

where f0(z) is the standard normal density ϕ(z) = exp{−z2/2}/√2x, p0 = 0.932
is the value derived in Section 4, and f̂ (z) is a maximum likelihood estimate
(MLE) of the mixture density f (z), (2.5), within the seven-parameter exponen-
tial family described in Section 4. This type of flexible parametric modeling takes
advantage of the fact that f (z), as a mixture of null and nonnull z values, tends
to be quite smooth; see Section 6 of [9]. Lindsey’s method, Lindsey [24, 25] de-
scribed in Section 4, finds f̂ (z) using standard Poisson GLM software. The theory
and simulations of Section 5 show only a moderate cost in estimation variability
for f̂dr compared to F̂dr.

A variety of other local fdr estimation methods have been suggested: using more
specific parametric models such as normal mixtures, see [1, 28, 30] or [17]; iso-
tonic regression [4]; local smoothing [2]; and hierarchical Bayes analyses [5, 23].
All seem to perform reasonably well. The Poisson GLM methodology of this pa-
per has the advantage of easy implementation with familiar software, and permits
a closed-form error analysis as shown in Section 5.

Classical frequentist hypothesis testing methods rely on tail areas by necessity.
Large-scale testing situations allow us to do local calculations, which are more nat-
ural from a Bayesian point of view. For example, the 25 prostate data genes having
zi ≤ −3.39 have q-value F̂dr(−3.39) = 0.105; they have average f̂dr(zi) of about
0.105 [as in (2.8)], but varying from 0.20 at the boundary point zi = −3.39 down
to fdr(zi) = 0.01 at zi = −4.4. This just says the obvious, that zi ’s further from
the boundary are less likely to be false discoveries, which is the useful message
conveyed by f̂dr(z). The power diagnostics of Section 3 rely on the local Bayesian
interpretation (2.6).

The literature has not reached consensus on a standard choice of q for
Benjamini–Hochberg testing, the equivalent of 0.05 for single tests, but Bayesian
calculations offer some insight. The cutoff threshold fdr ≤ 0.20 used in Figure 2
yields posterior odds ratio

Pr{nonnull|z}/Pr{null|z} = (
1 − fdr(z)

)
/fdr(z)

(2.14)
= p1f1(z)/p0f0(z) ≥ 0.8/0.2 = 4.

If we assume prior odds ratio p1/p0 ≤ 0.1/0.9 as in (2.3), then (2.12) corresponds
to the Bayes factor

f1(z)/f0(z) ≥ 36(2.15)
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in favor of nonnull.
This threshold requires a much stronger level of evidence against the null hy-

pothesis then in standard one-at-a-time testing, where the critical threshold lies
somewhere near 3 [11]. We might justify (2.15) as being conservative in guarding
against multiple testing fallacies. More pragmatically, increasing the fdr threshold
much above 0.20 can deliver unacceptably high proportions of false discoveries
to the investigators. The 0.20 threshold, used in the remainder of the paper, corre-
sponds to q-values between 0.05 and 0.15 for reasonable choices of α in (2.11);
such q-value thresholds can be interpreted as reflecting a conservative Bayes factor
for Fdr interpretation.

Any choice of threshold is liable to leave investigators complaining that the sta-
tisticians’ list of nonnull cases omits some of their a priori favorites. Conveying
the full list of values fdr(zi), not just those for cases judged nonnull, allows in-
vestigators to employ their own prior opinions on interpreting significance. This
is particularly important for low-powered situations like the prostate study, where
luck plays a big role in any one case’s results, but it is the counsel of perfection,
and most investigators will require some sort of reduced list.

The basic false discovery rate idea is admirably simple, and in fact does not
depend on the literal validity of the two-class model (2.2). Consider the 28 genes
in the prostate example that have zi ≥ 3.3; the expected number of null genes
having zi ≥ 3.3 is 2.71 [= 6033 · 0.932(1 − �(3.3))], so

F̂dr = 2.71/28 = 0.097.(2.16)

The Fdr interpretation is that about one tenth of the 28 genes can be expected to be
null, the other nine tenths being genuine nonnull discoveries.

This interpretation does not require independence, nor even all of the null genes
to have the same density f0(z), only that their average density behaves like f0.
Since the denominator 28 is observed, the nonnull density f1(z) plays no role.
Exchangeability of the 28 cases is the only real assumption, coming into play when
we report that each of the 28 genes has the same one tenth probability of being
null. The local fdr has an advantage here, since the equivalent exchangeability
assumption is made only for genes having the same observed z values. These ideas
are examined in Section 4 of [13].

3. Power diagnostics. The microarray statistics literature has focussed on
controlling Type I error, the false rejection of genuinely null cases. Dudoit, van
der Laan and Pollard [7] provides a good review. Local fdr methods can also help
assess power, the probability of rejecting genuinely nonnull cases. This section dis-
cusses power diagnostics based on f̂dr(z), showing, for example, why the prostate
study might easily fail to identify important genes. The emphasis here is on diag-
nostic statistics that are dependable and simple to calculate.
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The nonnull density f1(z) in the two-class model (2.2), unimportant for the
“size” calculations of Section 2, plays a central role in assessing power. From
(2.5) and (2.6) we obtain

p1 =
∫ ∞
−∞

[1 − fdr(z)]f (z) dz = 1 − p0(3.1)

and

f1(z) = (
1 − fdr(z)

)
f (z)/p1.(3.2)

An estimate of f (z) gives f̂dr(z) as in (2.13), and then the estimated nonnull den-
sity

f̂1(z) = [1 − f̂dr(z)]f̂ (z)
/∫ ∞

−∞
[1 − f̂dr(z′)]f̂ (z′) dz′.(3.3)

Power diagnostics are obtained from the comparison of f̂1(z) with f̂dr(z). The
expectation of f̂dr under f̂1, say “Êfdr1,” provides a particularly simple diagnostic
statistic,

Êfdr =
∫ ∞
−∞

f̂dr(z)[1 − f̂dr(z)]f̂ (z) dz/

∫ ∞
−∞

[1 − f̂dr(z)]f̂ (z) dz.(3.4)

A small value of Êfdr1, perhaps Êfdr1
.= 0.20, suggests good power, with a typical

nonnull gene likely to show up on a list of interesting candidates for further study.
Neither of the examples in Figure 1 demonstrates good power; Êfdr1 = 0.68 for
the prostate data and 0.47 for the HIV data (the latter based on the empirical null
f̂dr estimate of Section 4).

The nonnull counts pictured in Figures 1 and 2 allow a more intuitive interpre-
tation of formula (3.4). Suppose that the N z-values have been placed into K bins
of equal width �, with

xk = centerpoint of kth bin for k = 1,2, . . . ,K,
(3.5)

yk = #{zi in kth bin}.
Since

Prob{gene i nonnull|zi = z} = 1 − fdr(z),(3.6)

an approximately unbiased estimate of the nonnull counts in bin k is

ŷ1k = [1 − f̂dr(xk)] · yk.(3.7)

The solid bars in Figures 1 and 2 follow definition (3.7), except with yk replaced
by a smoothed estimate proportioned to f̂ (xk). Looking at Figure 2, an obvious
estimate of the nonnull expectation Efdr1 is

Êfdr1 =
∑

k f̂dr(xk) · ŷ1k∑
k ŷ1k

=̇
∑

k f̂dr(xk)[1 − f̂dr(xk)]f̂ (xk)∑
k[1 − f̂dr(xk)]f̂ (xk)

,(3.8)
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TABLE 1
Means, standard deviations and coefficients of variation of Êfdr1 (3.5); 100 trials of situation (3.9),

N = 1500. True value Efdr1 = 0.32, p1 = 0.10

Theoretical null Empirical null

Êfdr1 p̂1 Êfdr1 p̂1

Mean 0.285 0.085 0.232 0.076
Stdev 0.060 0.015 0.040 0.011
Coefvar 0.21 0.18 0.17 0.14

which amounts to evaluating the integrals in (3.4) via the trapezoid rule.
Table 1 reports on a simulation study of Êfdr1. The study took

zi
ind∼ N(µi,1) with

{
µi = 0, probability 0.90,
µi ∼ N(3,1), probability 0.10,

(3.9)

for i = 1,2, . . . ,N = 1500. [More precisely, µi = 3 + �−1((i − 0.5)/150), i =
1,2, . . . ,150, for the nonnull cases.] The “theoretical null” columns assume f0 =
N(0,1), while “empirical null” estimates f0 by the central matching method of
Section 4. Both methods estimated p̂1 = 1− p̂0 by central matches. The true value
of Efdr1 in situation (3.9) is 0.32. The estimates Êfdr1 are seen to be reasonably
stable and roughly accurate. Section 5 discusses the downward bias in p̂1.

Going further, we can examine the entire distribution of f̂dr under f̂1 rather than
just its expectation. The nonnull c.d.f. of f̂dr is estimated by

Ĝ1(t) = ∑
k : f̂dr(xk)≤t

ŷ1k/
∑
k

ŷ1k(3.10)

for 0 ≤ t ≤ 1. Figure 3 shows Ĝ1(t) for the prostate study, for the HIV study [tak-
ing f0 = N(−0.11,0.752), p0 = 0.93, as in Figure 1], and for the first of the 100
simulations from model (3.9). The simulation curve suggests good power charac-
teristics, with 64% of the nonnull genes having fdr less than 0.2. At the opposite
extreme, only 11% of nonnull genes in the prostate study have fdr less than 0.2.

Graphs such as Figure 4 help answer the researchers’ painful question “why
are not the genes we expected on your list of nonnull outcomes?” For the prostate
data, most of the nonnull genes will not turn up on a list of low fdr cases. The R
program locfdr, discussed in Section 4, returns Êfdr1 and a graph of Ĝ1(t).

Traditional sample size calculations employ preliminary data to predict how
large an experiment might be required for effective power. Here we might ask, for
instance, if doubling the number of subjects in the prostate study would substan-
tially improve its detection rate.

To answer this question, denote the mean and variance of zi by µi and σ 2
i ,

zi ∼ (µi, σ
2
i ).(3.11)



SIZE, POWER AND FALSE DISCOVERY RATES 1361

FIG. 4. Estimated nonnull c.d.f. of fdr, (3.10); prostate study, HIV study, and first of 100 simula-
tions, model (3.9). The simulation curve suggests substantial power, with 64% of the nonnull cases
having f̂dr less than 0.2. Êfdr1 values: 0.23 (simulation), 0.45 (HIV), 0.68 (prostate).

We imagine that c independent replicates of zi are available for each gene (dou-
bling the experiment corresponding to c = 2), from which a combined test statis-
tic z̃i is formed,

z̃i =
c∑

j=1

zij /
√

c ∼ (√
cµi, σ

2
i

)
.(3.12)

This definition maintains the mean and variance of null cases, z̃i ∼ (0, σ 2
i ), while

moving the nonnull means µ̃i = √
cµi away from zero by the factor

√
c.

Consider a subset of m nonnull genes, say S, and define

µ̄ = ∑
S

µi/m, �2 = ∑
S

(µi − µ̄)2/m and σ̄ 2 = ∑
S

σ 2
i /m.(3.13)

A randomly selected zi value “Z” from S has mean and variance

Z ∼ (µ̄,�2 + σ̄ 2),(3.14)

while Z̃, the corresponding randomly selected z̃i value, has

Z̃ ∼ (√
cµ̄, c�2 + σ̄ 2)

,(3.15)

so

Z̃ = √
c µ̄ + d(Z − µ̄) [d2 = c − (c − 1)σ̄ 2/(�2 + σ̄ 2)](3.16)

gives Z̃ the correct mean and variance.
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TABLE 2
Hypothetical values of Êfdr1 for versions of the prostate and HIV studies expanded by factor c;

based on transformation (3.17) for the nonnull counts, as calculated by R program locfdr

c 1 1.5 2 2.5 3

Prostate 0.68 0.54 0.44 0.38 0.34
HIV 0.45 0.31 0.23 0.18 0.14

Let S be the set of nonnull genes having zi > 0. We can estimate µ̄ and d

from the corresponding nonnull counts ŷ1k (the bars to the right of z = 0 in
Figure 2), and then use (3.16) to move those counts out from location xk to
x̃k = √

c{µ̄ + d1/2(xk − µ̄)}. The null counts ŷ0k = yk − ŷ1k do not change lo-
cation when the sample size increases. We can do the same calculations for the
nonnull counts having zi < 0. Together, these provide an estimate of what the en-
tire z-value histogram would look like if the sample size were increased by the
factor c, from which we can recalculate Êfdr1 or any other diagnostic statistic.

Table 2 shows Êfdr1 estimates for hypothetical expansions of the prostate and
HIV studies. Doubling the HIV study, to 8 instead of 4 subjects in each HIV cate-
gory, reduces Êfdr1 from 0.45 to 0.23, while doubling the prostate study gives less
dramatic improvement. Table 2 is based on a cruder version of (3.16) that takes
d = 1,

Z̃ = √
cZ,(3.17)

in other words, simply moving the nonnull counts ŷ1k from xk to
√

cxk . Using
(3.17) tends to underestimate the reduction in Êfdr1, but did not make much dif-
ference in this case.

The R program locfdr does these calculations. They have a speculative nature,
but no more so than traditional power projections. Like all of the diagnostics in this
section, they require no mathematical assumptions beyond the original two-class
model (2.2).

4. Empirical null estimation. The null density f0(z) in (2.2) is crucial to
false discovery rate calculations, or for that matter to any hypotheses testing
method. We assumed f0 ∼ N(0,1), the theoretical null, for the prostate data. This
seems natural in situation (1.1), being almost certainly what would be done if there
were only a single gene’s data to analyze. Large scale simultaneous testing, how-
ever, raises the possibility of detecting deficiencies in the theoretical null, as with
the HIV data in Figure 1 where the z-value histogram is noticeably too narrow
around its central peak. This section concerns data-based estimates of f0(z), for
example, the empirical null distribution f̂0 ∼ N(−0.11,0.752) for the HIV data,
shown in Figure 1.

Efron [8, 10] lists four reasons why f0 might differ from the theoretical null:
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(1) Failed assumptions. Let Y be the N by n matrix of expression levels,
N genes and n microarrays in our two studies,

yij = expression level for ith gene and j th array.(4.1)

The HIV study has N = 7680 genes and n = 8 microarrays, 4 each from HIV
positive and HIV negative subjects. Each gene yields a two-sample t statistic ti
comparing positive versus negative subjects, with z-value

zi = �−1(F6(ti)),(4.2)

F6 the c.d.f. of a t distribution having 6 degrees of freedom.
The theoretical null distribution f0 ∼ N(0,1) is justified for (4.2) if the yij ’s are

normal, or by asymptotic theory as n goes to infinity, neither argument applying to
the HIV data. We can avoid these assumptions by computing a permutation null,
the marginal distribution of the zi’s obtained by permuting the columns of Y . This
gave f̂0∼̇N(0,0.992) for the HIV data, failing to explain the narrow central peak
in Figure 1.

(2) Unobserved covariates. The HIV study is observational: subjects were ob-
served, not assigned to be HIV positive or negative, and similarly for the prostate
study. Section 4 of [8] discusses how unobserved covariates in observational stud-
ies are likely to widen f0(z), and how this effect is not detectable by permutation
analysis. A microarray example is presented in which the z-value histogram has
central dispersion more than half again as wide as the theoretical null. Since the
HIV histogram is too narrow at its center rather than too wide, unobserved covari-
ates are not the problem here.

(3) Correlation across arrays. The theoretical null as applied to (4.2) or (1.1)
assumes independence across the columns of Y , that is, among yi1, yi2, . . . , yin for
gene i. Experimental difficulties can undercut independence in microarray studies,
while being undetectable in the permutation null distribution. The HIV data was
analyzed with the HIV negative subjects as the first four columns of Y and the pos-
itives as the last four columns. A principal components analysis suggested a strong
pattern of correlation across columns, with arrays (1,3,5,7) positively correlated,
and likewise arrays (2,4,6,8). This pattern would narrow the null distribution in
situation (4.2).

(4) Correlation between genes. A striking advantage of the two-group model
and its false discovery rate analysis in Section 2 is that it does not require inde-
pendence between genes. Estimates such as f̂dr(z) = p0f0(z)/f̂ (z) only require
consistency for f̂ (z) (but do not achieve the full efficiency attainable from knowl-
edge of the gene-wise correlation structure).

Efron [10] emphasizes a caveat to this argument: even if the theoretical null is
individually appropriate for each null gene, correlations between genes can make
the effective null distribution f0(z) substantially narrower or wider than N(0,1).
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There it is shown that the amount of correlation in the HIV data could easily ex-
plain a N(−0.11,0.752) null distribution. (By contrast, the prostate data exhibits
quite small gene-wise correlations.) A permutation null distribution will not reveal
correlation effects.

Empirically estimating the null distribution avoids all four difficulties, and any
others that may distort f0. There is a price to pay, though, in terms of accuracy: us-
ing the empirical null substantially increases the variability of estimated false dis-
covery rates, as shown in Section 5. This price is unavoidable in situations like the
HIV study where there is clear evidence against the theoretical null; the null distri-
bution provides the crucial numerator in false discovery rate estimates like (2.16),
where using an inappropriate null undercuts inferential validity. (Using the theo-
retical null on the HIV data eliminates all but 20 of the 151 genes having empirical
null f̂dr estimate less than 0.20, including all of those with zi < 0.)

The basic empirical null idea is simple: we assume f0(z) is normal but not
necessarily with mean 0 and variance 1, say

f0(z) ∼ N(δ0, σ
2
0 ),(4.3)

and then estimate δ0, σ0, as well as the null proportion p0 in (2.2), from the his-
togram data near z = 0. Two different methods for estimating (δ0, σ0,p0) will
be described, and their accuracies analyzed in Section 5. Both methods are im-
plemented in algorithm locfdr, available through the Comprehensive R Archive
Network, http://cran.r-project.org; locfdr produced all of the numerical examples
in this paper.

“Central matching,” the first of our two estimation methods for (δ0, σ0,p0), op-
erates by quadratically approximating log f̂ (z) around z = 0. To begin, the locfdr
algorithm estimates f (z), (2.5), by maximum likelihood fitting to the histogram
counts yk for the z values, (3.5), within a parametric exponential family. Figure 2
used the seven-parameter family

fβ(z) = cβ exp

{ 7∑
j=1

βjz
j

}
,(4.4)

cβ the constant making fβ integrate to 1.
Figure 5 illustrates central matching estimation of (δ0, σ0,p0) for the HIV data

based on the methodology in [8]. The heavy curve is log f̂ (z), fit by maximum
likelihood [using a natural spline basis with 7 degrees of freedom, rather than the
polynomials of (4.4), another option in locfdr, though (4.4) gives nearly identical
results in this case]. A quadratic curve f̂ +

0 (z) has been fit to log f̂ (z) around z = 0,

log(f̂ +
0 (z)) = β̂0 + β̂1z + β̂2z

2.(4.5)

Assuming f0(z) ∼ N(δ0, σ
2
0 ), the log of the null subdensity (2.4) is

log(f +
0 (z)) = logp0 − 1

2

{
δ2

0

σ 2
0

+ log(2πσ 2
0 )

}
+ δ0

σ 2
0

z − 1

2σ 2
0

z2.(4.6)

http://cran.r-project.org
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FIG. 5. Central matching estimation of p0 and f0(z) ∼ N(δ0, σ 2
0 ) for the HIV data; heavy curve is

log of f̂ (z), estimated mixture density (2.5); beaded curve is quadratic fit to log f̂ (z) around z = 0,
estimating logf +

0 (z), (2.4). The three estimated coefficients of quadratic fit give (̂δ0, σ̂0, p̂0).

Estimates (β̂0, β̂1, β̂2) from (8.5) translate to estimates (̂δ0, σ̂0, p̂0) in (4.6), for
example, σ̂0 = (2β̂2)

−1/2. For the HIV data this gave

δ̂0 = −0.107, σ̂0 = 0.753 and p̂0 = 0.931.(4.7)

The logic here is straightforward: we make the “zero assumption” that the
central peak of the z-value histogram consists mainly of null cases, and choose
(δ0, σ0,p0) in (4.6) to quadratically approximate the histogram counts near δ = 0.
Some form of the zero assumption is required because the two-class model (2.2)
is unidentifiable in the absence of strong parametric assumptions on f1.

A healthy literature exists on estimating p0, as in [21] and [29], all of which
relies on the zero assumption [mostly working with p-values rather than z-values,
e.g., pi = F6(ti) in (4.2), where the “zero region” occurs near p = 1]. All of this
literature relies on the validity of the theoretical null, so in this sense (4.5) and (4.6)
is a straightforward extension to situations where the theoretical null is untrustwor-
thy. For the HIV data, using the theoretical null in (4.5) and (4.6), that is, taking
(β̂1, β̂2) equal (0,1/2), results in the impossible estimate p̂0 = 1.18. This will
always happen when the z-value histogram is narrower than N(0,1) near z = 0.

The zero assumption is more believable if p0, the proportion of null cases, is
large. Efron [8] shows that if p0 exceeds 0.90 the fitting method in Figure 5 will be
nearly unbiased: although the 10% or less of nonnull cases might in fact contribute
some counts near z = 0, they cannot substantially affect δ̂0 and σ̂0; the p0 estimate
is affected, being upwardly biased, as seen in Table 1.
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“MLE fitting,” the second, newer, method of estimating (δ0, σ0,p0), is based on
a truncated normal model. We assume that the nonnull density is supported outside
some known interval [−x0, x0],

f1(z) = 0 for z ∈ [−x0, x0].(4.8)

We need the following definitions:

I0 = {i : zi ∈ [−x0, x0]},
N0 = number of zi ∈ [−x0, x0],

(4.9)
z0 = {zi, i ∈ I0},

H0(δ0, σ0) = �

(
x0 − δ0

σ0

)
− �

(−x0 − δ0

σ0

)
and

ϕδ0,σ0(z) = 1√
2πσ 2

0

exp
{
−1

2

(
z − δ0

σ0

)2}
.(4.10)

Then

θ ≡ p0H0(δ0, σ0) = Prob{zi ∈ [−x0, x0]}(4.11)

under model (2.2).
The likelihood function of the data (N, z0) is

fδ0,σ0,p0(N, z0) = [θN0(1 − θ)N−N0]
[∏

I0

ϕδ0,σ0(zi)

H0(δ0, σ0)

]
.(4.12)

This is a product of two exponential family likelihoods, as discussed in Section 5.
It is easy to numerically find the MLE estimates (̂δ0, σ̂0, θ̂ ) in (4.12), after which

p̂0 = θ̂/H0(̂δ0, σ̂0).(4.13)

Table 3 compares the estimates (̂δ0, σ̂0, p̂0) obtained from central matching and
MLE fitting for the same 100 simulations of model (3.9) used in Table 1. MLE
fitting does somewhat better overall, especially for δ̂0, the mean of f̂0. The results
are encouraging, in particular showing that σ0 can be estimated within a few per
cent. Delta method formulas for the standard deviations are developed in Section 5.
These performed well, giving nearly the correct average values, as shown in the
table, with small coefficient of variation across the 100 simulations, about 10%
for central matching and 3% for MLE fitting. Changing sample size N = 1500 by
multiple “c” changes the standard deviations by about 1/

√
c.

The zi’s are independent in model (3.9). This is unrealistic for microarray stud-
ies, but as discussed in Section 5, the results may still be applicable to highly
correlated situations.
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TABLE 3
Comparison of estimates (̂δ0, σ̂0, p̂0), central matching and MLE fitting; 100 simulations,
model (3.9), as in Table 1. MLE fitting took x0 = 2 in (4.8); “formula” standard deviations

from delta method calculations, Section 5. True values (δ0, σ0,p0) = (0,1,0.9)

Central matching MLE fitting

mean stdev (formula) mean stdev (formula)

δ̂0 0.021 0.056 (0.062) 0.044 0.031 (0.032)
σ̂0 1.020 0.029 (0.033) 1.035 0.031 (0.031)
p̂0 0.924 0.013 (0.015) 0.933 0.009 (0.011)

The two fitting methods have different virtues and defects. Central matching is
attractive from a theoretical point of view, suggesting how we might go beyond
normality assumption (4.3), as discussed in Section 7 of [9]. As mentioned before,
it gives nearly unbiased estimates of δ̂0 and σ̂0 if p0 exceeds 0.9. However, it can
be excessively variable, especially in estimating δ0, and is sensitive to the range
of discretization (though not the grid size �) in (3.5); reducing the range of xk in
Table 3 from [−4,7.4] to [−4,6.1] gave notably worse performance.

MLE fitting generally gives more stable parameter estimates, for reasons sug-
gested by the influence function analysis of Section 5. It does not require dis-
cretization of the z-values. It does, however, depend strongly on the choice of x0
in (4.8), which was arbitrarily set at x0 = 2 in the simulations. A more adaptive
version that began by estimating an appropriate “zero assumption” interval is fea-
sible but more variable. This contrasts with central matching, which automatically
adjusts to each situation, including ones where (δ0, σ0) is far from (0,1).

Locfdr defaults to MLE fitting for fdr estimation, but also returns the cen-
tral matching estimates. The two methods gave similar results for the HIV data,
(̂δ0, σ̂0, p̂0) = (−0.117,0.785,0.955) for MLE fitting, compared to (4.7).

Accurate estimation of (δ0, σ0,p0) is just as important for tail-area Fdr analy-
sis (2.7) as for the local version (2.6). Section 5 computes the accuracy of both
F̂dr(z) and f̂dr(z). Using an empirical null is expensive in either venue, but the
theoretical null can be an unrealistic option, as for the HIV data.

Permutation methods are popular in the microarray literature, but they only
address the first of our four listed difficulties for the theoretical null; in practice
permutation null distributions are usually close to the theoretical distribution, es-
pecially for t-test statistics. Permutation and empirical null methods can be used
together: if F̃ (t) is the permutation c.d.f. for the t-statistics in the HIV study, then
we could set zi = �−1(F̃ (t)) rather than (4.2) to begin empirical null estimation.

5. Influence and accuracy. Two different classifications of false discovery
rate methods have been discussed: local versus tail area definitions, Section 2, and
theoretical versus empirical null estimates, Section 4. This section derives accuracy
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formulas for all four combinations, based on closed-form influence functions. In
Figure 2, for example, the R algorithm locfdr reports f̂dr(3.37) = 0.2±0.02 for the
theoretical null and local fdr combinations, the standard error 0.02 coming from
Theorem 1 below. The influence functions also help explicate differences between
central matching and MLE fitting estimation for the empirical null.

For numerical calculations it is convenient to assume that the N z-values have
been binned as in (3.5): into K bins of width �, centerpoint xk , for k = 1,2, . . . ,K ,
with yk the count in bin k. “Lindsey’s method,” as discussed in Section 2 of [12],
then permits almost fully efficient parametric density estimation within exponen-
tial families such as (4.4), using standard Poisson regression software.

Locfdr first fits an estimated mixture density f̂ (z), (2.5), to the count vector
y = (y1, y2, . . . , yK)′, by maximum likelihood estimation within a parametric fam-
ily such as (4.4). For central matching, log f̂ +

0 (z), (2.4), is fit to log f̂ (z) as in
(4.5)–(4.7); the fitting is by ordinary least squares over a central subset of K0 bins
having index set say “i0.” In Figure 5, f̂ (z) was estimated using K = 41 bins hav-
ing centerpoints −4.0,−3.8, . . . ,4.0, while log f̂ +

0 (z) was fit to log f̂ (z) from the
K0 = 6 central bins i0 = (18,19,20,21,22,23).

Let X be the K × m structure matrix used for estimating log f̂ (z); X has m =
8, kth row (1, xk, x

2
k , . . . , x7

k ) in (4.4). Also let X0 be the K × m0 matrix used
to describe log f̂0(z); X0 has kth row (1, xk, x

2
k ), m0 = 3 for the empirical null

estimate (4.5), while X0 is the K × 1 matrix (1,1, . . . ,1)′ for the theoretical null.
(Section 7 of [9] considers more ambitious empirical null estimates, e.g., including
a cubic term.)

Define submatrices of X and X0,

X̃ = X[i0, ·] and X̃0 = X0[i0, ·],(5.1)

of dimensions K0 × m and K0 × m0; also

ν̂k = N�f̂ (xk), k = 1,2, . . . ,K,(5.2)

an estimate of the expected count in bin k; and

Ĝ = X′ diag(̂ν)X, G̃0 = X̃′
0X̃0,(5.3)

where diag(̂ν) is a K ×K diagonal matrix having diagonal elements ν̂k . Finally, let
�̂ indicate the K-vector with elements �̂k = log f̂ (xk), likewise �̂

+
0 for the vector

(log f̂ +
0 (xk)) and �̂fdr for (log f̂dr(xk)).

By definition the influence function of vector �̂fdr with respect to count vector
y is the K × K matrix d �̂fdr/dy of partial derivatives ∂�̂fdrk/∂y�.

LEMMA 1. The influence function of log f̂dr with respect to y, when using
central matching, is

d �̂fdr
dy

= AĜ−1X′,(5.4)
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where

A = X0G̃
−1
0 X̃′

0X̃ − X.(5.5)

PROOF. A small change dy in the count vector (considered as continuous)
produces the change d̂� in �̂,

d̂� = XĜ−1X′ dy.(5.6)

Similarly if �̂
+
0 = X0γ̂ , γ̂ an m0-vector, is fit by least squares to �̃ = �̂[i0], we have

dγ̂ = G̃−1
0 X̃′

0 d̃� and d̂�
+
0 = X0G̃

−1
0 X̃′

0 d̃�.(5.7)

Both (5.6) and (5.7) are standard regression results. Then (5.6) gives d̃� = d̂�[i0] =
X̃Ĝ−1X′ dy, yielding

d̂�
+
0 = X0G̃

−1
0 X̃′

0X̃Ĝ−1X′ dy

from (5.7). Finally,

d(�̂fdr) = d(̂�
+
0 − �̂) = (X0Ĝ

−1
0 X̃′

0X̃ − X)Ĝ−1X′ dy,(5.8)

verifying (5.4). �

THEOREM 1. In the case where the z values are independent, the delta-
method estimate of covariance for the vector of log f̂dr(xk) values, based on central
matching, is

ĉov(�f̂dr) = AĜ−1A′.(5.9)

PROOF. Under independence, y has a multinomial distribution with covari-
ance matrix

cov(y) = diag(ν) − νν′/N,(5.10)

where ν ≡ E{y} [νk
.= N�f (xk), as in (5.2)]. The delta-method covariance esti-

mate is (
d �̂fdr

dy

)
ĉov(y)

(
d �̂fdr

dy

)′
= (AĜ−1X)diag(̂ν)(AĜ−1X)′

(5.11)
= AĜ−1A′.

Here we have used (d �̂fdr/dy)̂ν = 0 by homogeneity. As discussed below, for-
mula (5.9) also has some application to the situation where the z values are corre-
lated. �

NOTE. y is an approximation to the order statistic of the z values, exactly the
order statistic if we let bin width � → 0. False discovery rates only depend upon
the order statistic, facilitating compact formulas like (5.9).
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TABLE 4
Boldface: standard errors of log f̂dr(z), (“local”), and log F̂dr(z), (“tail”), 250 replications of

model (3.9), N = 1500. Parentheses: average standard deviation estimate from formula (5.9); fdr is
the true false discovery rate (2.6) based on model (3.9). Natural spline basis, 7 degrees of freedom

used to fit f (z), central matching for f̂ +
0 (z), empirical null case

Theoretical null Empirical null

z fdr local (formula) tail local (formula) tail

1.5 0.88 0.05 (0.05) 0.05 0.04 (0.04) 0.10
2.0 0.69 0.08 (0.09) 0.05 0.09 (0.10) 0.15
2.5 0.38 0.09 (0.10) 0.05 0.16 (0.16) 0.23
3.0 0.12 0.08 (0.10) 0.06 0.25 (0.25) 0.32
3.5 0.03 0.10 (0.13) 0.07 0.38 (0.38) 0.42
4.0 0.005 0.11 (0.15) 0.10 0.50 (0.51) 0.52

A formula similar to (5.11) exists for the tail area false discovery rates �̂Fdrk =
log F̂dr(xk),

ĉov(�̂Fdr) = BĜ−1B ′,(5.12)

B = Ŝ0X0G̃
−1
0 X̃′

0X̃ − ŜX,(5.13)

where, for the case of left-tail F̂dr’s, Ŝ0 and Ŝ are lower triangular matrices,

Ŝk� = f̂�

F̂k

and Ŝ0k� = f̂0�

F̂0k

for � ≤ k.(5.14)

Simulation (3.9) for Table 1 was extended to assess the covariance formula
(5.9). Table 4 compares the observed standard deviations of log f̂dr(z), now from
250 trials, with the average estimates ŝd obtained from the square root of the di-
agonal elements of (5.9). The formula is quite accurate, especially in the empirical
null situation; ŝd was reasonably stable from trial to trial, with coefficient of vari-
ation less than 10% for 2.5 ≤ z ≤ 3.5.

The “fdr” column in Table 4 is fdr(z), (2.6), based on f0(z) ∼ N(0,1), f1(z) ∼
N(3,2) and p0 = 0.9 as implied by model (3.9). Decisions between null versus
nonnull are most difficult in the crucial range 2.5 ≤ z ≤ 3.5, where fdr(z) declines
from 0.38 to 0.03. The standard errors for local fdr estimates are about one third
again larger than for tail area Fdr, when using the theoretical null. Both give stable
estimates in Table 4: a 10% coefficient of variation might mean an estimated f̂dr
of 0.20 ± 0.02, quite tolerable in most large-scale testing situations.

Estimation accuracy is much worse on the empirical null side of the table: a 25%
coefficient of variation translates to uncomfortably variable fdr estimates such as
0.20 ± 0.05. Now tail area F̂dr’s are about one third more variable than local f̂dr’s
[and several percent worse still if F(z) in (2.7) is estimated by the usual empirical
c.d.f. rather than the parametric estimate corresponding to f̂ (z)]. Increasing N
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by factor c decreases standard errors by roughly
√

c, so taking N = 6000 would
about halve the boldface values in Table 4. Reducing the degrees of freedom for
estimating f (z) from 7 to 5 decreased standard errors by about one third. MLE
fitting gave about the same results as central matching here.

“Always use the theoretical null” is not practical advice, even if supplemented
by permutation methods. The theoretical or permutation null yields seriously mis-
leading results for the HIV data, as discussed in [10]. Some form of empirical null
estimation seems inevitable here, whether using tail area or local false discovery
rates (or, for that matter, other simultaneous testing techniques). Of course one
should strive for the most efficient possible estimation method, and MLE fitting
seems to offer some advantages in this regard.

The equivalent of Lemma 1 when using MLE fitting is derived from the likeli-
hood (4.12). Some definitions in addition to (4.9) are needed:

[a, b] =
[−x0 − δ0

σ0
,
x0 − δ0

σ0

]
,

Hp(δ0, σ0) =
∫ b

a
zpϕ(z) dz, p = 0,1,2,3,4,

(5.15)

Ep(δ0, σ0) = σ
p
0

H0

[
Hp + p

δ0

σ0
Hp−1

+
(

p

2

)(
δ0

σ0

)2

Hp−2 + · · · +
(

δ0

σ0

)p

H0

]
[where Hp = Hp(δ0, σ0), etc.], and likewise â, b̂, Ĥp, Êp for these quantities when
(δ0, σ0) = (̂δ0, σ̂0).

Conditional on N0, the number of zi values observed in [−x0, x0], the second
factor in (4.12) is a two-parameter exponential family with bivariate sufficient sta-
tistics

(
Y1
Y2

)
= 1

N0


∑
I0

zi∑
I0

z2
i

 .(5.16)

Y has expectation (E1(δ0, σ0),E2(δ0, σ0)) and covariance matrix

V = 1

N0

(
E2 − E2

1 E3 − E1E2

E3 − E1E2 E4 − E2
2

)
.(5.17)

By definition, an estimate of f +
0 (z) using MLE fitting depends only on the

counts “y0” within [−x0, x0], corresponding say to index set K0, length K0. Let
M0 be the 3 × K0 matrix whose kth column equals (1, xk − Y1, x

2
k − Y2)

′ for
k ∈ K0. Straightforward but lengthy exponential family calculations produce the
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influence function of �̂
+
0 = (log f̂ +

0 (xk)) with respect to y0, a K × K0 matrix,

d �̂
+
0

dy0
= 1

NĤ0p̂0

[
1K ·

(
1 − N0

N

)
,
Û Ĵ V̂ −1

σ̂0

]
M0,(5.18)

where 1K is a vector of K 1’s, V̂ the estimated version of (5.17),

Ĵ = σ̂ 2
0

(
1 2δ2

0
0 σ̂

)
,(5.19)

and U the K × 2 matrix with kth row

uk =
(

xk − δ̂0

σ̂0
− Ĥ1

Ĥ0
,
(xk − δ̂0)

2 − σ̂ 2
0

σ̂ 2
0

− Ĥ2 − Ĥ0

Ĥ0

)
.(5.20)

Since d �̂/dy = XĜ−1X′ as before, (5.9) and (5.18) combine to give d �̂fdr/dy
for MLE fitting:

LEMMA 2. The influence function of log f̂dr with respect to y, using MLE
fitting, is the K × K matrix

d �̂fdr
dy

= 1

NĤ0p̂0

[
1 ·

(
1 − N0

N

)
,
Û Ĵ V̂ −1

σ̂0

]
M − XĜ−1X′,(5.21)

where M is the 3 × K matrix with kth column (1, xk − Y1, x
2
k − Y2)

′ for k ∈ K0,
and (0,0,0)′ for k /∈ K0.

Delta-method estimates of cov(�f̂dr) for MLE fitting are obtained from
Lemma 2 as in (5.11), though the formula does not collapse neatly as in (5.9).
We can employ Lemmas 1 and 2 to compare central matching with MLE fitting
for the sensitivity of F̂dr(z) to changes in the count vector y. The left panel of Fig-
ure 6 compares the two influence functions d log f̂dr(z = 3.45)/dyk , plotted versus
bin centerpoint xk, k = 1,2, . . . ,K , for the prostate data [z = 3.45 has f̂dr(z) .= 0.2
for both empirical methods, rather than f̂dr(3.37) = 0.2 using the theoretical null].
MLE fitting used x0 = 2 in (4.8), accounting for the discontinuities there in its
influence curve. The right panel shows the “variance spectrum”

Sk(z) =
(

d log f̂dr(z)

dyk

)2

ν̂k, k = 1,2, . . . ,K,(5.22)

ν̂k the estimated expectation of yk , (5.2). The delta-method estimate of the standard
deviation for log f̂dr(z) is

ŝd(z) =
(

K∑
k=1

Sk(z)

)1/2

(5.23)

as in (5.11), so variance is proportional to the area under the curve. In this case,
MLE fitting has less area and smaller estimated standard deviation. If we were to
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FIG. 6. Left panel: Influence curves d log f̂dr(3.45)/dyk for prostate data, central matching (solid)
and MLE fitting (beaded); plotted versus bin centerpoints xk . Right panel: variance spectra (5.22);
MLE has less area, smaller stdev estimate.

use an empirical null here, rather than the theoretical null of Figure 3, this would
argue for MLE fitting.

Let ξ̂ = (p̂0, δ̂0, σ̂0). Results similar to Lemma 1 and Theorem 1 yield closed-
form expressions for the delta-method estimate of cov(̂ξ ). For central matching,

ĉov(̂ξ ) = DĜ−1D′ − E,(5.24)

E a 3 × 3 matrix with E11 = 1/N and all other entries 0, and

D =
 1 δ̂ σ̂ 2 + δ̂2

0 σ̂ 2 2δ̂σ̂ 2

0 0 σ̂ 3

 G̃−1
0 X̃′

0X̃,(5.25)

Ĝ, G̃0, X̃0 and X̃ as in (5.1), (5.3).
The corresponding estimate of cov(̂ξ ) using MLE fitting is

ĉov(̂ξ ) = aba′,(5.26)

with a and b both 3 × 3 matrices,

a =
(

1/Ĥ0, c′
0 I2

)
, c′ = − p̂0

σ̂0

(
Ĥ1

Ĥ0
,
Ĥ2 − Ĥ0

Ĥ0

)
,(5.27)

and

b =
(

p̂0Ĥ0(1 − p̂0Ĥ0/N), 0′
0, Ĵ V̂ −1Ĵ /N0

)
,(5.28)

Ĵ and V̂ as in (5.17), (5.19). Locfdr returns the standard deviation estimates of
p̂0, δ̂0 and σ̂0 based on (5.24) and (5.26).
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FIG. 7. Average local false discovery rates f̂dr(z), 250 replications of (5.29): heavy curve using
empirical null; beaded curve theoretical null; dots true fdr, (2.6) and (5.30). Using the theoretical
null yields far too many nonnull genes, including some for zi < 0.

Model (3.9) presumes that the null genes are exactly null. Figure 7 is based on
a more relaxed model:

zi
ind∼ N(µi,1) with

{
µi ∼ N(0,0.52), probability 0.90,
µi ∼ N(3,1), probability 0.10,

(5.29)

i = 1,2, . . . ,N = 1500. In an observational study this might reflect unobserved
covariates that jitter even the null cases, as in Section 4 of [8]. In terms of the
two-class model (2.2), (5.29) amounts to p0 = 0.90,

f0(z) ∼ N(0,1.122) and f1(z) ∼ N(3,2).(5.30)

Using the theoretical N(0,1) null in situation (5.29) gives misleading results:
f̂dr(z) tends to be far too liberal in diagnosing nonnull genes, as shown by the
beaded curve in Figure 7. Empirical null estimation gives f̂dr(z) estimates much
closer to the true curve fdr(z) = p0f0(z)/f (z) from (5.30). This just says the obvi-
ous: empirical methodology correctly estimates f0(z) in (5.30) [central matching
gave (̂δ0, σ̂0) estimates averaging (0.02,1.14)], which is the whole point of using
empirical nulls. Section 4 of [8] discusses what “the correct null” means in this
situation, and why it cannot be found by the usual permutation methods.

Our covariance estimates, such as (5.9), were derived assuming independence
among the components of z = (z, z2, . . . , zN) (almost true for the prostate data but
not the HIV data). However the influence function formulas have a wider range of
applicability. The delta-method estimate of covariance

ĉov(�̂fdr) = (d �̂fdr/dy)ĉov(y)(d �̂fdr/dy)′(5.31)
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applies just as well to correlated zi ’s. What changes is that (5.10) no longer repre-
sents cov(y).

The development in Section 3 of [10] suggests that the estimate

ĉov(y) = diag(̂ν),(5.32)

with ν̂k = N�f̂ (xk) as in (5.2), is still appropriate in a conditional sense for the
correlated case. Speaking broadly, employing an empirical null amounts to con-
ditioning the estimate f̂dr(z) on an approximate ancillary statistic (“A” in [10]),
after which (5.31) and (5.32) gives the appropriate conditional covariance. This
amounts to using (5.9), or its equivalent for MLE fitting, as stated. More care-
ful estimates of ĉov(y) in (5.3) are available in the correlated z situation, but the
formulas of this section are at least roughly applicable, especially for comparing
different estimation techniques.

6. Summary. Large-scale simultaneous testing situations, with thousands of
hypothesis tests to perform at the same time, are illustrated by the two microarray
studies of Figure 1. False discovery rate methods facilitate both size and power
calculations, as discussed in Sections 2 and 3, bringing empirical Bayes ideas to
bear on simultaneous inference problems. Two types of false discovery rate sta-
tistics are analyzed, the more familiar tail area Fdr’s introduced by Benjamini and
Hochberg [3], and local fdr’s, which are better suited for Bayesian interpretation.
Power diagnostics may show, as in our examples, that a majority of the nonnull
cases cannot be reported as “interesting” to the investigators without including an
unacceptably high proportion of null cases.

Fdr methods, either local or tail area, are easy to apply when the appropriate null
distribution is known to the statistician from theoretical or permutation consider-
ations. However, it may be clear that the theoretical/permutation null is incorrect,
as with the second histogram of Figure 1. Section 4 gives four reasons why this
might happen, especially in observational studies. Two methods of estimating an
“empirical null” distribution are presented, and formulas for their accuracy derived
in Section 5. Using an empirical null decreases the accuracy of false discovery rate
methods, both local and tail area, but is unavoidable in situations like the second
microarray study. Software in R, locfdr, is available through CRAN for carrying
out all the fdr size and power calculations.
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