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ACCUMULATED PREDICTION ERRORS, INFORMATION
CRITERIA AND OPTIMAL FORECASTING FOR

AUTOREGRESSIVE TIME SERIES

BY CHING-KANG ING

Academia Sinica and National Taiwan University

The predictive capability of a modification of Rissanen’s accumulated
prediction error (APE) criterion, APEδn

, is investigated in infinite-order au-
toregressive (AR(∞)) models. Instead of accumulating squares of sequential
prediction errors from the beginning, APEδn

is obtained by summing these
squared errors from stage nδn, where n is the sample size and 1/n ≤ δn ≤
1 − (1/n) may depend on n. Under certain regularity conditions, an asymp-
totic expression is derived for the mean-squared prediction error (MSPE) of
an AR predictor with order determined by APEδn

. This expression shows
that the prediction performance of APEδn

can vary dramatically depending
on the choice of δn. Another interesting finding is that when δn approaches
1 at a certain rate, APEδn

can achieve asymptotic efficiency in most practi-
cal situations. An asymptotic equivalence between APEδn

and an informa-
tion criterion with a suitable penalty term is also established from the MSPE
point of view. This offers new perspectives for understanding the information
and prediction-based model selection criteria. Finally, we provide the first as-
ymptotic efficiency result for the case when the underlying AR(∞) model is
allowed to degenerate to a finite autoregression.

1. Introduction. In the past two decades, investigations on the accumulated
prediction error (APE) [21] and its variations have attracted considerable atten-
tion among researchers from various disciplines. Prior to the early 1990s, a large
number of studies focused on its consistency in selecting regression or time se-
ries models (e.g., [6, 8, 26, 27, 29]). However, since proving consistency requires
assuming that the true model is included among the family of candidate models
(which is rather difficult to justify in practice), recent research has focused more
on understanding its statistical properties under possible model misspecification
(e.g., [3, 15, 17, 20, 29, 30], among others). While a much deeper understand-
ing of APE in cases of a misspecified model has been gained from these recent
efforts, APE’s prediction performance after model selection still remains unclear.
This motivated the present study.

To select a model for the realization of a stationary time series, it is com-
mon to assume that the realization comes from an autoregressive moving average
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(ARMA) process whose AR and MA orders are known to lie within prescribed
finite intervals. Then a model selection procedure is used to select orders within
these intervals and thereby determine a model for the data. However, as pointed out
by Shibata [25], Goldenshluger and Zeevi [5] and Ing and Wei [14], this assump-
tion can rarely be justified in practice, and the less stringent assumption is that the
time series data are observations from a linear stationary process. Following this
idea, it is assumed in the sequel that observations x1, . . . , xn are generated by an
AR(∞) process {xt }, where

xt +
∞∑
i=1

aixt−i = et , t = 0,±1,±2, . . . ,(1.1)

with the characteristic polynomial A(z) = 1 + ∑∞
i=1 aiz

i �= 0 for all |z| ≤ 1 and
{et } being a sequence of independent random noise variables satisfying E(et ) = 0
and E(e2

t ) = σ 2 for all t . To predict future observations, we consider a family
of approximation models {AR(1), . . . ,AR(Kn)}, where the maximal order Kn is
allowed to tend to ∞ as n does in order to reduce approximation errors. In this
framework, the APE value of model AR(k), 1 ≤ k ≤ Kn, is given by

APE(k) =
n−1∑
i=m

(
xi+1 − x̂i+1(k)

)2
,(1.2)

where x̂i+1(k) = −x′
i (k)âi (k), xi (k) = (xi, . . . , xi−k+1)

′, âi (k) satisfies

−R̂i(k)âi (k) = 1

i − Kn

i−1∑
j=Kn

xj (k)xj+1,(1.3)

with

R̂i(k) = 1

i − Kn

i−1∑
j=Kn

xj (k)x′
j (k),(1.4)

and m ≥ Kn + 1 is the first integer j such that âj (Kn) is uniquely defined. As ob-
served, APE(k) measures the performance of AR(k) when it is used for sequential
predictions. Recently, a modification of APE,

APEδn(k) =
n−1∑

i=nδn

(
xi+1 − x̂i+1(k)

)2
,(1.5)

with 1/n ≤ δn ≤ 1 − (1/n) depending on n, has also been considered by several
authors, for example, West [30], McCracken [20] and Inoue and Kilian [15]. Since
APEδn includes the original APE as a special case, this paper focuses on APEδn .
As will be shown later, the performance of APEδn can vary dramatically depending
on the choice of δn.
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In view of (1.5), it is natural to predict the next observation xn+1 using
x̂n+1(k̂n,δn), where

k̂n,δn = arg min
1≤k≤Kn

APEδn(k).(1.6)

This type of prediction, targeting future values of the observed time series, is re-
ferred to as a same-realization prediction. On the other hand, if the process used
in estimation (or model selection) and that for prediction are independent, then it
is called an independent-realization prediction (see [2, 16, 22] and [25]). For dif-
ferences between these two types of predictions in various time series models, see
[10, 11, 13, 14, 18]. The prediction performance of APEδn after order selection is
assessed using the mean-squared prediction error (MSPE) qn(k̂n,δn), where, with
k̂n = k̂n(x1, . . . , xn) ∈ {1,2, . . . ,Kn},

qn(k̂n) = E
(
xn+1 − x̂n+1(k̂n)

)2
.(1.7)

There are three interrelated issues addressed in this paper. The first one focuses
on the asymptotic expression for qn(k̂n,δn). To deal with this problem, in Proposi-
tion 2 (see Section 2) we establish a general theory that provides sufficient condi-
tions under which qn(k̂n) − σ 2 can be asymptotically expressed as a sum of two
terms that measure the model complexity and the goodness of fit. This result is
then applied to the case k̂n = k̂n,δn with δn bounded away from 1; see Theorem
1 in Section 3. A series of examples is given after Theorem 1 to illustrate its im-
plications. In particular, it is shown in Example 1 that when the AR coefficients
{ai} decay exponentially [which includes, but is not limited to, the ARMA(p,q)
model with q > 0 as a special case] and δn satisfies log δ−1

n = o(logn), APEδn

is asymptotically efficient in the sense of (2.3). However, if the {ai} decay alge-
braically, Example 3 points out that APEδn is no longer asymptotically efficient if
δn is bounded away from 1. To alleviate this difficulty, Theorem 2 (also in Section
3) allows δn to converge at a certain rate to 1 and offers a theoretical justification
for the proposed modification. In light of this result, a class of APEδn criteria that
can achieve asymptotic efficiency in both exponential and algebraic-decay cases is
given; see Examples 4 and 5 after Theorem 2.

The second issue concerns the performance of the information criterion and its
relation to APEδn from the same-realization prediction point of view. The value of
the information criterion for model AR(k) is defined by

ICPn(k) = log σ̂ 2
n (k) + Pnk

n
,(1.8)

where Pn > 1 is a positive number (possibly) depending on n,

σ̂ 2
n (k) = 1

N

n−1∑
t=Kn

(
xt+1 + â′

n(k)xt (k)
)2

,(1.9)
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and N = n − Kn. Note that the AIC [1], BIC [23] and HQ criteria [7] corre-
spond to ICPn with Pn = 2, logn, and c log2 n, respectively, where c > 2 and
log2 n = log(logn). Equation (1.8) is referred to as an AIC-like criterion if Pn is
independent of n, and as a BIC-like criterion if Pn → ∞ and Pn = o(n). With the
help of Proposition 2, Theorem 3 (see Section 4) gives an asymptotic expression
for qn(k̂n,Pn), where

k̂n,Pn = arg min
1≤k≤Kn

ICPn(k).(1.10)

This result extends Corollary 1 of [14], which only focuses on the MSPE of the
AIC-like criteria. An interesting implication of Theorem 3 is that the HQ criterion
is asymptotically efficient in the exponential-decay case whereas BIC is not; see
Examples 6 and 7 in Section 4. While both HQ and BIC are known to be con-
sistent in finite-order AR models [7], these examples show that their prediction
performance can differ remarkably in the AR(∞) case. Based on Theorems 1–3,
an asymptotic equivalence between ICPn and APEδn , with δn and Pn satisfying
(4.8), is given at the end of Section 4; see (4.9).

The third issue in which we are interested is a long-standing unresolved problem
concerning time series model selection. Under the assumption that (1.1) does not
degenerate to an AR model of finite order, Ing and Wei [14] recently showed that
AIC, satisfying (2.3), is asymptotically efficient for same-realization predictions.
However, if the order of the underlying AR model is finite, then, as mentioned
previously, the BIC-like criteria (e.g., HQ and BIC) are consistent, but AIC, which
asymptotically will choose an overparameterized model with positive probability,
does not possess this property [24]. When the APEδn criteria are used instead, the
choice between δn → 0 and δn → 1 also leads to the same difficulty; see Remark 5
in Section 3. To tackle these dilemmas, in Section 5 we first concentrate on an
important special case where {ai} either decay exponentially or are zero for all but
a finite number of i. It is shown in Theorem 5 that ICPn(k), with Pn → ∞ and Pn =
o(logn) and APEδn(k), with δ−1

n → ∞ and log δ−1
n = o(logn), can simultaneously

achieve asymptotic efficiency over these two types of AR processes. However, if
the case where {ai} decay algebraically is also included, then the criteria proposed
by Theorem 5 fail to preserve the same optimality. A two-stage procedure, (5.1),
which is a hybrid between AIC and a BIC-like criterion, is provided as a remedy.
Its validity is justified theoretically in Theorem 6 (also in Section 5). Note that
the results mentioned above are verified under the assumption that all moments
of et are finite [see (K.3) in Section 2]. It is made to obtain a uniform moment
bound for R̂−1

i (k) [see (B.6) in Appendix B], based on the recent work of Ing and
Wei ([11], Theorem 2; [14], Proposition 1). In fact, (K.3) can be slightly relaxed
at the cost of reducing the number of candidate models. However, the details are
not pursued here in order to simplify the discussion. Simulation results illustrating
finite sample performance of the aforementioned criteria are given in Section 6. For
ease of reading, the proofs of the results in Sections 2–5 are deferred to Appendices
A–D, respectively.
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2. Preliminary results. We first list a set of assumptions that are used
throughout the paper.

(K.1) Let {xt } be a linear process satisfying (1.1) with A(z) = 1+a1z+a2z
2 +

· · · �= 0 for |z| ≤ 1. Furthermore, let the coefficients {ai} obey
∑∞

i=1 |i1/2ai | < ∞.
(K.2) Let the distribution function of et be denoted by Ft . There are two arbi-

trarily small positive numbers, α and δ∗
0 , and one arbitrarily large positive number,

C0, such that for all t = . . . ,−1,0,1, . . . and |x − y| < δ∗
0 ,

|Ft(x) − Ft(y)| ≤ C0|x − y|α.

(K.3) sup−∞<t<∞ E|et |s < ∞, s = 1,2, . . . .

(K.4) The maximal order Kn satisfies

Cl ≤ K
2+δ∗

1
n

n
≤ Cu,

where δ∗
1 , Cl and Cu are some prescribed positive numbers.

(K.5) an �= 0 for infinitely many n.

First note that the MSPE of x̂n+1(k), qn(k) [see (1.7)], can be expressed as

σ 2 + E
(
f(k) + S(k)

)2
,(2.1)

where

f(k) = x′
n(k)R̂−1

n (k)
1

N

n−1∑
j=Kn

xj (k)ej+1,k, ej+1,k = xj+1 +
k∑

l=1

al(k)xj+1−l ,

(
a1(k), . . . , ak(k)

)′ = a(k) = arg min
(c1,...,ck)

′∈Rk

E

(
xk+1 +

k∑
l=1

clxk+1−l

)2

and

S(k) =
∞∑
i=1

(
ai − ai(k)

)
xn+1−i

with ai(k) = 0 for i > k. To simplify the notation, a(k) is sometimes viewed as an
infinite-dimensional vector with undefined entries set to zero. Ing and Wei ([11],
Theorem 3) obtained an asymptotic expression for qn(k) − σ 2, which holds uni-
formly for all 1 ≤ k ≤ Kn. This result is summarized in the following proposition.

PROPOSITION 1. Assume that (K.1)–(K.4) hold. Then

lim
n→∞ max

1≤k≤Kn

∣∣∣∣qn(k) − σ 2

Ln(k)
− 1

∣∣∣∣ = 0,(2.2)
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where

Ln(k) = kσ 2

N
+ ‖a − a(k)‖2

R,

and for any infinite-dimensional vector d = (d1, d2, . . .)
′, ‖d‖2

R = ∑
i≤i,j≤∞ didj ×

γi−j , with γi−j = E(xixj ). Also note that ‖a − a(k)‖2
R = E(S2(k)).

The first term of Ln(k), kσ 2/N , which is proportional to k, can be viewed as
a measure of model complexity. The second term of Ln(k), ‖a − a(k)‖2

R , which
decreases as k increases, measures the goodness of fit. If one attempts to find an or-
der k whose corresponding predictor, x̂n+1(k), has the minimal MSPE, then some
data-driven order selection criteria are needed. An order selection criterion, k̂n, is
said to be asymptotically efficient if x̂n+1(k̂n) satisfies

lim sup
n→∞

qn(k̂n) − σ 2

min1≤k≤Kn qn(k) − σ 2 ≤ 1,(2.3)

where 1 ≤ k̂n ≤ Kn. Inequality (2.3) says that the (second-order) MSPE of the pre-
dictor with order determined by an asymptotically efficient criterion is ultimately
not greater than that of the best predictor among {x̂n+1(1), . . . , x̂n+1(Kn)}. In view
of (2.2), (2.3) is equivalent to

lim sup
n→∞

qn(k̂n) − σ 2

Ln(k∗
n)

≤ 1,(2.4)

where Ln(k
∗
n) = min1≤k≤Kn Ln(k).

Let OSn(k) be an order selection function and

k̂n,OS = arg min
1≤k≤Kn

OSn(k)(2.5)

be the selected order. We shall provide sufficient conditions under which qn(k̂n,OS)−
σ 2 can be asymptotically expressed in terms of the Ln(·) function. Define

Ln,Dn(k) = (Dn − 1)kσ 2

N
+ ‖a − a(k)‖2

R,(2.6)

where Dn > 1, and

k∗
n,Dn

= arg min
1≤k≤Kn

Ln,Dn(k).(2.7)

PROPOSITION 2. Assume that (K.1)–(K.4) hold. If there exists a sequence of
positive numbers {Dn}, with lim infn→∞ Dn > 1, such that

lim
n→∞(Dn − 1)

E(S(k̂n,OS) − S(k∗
n,Dn

))2

Ln,Dn(k
∗
n,Dn

)
= 0(2.8)
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and

lim
n→∞(Dn − 1)

E(f(k̂n,OS) − f(k∗
n,Dn

))2

Ln,Dn(k
∗
n,Dn

)
= 0,(2.9)

where S(k) and f(k) are defined after (2.1), then

lim
n→∞

qn(k̂n,OS) − σ 2

Ln(k
∗
n,Dn

)
= 1.(2.10)

Moreover, if

lim
n→∞

Ln(k
∗
n,Dn

)

Ln(k∗
n)

= 1,(2.11)

then (2.3) [(2.4)] holds for k̂n = k̂n,OS.

REMARK 1. If (K.1), (K.5), sup−∞<t<∞ E|et |4 < ∞ and Kn = o(n1/2) are
assumed, and (2.8) and (2.9) are replaced with

p-lim
n→∞

(Dn − 1)
Ln(k̂n,OS) − Ln(k

∗
n,Dn

)

Ln,Dn(k
∗
n,Dn

)
= 0,(2.12)

then it is shown in Appendix A that

p-lim
n→∞

E{(yn+1 − ŷn+1(k̂n,OS))2|x1, . . . , xn} − σ 2

Ln(k
∗
n,Dn

)
= 1,(2.13)

where yn+1 is the future value of {y1, . . . , yn}, which is a realization from an inde-
pendent copy of {xt }, and ŷn+1(k) = −y′

n(k)ân(k) with y′
n(k) = (yn, . . . , yn+1−k).

Note that (2.13) gives an asymptotic expression for the (conditional) MSPE of
k̂n,OS in independent-realization settings. For further discussion, see Remark 6 in
Section 6.

Proposition 2 asserts that if k̂n,OS is sufficiently close to k∗
n,Dn

in the sense of
(2.8) and (2.9), then qn(k̂n,OS) − σ 2 has the asymptotic expression Ln(k

∗
n,Dn

). In

addition, if (2.11) also holds, then k̂n,OS is asymptotically efficient. Proposition 2
plays a prominent role in justifying APEδn’s and ICPn’s asymptotic (in)efficiency
in various situations; see Sections 3–5. To apply Proposition 2, it is important
to determine a penalty term Dn associated with the selection criterion OSn(k) and
then justify (2.8) and (2.9) under suitable assumptions. For the first task, it is shown
in Section 3 that the Dn associated with APEδn(k) is

DAPEδn
= 1 + N log δ−1

n

n(1 − δn)
.(2.14)
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According to Appendix C, the Dn associated with ICPn(k) and

S
(Pn)
n (k)

N
=

(
1 + Pnk

N

)
σ̂ 2

n (k)(2.15)

is Pn. To facilitate the second task, inspired by Ing and Wei ([14], (3.9)), assump-
tion (K.6) (see below) is frequently used in the rest of this paper. As will be seen
in Appendices B–D, it is introduced to deal with the complicated dependency con-
ditions among the selected order, estimated parameters and future observations.
(Note that in the independent-realization settings, the future value to be predicted
is independent of the selected order and estimated parameters.)

(K.6) For any ξ > 0, there are a nonnegative exponent 0 ≤ θ = θ(ξ) < 1 and a
positive number M = M(ξ) such that

lim inf
n→∞ Rn(ξ, θ,M) > 0,(2.16)

where, with Kn obeying (K.4), Dn satisfying lim infDn > 1 and Dn = o(n), and
ADn,θ,M = {k : 1 ≤ k ≤ Kn, |k − k∗

n,Dn
| ≥ M(k∗

n,Dn
)θ },

Rn(ξ, θ,M) = min
k∈ADn,θ,M

(k∗
n,Dn

)ξ
N{Ln,Dn(k) − Ln,Dn(k

∗
n,Dn

)}
(Dn − 1)|k − k∗

n,Dn
| .

If {xt } is an AR process of finite order [viz., (K.5) does not hold], then (2.16)
automatically holds. On the other hand, if (K.5) holds instead, by arguments simi-
lar to those in Examples 1 and 2 and the Appendix of Ing and Wei [14], it can also
be shown that (2.16) is satisfied in the following cases: (a) the exponential-decay
case,

C1k
−θ1e−βk ≤ ‖a − a(k)‖2

R ≤ C2k
θ1e−βk,(2.17)

where C2 ≥ C1 > 0, θ1 ≥ 0 and β > 0 [note that if (K.1) is assumed, then (2.17) is
equivalent to C∗

1k−θ1e−βk ≤ ∑
i≥k a2

i ≤ C∗
2kθ1e−βk , for some C∗

2 ≥ C∗
1 > 0]; and

(b) the algebraic-decay case,

(C3 − M1k
−ξ1)k−β ≤ ‖a − a(k)‖2

R ≤ (C3 + M1k
−ξ1)k−β,(2.18)

where C3,M1 > 0, ξ1 ≥ 2 and β > 1 + δ∗
1 [recall that δ∗

1 is defined in (K.4)].
These facts reveal that (2.16) is quite reasonable from both practical and theoret-
ical points of view, since it includes the ARMA model (which is the most used
short-memory time series model by far) and the AR(∞) model with algebraically
decaying coefficients (which is of much theoretical interest in the context of model
selection) as special cases.

It is worth mentioning that when (K.1)–(K.6) are assumed, (2.8) and (2.9) were
verified by Ing and Wei ([14], (5.75) and (5.74), resp.) in the special case where
k̂n,OS = arg min1≤k≤Kn S

(2)
n (k) and Dn = 2. Using similar arguments and assump-

tions, it can be shown that (2.8) and (2.9) are still valid for k̂n,OS = k̂n,Pn [defined in
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(1.10)], Dn = Pn and 1 < Pn = α < ∞ independent of n. However, to justify (2.8)
and (2.9) in the case k̂n,OS = k̂n,δn and Dn = DAPEδn

or in the case k̂n,OS = k̂n,Pn

and Dn = Pn → ∞, a much more delicate analysis is required. This problem is
tackled in the next two sections. Note that in the finite-order AR models, (2.8) and
(2.9) can also be verified for these two types of criteria under suitable assumptions;
see Section 5 for more details.

As observed in Proposition 2, (2.11) is an important key to the asymptotic effi-
ciency. It holds if the penalty term Dn satisfies

lim
n→∞Dn = 2.(2.19)

To see this, first observe that

max
1≤k≤Kn

∣∣∣∣Ln,Dn(k)

Ln(k)
− 1

∣∣∣∣ → 0(2.20)

if Dn → 2. The result (2.20) and the fact that

1 ≤ Ln(k
∗
n,Dn

)

Ln(k∗
n)

= Ln(k
∗
n,Dn

)/Ln,Dn(k
∗
n,Dn

)

Ln(k∗
n)/Ln,Dn(k

∗
n)

Ln,Dn(k
∗
n,Dn

)

Ln,Dn(k
∗
n)

(2.21)

≤ Ln(k
∗
n,Dn

)/Ln,Dn(k
∗
n,Dn

)

Ln(k∗
n)/Ln,Dn(k

∗
n)

yield (2.11). When ‖a − a(k)‖2
R decays exponentially or (K.5) is violated, (2.11)

can hold without (2.19); see Example 1 in Section 3 and the proof of Theorem 4 in
Appendix D. For some other interesting discussion regarding (2.11), see Examples
2 and 3 in Section 3 and Examples 6–8 in Section 4.

3. The MSPE of APEδn in AR(∞) processes. This section provides asymp-
totic expressions for qn(k̂n,δn) − σ 2. Without loss of generality, nδn,1/n ≤ δn ≤
1 − (1/n), is assumed to be a positive integer. First note that

APEδn(k) =
n−1∑

i=nδn

(
xi+1 + x′

i (k)âi (k)
)2

(3.1)

=
n−1∑

i=nδn

{ei+1 + êi,k + (ei+1,k − ei+1)}2,

where êi,k = x′
i (k)(âi (k) − a(k)) and ei+1,k is defined after (2.1). Following Lai

and Wei ([19], (2.7)),
n−1∑

i=nδn

ê2
i,k =

n−1∑
i=nδn

hi(k)e2
i+1,k + Qnδn(k) − Qn(k) +

n−1∑
i=nδn

hi(k)ê2
i,k

(3.2)

− 2
n−1∑

i=nδn

(
1 − hi(k)

)
êi,kei+1,k,
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where

hi(k) = x′
i (k)

(
i∑

j=Kn

xj (k)x′
j (k)

)−1

xi (k)

and

Qi(k) =
(

i−1∑
j=Kn

xj (k)ej+1,k

)′( i−1∑
j=Kn

xj (k)x′
j (k)

)−1(
i−1∑

j=Kn

xj (k)ej+1,k

)
.

On substituting (3.2) into (3.1), one obtains

APEδn(k) =
n−1∑

i=nδn

e2
i+1 +

{
n−1∑

i=nδn

hi(k)e2
i+1,k − kσ 2 log δ−1

n

}

+ Qnδn(k) − Qn(k) +
n−1∑

i=nδn

hi(k)ê2
i,k + 2

n−1∑
i=nδn

hi(k)êi,kei+1,k

(3.3)

+
n−1∑

i=nδn

{(ei+1,k − ei+1)
2 − ‖a − a(k)‖2

R}

+ 2
n−1∑

i=nδn

(ei+1,k − ei+1)ei+1 + n(1 − δn)Ln,DAPEδn
(k),

where DAPEδn
is defined in (2.14). When δn is bounded away from 1, Theorem 1

below provides sufficient conditions under which (2.8) and (2.9) hold for k̂n,OS =
k̂n,δn and Dn = DAPEδn

. As a result, an asymptotic expression for qn(k̂n,δn) − σ 2

is obtained. Note that the relation Dn = DAPEδn
is used in the rest of this section.

THEOREM 1. Assume that (K.1)–(K.6) hold and 1/n ≤ δn ≤ 1 − (1/n) satis-
fies

lim sup
n→∞

δn < 1(3.4)

and

0 < lim inf
n→∞ nθ3δn ≤ ∞,(3.5)

where 0 < θ3 < δ∗
1/(2 + δ∗

1). Moreover, if for some 0 ≤ θ = θ(ξ) < 1 and η > 0,

lim
n→∞

Dn − 1

(k∗
n,Dn

)1−θ(1+η)
= 0,(3.6)

where θ is obtained from (K.6) when

0 < ξ < min
{
1/2, {(2 + δ∗

1)(1 − θ3)/2} − 1
}
,(3.7)
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then (2.8) and (2.9) are true for k̂n,OS = k̂n,δn . Hence,

lim
n→∞

qn(k̂n,δn) − σ 2

Ln(k
∗
n,Dn

)
= 1.(3.8)

REMARK 2. Note that θ in (3.6) is not uniquely determined. In order for (3.6)
to be less stringent, θ can be chosen as small as possible; see Examples 1 and 3
below for more details.

REMARK 3. Consider the following assumption:

(K.6′) For any ξ > 0, there is a subsequence of {n}, {nl}, such that

lim inf
l→∞ Rnl

(ξ,0,1) > 0.(3.9)

[Recall that Rn(ξ, θ,M) is defined in (K.6).] If, in place of (K.6), (K.6′) is assumed
in Theorem 1, then it can be shown that (3.8) remains valid for n = nl , without
imposing (3.6). This finding is applied in Example 2 below to illustrate that the
APEδn criteria, with δn decreasing to 0 at a polynomial rate, perform poorly in the
case where the AR coefficients decay exponentially fast.

REMARK 4. Under (K.5), it is not difficult to see that k∗
n,Dn

→ ∞ as n → ∞.
Therefore, when 0 < δn = δ < 1 is fixed with n, (3.6) automatically holds.

The following examples help gain a better understanding of Theorem 1.

EXAMPLE 1. Assume that (K.1)–(K.4) hold and the AR coefficients satisfy

C1e
−βk ≤ ‖a − a(k)‖2

R ≤ C2e
−βk,(3.10)

where 0 < C1 ≤ C2 < ∞ and β > 0. Note that (3.10) is satisfied by any causal and
invertible ARMA(p,q) model with q > 0. As mentioned in Section 2, when (K.1)
is assumed, (3.10) can also be expressed as C′

1e
−βk ≤ ∑

i≥k a2
i ≤ C′

2e
−βk for some

0 < C′
1 ≤ C′

2 < ∞. We shall show in this example that (3.8) follows if δn satisfies
(3.4) and

log δ−1
n = o(logn).(3.11)

Condition (3.11) guarantees (3.5). It can be shown to be equivalent to nνδn → ∞
for all ν > 0. Obviously, (3.4) and (3.11) are satisfied if 0 < δn = δ < 1 is indepen-
dent of n or if δ−1

n = (logn)ν1 for some ν1 > 0. Therefore, in view of Theorem 1
and the discussion given after (K.6), it remains to verify (3.6). By (3.10) and an
argument similar to that used in the Appendix of [14], for some C1 > 0,

1

β
logn − 1

β
log(Dn − 1) − C1 ≤ k∗

n,Dn

(3.12)

≤ 1

β
logn − 1

β
log(Dn − 1) + C1,
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and for any ξ > 0, (2.16) holds for θ = 0 and some M > 0 (or for any 0 < θ < 1
and any M > 0). As a result, (3.6) holds for θ = 0 and η > 0, and hence (3.8)
follows. Moreover, (3.10) and the same argument used to prove (A.1) of [14] yield
that for some C2 > 0,

1

β
logn − C2 ≤ k∗

n ≤ 1

β
logn + C2.(3.13)

According to (3.10)–(3.13), we obtain (2.11), which together with (3.8) implies
that APEδn , with δn satisfying (3.4) and (3.11), is asymptotically efficient.

EXAMPLE 2. This example is given to indicate that if δn decays to 0 at a poly-
nomial rate, then APEδn cannot be asymptotically efficient even in the exponential-
decay case. More specifically, assume that (K.1)–(K.4) are satisfied,

δn = C1n
−θ3,(3.14)

where C1 > 0 and 0 < θ3 < δ∗
1/(2 + δ∗

1), and the AR coefficients obey a special
case of (3.10),

‖a − a(k)‖2
R = C2e

−βk(1 + Gk),(3.15)

where |Gk| < 1, Gk → 0 as k → ∞ and C2 and β are some positive numbers.
By (3.15) and an argument similar to that used in Case II of [25], page 162, for
sufficiently large n,

k∗
n,Dn

= m1,n or m1,n + 1,(3.16)

where m1,n is the largest integer ≤ m∗
1,n = (1/β) log[C2Nβ/((Dn −1)σ 2)]. Define

x1,n = m∗
1,n − m1,n and z = (1/β) log[β/(1 − e−β)]. Since 0 < z < 1, there is a

positive number κ such that 0 < z−κ < z+κ < 1. Define a set of positive integers
Aκ = {n : |x1,n − z| > κ,n = 1,2, . . .}. Then, it can be shown that Aκ contains
infinitely many elements. Moreover, for any ξ > 0 and any sequence of positive
integers {nl} ⊆ Aκ , (3.9) holds. Therefore, according to Remark 3, (3.8) is valid
for n = nl . By analogy with (3.16), for sufficiently large n,

k∗
n = m2,n or m2,n + 1,(3.17)

where m2,n is the largest integer ≤ (1/β) log(C2Nβ/σ 2). (3.14)–(3.17) yield

lim
n→∞

Ln(k
∗
n,Dn

)

Ln(k∗
n)

> 1,(3.18)

which, together with (3.8) (with n = nl) gives

lim sup
n→∞

qn(k̂n,δn) − σ 2

Ln(k∗
n)

> 1.(3.19)

As a result, APEδn , with δn satisfying (3.14), fails to achieve (2.4) in the
exponential-decay case.
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EXAMPLE 3. This example investigates the prediction performance of APEδn

in the algebraic-decay case (2.18). If (2.18), (3.4) and (3.5) are satisfied, then the
same argument as the one in Example 2 of [14] yields that

k∗
n,Dn

= (
NC3β(Dn − 1)−1σ−2)1/(β+1) + O(1),(3.20)

and for any ξ > 0, (2.16) holds for any 1 − min{ξ,1} < θ < 1 and any M > 0.
These facts and (3.5) guarantee that (3.6) is valid for 1−min{ξ,1} < θ < 1 and 0 <

η < (1 − θ)/θ , where ξ satisfies (3.7). Consequently, when (K.1)–(K.4), (2.18),
(3.4) and (3.5) are assumed, (3.8) is ensured by Theorem 1. By (A.9) of [14],

k∗
n = (NC3βσ−2)1/(β+1) + O(1).(3.21)

This, (2.18), (3.4), (3.5) and (3.20) imply that

lim inf
n→∞

Ln(k
∗
n,Dn

)

Ln(k∗
n)

> 1.(3.22)

According to (3.8) and (3.22), the APEδn is not asymptotically efficient in this
case.

As can be seen from Example 3, due to violation of (2.11), APEδn , with δn

bounded away from 1, is not asymptotically efficient in the algebraic-decay case.
In view of (2.19)–(2.21), a natural remedy for this difficulty is to let δn → 1.
However, problems can still occur if δn converges “too fast” to 1. To see this,
let δn = 1 − (1/n). Then APEδn(k) = (xn − x̂n(k))2. Since models are determined
only by the last period’s prediction errors, it does not seem possible to establish
any (asymptotically) optimal selection result in this case. To resolve this dilemma,
some suitable choices of δn are introduced in Theorem 2. Some examples are also
given after the theorem to help gain further insight into it.

THEOREM 2. Assume that (K.1)–(K.6) hold and 1/n ≤ δn ≤ 1 − (1/n) satis-
fies limn→∞ δn = 1. Moreover, if either of the following conditions holds, then (2.8)
and (2.9) are valid for k̂n,OS = k̂n,δn .

(i) limn→∞ k∗
n,Dn

/nθ3 = 0 for any θ3 > 0 and (1−δn)
−1 = O(k∗ξ2

n,Dn
) for some

0 < ξ2 < 1/2.
(ii) (1 − δn)

−1 = O(k∗ξ2
n,Dn

) for some 0 < ξ2 < min{1/2, δ∗
1/2}.

Consequently, APEδn is asymptotically efficient in the sense of (2.3) [(2.4)].

In light of Theorem 2, the following examples demonstrate how to choose δn

such that the resulting APEδn is asymptotically efficient in both the exponential-
and algebraic-decay cases.
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EXAMPLE 4. Assume that (K.1)–(K.4) hold and the AR coefficients obey
(2.17). Although Example 1 shows that when θ1 in (2.17) is equal to 0, APEδn ,
with δn satisfying (3.4) and (3.11), is asymptotically efficient, it is unclear whether
this result still holds for θ1 > 0. Fortunately, this difficulty can be bypassed by
letting

δn = 1 − C1(logn)−r ,(3.23)

with C1 > 0 and 0 < r < 1/2. First note that under (2.17) and (3.23), the same
argument as in Example 1 of [14] yields that for some C2 > 0,

1

β
logn − C2 log2 n ≤ k∗

n,Dn
≤ 1

β
logn + C2 log2 n,(3.24)

and for any ξ > 0, (2.16) holds for any 0 < θ < 1 and any M > 0. Moreover,
since condition (i) of Theorem 2 is ensured by (3.23) and (3.24), APEδn , with δn

satisfying (3.23), is asymptotically efficient under (2.17).

EXAMPLE 5. This example shows that if δn satisfies (3.23) with C1 > 0 and
0 < r < ∞, then the corresponding APEδn is asymptotically efficient under the
algebraic-decay case (2.18). To see this, first note that following the same line of
reasoning as in Example 2 of [14], (3.20) is still valid, and for any ξ > 0, (2.16)
holds for any 1 − min{ξ,1} < θ < 1 and any M > 0. In addition, since condi-
tion (ii) of Theorem 2 is ensured by (3.20) and the condition imposed on δn, the
desired result follows from Theorem 2.

Examples 4 and 5 suggest that to achieve asymptotic efficiency through APEδn

in both the exponential- and algebraic-decay cases, δn can be chosen to satisfy
(3.23) with C1 > 0 and 0 < r < 1/2. However, the question of how to determine
the best C1 and r seems difficult to answer from a finite sample point of view.
For some simulation results illustrating APEδn’s performance in finite samples,
see Section 5. We close this section with two remarks concerning the performance
of APEδn in finite-order AR models and for independent-realization predictions.

REMARK 5. When (1.1) degenerates to an AR(p0) model with 1 ≤ p0 < ∞, it
can be shown that k̂n,δn , with lim infn→∞ δn > 0, is not a consistent estimator of p0

(e.g., [15]). On the other hand, if δn → 0 at a certain rate, then the corresponding
APEδn is consistent and asymptotically efficient (see Appendix D). Since these re-
sults and Theorem 2 offer totally different suggestions for choosing δn, it becomes
very challenging to achieve asymptotic efficiency through APEδn when (1.1) is al-
lowed to degenerate to a finite autoregression. In Section 5, some selection criteria
to remedy this difficulty are proposed.
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REMARK 6. Note that the APEδn described in Theorem 2 is also asymptoti-
cally efficient for independent-realization predictions. By Corollary B.1 (see Ap-
pendix B),

p-lim
n→∞

Ln,Dn(k̂n,δn)

Ln,Dn(k
∗
n,Dn

)
− 1 = 0.(3.25)

Armed with (3.25) and (2.19)–(2.21), it can be shown that (2.12) holds for k̂n,OS =
k̂n,δn . Consequently, Remark 1 and (2.11) guarantee that

p-lim
n→∞

E{(yn+1 − ŷn+1(k̂n,δn))
2|x1, . . . , xn} − σ 2

Ln(k∗
n)

= 1,(3.26)

which gives the claimed result. For more details on the definition of asymptotic
efficiency in independent-realization settings, see [2, 16] and [25].

4. The MSPE of ICPn in AR(∞) processes. In this section, prediction per-
formance of the information criterion ICPn(k),Pn > 1, is investigated. When Pn

is independent of n, Ing and Wei ([14], Corollary 1) obtained an asymptotic ex-
pression for qn(k̂n,Pn) − σ 2, where k̂n,Pn , defined in (1.10), is the minimizer of
ICPn(k), with 1 ≤ k ≤ Kn and Kn satisfying (K.4). Theorem 3 below extends Ing
and Wei’s result to the case where Pn is allowed to tend to ∞ with n. Note that the
relation Dn = Pn is used throughout this section.

THEOREM 3. Let (K.1)–(K.6) hold and Pn satisfy

lim inf
n→∞ Pn > 1(4.1)

and

Pn = O(nθ3),(4.2)

for some 0 < θ3 < (1 + δ∗
1)/(4 + 2δ∗

1). Moreover, if (3.6) holds with (3.7) replaced
by

0 < ξ < min
{
1/2, δ∗

1/2, {(1/2) − θ3}(2 + δ∗
1), (1 + δ∗

1) − 2θ3(2 + δ∗
1)

}
,(4.3)

then (2.8) and (2.9) are true for k̂n,OS = k̂n,Pn . Consequently,

lim
n→∞

qn(k̂n,Pn) − σ 2

Ln(k
∗
n,Dn

)
= 1.(4.4)

REMARK 7. If in Theorem 3, (K.6′) holds instead of (K.6), then it can be
shown that (4.4) is still valid for n = nl [note that nl is defined in (K.6′)]. In this
case, condition (3.6) is not required. This result can be applied to verify that BIC is
not asymptotically efficient in the exponential-decay case; see Example 7 for more
details.
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REMARK 8. Since (K.5) is assumed, (3.6) holds automatically if Pn = O(1).

The following examples illustrate implications of Theorem 3. Special emphasis
is placed on comparing the predictive capabilities of three well-known information
criteria, AIC, HQ and BIC, in various situations.

EXAMPLE 6. Assume that (K.1)–(K.4) hold and the AR coefficients satisfy
(3.10). We shall show that ICPn(k), with Pn satisfying (4.1) and

Pn = o(logn),(4.5)

is asymptotically efficient. Therefore, the AIC and HQ criteria are asymptotically
efficient in this case. To see this, first note that the same reasoning as in Example 1
yields (3.12) and that for any ξ > 0, (2.16) holds for θ = 0 and some M > 0
(or for any 0 < θ < 1 and any M > 0). These results and (4.5) imply that (3.6)
holds for θ = 0 and η > 0. According to Theorem 3, (4.4) follows. Consequently,
the claimed result is ensured by (4.4) and by observing that (2.11) is valid under
(3.10), (3.12), (3.13) and (4.5).

EXAMPLE 7. This example illustrates that an information criterion cannot be
asymptotically efficient in the exponential-decay case when the weight for penal-
izing the number of regressors in the model is “too strong.” To see this, let (K.1)–
(K.4) and (3.15) be satisfied and

Pn = C1(logn)C2,(4.6)

where C1 > 0 and C2 ≥ 1. Under these assumptions, (3.16) is obtained and (3.9)
holds for any ξ > 0 and any sequence {nl} ⊆ Aκ , where Aκ is defined as in Ex-
ample 2. By Remark 7, (4.4) is valid for n = nl . Moreover, since (3.15)–(3.17)
and (4.6) yield (3.18), it is concluded that ICPn(k), with Pn given by (4.6), is not
asymptotically efficient. One important implication of this example is that BIC is
not asymptotically efficient in the algebraic-decay case.

EXAMPLE 8. Consider the algebraic-decay case, (2.18). Let Pn satisfy (4.1)
and

Pn = O((logn)C1),(4.7)

for some C1 > 0. By an argument similar to that used in Example 3, one obtains
(3.20), and for any ξ > 0, (2.16) holds for any 1 − min{ξ,1} < θ < 1 and any
M > 0. These facts and (4.7) imply that (3.6) is valid for 1 − min{ξ,1} < θ < 1
and 0 < η < (1− θ)/θ , where ξ satisfies (4.3). As a result, (4.4) follows from The-
orem 3. Moreover, by (2.19)–(2.21), (2.11) holds when limn→∞ Pn = 2; and by
(2.18), (3.20) and (3.21), lim supn→∞ Ln(k

∗
n,Dn

)/Ln(k
∗
n) > 1 when limn→∞ Pn �=

2. This observation and (4.4) imply that AIC and AICC [9] are asymptotically ef-
ficient in the algebraic-decay case, (2.18), whereas HQ, BIC and any information
criterion with limn→∞ Pn �= 2 are not.
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As a final remark, note that when the conditions imposed by Theorems 1 and 3
(or Theorems 2 and 3) hold and

lim
n→∞

log δ−1
n

(1 − δn)(Pn − 1)
= 1,(4.8)

then

lim
n→∞

E(xn+1 − x̂n+1(k̂n,Pn))
2 − σ 2

E(xn+1 − x̂n+1(k̂n,δn))
2 − σ 2

= 1.(4.9)

Instead of attempting to achieve a certain asymptotic optimality for prediction,
(4.8) and (4.9) are interesting in that (4.8) can be used to connect the sequence
δn defining APEδn with a corresponding parameter estimation penalty weight
sequence, Pn = 1 + (1 − δn)

−1 log δ−1
n , in such a way that x̂n+1(k̂n,Pn) and

x̂n+1(k̂n,δn) have the same asymptotic same-realization prediction (in)efficiency, as
observed in (4.9). And, conversely, a sequence Pn implicitly determines a sequence
δn through this same relation, which yields identical asymptotic (in)efficiency for
ICPn and APEδn . This connection not only imparts to the APEδn criteria the deep
foundations of the information criteria, but also endows the information criteria
with an on-line prediction meaning. For a related result, Wei ([29], Theorem 4.2.2),
under (1.1) and certain moment conditions on et (which can be verified for the
normal distribution), established an algebraic connection between BIC and APE,
log(APE(k)/n) = BIC(k)+ o(logn/n) a.s., where k is a positive integer and fixed
with n. Therefore, except for the o(logn/n) term, the logarithm of APE(k)/n is
(a.s.) identical to BIC(k). Hannan, McDougall and Poskitt [6] also obtained the
same result in a stationary AR(p0) model with p0 < ∞ and k ≥ p0 (the correctly
specified case). However, the equivalence introduced by (4.9) seems to be more
relevant in situations where the predictive capabilities of the two criteria after or-
der selection are emphasized.

5. Optimal prediction for possibly degenerate AR(∞) processes. This sec-
tion deals with optimal prediction problems in situations where the underlying
AR(∞) process can degenerate to an AR process of finite order. We first adopt
(K.5′) to replace the truly infinite-order assumption, (K.5).

(K.5′): The AR coefficients satisfy either

(i) ap0 �= 0 for some unknown 1 ≤ p0 < ∞ and al = 0 for all l ≥ p0 + 1 or
(ii) (3.10).

From a practical point of view, (K.5′) is reasonably flexible because it con-
tains any causal and invertible ARMA(p,q) model, with p + q ≥ 1, as a special
case. Before tackling order selection problems under (K.5′), a preliminary result
is needed, which shows that APEδn and ICPn , with δn and Pn satisfying certain
conditions, are asymptotically efficient in finite-order cases.
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THEOREM 4. Assume that (K.1)–(K.4) and (i) of (K.5′) hold. Then (2.8)
and (2.9) hold for (k̂n,OS,Dn) = (k̂n,δn,DAPEδn

) and (k̂n,Pn,Pn), where δn sat-
isfies δ−1

n → ∞ and (3.5), and Pn satisfies Pn → ∞ and Pn = O(ns) for some
0 < s < 1. In addition, (2.3) [(2.4)] is satisfied by these criteria.

REMARK 9. Since Theorem 4 adopts {AR(1), . . . ,AR(Kn)} as the set of can-
didate models, where Kn → ∞ at a certain rate, the true model AR(p0) is included
asymptotically. Zheng and Loh [31] also took this approach. However, unlike The-
orem 4, their main concern is with the consistency in order selection.

When (ii) of (K.5′) holds, Example 6 points out that ICPn , with Pn = o(logn),
possesses asymptotic efficiency. On the other hand, if (i) of (K.5′) is true, then
Theorem 4 shows that ICPn , with Pn → ∞ and Pn = O(ns), 0 < s < 1, is as-
ymptotically efficient under (K.1)–(K.4). These results taken together suggest that
ICPn , with Pn → ∞ and Pn = o(logn), simultaneously achieve (2.3) over the two
types of AR processes defined in (i) and (ii) of (K.5′). According to Example 1 and
Theorem 4, APEδn , with δ−1

n → ∞ and log δ−1
n = o(logn), also has this property.

This discussion is now summarized in the following theorem.

THEOREM 5. Assume that (K.1)–(K.4) and (K.5′) hold. Then (2.3) [(2.4)]
holds for k̂n = k̂n,δn and k̂n,Pn , where δn satisfies δ−1

n → ∞ and log δ−1
n = o(logn),

and Pn satisfies Pn → ∞ and Pn = o(logn).

As pointed out in Examples 3 and 8, the criteria given by Theorem 5 fail to
preserve asymptotic efficiency when (2.18) is included in (K.5′). To overcome this
difficulty, we propose using an alternative criterion that chooses order k̂

(ι)
n :

k̂(ι)
n = k̂n,2I{k̂n,Pn �=k̂nι,Pnι } + k̂n,PnI{k̂n,Pn=k̂nι,Pnι },(5.1)

where 0 < ι < 1, Pn → ∞, k̂nι,Pnι = arg min1≤k≤Knι ICPnι (k) and

ICPnι (k) = log σ̂ 2
nι(k) + Pnιk

nι
,

with σ̂ 2
nι(k) = (1/Nι)

∑nι−1
j=Knι

(xj+1 + â′
nι(k)xj (k))2, Nι = nι − Knι ,

ânι(k) = −R̂−1
ι,nι(k)(1/Nι)

nι−1∑
j=Knι

xj (k)xj+1,

and R̂ι,nι(k) = (1/Nι)
∑nι−1

j=Knι
xj (k)x′

j (k) (note that without loss of generality, nι

and Knι are assumed to be positive integers). As observed, (5.1) is a hybrid se-
lection procedure that combines together AIC and a BIC-like criterion. If the true
order is finite, then it is expected that the orders selected by the BIC-like criterion
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at stages nι and n will ultimately be the same due to consistency. On the other
hand, when the true order is infinite, an interesting result is derived for which it
is nearly impossible for the BIC-like criterion to choose the same order at these
different stages; see Appendix D. Therefore, it is reasonable to adopt k̂n,2 (the or-
der selected by AIC) if ICPn and ICPnι determine different orders, and k̂n,Pn (the
order selected by the BIC-like criterion) otherwise. Theorem 6 justifies the validity
of k̂

(ι)
n .

THEOREM 6. Let (K.1)–(K.4) and (K.6) (with Dn = 2) hold, and ι and Pn in
(5.1) satisfy 0 < ι < 1, Pn → ∞, Pn = O(nι1), with 0 < ι1 < (1 + δ∗

1)/(2 + δ∗
1),

and Pn/P
ν
nι = O(1) for some ν > 0. Further, assume that the AR coefficients meet

either of the following conditions:

(i) (i) of (K.5′);
(ii) for any ξ > 0, there are a nonnegative exponent, 0 ≤ θ = θ(ξ) < 1, and a

positive number, M = M(ξ) > 0, such that

lim inf
n→∞ min

k∈APn,θ,M

(k∗
n,Pn

)ξ
Ln,Pn(k) − Ln,Pn(k

∗
n,Pn

)

Ln,Pn(k
∗
n,Pn

)
> 0,(5.2)

and for all sufficiently large n,

AC
Pnι ,θ,M ∩ AC

Pn,θ,M = ∅,(5.3)

where APn,θ,M is defined in (K.6), ∅ denotes the empty set,

AC
Pn,θ,M = {k : 1 ≤ k ≤ Kn, k /∈ APn,θ,M}

and

AC
Pnι ,θ,M = {k : 1 ≤ k ≤ Knι, k /∈ APnι ,θ,M}.

[Note that (5.3) implicitly implies that al �= 0 for infinitely many l.]

Then (2.3) [(2.4)] holds for k̂n = k̂
(ι)
n .

As an application of Theorem 6, it is shown in Example 9 below that k̂
(ι)
n ,

0 < ι < 1, is asymptotically efficient when the true model is either (i) an AR
process of finite order, (ii) an AR(∞) process with coefficients satisfying (3.10)
(the exponential-decay case) or (iii) an AR(∞) process with coefficients satisfy-
ing (2.18) (the algebraic-decay case). To simplify the discussion, let Pn be given
by (4.6) with C1,C2 > 0, which satisfies all requirements for Pn imposed by The-
orem 6.

EXAMPLE 9. Assume that (K.1)–(K.4) hold, and either (K.5′) or (2.18) is
satisfied. To show that k̂

(ι)
n , 0 < ι < 1, is asymptotically efficient in this situation,

in view of Theorem 6 and the discussion after (K.6), it suffices to show that (5.2)
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and (5.3) are guaranteed by (3.10) as well as (2.18). First, assume that (3.10) is true.
Then Example 6 shows that (3.12), with Dn = Pn, is valid, which further implies
that for any ξ > 0, (5.2) holds for any 1 − min{ξ,1} < θ < 1 and any M > 0.
In addition, (5.3) follows from (3.12) (with Dn = Pn), (4.6) (with C1,C2 > 0),
0 < ι < 1, and 0 < θ < 1. Next, let (2.18) hold. Reasoning as for Example 8,
we obtain (3.20) (with Dn = Pn) and that for any ξ > 0, (5.2) holds for any 1 −
(min{ξ,2}/2) < θ < 1 and any M > 0. Moreover, (5.3) is guaranteed by (3.20)
(with Dn = Pn), (4.6) (with C1,C2 > 0), 0 < ι < 1, and 0 < θ < 1. Consequently,
the desired result follows.

6. Simulation results. To illustrate the practical implications of our theoret-
ical results, a simulation study is conducted in this section. Let observations be
generated from the ARMA(1, 1) model

xt+1 = φ0xt + εt+1 + θ0εt ,

where the εt ’s are independent and identically N (0,1) distributed and (φ0, θ0) =
(0.0,0.98), (0.5, 0.8), (0.5, 0.4), and (0.9, 0). For each combination of (φ0, θ0), the
empirical estimates of

RE(k̂n) = E(xn+1 − x̂n+1(k̂n,2))
2 − 1

E(xn+1 − x̂n+1(k̂n))2 − 1

denoted by R̂E(k̂n) are obtained based on 5000 replications for n = 180,
300, 500, and 1000, where k̂n = k̂n,δn, k̂n,Pn , k̂

(ι)
n , with δn = (logn)−1,1 −

(2/3)(logn)−0.1,1 − (2/3)(logn)−0.12, 1 − (2/3)(logn)−0.14, Pn = 2.001 log2 n

(HQ), logn (BIC), and ι = 0.69,0.72, 0.75. The penalty term of the BIC-like cri-
terion associated with k̂

(ι)
n is given by (4.6) with C1 = 0.8 and C2 = 1. In addition,

Kn and Knι are set to the largest integers less than or equal to n1/2 and nι/2, respec-
tively. Obviously, RE(k̂n) measures the relative prediction efficiency of x̂n+1(k̂n)

to x̂n+1(k̂n,2) (AIC), and RE(k̂n) > 1 [RE(k̂n) < 1] suggests that k̂n performs bet-
ter (worse) than k̂n,2. These empirical results (see Table 1) are summarized as
follows:

(1) AIC and BIC. The relative efficiencies of AIC and BIC are clearly affected
by the magnitude of the MA parameter in finite-sample situations. Table 1 shows
that when θ0 ≥ 0.8, AIC notably outperforms BIC, which coincides with our theo-
retical findings in Examples 7 and 8 that BIC is not asymptotically efficient in truly
AR(∞) models. In contrast, values of R̂E(k̂n,logn) are larger than 1 when θ0 = 0.4.
However, since these values rapidly decrease from 1.26 to 1.08 as n grows from
180 to 1000, the theoretical result just mentioned does not seem to be seriously
violated. On the other hand, when θ0 = 0, values of R̂E(k̂n,logn) are larger than
3.5, and do not exhibit any decreasing trend. This matches the fact that BIC is
consistent and asymptotically efficient in finite-order AR models (see Section 5),
whereas AIC is not.
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TABLE 1
Empirical estimates of RE(k̂n)

Models APEδn
IC Two-stage

n (φ0, θ0) δ1,n δ2,n δ3,n δ4,n HQ BIC n0.69 n0.72 n0.75

180 (0.0, 0.98) 0.88 0.93 0.92 0.93 0.89 0.78 0.95 0.94 0.94
(0.5, 0.8) 0.95 0.95 0.95 0.94 0.98 0.83 0.98 0.97 0.97
(0.5, 0.4) 1.28 1.07 1.05 1.03 1.36 1.26 1.08 1.08 1.08
(0.9, 0.0) 2.21 1.34 1.33 1.28 2.31 3.59 1.81 1.86 1.95

300 (0.0, 0.98) 0.88 0.94 0.94 0.94 0.89 0.74 0.97 0.96 0.95
(0.5, 0.8) 0.98 0.99 0.98 0.97 0.96 0.79 0.95 0.94 0.93
(0.5, 0.4) 1.28 1.03 1.03 1.03 1.24 1.24 1.09 1.09 1.09
(0.9, 0.0) 2.18 1.37 1.32 1.26 2.44 3.46 1.95 1.99 2.07

500 (0.0, 0.98) 0.85 0.94 0.95 0.95 0.85 0.68 0.96 0.95 0.94
(0.5, 0.8) 0.97 0.97 0.97 0.96 0.98 0.78 0.97 0.95 0.95
(0.5, 0.4) 1.28 1.10 1.05 1.04 1.32 1.17 1.03 1.02 1.06
(0.9, 0.0) 2.31 1.36 1.31 1.27 2.64 4.17 2.39 2.43 2.41

1000 (0.0, 0.98) 0.86 0.95 0.96 0.95 0.86 0.66 0.99 0.98 0.98
(0.5, 0.8) 1.05 0.97 0.96 0.96 1.01 0.80 0.97 0.97 0.95
(0.5, 0.4) 1.36 1.12 1.09 1.04 1.37 1.08 1.00 1.00 0.98
(0.9, 0.0) 2.33 1.27 1.26 1.21 2.86 4.07 2.65 2.74 2.67

Note: δ1,n = (logn)−1, δ2,n = 1 − (2/3)(logn)−0.1, δ3,n = 1 − (2/3)(logn)−0.12, and δ4,n = 1 −
(2/3)(logn)−0.14.

(2) HQ and APEδ1,n
, where δ1,n = (logn)−1. First note that the prediction ef-

ficiencies of these two criteria seem quite close. They perform comparably to AIC
when θ0 = 0.8, and much better than it when θ0 ≤ 0.4. This phenomenon can be
explained by the fact that HQ and APEδ1,n

are asymptotically efficient in both the
finite-order AR model and the AR(∞) model with AR coefficients decaying ex-
ponentially (see Theorem 5). Their efficiencies, however, are smaller than AIC in
the case θ0 = 0.98. Since it is difficult to distinguish between an MA(1) process
with a very large MA coefficient and an AR(∞) process with AR coefficients de-
caying algebraically in finite samples, Examples 3 and 8 (which show that HQ and
APEδ1,n

are not asymptotically efficient in the algebraic-decay case) may explain
why HQ and APEδ1,n

perform worse than AIC when θ0 is very close to unity. In
addition, we also observe that these two criteria are not as efficient as BIC in the
case θ0 = 0, but they beat BIC in all other cases.

(3) APEδi,n
, i = 2,3,4, where δ2,n = 1 − (2/3)(logn)−0.1, δ3,n = 1 − (2/3) ×

(logn)−0.12 and δ4,n = 1 − (2/3)(logn)−0.14. Table 1 shows that APEδi,n
, i =

2,3,4, holds a slight advantage (disadvantage) over AIC when θ0 = 0.4 (θ0 ≥ 0.8).
However, since the amount of the advantage (disadvantage) is not sizable, these
Monte Carlo results seem to support the theoretical findings revealed in Exam-
ples 4–6 and 8 that AIC and these APEδn criteria are asymptotically equivalent in
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both the exponential- and algebraic-decay cases. On the other hand, these criteria
tend to outperform AIC when θ0 = 0. But they are still much less efficient than all
other criteria in this case due to the lack of consistency in the finite-order case (see
Remark 5).

(4) Two-stage criteria. One special feature of two-stage criteria is that they
behave like AIC in situations where AIC dominates, and improve substantially
over AIC in situations where AIC performs poorly. More specifically, values of
R̂E(k̂

(ι)
n ) are rather close to 1 when θ0 ≥ 0.8, and significantly larger than 1 when

θ0 = 0. In the case θ0 = 0.4, the two-stage criteria perform slightly better than AIC
when n ≤ 300, and comparably to AIC when n ≥ 500. These simulation results
seem to match quite well with the conclusion drawn from Example 9 that the
two-stage criteria are asymptotically efficient in all three (finite-order, exponential-
decay, and algebraic-decay) cases. When θ0 = 0, the prediction performance of
the two-stage criteria is similar to that of HQ and APEδ1,n

(particularly when n is
large), but worse than that of BIC.

In conclusion, note that the finite-sample behavior of the criteria consid-
ered in this section can be well predicted by the asymptotic results obtained in
Sections 3–5. Some desirable features (when compared to AIC or BIC) of the
APEδi,n

, HQ, and two-stage criteria are particularly encouraging (see the discus-
sions above). The tuning parameters adopted in this section may also serve as good
initial values for pursuing better finite-sample efficiencies.

APPENDIX A: PROOFS OF PROPOSITION 2 AND (2.13)

PROOF OF PROPOSITION 2. In view of (1.7) and (2.1),

qn(k̂n,OS) − σ 2

Ln(k
∗
n,Dn

)

= E{f(k̂n,OS) − f(k∗
n,Dn

) + S(k̂n,OS)(A.1)

− S(k∗
n,Dn

) + f(k∗
n,Dn

) + S(k∗
n,Dn

)}2(Ln(k
∗
n,Dn

))−1.

It is also not difficult to see that
Ln,Dn(k

∗
n,Dn

)

Ln(k
∗
n,Dn

)
= O(Dn − 1).(A.2)

By (A.1), (A.2), (2.2), (2.8) and (2.9), (2.10) follows. Moreover, if (2.11) is as-
sumed, (2.10) can be rewritten as

lim
n→∞

qn(k̂n,OS) − σ 2

Ln(k∗
n)

= 1,(A.3)

and hence (2.3) [or (2.4)] holds for k̂n = k̂n,OS. �
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PROOF OF (2.13). Under (K.1), (K.5), sup−∞<t<∞ E|et |4 < ∞ and Kn =
o(n1/2), an argument given in [14], page 2448 yields

p-lim
n→∞

E{(yn+1 − ŷn+1(k̂n,OS))2|x1, . . . , xn} − σ 2

Ln(k̂n,OS)
= 1.(A.4)

The desired result now follows from (2.12) and (A.4). �

APPENDIX B: PROOFS OF THEOREMS 1 AND 2

In the rest of this paper, C is used to denote a generic positive constant in-
dependent of the sample size n and of any index with an upper (or lower) limit
dependent on n. It also may have different values in different places. We start with
a modification of Lemma 6 of [14].

LEMMA B.1. Assume that (K.1) holds with
∑∞

i=1 |i1/2ai | < ∞ replaced
by

∑∞
i=1 |ai | < ∞ and sup−∞<t<∞E|et |2q < ∞ for some q ≥ 2. Let {mi,n},

i = 0,1,2, be sequences of positive integers satisfying m2,n ≥ m1,n ≥ m0,n for
all n ≥ 1. Then, for all n ≥ 1 and all 1 ≤ k, j ≤ m0,n,

E
∣∣S2

m1,n,m2,n
(k)−σ 2

k −(
S2

m1,n,m2,n
(j)−σ 2

j

)∣∣q ≤ Cm−q/2
n ‖a(j)−a(k)‖q

R,(B.1)

where mn = m2,n − m1,n + 1, S2
m1,n,m2,n

(k) = (1/mn)
∑m2,n

t=m1,n
e2
t+1,k , a(j) and

a(k) in (B.1) are viewed as infinite-dimensional vectors with undefined entries set
to zero and σ 2

k = E(e2
1,k). Also note that ‖a(j) − a(k)‖2

R = |‖a − a(j)‖2
R − ‖a −

a(k)‖2
R|.

The proof of (B.1) is similar to that of [14], Lemma 6, and hence is omitted.
Let nδn, with 1/n ≤ δn ≤ 1 − (1/n), be a positive integer. According to (3.3), for
k �= k∗

n,Dn
,

P(k̂n,δn = k) ≤ P

(
APEδn(k)

Uδn(k)
≤ APEδn(k

∗
n,Dn

)

Uδn(k)

)
(B.2)

≤
12∑
l=1

P

(
|Nl(k)| ≥ 1

12
Vn,Dn(k)

)
,

where Dn = DAPEδn
is used throughout this appendix, Uδn(k)= n(1−δn)Ln,Dn(k),

Vn,Dn(k) = (
Ln,Dn(k) − Ln,Dn(k

∗
n,Dn

)
)
L−1

n,Dn
(k),

|N1(k)| = U−1
δn

(k)

∣∣∣∣∣
(

n−1∑
i=nδn

hi(k)e2
i+1,k

)
− kσ 2 log δ−1

n

∣∣∣∣∣,

|N2(k)| = U−1
δn

(k)

∣∣∣∣∣
(

n−1∑
i=nδn

hi(k
∗
n,Dn

)e2
i+1,k∗

n,Dn

)
− k∗

n,Dn
σ 2 log δ−1

n

∣∣∣∣∣,
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|N3(k)| = U−1
δn

(k)|Qnδn(k) − kσ 2|,
|N4(k)| = U−1

δn
(k)|Qnδn(k

∗
n,Dn

) − k∗
n,Dn

σ 2|,
|N5(k)| = U−1

δn
(k)|Qn(k) − kσ 2|,

|N6(k)| = U−1
δn

(k)|Qn(k
∗
n,Dn

) − k∗
n,Dn

σ 2|,

|N7(k)| = U−1
δn

(k)

∣∣∣∣∣
n−1∑

i=nδn

hi(k)ê2
i,k

∣∣∣∣∣,

|N8(k)| = U−1
δn

(k)

∣∣∣∣∣
n−1∑

i=nδn

hi(k
∗
n,Dn

)ê2
i,k∗

n,Dn

∣∣∣∣∣,

|N9(k)| = 2U−1
δn

(k)

∣∣∣∣∣
n−1∑

i=nδn

hi(k)êi,kei+1,k

∣∣∣∣∣,

|N10(k)| = 2U−1
δn

(k)

∣∣∣∣∣
n−1∑

i=nδn

hi(k
∗
n,Dn

)êi,k∗
n,Dn

ei+1,k∗
n,Dn

∣∣∣∣∣,

|N11(k)| = U−1
δn

(k)

∣∣∣∣∣
n−1∑

i=nδn

{ε2
i+1(k) − ε2

i+1(k
∗
n,Dn

)

− ‖a − a(k)‖2
R + ‖a − a(k∗

n,Dn
)‖2

R}
∣∣∣∣∣,

|N12(k)| = U−1
δn

(k)

∣∣∣∣∣
n−1∑

i=nδn

(ei+1,k − ei+1,k∗
n,Dn

)ei+1

∣∣∣∣∣,
and εi+1(k) = ei+1,k − ei+1.

By (B.2), Chebyshev’s inequality, and moment bounds for |Ni |, i = 1, . . . ,12
(see Lemmas B.2–B.4 below), an upper bound for P(k̂n,δn = k) can be obtained.
This upper bound plays an important role in verifying Theorems 1 and 2.

LEMMA B.2. Let the assumptions of Proposition 1 hold and 1/n ≤ δn ≤ 1 −
(1/n) satisfy (3.5). Then, for q > 0, all 1 ≤ k ≤ Kn and all sufficiently large n,

E(|N1(k)|q) ≤ CU
−q
δn

(k)

{
k2q

(nδn)q/2 + (log δ−1
n )qkq‖a − a(k)‖2q

R

}
(B.3)

and

E(|N2(k)|q) ≤ CU
−q
δn

(k)

{
k∗2q

n,Dn

(nδn)q/2 +(log δ−1
n )qk∗q

n,Dn
‖a−a(k∗

n,Dn
)‖2q

R

}
.(B.4)
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PROOF. We only prove (B.3) because the proof of (B.4) is similar. Define
D(i, k) = x′

i (k)R−1(k)xi (k)(i + 1 − Kn)
−1 and E(i, k) = k(i + 1 − Kn)

−1. Then

Uδn(k)|N1(k)| ≤
∣∣∣∣∣

n−1∑
i=nδn

(
hi(k) − D(i, k)

)
e2
i+1,k

∣∣∣∣∣
+

∣∣∣∣∣
n−1∑

i=nδn

D(i, k)(e2
i+1,k − e2

i+1)

∣∣∣∣∣ +
∣∣∣∣∣

n−1∑
i=nδn

D(i, k)(e2
i+1 − σ 2)

∣∣∣∣∣
(B.5)

+
∣∣∣∣∣

n−1∑
i=nδn

(
D(i, k) − E(i, k)

)
σ 2

∣∣∣∣∣ + σ 2

∣∣∣∣∣
n−1∑

i=nδn

E(i, k) − k log δ−1
n

∣∣∣∣∣
≡ I(k) + II(k) + III(k) + IV(k) + V(k).

By (3.5) and [14], Proposition 1, we have, for any q > 0, all nδn ≤ i ≤ n − 1,
all 1 ≤ k ≤ Kn and all sufficiently large n,

E‖R̂−1
i+1(k) − R−1(k)‖q ≤ C

kq

(i + 1 − Kn)q/2 .(B.6)

Using [28], Lemma 2, and Jensen’s inequality, it follows that for any r > 0, all
nδn ≤ i ≤ n − 1 and all 1 ≤ k ≤ Kn,

E(‖xi (k)‖r ) ≤ Ckr/2(B.7)

and

E|ei+1,k|r ≤ C.(B.8)

According to (B.6)–(B.8), Minkowski’s inequality and Hölder’s inequality we
have, for q ≥ 1, all 1 ≤ k ≤ Kn and all sufficiently large n,

E(I(k))q ≤
(

n−1∑
i=nδn

∥∥(
hi(k) − D(i, k)

)
e2
i+1,k

∥∥
q

)q

≤ Ck2q(nδn)
−q/2,(B.9)

where for a random variable z and positive number s, ‖z‖s = E(|z|s)1/s .
To deal with II(k), note that the first moment bound theorem of Findley and

Wei [4] and Jensen’s inequality yield for any r > 0, all Kn ≤ i ≤ n − 1 and all
1 ≤ k ≤ Kn,

E
(|x′

i (k)R−1(k)xi (k) − k|r) ≤ Ckr/2.(B.10)

Reasoning as for (B.8), we have, for any r > 0, all Kn ≤ i ≤ n − 1 and all 1 ≤ k ≤
Kn,

E(|εi+1(k)|r ) ≤ C‖a − a(k)‖r
R.(B.11)
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(B.10), (B.11), [28], Lemma 2, and an argument similar to that used for obtaining
(B.9) together imply that for q ≥ 2 and all 1 ≤ k ≤ Kn,

E(II(k))q ≤ C

{
E

∣∣∣∣∣
n−1∑

i=nδn

D(i, k)ε2
i+1(k)

∣∣∣∣∣
q

+ E

∣∣∣∣∣
n−1∑

i=nδn

D(i, k)εi+1(k)ei+1

∣∣∣∣∣
q}

(B.12)
≤ C{(log δ−1

n )qkq‖a − a(k)‖2q
R + (nδn)

−q/2kq‖a − a(k)‖q
R}.

Similarly,

E(III(k))q ≤ CE

(
n−1∑

i=nδn

D2(i, k)

)q/2

≤ Ckq(nδn)
−q/2(B.13)

holds for q ≥ 2 and all 1 ≤ k ≤ Kn.
To deal with IV(k), it can be shown by some algebraic manipulations that

IV(k) = σ 2

∣∣∣∣∣Tn−1(k)

N
− Tnδn−1(k)

nδn − Kn

+
n−1∑

i=nδn

Ti−1(k)

(i − Kn)(i + 1 − Kn)

∣∣∣∣∣,
where Ti(k) = ∑i

j=Kn
x′
i (k)R−1(k)xi (k)− k. By an argument similar to that given

in the proof of Lemma 3 of [14] and Jensen’s inequality, one has for any q > 0, all
nδn − 1 ≤ i ≤ n − 1 and all 1 ≤ k ≤ Kn,

E

∣∣∣∣ Ti(k)

i + 1 − Kn

∣∣∣∣
q

≤ C
k3q/2

(i + 1 − Kn)q/2 .

This and the Minkowski inequality yield that for q ≥ 1 and all 1 ≤ k ≤ Kn,

E(IV(k))q ≤ Ck3q/2(nδn)
−q/2.(B.14)

In addition, it is straightforward to show that for all 1 ≤ k ≤ Kn,

V(k) ≤ C

(
1 − δn

δn

)
k

(
Kn

n

)
.(B.15)

Consequently, (B.3) follows from (B.5), (B.9), (B.12)–(B.15), Jensen’s inequality,
and the fact that for any r > 0,

lim
k→∞kr‖a − a(k)‖2r

R = 0,(B.16)

which is ensured by (K.1). �

LEMMA B.3. Under the assumptions of Lemma B.2, for q > 0, all 1 ≤ k ≤ Kn

and all sufficiently large n,

E(|N3(k)|q) ≤ CU
−q
δn

(k){k2q(nδn)
−q/2 + kq/2},(B.17)

E(|N4(k)|q) ≤ CU
−q
δn

(k){k∗2q

n,Dn
(nδn)

−q/2 + k∗q/2

n,Dn
},(B.18)
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E(|N5(k)|q) ≤ CU
−q
δn

(k)(k2qn−q/2 + kq/2),(B.19)

E(|N6(k)|q) ≤ CU
−q
δn

(k)(k∗2q

n,Dn
n−q/2 + k∗q/2

n,Dn
),(B.20)

E(|N7(k)|q) ≤ CU
−q
δn

(k)k3q(nδn)
−q,(B.21)

E(|N8(k)|q) ≤ CU
−q
δn

(k)k∗3q

n,Dn
(nδn)

−q,(B.22)

E(|N9(k)|q) ≤ CU
−q
δn

(k)k2q(nδn)
−q/2 and(B.23)

E(|N10(k)|q) ≤ CU
−q
δn

(k)k∗2q

n,Dn
(nδn)

−q/2.(B.24)

PROOF. See [12], Lemmas A.7 and A.8. �

LEMMA B.4. Let the assumptions of Lemma B.1 hold and 1/n ≤ δn ≤ 1 −
(1/n). Then, for q ≥ 2 and all 1 ≤ k ≤ Kn, with Kn ≤ nδn,

E(|Ni(k)|q) ≤ CU
−q/2
δn

(k)L
−q/2
n,Dn

(k)‖a(k) − a(k∗
n,δn

)‖q
R,(B.25)

where i = 11 and 12.

PROOF. First note that

E|Ln,Dn(k)N11(k)|q

≤ E

∣∣∣∣
∑n−1

i=nδn
{e2

i+1,k − e2
i+1,k∗

n,Dn

− σ 2
k + σ 2

k∗
n,Dn

}
n(1 − δn)

∣∣∣∣
q

(B.26)

+ E

∣∣∣∣
∑n−1

i=nδn
(ei+1,k − ei+1,k∗

n,Dn
)ei+1

n(1 − δn)

∣∣∣∣
q

≡ (I) + (II).

According to (B.1), one has for all 1 ≤ k ≤ Kn,

(I) ≤ C‖a(k) − a(k∗
n,Dn

)‖q
R

(1 − δn)q/2nq/2 .(B.27)

Lemma 2 of [28] and the convexity of xq/2, x > 0, yield for all 1 ≤ k ≤ Kn,

(II) ≤ C

{n(1 − δn)}(q/2)+1

n−1∑
i=nδn

E(|ei+1,k − ei+1,k∗
n,Dn

|q)
(B.28)

≤ C‖a(k) − a(k∗
n,Dn

)‖q
R

(1 − δn)q/2nq/2 .

Consequently, (B.25), with i = 11, is ensured by (B.26)–(B.28). The proof is com-
pleted by noting that (B.25), with i = 12, is an immediate consequence of (B.28).

�

Armed with Lemmas B.2–B.4, we have the following result.
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COROLLARY B.1. Let (K.1)–(K.5), (3.4) and (3.5) hold. Then, for any r > 0,

lim
n→∞E

(
Ln,Dn(k̂n,δn)

Ln,Dn(k
∗
n,Dn

)
− 1

)r

= 0.(B.29)

PROOF. Define I1,n(k) = Ln,Dn(k)/Ln,Dn(k
∗
n,Dn

). Let ε > 0 be arbitrarily
given. Then, by (B.2), one has

E
(
I1,n(k̂n,δn) − 1

)r
=

Kn∑
k=1

(
I1,n(k) − 1

)r
P (k̂n,δn = k)(B.30)

≤ εr +
12∑
l=1

{ ∑
k∈A

(δn)
ε,n

(
I1,n(k) − 1

)r
P

(|Nl(k)| ≥ (1/12)Vn,Dn(k)
)}

,

where A
(δn)
ε,n = {k : 1 ≤ k ≤ Kn, I1,n(k) − 1 > ε}. In view of (B.30), (B.29) holds if

for l = 1, . . . ,12,

lim
n→∞

∑
k∈A

(δn)
ε,n

(
I1,n(k) − 1

)r
P

(|Nl(k)| > (1/12)Vn,Dn(k)
) = 0.(B.31)

In the following, we only prove (B.31) for l = 1,3 and 11 because the proofs for
l = 2,7,8,9 and 10 are similar to that for l = 1, proofs for l = 4,5 and 6 are
similar to that for l = 3, and the proof for l = 12 is similar to that for l = 11.

By (B.3), Chebyshev’s inequality, (3.4), (3.5) and the facts that

Ln,Dn(k) ≥ ‖a − a(k)‖2
R, nLn,Dn(k) ≥ C

k log δ−1
n

1 − δn

,(B.32)

and I1,n(k) ≤ C/Ln,Dn(k
∗
n,Dn

) if 1 ≤ k ≤ k∗
n,Dn

and I1,n(k) ≤ Ck/k∗
n,Dn

if k∗
n,Dn

<

k ≤ Kn, we have, for sufficiently large q ,∑
k∈A

(δn)
ε,n

(
I1,n(k) − 1

)r
P

(|N1(k)| > (1/12)Vn,Dn(k)
)

≤ C
∑

k∈A
(δn)
ε,n

I r
1,n(k)V

−(q−r)
n,Dn

(k){kqf
−q
1,n + (f2,nk)qn−q}

(B.33)

≤ C

(
1 + ε

ε

)q−r
[k∗

n,Dn∑
k=1

{
kq(1 − δn)

r

f
q
1,n(k

∗
n,Dn

f3,nδn)r
+ f

q−r
2,n kq

k∗r

n,Dn
nq−r

}

+
Kn∑

k=k∗
n,Dn

+1

{
kq+r

k∗r

n,Dn
f

q
1,n

+ f
q
2,nk

q+r

k∗r

n,Dn
nq

}]
= o(1),
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where f1,n = (log δ−1
n )(nδn)

1/2, f2,n = log δ−1
n /(1−δn) and f3,n= log δ−1

n /(nδn).
Therefore, (B.31) holds for l = 1.

By (B.17), (B.25), an argument similar to that used for obtaining (B.33) and the
fact that k∗

n,Dn
→ ∞ as n → ∞, for sufficiently large q ,∑

k∈A
(δn)
ε,n

(
I1,n(k) − 1

)r
P

(|N3(k)| > (1/12)Vn,Dn(k)
)

≤ C

(
1 + ε

ε

)q−r
{

Kn∑
k=1

I r
1,n(k)kqf

−q
1,n +

k∗
n,Dn∑
k=1

kq/2U
−q
δn

(k∗
n,Dn

)(B.34)

+
Kn∑

k=k∗
n,Dn

+1

kq/2U
−q
δn

(k)I r
1,n(k)

}
= o(1)

and ∑
k∈A

(δn)
ε,n

(
I1,n(k) − 1

)r
P

(|N11(k)| > (1/12)Vn,Dn(k)
)

≤ C

(
1 + ε

ε

)q−r
{k∗

n,Dn∑
k=1

U
−q/2
δn

(k∗
n,Dn

) +
Kn∑

k=k∗
n,Dn

+1

U
−q/2
δn

(k)I r
1,n(k)

}
(B.35)

= o(1).

In view of (B.33)–(B.35), the proof is complete. �

COROLLARY B.2. Assume that (K.1)–(K.6) hold and δn satisfies (3.4) and
(3.5). Then, for sufficiently large q ,

E

∣∣∣∣S(k̂n,δn) − S(k∗
n,Dn

)

(Ln,Dn(k̂n,δn))
1/2

∣∣∣∣
2q

= O
(
(k∗

n,Dn
)−(1−θ)q+θ ) + o((log δ−1

n )−q)

(B.36)
+ O

(
(log δ−1

n )−q/2(k∗
n,Dn

)(−q/2)+θ )
,

where S(k) is defined in Section 2 and 0 ≤ θ = θ(ξ) < 1 is any exponent obtained
from (K.6) with ξ satisfying (3.7).

PROOF. Let ξ satisfy (3.7). Then (K.6) guarantees that there are 0 ≤ θ =
θ(ξ) < 1 and M = M(ξ) > 0 such that (2.16) is satisfied. Let (θ,M) be any such
pair. Define I2,n(k) = Ln,Dn(k) − Ln,Dn(k

∗
n,Dn

). By Hölder’s inequality and the
fact that for any h > 0,

E|S(k) − S(k∗
n,Dn

)|2h ≤ C‖a(k) − a(k∗
n,Dn

)‖2h
R

(B.37)
≤ C

(
I2,n(k) + f2,nN

−1|k − k∗
n,Dn

|σ 2)h
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(which follows from [28], Lemma 2, (K.3) and the definition of k∗
n,Dn

), one has for
q > 0 and 1 < r < ∞,

E

∣∣∣∣S(k̂n,δn) − S(k∗
n,Dn

)

L
1/2
n,Dn

(k̂n,δn)

∣∣∣∣
2q

≤
Kn∑
k=1

(
E

∣∣∣∣S(k) − S(k∗
n,Dn

)

L
1/2
n,Dn

(k)

∣∣∣∣
2qr)1/r

P (r−1)/r (k̂n,δn = k)

≤ C

Kn∑
k=1

{
V

q
n,Dn

(k) +
∣∣∣∣f2,n(k − k∗

n,Dn
)

NLn,Dn(k)

∣∣∣∣
q}

P (r−1)/r (k̂n,δn = k)

(B.38)

≤ C

{
Kn∑
k=1

V
q
n,Dn

(k)P (r−1)/r (k̂n,δn = k) +
Kn∑
k=1

k /∈ADn,θ,M

∣∣∣∣f2,n(k − k∗
n,Dn

)

NLn,Dn(k)

∣∣∣∣
q

+
Kn∑
k=1

k∈ADn,θ,M

∣∣∣∣f2,n(k − k∗
n,Dn

)

NLn,Dn(k)

∣∣∣∣
q

P (r−1)/r (k̂n,δn = k)

}

≡ C{(I) + (II) + (III)},
where ADn,θ,M is a set of positive integers defined in (K.6).

By the definitions of ADn,θ,M , Ln,Dn(k) and Ln,Dn(k
∗
n,Dn

), it is easy to see that

(II) ≤ C(k∗
n,Dn

)−(1−θ)q+θ .(B.39)

In view of (B.2) and the fact that for a, b ≥ 0, (a +b)(r−1)/r ≤ a(r−1)/r +b(r−1)/r ,
one obtains

(I) ≤
12∑
l=1

{
Kn∑
k=1

V
q
n,Dn

(k)P (r−1)/r(|Nl(k)| ≥ (1/12)Vn,Dn(k)
)}

.(B.40)

In the following, we shall show that when q is sufficiently large,

Kn∑
k=1

V
q
n,Dn

(k)P (r−1)/r(|Nl(k)| ≥ (1/12)Vn,Dn(k)
) = o((log δ−1

n )−q),(B.41)

for l = 1, . . . ,10; and

Kn∑
k=1

V
q
n,Dn

(k)P (r−1)/r (|Nl(k)| ≥ (1/12)Vn,Dn(k)
)

(B.42)
= O

(
(log δ−1

n )−q/2(k∗
n,Dn

)(−q/2)+θ ) + o((log δ−1
n )−q),
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for l = 11 and 12. As a result, one has for sufficiently large q ,

(I) = O
(
(log δ−1

n )−q/2(k∗
n,Dn

)(−q/2)+θ ) + o((log δ−1
n )−q).(B.43)

By Lemma B.2, (3.4), (3.5), (K.4) and (B.32), for sufficiently large q ,

Kn∑
k=1

V
q
n,Dn

(k)P (r−1)/r (|N1(k)| ≥ (1/12)Vn,Dn(k)
)

≤ C

Kn∑
k=1

[
E

{|N1(k)|qr/(r−1)}](r−1)/r(B.44)

≤ C

(log δ−1
n )q

(
Kn∑
k=1

kq

(nδn)q/2 + (log δ−1
n )2qkq

(1 − δn)qnq

)
= o((log δ−1

n )−q),

which yields (B.41) for l = 1. For l = 3, according to (3.5), Lemma B.3, (B.32)
and the fact that k∗

n,Dn
→ ∞ as n → ∞, one has for sufficiently large q ,

Kn∑
k=1

V
q
n,Dn

(k)P (r−1)/r (|N3(k)| ≥ (1/12)Vn,Dn(k)
)

≤ C

Kn∑
k=1

[
E

{|N3(k)|qr/(r−1)}](r−1)/r

(B.45)

≤ C

(log δ−1
n )q

(
Kn∑
k=1

kq

(nδn)q/2 +
k∗
n,Dn∑
k=1

kq/2

k∗q

n,Dn

+
Kn∑

k=k∗
n,Dn

+1

k−q/2

)

= o((log δ−1
n )−q).

The proofs of (B.41) for l = 2,7,8,9 and 10 are similar to that of (B.44) and the
proofs of (B.41) for l = 4,5 and 6 are similar to that of (B.45). We skip the details
in order to save space. The proof of (B.42) is a bit more complicated. By (2.16),
Lemma B.4, (B.37), (3.4) and the restriction on ξ , one has for sufficiently large q ,

Kn∑
k=1

V
q
n,Dn

(k)P (r−1)/r(|Nl(k)| ≥ (1/12)Vn,Dn(k)
)

≤
Kn∑
k=1

k /∈ADn,θ,M

{
E|N11(k)|qr/(r−1)}(r−1)/r

+
Kn∑
k=1

k∈ADn,θ,M

V
−q
n,Dn

(k)
{
E|N11(k)|2qr/(r−1)}(r−1)/r(B.46)
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≤ C

{
Kn∑
k=1

k /∈ADn,θ,M

‖a(k) − a(k∗
n,Dn

)‖q
R

U
q/2
δn

(k)L
q/2
n,Dn

(k)

+
Kn∑
k=1

k∈ADn,θ,M

I
q
2,n(k) + |(f2,n(k − k∗

n,Dn
))/N |q

U
q
δn

(k)I
q
2,n(k)

}

≤ C

[
k∗θ

n,Dn

(log δ−1
n k∗

n,Dn
)q/2

+ {1 + (k∗
n,Dn

)ξq}
(log δ−1

n )q

{k∗
n,Dn∑
k=1

k∗−q

n,Dn
+

Kn∑
k=k∗

n,Dn
+1

k−q

}]

= O
(
(log δ−1

n )−q/2(k∗
n,Dn

)(−q/2)+θ ) + o((log δ−1
n )−q),

where l = 11 or 12.
Following arguments similar to those used to obtain (B.40) and (B.44)–(B.46),

it can be shown that

(III) ≤
12∑
l=1

{
Kn∑
k=1

k∈ADn,θ,M

∣∣∣∣f2,n(k − k∗
n,Dn

)

(NLn,Dn(k))

∣∣∣∣
q

× P (r−1)/r(|Nl(k)| ≥ (1/12)Vn,Dn(k)
)}

(B.47)

= o((log δ−1
n )−q),

where the equality holds for sufficiently large q . (For a detailed proof of (B.47),
see [12], Corollary A.2.) Consequently, (B.36) is ensured by (B.38), (B.39), (B.43)
and (B.47). �

COROLLARY B.3. Assume that the assumptions of Corollary B.2 hold. Then,
for sufficiently large q ,

lim
n→∞E

∣∣∣∣ f(k̂n,δn) − f(k∗
n,Dn

)

(Ln,Dn(k̂n,δn))
1/2

∣∣∣∣
2q

= o((log δ−1
n )q).(B.48)

PROOF. Equation (B.48) can be verified using arguments similar to those in
the proofs of [14], Lemmas 7 and 8, and Corollary B.2 above. For details, see [12],
Corollary A.3. �

We are now ready to prove Theorem 1.
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PROOF OF THEOREM 1. Let (η, θ) be a pair satisfying (3.6), where η > 0 and
0 ≤ θ = θ(ξ) < 1 is obtained from (K.6) with ξ obeying (3.7). Then, by using
Hölder’s inequality, Jensen’s inequality, Corollaries B.1 and B.2, (3.4) and (3.6),
and taking q > max{η−1,1},

(Dn − 1)E

[{S(k̂n,δn) − S(k∗
n,Dn

)}2

Ln,Dn(k
∗
n,Dn

)

]

≤ (Dn − 1)

[
E

|S(k̂n,δn) − S(k∗
n,Dn

)|2q

(Ln,Dn(k̂n,δn))
q

]1/q

×
[
E

{
Ln,Dn(k̂n,δn)

Ln,Dn(k
∗
n,Dn

)

}q/(q−1)](q−1)/q

(B.49)

= O

(
Dn − 1

(k∗
n,Dn

)1−θ(1+1/q)

)
+ o

(
Dn − 1

log δ−1
n

)

+ O

(
Dn − 1

(log δ−1
n )1/2(k∗

n,Dn
)1/2−θ/q

)
= o(1).

By Corollaries B.1 and B.3 and an argument similar to that used to prove (B.49),

(Dn − 1)E

[{f(k̂n,δn) − f(k∗
n,Dn

)}2

Ln,Dn(k
∗
n,Dn

)

]
= o(1).(B.50)

Consequently, the desired result is ensured by (B.49), (B.50) and Proposition 2.
�

PROOF OF THEOREM 2. First note that when limn→∞ δn = 1 and condition (i)
[or (ii)] of Theorem 2 are assumed instead of (3.4) and (3.5), the left-hand sides of
(B.33)–(B.35) still converge to 0. Therefore, (B.29) follows. Let 0 < ξ < (1/2) −
ξ2 if condition (i) of Theorem 2 holds, and 0 < ξ < min{(1/2) − ξ2, (δ

∗
1/2) − ξ2}

if condition (ii) of Theorem 2 holds. Then, by Jensen’s inequality and the same
reasoning used in the proofs of Corollaries B.2 and B.3, we have for any q > 0,

E

∣∣∣∣S(k̂n,δn) − S(k∗
n,Dn

)

(Ln,Dn(k̂n,δn))
1/2

∣∣∣∣
2q

= o(1) and

(B.51)

E

∣∣∣∣ f(k̂n,δn) − f(k∗
n,Dn

)

(Ln,Dn(k̂n,δn))
1/2

∣∣∣∣
2q

= o(1).

Consequently, the claimed result follows from (B.29), (B.51), (2.11) and Proposi-
tion 2. �
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APPENDIX C: PROOF OF THEOREM 3

Instead of verifying Theorem 3 directly, we will first investigate the prediction
performance of S

(Pn)
n (k), defined in (2.15). By analogy with (4.1) of [25],

S(Pn)
n (k) = NLn,Dn(k) + Pnk

(
σ̂ 2

n (k) − σ 2)
+ (

kσ 2 − N‖ân(k) − a(k)‖2
R̂n(k)

)
(C.1)

+ Nσ 2 + N
(
S2

Kn,n−1(k) − σ 2
k

)
,

where Dn = Pn, for a k × k symmetric matrix A and a k-dimensional vector y,
‖y‖A = y′Ay, and the definition of S2

Kn,n−1(k) can be found in Lemma B.1. Note
that the relation, Dn = Pn, will be used throughout this appendix. Based on (C.1)
and an argument similar to that used in (5.34) of [14], we have

P(k̂S
n,Pn

= k) ≤
5∑

i=1

P
(|Uin(k)| ≥ (1/5)Vn,Dn(k)

)
,(C.2)

where Vn,Dn(k) is defined after (B.2), k̂S
n,Pn

= arg min1≤k≤Kn S
(Pn)
n (k),

NLn,Dn(k)|U1,n(k)| = ∣∣Pnk
(
σ̂ 2

n (k) − σ 2)∣∣,
NLn,Dn(k)|U2,n(k)| = ∣∣Pnk

∗
n,Dn

(
σ̂ 2

n (k∗
n,Dn

) − σ 2)∣∣,
NLn,Dn(k)|U3,n(k)| = ∣∣kσ 2 − N‖ân(k) − a(k)‖2

R̂n(k)

∣∣,
NLn,Dn(k)|U4,n(k)| = ∣∣k∗

n,Dn
σ 2 − N‖ân(k

∗
n,Dn

) − a(k∗
n,Dn

)‖2
R̂n(k∗

n,Dn
)

∣∣ and

NLn,Dn(k)|U5,n(k)| = |S2
Kn,n−1(k) − σ 2

k − S2
Kn,n−1(k

∗
n,Dn

) − σ 2
k∗
n,Dn

|.

THEOREM C.1. Let the assumptions of Theorem 3 hold. Then (2.8) and (2.9)
hold for k̂n,OS = k̂S

n,Pn
, and (4.4) holds with k̂n,Pn replaced by k̂S

n,Pn
.

PROOF. By Lemma B.1 and analogies with [14], (5.43) and (5.47), we
have for q > 0, all 1 ≤ k ≤ Kn and all sufficiently large n, E|U1,n(k)|q ≤
C(P

q
n kqN−q +N−q/2), E|U2,n(k)|q ≤ C(P

q
n k∗q

n,Dn
N−q +N−q/2), E|U3,n(k)|q ≤

C(k2qN−q/2 +kq/2)N−qL
−q
n,Dn

(k), E|U4,n(k)|q ≤ C(k∗2q

n,Dn
N−q/2 +k∗q/2

n,Dn
)N−q ×

L
−q
n,Dn

(k) and E|U5,n(k)|q ≤ C‖a(k)−a(k∗
n,Dn

)‖q
RN−q/2L

−q
n,Dn

(k). These moment
bounds and an argument similar to that used to verify Corollary B.1 give for q > 0,

lim
n→∞E

(
Ln,Dn(k̂

S
n,Pn

)

Ln,Dn(k
∗
n,Dn

)
− 1

)q

= 0.(C.3)

With the help of (K.1)–(K.6), (4.1), (4.2) and the above moment properties, we
can follow the ideas used in the proofs of Corollaries B.2 and B.3 to obtain that for
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q > 0,

E

∣∣∣∣S(k̂S
n,Pn

) − S(k∗
n,Dn

)

(Ln,Dn(k̂
S
n,Pn

))1/2

∣∣∣∣
2q

= O
(
(k∗

n,Dn
)−(1−θ)q+θ ) + o

(
(Pn − 1)−q)

(C.4)
+ O

(
(Pn − 1)−q/2(k∗

n,Dn
)(−q/2)+θ )

,

where 0 ≤ θ = θ(ξ) < 1 is any exponent obtained from (K.6) with ξ satisfying
(4.3), and

E

∣∣∣∣ f(k̂S
n,Pn

) − f(k∗
n,Dn

)

(Ln,Dn(k̂
S
n,Pn

))1/2

∣∣∣∣
2q

= o
(
(Pn − 1)−q)

.(C.5)

Consequently, the claimed result is guaranteed by (3.6) [with ξ satisfying (4.3)],
(C.3)–(C.5) and Proposition 2. �

PROOF OF THEOREM 3. It suffices to show that (C.3)–(C.5) hold with k̂S
n,Pn

replaced by k̂n,Pn . Define Gn(k) = N exp{ICPn(k)} − S
(Pn)
n (k) and |U6,n(k)| =

|Gn(k) − Gn(k
∗
n,Dn

)|/NLn,Dn(k). Then, by the same reasoning as in (C.2),

P(k̂n,Pn = k) ≤ ∑6
i=1 P(|Uin(k)| ≥ (1/6)Vn,Dn(k)). Moreover, Taylor’s theorem

and [14], (5.42), yield that for q > 0, all 1 ≤ k ≤ Kn, and all sufficiently large
n, E|U6,n(k)|q ≤ CP

2q
n K

2q
n N−2qL

−q
n,Dn

(k). These inequalities and the same argu-
ment used in the proof of Theorem C.1 give the desired results. �

APPENDIX D: PROOFS OF THEOREMS 4 AND 6

PROOF OF THEOREM 4. First observe that for all sufficiently large n,

p0 ≤ Kn, k∗
n = k∗

n,Hn
= p0,

(D.1)

Ln(k
∗
n) = p0σ

2

N
, Ln,Hn(k

∗
n,Hn

) = (Hn − 1)p0σ
2

N
,

where Hn = o(n) and Hn > 1. Define I3,n(k) = {N(f(k) − f(p0))
2}/(p0σ

2). In
view of (D.1) and by Hölder’s inequality, we have, for all sufficiently large n,

(Dn − 1)
E(f(k̂n,δn) − f(k∗

n,Dn
))2

Ln,Dn(k
∗
n,Dn

)

≤
p0−1∑
k=1

(E|I3,n(k)|r )1/rP (r−1)/r (k̂n,δn = k)(D.2)

+
Kn∑

k=p0+1

(E|I3,n(k)|r )1/rP (r−1)/r (k̂n,δn = k) ≡ (I) + (II),
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where r > 1 and Dn = DAPEδn
. According to [14], Proposition 1 and Lemmas 1

and 2, (B.7) and (B.11),

E|I3,n(k)|r ≤
{

C, 1 ≤ k ≤ p0 − 1,
Ckr, p0 + 1 ≤ k ≤ Kn,

(D.3)

as n is sufficiently large. Armed with (D.3), Lemmas B.2–B.4, the conditions im-
posed on δn, and the fact that for 1 ≤ k ≤ Kn and k �= p0, V −1

n,Dn
(k) ≤ C, the

proof of Corollary B.1 is modified to obtain that for any s > 0, (I) = O(n−s)

and (II) = o((log δ−1
n )−s). Hence, (2.9) holds for k̂n,OS = k̂n,δn . Similarly, it can

be shown that k̂n,δn also satisfies (2.8). In view of Proposition 2 and (D.1), (2.3)
[(2.4)] is achieved by k̂n,δn . Modifying the proof of Theorem 3 and the above ar-
gument for APEδn(k), it can be shown that (2.8), (2.9) and (2.3) [(2.4)] can also be
verified for k̂n,Pn , with Pn satisfying the imposed constraints, Pn → ∞ as n → ∞
and Pn = O(ns) for some 0 < s < 1. The details are omitted in order to save space.

�

PROOF OF THEOREM 6. Unlike the previous theorems, Proposition 2 is not
applied in the proof of Theorem 6 since the penalty term associated with k̂

(ι)
n ,

2I{k̂n,Pn �=k̂nι,Pnι } + PnI{k̂n,Pn=k̂nι,Pnι }, is random. In the following, we shall directly

verify that

lim sup
n→∞

qn(k̂
(ι)
n ) − σ 2

Ln(k∗
n)

≤ 1.(D.4)

First assume that condition (ii) of Theorem 6 holds. Let 0 < ξ < min{δ∗
1/2,1/2,

(1 + δ∗
1) − ι1(2 + δ∗

1)}. Then there are 0 ≤ θ = θ(ξ) < 1 and M = M(ξ) > 0 such
that (5.2) is satisfied. Define

Bn,M∗ = AC
Pn,θ,M ∩

{
k : 1 ≤ k ≤ Kn,

Ln,Pn(k) − Ln,Pn(k
∗
n,Pn

)

Ln,Pn(k
∗
n,Pn

)
< M∗

}
,

where M∗ is some positive constant, and I4,n(k) = (f(k) + S(k))2/Ln(k
∗
n). Then

qn(k̂
(ι)
n ) − σ 2

Ln(k∗
n)

= E
{
I4,n

(
k̂(ι)
n

)}
≤ E{I4,n(k̂n,2)}(D.5)

+ E
{
I4,n(k̂n,Pn)I{k̂n,Pn=k̂nι,Pnι }

(
I{k̂n,Pn

∈Bn,M∗ } + I{k̂n,Pn
/∈Bn,M∗ }

)}
≡ (I) + (II).
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Observe that for r > 1,

(II) ≤ E
{
I4,n(k̂nι,Pnι )I{k̂

nι,Pnι
∈Bn,M∗ }

} + E
{
I4,n(k̂n,Pn)I{k̂n,Pn

/∈Bn,M∗ }
}

=
Knι∑
k=1

k∈Bn,M∗

E
{
I4,n(k)I{k̂

nι,Pnι
=k}

} +
Kn∑
k=1

k /∈Bn,M∗

E
{
I4,n(k)I{k̂n,Pn

=k}
}

≤ C

{ Knι∑
k=1

k∈Bn,M∗

Ln(k)

Ln(k∗
n)

P (r−1)/r (k̂nι,Pnι = k)(D.6)

+
Kn∑
k=1

k /∈Bn,M∗

Ln(k)

Ln(k∗
n)

P (r−1)/r (k̂n,Pn
= k)

}

≡ C{(III) + (IV)},
where the second inequality follows from Hölder’s inequality and the fact that
for all 1 ≤ k ≤ Kn, E|f(k) + S(k)|2r ≤ CLr

n(k), which is ensured by Wei ([28],
Lemma 2), Ing and Wei ([14], Proposition 1 and Lemmas 1 and 2) and (B.16). To
deal with (III), by (5.3) and the definition of Bn,M∗ , we have, for all sufficiently
large n,

Bn,M∗ ∩ {1,2, . . . ,Knι} ⊆ APnι ,θ,M.

Hence, (5.2) ensures that for all k ∈ Bn,M∗ ∩ {1,2, . . . ,Knι} and sufficiently
large n,

V −1
nι,Pnι

(k) = {Lnι,Pnι (k)}{Lnι,Pnι (k) − Lnι,Pnι (k
∗
nι,Pnι )}−1 ≤ C(k∗

nι,Pnι )
ξ .(D.7)

The definition of Bn,M∗ also yields for all k ∈ Bn,M∗ and Pn ≥ 2, Ln(k)/Ln(k
∗
n) ≤

(Pn −1){Ln,Pn(k)/Ln,Pn(k
∗
n,Pn

)} ≤ CPn. According to this, (D.7) and the moment
bounds for |Uin(k)|, i = 1, . . . ,6, we have, for q > 0 and all sufficiently large n,

(III) ≤ CPn(k
∗
nι,Pnι )

ξq

{ Knι∑
k=1

k∈Bn,M∗

P
q
nι(kq + k∗q

nι,Pnι
)

N
q
ι

+ k2q + k∗2q

nι,Pnι

N
3q/2
ι L

q
nι,Pnι

(k)

+ 1

N
q/2
ι

+ kq/2 + k∗q/2

nι,Pnι

N
q
ι L

q
nι,Pnι

(k)
(D.8)

+ ‖a(k) − a(k∗
nι,Pnι

)‖q
R

N
q/2
ι L

q
nι,Pnι

(k)
+ K

2q
nι P

2q
nι

N
2q
ι L

q
nι,Pnι

(k)

}
.
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By taking q on the right-hand side of (D.8) large enough and in view of the restric-
tions on ξ (given at the beginning of this proof), ι and Pn,

(III) = o(1).(D.9)

Similarly, (5.2) and the definition of Bn,M∗ imply that for all sufficiently large
n and k ∈ {k : 1 ≤ k ≤ Kn and k /∈ Bn,M∗}, (D.7) is still valid if nι and Pnι

are replaced by n and Pn, respectively. This finding, the fact that for Pn ≥ 2,
Ln(k)/Ln(k

∗
n) ≤ (Pn − 1){Ln,Pn(k)/Ln,Pn(k

∗
n,Pn

)}, and an argument similar to the
one used to verify (D.9) give (IV) = o(1), which, together with (D.5), (D.6), (D.9)
and Theorem 2 of [14], yields (D.4).

Next, assume that condition (i) holds. By the moment bounds for |Uin(k)|, i =
1, . . . ,6, and similar reasoning to that used in the proof of Theorem 4, we have

lim
n→∞P(k̂n,Pn

�= p0) = 0,(D.10)

and for any q > 0,

E|I4,n(k̂n,2)|q = O(1).(D.11)

Since

qn(k̂
(ι)
n ) − σ 2

Ln(k∗
n)

≤ E{I4,n(k̂n,Pn)}
(D.12)

+ E
{
I4,n(k̂n,2)

(
I{k̂n,Pn �=p0} + I{k̂nι,Pnι �=p0}

)}
,

(D.4) follows from (D.10)–(D.12), Hölder’s inequality and lim supn→∞
E(I4,n(k̂n,Pn)) ≤ 1 (which is ensured by Theorem 4). This completes the proof
of the theorem. �
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