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LIKELIHOOD BASED INFERENCE FOR MONOTONE
RESPONSE MODELS1

BY MOULINATH BANERJEE

University of Michigan

The behavior of maximum likelihood estimates (MLEs) and the like-
lihood ratio statistic in a family of problems involving pointwise nonpara-
metric estimation of a monotone function is studied. This class of problems
differs radically from the usual parametric or semiparametric situations in
that the MLE of the monotone function at a point converges to the truth at
rate n1/3 (slower than the usual

√
n rate) with a non-Gaussian limit distri-

bution. A framework for likelihood based estimation of monotone functions
is developed and limit theorems describing the behavior of the MLEs and
the likelihood ratio statistic are established. In particular, the likelihood ratio
statistic is found to be asymptotically pivotal with a limit distribution that is
no longer χ2 but can be explicitly characterized in terms of a functional of
Brownian motion. Applications of the main results are presented and poten-
tial extensions discussed.

1. Introduction. A common problem in nonparametric statistics is the need
to estimate a function, like a density, a distribution, a hazard or a regression func-
tion. Background knowledge about the statistical problem can provide informa-
tion about certain aspects of the function of interest, which, if incorporated in the
analysis, enables one to draw meaningful conclusions from the data. Often, this
manifests itself in the nature of shape restrictions (on the function). Monotonicity,
in particular, is a shape restriction that shows up very naturally in different areas of
application like reliability, renewal theory, epidemiology and biomedical studies.
Consequently, monotone functions have been fairly well studied in the literature
and several authors have addressed the problem of maximum likelihood estima-
tion under monotonicity constraints. We point out some of the well-known ones.
One of the earliest results of this type goes back to Prakasa Rao [21], who derived
the asymptotic distribution of the Grenander estimator (the MLE of a decreas-
ing density); Brunk [4] explored the limit distribution of the MLE of a monotone
regression function, Groeneboom and Wellner [9] studied the limit distribution
of the MLE of the survival time distribution with current status data, Huang and
Zhang [14] and Huang and Wellner [13] obtained the asymptotics for the MLE of
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a monotone density and a monotone hazard with right censored data, and Wellner
and Zhang [27] deduced the large sample theory for a pseudo-likelihood estimator
for the mean function of a counting process. A common feature of these monotone
function problems that sets them apart from the spectrum of regular parametric and
semiparametric problems is the slower rate of convergence (n1/3) of the maximum
likelihood estimates of the value of the monotone function at a fixed point (recall
that the usual rate of convergence in regular parametric/semiparametric problems
is

√
n). What happens in each case is the following: If ψ̂n is the MLE of the

monotone function ψ , then provided that ψ ′(z) does not vanish,

n1/3(
ψ̂n(z) − ψ(z)

) →d C(z)Z,(1.1)

where the random variable Z is a symmetric (about 0) but non-Gaussian random
variable and C(z) is a constant depending upon the underlying parameters in the
problem and the point of interest z. In fact, Z = arg minh(W(h)+h2), where W(h)

is standard two-sided Brownian motion on the line. The distribution of Z was
analytically characterized by Groeneboom [7] and more recently its distribution
and functionals thereof have been computed by Groeneboom and Wellner [10].

In this paper we study a class of conditionally parametric models, of the
covariate-response type, where the conditional distribution of the response given
the covariate comes from a regular parametric model, with the parameter be-
ing given by a monotone function of the covariate. We call these monotone re-
sponse models. Here is a formal description: Let {p(x, θ) : θ ∈ �}, with � being
an open subinterval of R, be a one-parameter family of probability densities with
respect to a dominating measure µ. Let ψ be an increasing or decreasing con-
tinuous function defined on an interval Ĩ and taking values in �. Consider i.i.d.
data {(Xi,Zi)}ni=1 where Zi ∼ pZ , pZ being a Lebesgue density defined on Ĩ and
Xi |Zi = z ∼ p(x,ψ(z)). Interest focuses on estimating the function ψ , since it
captures the nature of the dependence between the response (X) and the covari-
ate (Z). If the parametric family of densities, p(x, θ), is parametrized by its mean,
then ψ(z) = E(X|Z = z) is precisely the regression function. In this paper, we
study the asymptotics of the MLE of ψ and also the likelihood ratio statistic for
testing ψ at a fixed point of interest, with a view to obtaining pointwise confidence
sets for ψ of an assigned level of significance. Before we discuss this further, here
are some motivating examples to illustrate the above framework.

(a) Consider, for example, the monotone regression model where Xi = ψ(Zi)+
εi , {(εi,Zi)}ni=1 are i.i.d. random variables, εi is independent of Zi , each εi has
mean 0 and variance σ 2, each Zi has a Lebesgue density pZ(·) and ψ is a
monotone function. The above model and its variants have been fairly well studied
in the literature on isotonic regression (see, e.g., [4, 12, 16, 18]). Now suppose
that the εi ’s are Gaussian. We are then in the above framework: Z ∼ pZ(·) and
X|Z = z ∼ N(ψ(z), σ 2). We want to estimate ψ and test ψ(z0) = θ0 for an inte-
rior point z0 in the domain of ψ .
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(b) Another example is the binary choice model where we have a dichotomous
response variable X = 1 or 0 and a continuous covariate Z with a Lebesgue density
pZ(·) such that P(X = 1|Z) ≡ ψ(Z) is a smooth function of Z. In a biomedical
context one could think of X as representing the indicator of a disease/infection
and Z the level of exposure to a toxin, or the measured level of a biomarker that
is predictive of the disease/infection. In such cases it is often natural to impose
a monotonicity assumption on ψ . A special version of this model is the case 1
interval censoring/current status model that is used extensively in epidemiology
and has received much attention among biostatisticians and statisticians (see, e.g.,
[3, 6, 9, 11]).

(c) The Poisson regression model used for count data provides yet another
example. Suppose that Z ∼ pZ(·) and X|Z = z ∼ Poisson(ψ(z)) where ψ is a
monotone function. Here one can think of Z as the distance of a region from a
point source (e.g., a nuclear processing plant) and X the number of cases of dis-
ease incidence at distance Z. The expected number of disease cases at distance z

from the source (ψ(z)) may be expected to be monotone decreasing in z. Variants
of this model have received considerable attention in epidemiological contexts [5,
17, 23].

A common feature of all three models described above is the fact that the condi-
tional distribution of the response comes from a one parameter full rank exponen-
tial family [in (a), the variance σ 2 needs to be held fixed]. Our last example below
considers a curved exponential family model for the response and is of a funda-
mentally different flavor in that explicit characterizations of maximum likelihood
estimates of ψ are not available in this model, in contrast to the preceding ones.

(d) Conditional normality under a mean–variance relationship. Consider the
scenario where Z has a Lebesgue density concentrated on an interval [a, b] (with
0 < a < b) and given Z = z, X ∼ p(x,ψ(z)) for an increasing function ψ , with
p(x, θ) being the normal density, µ = cθ−2m+1 and σ 2 = dθ−2m for some real
m ≥ 1, and θ, c, d > 0. For m = 1, this reduces to a normal density with a linear
relationship between the mean and the standard deviation. Such a model could
be postulated in a real-life setting based on, say, exploratory plots of the mean–
variance relationship using observed data, or background knowledge.

Based on existing work, one would expect ψ̂n(z0), the MLE of ψ at a pre-
fixed point z0 to satisfy (1.1), with z replaced by z0. As will be seen, this indeed
happens. This result permits the construction of (asymptotic) confidence intervals
for ψ(z0) using the quantiles of Z, which are well tabulated. The constant C(z0)

however needs to be estimated and involves nuisance parameters depending on the
underlying model, and in particular, the derivative of ψ at z0, estimating which is a
tricky affair. Another likelihood-based method of constructing confidence sets for
ψ(z0) would involve testing a null hypothesis of the form H0,θ :ψ(z0) = θ , using
the likelihood ratio test, for different values of θ , and then inverting the acceptance
region of the likelihood ratio test; in other words, the confidence set for ψ(z0) is
formed by compiling all values of θ for which the likelihood ratio statistic does
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not exceed a critical threshold. The threshold depends on 0 < α < 1, where 1 − α

is the level of confidence being sought, and the asymptotic distribution of the like-
lihood ratio statistic when the null hypothesis is correct. Thus, we are interested in
studying the asymptotics of the likelihood ratio statistic for testing the true (null)
hypothesis H0,θ0 :ψ(z0) = θ0. Pointwise null hypotheses of this kind are very im-
portant from the perspective of estimation since they serve as a conduit for setting
confidence limits for the value of ψ , through inversion.

A question that arises naturally is whether, similar to the classical parametric
case, we can find a universal limit distribution for the likelihood ratio statistic
when the null hypothesis H0,θ0 holds, for the monotone response models intro-
duced above. The hope that a universal limit may exist is bolstered by the work of
Banerjee and Wellner [3], who studied the limiting behavior of the likelihood ratio
statistic for testing the value of the distribution function (F ) of the survival time at
a fixed point in the current status model. They found that in the limit the likelihood
ratio statistic behaves like D, which is a well-defined functional of W(t) + t2 (and
is described below). We will show that for our monotone response models, D does
indeed arise as the universal limit law of the likelihood ratio statistic.

We are now in a position to describe the agenda for this paper. In Section 2
we give regularity conditions on the monotone response models under which the
results in this paper are developed. We state and prove the main theorems describ-
ing the limit distributions of the MLEs and the likelihood ratio statistic. Section
3 discusses applications of the main theorems and Section 4 contains some con-
cluding remarks. The Appendix contains the proofs of some of the lemmas used
to establish the main results in Section 2.

2. Model assumptions, characterizations of estimators and main results.
Consider the general monotone response model introduced in the previous section.
Let z0 be an interior point of Ĩ at which one seeks to estimate ψ . Assume that:
(a) pZ is positive and continuous in a neighborhood of z0, and (b) ψ is increasing
and continuously differentiable in a neighborhood of z0 with ψ ′(z0) > 0.

The joint density of the data vector {(Xi,Zi)}ni=1 (with respect to an appropriate
dominating measure) can be written as

pn(ψ, {(Xi,Zi)}ni=1) =
n∏

i=1

p(Xi,ψ(Zi)) ×
n∏

i=1

pZ(Zi).

The second factor on the right-hand side of the above display does not involve ψ

and hence is irrelevant as far as computation of MLEs is concerned. Absorbing this
into the dominating measure, the likelihood function is given by the first factor on
the right-hand side of the display above. Denote by ψ̂n the unconstrained MLE of
ψ and by ψ̂0

n the MLE of ψ under the constraint imposed by the null hypothesis
H0 :ψ(z0) = θ0. We assume:

(A.0) With probability increasing to 1 as n → ∞, the MLEs ψ̂n and ψ̂0
n exist.
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Consider the likelihood ratio statistic for testing the hypothesis H0 :ψ(z0) = θ0,
where θ0 is an interior point of �. Denoting the likelihood ratio statistic by 2 logλn,
we have

2 logλn = 2 log
n∏

i=1

p(Xi, ψ̂n(Zi)) − 2 log
n∏

i=1

p(Xi, ψ̂
0
n(Zi)).

In what follows, assume that the null hypothesis H0 holds.

Further assumptions. We now state our assumptions about the parametric
model p(x, θ).

(A.1) The set Xθ = {x :p(x, θ) > 0} does not depend on θ and is denoted by X.
(A.2) l(x, θ) = logp(x, θ) is at least three times differentiable with respect to

θ and is strictly concave in θ for every fixed x in X. The first, second
and third partial derivatives of l(x, θ) with respect to θ will be denoted by
l̇(x, θ), l̈(x, θ) and l′′′(x, θ).

(A.3) If T is any statistic such that Eθ(| T |) < ∞, then

∂

∂θ

∫
X

T (x)p(x, θ) dx =
∫
X

T (x)
∂

∂θ
p(x, θ) dx

and

∂2

∂θ2

∫
X

T (x)p(x, θ) dx =
∫
X

T (x)
∂2

∂θ2 p(x, θ) dx.

Under these assumptions, I (θ) ≡ Eθ(l̇(X, θ)2) = −Eθ(l̈(X, θ)).
(A.4) I (θ) is finite and continuous at θ0.
(A.5) There exists a neighborhood N of θ0 such that for all x, supθ∈N |l′′′(x, θ)| ≤

B(x) and supθ∈N Eθ(B(X)) < ∞.
(A.6) The functions f1(θ1, θ2) = Eθ1(l̇(X, θ2)

2) and f2(θ1, θ2) = Eθ1(l̈(X, θ2))

are continuous in a neighborhood of (θ0, θ0). Also, the function f3(θ1, θ2) =
Eθ1(l̈(X, θ2)

2) is uniformly bounded in a neighborhood of (θ0, θ0).
(A.7) Set H(θ,M) to be

Eθ

[(|l̇(X, θ)|2 + l̈(X, θ)2)(
1{|l̇(X, θ)| > M} + 1{|l̈(X, θ)| > M})].

Then limM→∞supθ∈N H(θ,M) = 0.

We are interested in describing the asymptotic behavior of the MLEs of ψ̂n and
ψ̂0

n in local neighborhoods of z0 and that of the likelihood ratio statistic 2 logλn.
In order to do so, we first need to introduce the basic spaces and processes (and
relevant functionals of the processes) that will figure in the asymptotic theory.

First, define L to be the space of locally square integrable real-valued functions
on R equipped with the topology of L2 convergence on compact sets. Thus L
comprises all functions φ that are square integrable on every compact set and φn
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is said to converge to φ if
∫
[−K,K](φn(t) − φ(t))2 dt → 0 for every K . The space

L × L denotes the Cartesian product of two copies of L with the usual product
topology. Also, define Bloc(R) to be the set of all real-valued functions defined on
R that are bounded on every compact set, equipped with the topology of uniform
convergence on compacta. Thus hn converges to h in Bloc(R) if hn and h are
bounded on every compact interval [−K,K] (K > 0) and supx∈[−K,K] | hn(x) −
h(x) |→ 0 for every K > 0.

For a real-valued function f defined on R, let slogcm(f, I ) denote the left-hand
slope of the GCM (greatest convex minorant) of the restriction of f to the interval
I . We abbreviate slogcm(f,R) to slogcm(f ). Also define:

slogcm0(f ) = (
slogcm(f, (−∞,0]) ∧ 0

)
1(−∞,0]

+ (
slogcm(f, (0,∞)) ∨ 0

)
1(0,∞).

For positive constants c and d define the process Xc,d(z) = cW(z) + dz2,
where W(z) is standard two-sided Brownian motion starting from 0. Set gc,d =
slogcm(Xc,d) and g0

c,d = slogcm0(Xc,d). It is known that gc,d is a piecewise con-
stant increasing function, with finitely many jumps in any compact interval. Also
g0

c,d , like gc,d , is a piecewise constant increasing function, with finitely many
jumps in any compact interval and differing, almost surely, from gc,d on a finite
interval containing 0. In fact, with probability 1, g0

c,d is identically 0 in some ran-
dom neighborhood of 0, whereas gc,d is almost surely nonzero in some random
neighborhood of 0. Also, the length of the interval Dc,d on which gc,d and g0

c,d

differ is Op(1). For more detailed descriptions of the processes gc,d and g0
c,d ,

see [1, 3, 7, 26]. Thus, g1,1 ≡ g and g0
1,1 ≡ g0 are the unconstrained and con-

strained slope processes associated with the canonical process X1,1(z). Finally,
define D := ∫

((g(z))2 − (g0(z))2) dz.

The following theorem describes the limiting behavior of the unconstrained and
constrained MLEs of ψ , appropriately normalized.

THEOREM 2.1. Let

Xn(h) = n1/3(
ψ̂n(z0 + hn−1/3) − ψ(z0)

)
and

Yn(h) = n1/3(
ψ̂0

n(z0 + hn−1/3) − ψ(z0)
)
.

Let a = (I (ψ(z0))pZ(z0))
−1/2 and b = (1/2)ψ ′(z0). Under assumptions (A.0)–

(A.7) and (a), (b), (Xn(h),Yn(h)) →d (ga,b(h), g0
a,b(h)) finite dimensionally and

also in the space L × L.

Thus Xn(0) = n1/3(ψ̂n(z0) − ψ(z0)) →d ga,b(0). Using Brownian scaling it
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follows that the following distributional equality holds in the space L × L:

(ga,b(h), g0
a,b(h)) =d

(
a(b/a)1/3g((b/a)2/3h), a(b/a)1/3g0((b/a)2/3h)

)
.(2.2)

For a proof of this proposition, see, for example, [1]. Using the fact that g(0) ≡d 2Z

(see, e.g., [21]), we get

n1/3(
ψ̂n(z0) − ψ(z0)

) →d a(b/a)1/3g(0) ≡d (8a2b)1/3
Z.(2.3)

This is precisely the phenomenon described in (1.1).
Our next theorem concerns the limit distribution of the likelihood ratio statistic

for testing H0.

THEOREM 2.2. Under assumptions (A.0)–(A.7) and (a), (b),

2 logλn →d D when H0 is true.

REMARK 1. In this paper we work under the assumption that Z has a
Lebesgue density on its support. However, Theorems 2.1 and 2.2, the main results
of this paper, continue to hold under the assumption that the distribution function
of Z is continuously differentiable (and hence has a Lebesgue density) in a neigh-
borhood of z0 with a nonvanishing derivative at z0. Also, subsequently we tacitly
assume that MLEs always exist; this is not really a stronger assumption than (A.0).
Since our main results deal with convergence in distribution, we can, without loss
of generality, restrict ourselves to sets with probability tending to 1. In this pa-
per, we focus on the case where ψ is increasing. The case where ψ is decreasing
is incorporated into this framework by replacing Z by −Z and considering the
(increasing) function ψ(z) = ψ(−z).

Characterizing ψ̂n. In what follows, we define φ(x, θ) ≡ −l(x, θ), φ̇(x, θ) =
−l̇(x, θ), φ̈(x, θ) = −l̈(x, θ) and φ′′′(x, θ) = −l′′′(x, θ). The log-likelihood func-
tion for the data is given by

∑n
i=1 l(Xi,ψ(Zi)) = ∑n

i=1 l(X(i),ψ(Z(i))), where
Z(i) is the ith smallest covariate value and X(i) is the response value corresponding
to it. Finding the MLE under the constraint that ψ is increasing reduces to min-
imizing φ̃(u1, u2, . . . , un) = ∑n

i=1 φ(X(i), ui) over all u1 ≤ u2 ≤ · · · ≤ un. Once
we obtain the (unique) minimizer û ≡ (û1, û2, . . . , ûn), the MLE ψ̂n at the points
{Z(i)}ni=1 is given by ψ̂n(Z(i)) = ûi for i = 1,2, . . . , n.

For convenience, take � to be R for the subsequent discussion (this assump-
tion can be easily relaxed; see, in particular, Remark 2 below). By our assump-
tions, φ̃ is a (continuous) convex function defined on R

n and necessary and suf-
ficient conditions characterizing the minimizer are obtained readily, using the
Kuhn–Tucker theorem. We write the constraints as g(u) ≤ 0, where g(u) =
(g1(u), g2(u), . . . , gn−1(u))T and gi(u) = ui − ui+1, i = 1,2, . . . , n − 1. Then
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there exists an (n − 1)-dimensional vector λ = (λ1, λ2, . . . , λn−1)
T with λi ≥ 0

for all i, such that, if û is the minimizer satisfying the constraints, g(û) ≤ 0, then

n−1∑
i=1

λi(ûi − ûi+1) = 0 and � φ̃(û) + GT λ = 0,

where G is the (n − 1) × n matrix of partial derivatives of g. The conditions dis-
played above are often referred to as Fenchel conditions. Solving recursively to
obtain the λi’s (for i = 1,2, . . . , n − 1), we get

λi ≡
n∑

j=i+1

�j φ̃(û) =
n∑

i+1

φ̇
(
X(j), ûj

) ≥ 0

(2.4)
for i = 1,2, . . . , (n − 1)

and
∑n

j=1 �j φ̃(û) = ∑n
j=1 φ̇(X(j), ûj ) = 0. Now, let B1,B2, . . . ,Bk be the blocks

of indices on which the solution û is constant and let wj be the common
value on block Bj . The equality

∑n−1
i=1 λi(ûi − ûi+1) = 0 forces λi = 0 when-

ever ûi < ûi+1. Noting that �rψ(û) = φ̇(X(r), ûr ), this implies that on each
Bj ,

∑
r∈Bj

φ̇(X(r),wj ) = 0. Thus wj is the unique solution to the equation∑
r∈Bj

φ̇(X(r),w) = 0. Also, if S is a head-subset of the block Bj (i.e., S is the
ordered subset of the first few indices of the ordered set Bj ), then it follows that∑

r∈S φ̇(X(r),wj ) ≤ 0.
The solution û can be characterized as the vector of left derivatives of the great-

est convex minorant (GCM) of a (random) cumulative sum (cusum) diagram, as
will be shown below. The cusum diagram will itself be characterized in terms
of the solution û, giving us a self-induced characterization. Before proceeding
further, we introduce some notation. For points {(xi, yi)}ni=0 where x0 = y0 = 0
and x0 < x1 < · · · < xn, consider the left-continuous function P(x) such that
P(xi) = yi and such that P(x) is constant on (xi−1, xi). We will denote the
vector of slopes (left-derivatives) of the GCM of P(x) computed at the points
(x1, x2, . . . , xn) by slogcm{(xi, yi)}ni=0. Define the function

ξ(u) =
n∑

i=1

[ui − ûi + �i φ̃(û)d−1
i ]2di

=
n∑

i=1

[
ui − (

ûi − φ̇
(
X(i), ûi

)
d−1
i

)]2
di,

where di = �ii φ̃(û) = φ̈(X(i), ûi) > 0. The function ξ is strictly convex and it is
easy to see that û minimizes ξ subject to the constraints that u1 ≤ u2 ≤ · · · ≤ un

and hence, is given by the isotonic regression of the function g(i) = ûi −
φ̇(X(i), ûi)d

−1
i on the ordered set {1,2, . . . , n} with weight function di . It is well

known that the solution (û1, û2, . . . , ûn) = slogcm{∑i
j=1 dj ,

∑i
j=1 g(j)dj }ni=0.
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See, for example, Theorem 1.2.1 of [22]. In terms of the function φ the solution
can be written as

{ûi}ni=1 ≡
[

slogcm

{
i∑

j=1

φ̈
(
X(j), ûj

)
,

(2.5)
i∑

j=1

(
ûj φ̈

(
X(j), ûj

) − φ̇
(
X(j), ûj

))}n

i=0

]
.

Recall that ψ̂n(Z(i)) = ûi ; for a z that lies strictly between Z(i) and Z(i+1), we
set ψ̂n(z) = ψ̂n(Z(i)). The MLE ψ̂n thus defined is a piecewise constant right-
continuous function.

Characterizing ψ̂0
n . Let m be the number of Zi’s that are less than or equal

to z0. Finding ψ̂0
n amounts to minimizing φ̃(u) = ∑n

i=1 φ(X(i), ui) over all u1 ≤
u2 ≤ · · · ≤ um ≤ θ0 ≤ um+1 ≤ · · · ≤ un. This can be reduced to solving two
separate optimization problems. These are: (1) Minimize

∑m
i=1 φ(X(i), ui) over

u1 ≤ u2 ≤ · · · ≤ um ≤ θ0 and (2) Minimize
∑n

i=m+1 φ(X(i), ui) over θ0 ≤ um+1 ≤
um+2 ≤ · · · ≤ un.

Consider (1) first. As in the unconstrained minimization problem one can
write down the Kuhn–Tucker conditions characterizing the minimizer. It is
then easy to see that the solution (û0

1, û
0
2, . . . , û

0
m) can be obtained through

the following recipe: Minimize
∑m

i=1 φ(X(i), ui) over u1 ≤ u2 ≤ · · · ≤ um to
get (ũ1, ũ2, . . . , ũm). Then (û0

1, û
0
2, . . . , û

0
m) = (ũ1 ∧ θ0, ũ2 ∧ θ0, . . . , ũm ∧ θ0).

The solution vector to (2), say (û0
m+1, û

0
m+2, . . . , û

0
n), is similarly given by

(û0
m+1, û

0
m+2, . . . , û

0
n) = (ũm+1 ∨ θ0, ũm+2 ∨ θ0, . . . , ũn ∨ θ0) where {ũi}ni=m+1 =

arg minum+1≤um+2≤···≤un

∑n
i=m+1 φ(X(i), ui).

An important property of the constrained solution {û0
i }ni=1 is that on any block

B of indices where it is constant and not equal to θ0, the constant value, say w0
B ,

is the unique solution to the equation∑
i∈B

φ̇
(
X(i),w

) = 0.(2.6)

The constrained solution also has a self-induced characterization in terms of the
slope of the greatest convex minorant of a cumulative sum diagram. This follows in
the same way as for the unconstrained solution by using the Kuhn–Tucker theorem
and formulating a quadratic optimization problem based on the Fenchel conditions
arising from this theorem. We skip the details but give the self-consistent charac-
terization: The constrained solution û0 minimizes A(u1, u2, . . . , un) = ∑n

i=1[ui −
(û0

i − �i φ̃(û0)d−1
i )]2di subject to the constraints that u1 ≤ u2 ≤ · · · ≤ um ≤ θ0 ≤
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um+1 ≤ · · · ≤ un, where di = �ii φ̃(û0). It is not difficult to see that

{û0
i }mi=1 ≡

[
slogcm

{
i∑

j=1

φ̈
(
X(j), û

0
j

)
,

(2.7)
i∑

j=1

(
û0

j φ̈
(
X(j), û

0
j

) − φ̇
(
X(j), û

0
j

))}m

i=0

]
∧ θ0

and

{û0
i }ni=m+1 ≡

[
slogcm

{
i∑

j=m+1

φ̈
(
X(j), û

0
j

)
,

(2.8)
i∑

j=m+1

(
û0

j φ̈
(
X(j), û

0
j

) − φ̇
(
X(j), û

0
j

))}n

i=m

]
∨ θ0.

The constrained MLE ψ̂0
n is the piecewise constant right-continuous function sat-

isfying ψ̂0
n(Z(i)) = û0

i for i = 1,2, . . . , n, ψ̂0
n(z0) = θ0 and having no jump points

outside the set {Z(i)}ni=1 ∪ {z0}.
REMARK 2. The characterization of the estimators above does not take into

consideration boundary constraints on ψ . However, in certain models, the very
nature of the problem imposes natural boundary constraints; for example, the pa-
rameter space � for the parametric model may be naturally nonnegative [example
(d) discussed above], in which case the constraint 0 ≤ u1 needs to be enforced.
Similarly, there can be situations where un is constrained to lie below some nat-
ural bound. In such cases, Fenchel conditions may be derived in the usual fashion
by applying the Kuhn–Tucker theorem and self-induced characterizations may be
derived similarly as above. However, as the sample size n grows, with probability
increasing to 1, the Fenchel conditions characterizing the estimator in a neighbor-
hood of z0 will remain unaffected by these additional boundary constraints, since
ψ(z0) is assumed to lie in the interior of the parameter space, and the asymptotic
distributional results will remain unaffected.

For this paper, we will assume the (uniform) almost sure consistency of the
MLEs ψ̂n and ψ̂0

n for ψ in a closed neighborhood of z0. For the purpose of de-
ducing the limit distributions of the MLEs and the likelihood ratio statistic, the
following lemma, which guarantees local consistency at an appropriate rate, is
crucial.

LEMMA 2.1. For any M0 > 0,

max
{

sup
h∈[−M0,M0]

|ψ̂n(z0 + hn−1/3) − ψ(z0)|,

sup
h∈[−M0,M0]

|ψ̂0
n(z0 + hn−1/3) − ψ(z0)|

}
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is Op(n−1/3).

We next state a number of preparatory lemmas required in the proofs of The-
orems 2.1 and 2.2. But before that we need to introduce further notation. Let Pn

denote the empirical measure of the data that assigns mass 1/n to each observa-
tion (Xi,Zi). For a monotone function � defined on Ĩ and taking values in �,
define the following processes: Wn,�(r) = Pn[φ̇(X,�(Z))1(Z ≤ r)], Gn,�(r) =
Pn[φ̈(X,�(Z))1(Z ≤ r)] and Bn,�(r) = ∫ r

−∞ �(z)dGn,�(z) − Wn,�(r). Also,
define normalized processes B̃n,�(h) and G̃n,�(h) in the following manner:

B̃n,�(h) = n2/3[(
Bn,�(z0 + hn−1/3) − Bn,�(z0)

)
− ψ(z0)

(
Gn,�(z0 + hn−1/3) − Gn,�(z0)

)]
× (I (ψ(z0))pZ(z0))

−1

and

G̃n,�(h) = n1/3 1

I (ψ(z0))pZ(z0)

(
Gn,�(z0 + hn−1/3) − Gn,�(z0)

)
.

LEMMA 2.2. The process B̃n,ψ(h) →d Xa,b(h) in the space Bloc(R), where
a and b are as defined in Theorem 2.1.

LEMMA 2.3. For every K > 0, the following asymptotic equivalences hold:

sup
h∈[−K,K]

|B̃n,ψ(h) − B̃
n,ψ̂n

(h)| →p 0

and

sup
h∈[−K,K]

|B̃n,ψ(h) − B̃
n,ψ̂0

n
(h)| →p 0.

LEMMA 2.4. The processes G̃
n,ψ̂n

(h) and G̃
n,ψ̂0

n
(h) both converge uniformly

(in probability) to the deterministic function h on the compact interval [−K,K],
for every K > 0.

The next lemma characterizes the set Dn on which ψ̂n and ψ̂0
n vary.

LEMMA 2.5. Let Dn denote the interval around z0 on which ψ̂n and ψ̂0
n differ.

Given any ε > 0, we can find an M > 0, such that for all sufficiently large n,

P(Dn ⊂ [z0 − Mn−1/3, z0 + Mn−1/3]) ≥ 1 − ε.

LEMMA 2.6 ([21]). Suppose that {Wnε}, {Wn} and {Wε} are three sets of ran-
dom vectors such that:
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(i) limε→0 lim supn→∞ P [Wnε �= Wn] = 0,

(ii) limε→0 P [Wε �= W ] = 0 and
(iii) for every ε > 0 , Wnε →d Wε as n → ∞.

Then Wn →d W , as n → ∞.

PROOF OF THEOREM 2.1. The proof presented here relies on continuous-
mapping arguments for slopes of greatest convex minorant estimators. From the
self-induced characterization of ψ̂n [see (2.5)], we have

ψ̂n(z) − ψ(z0) = slogcm
((

B
n,ψ̂n

− ψ(z0)Gn,ψ̂n

) ◦ G−1
n,ψ̂n

)
(G

n,ψ̂n
(z)).

Let h ≡ n1/3(z − z0) be the local variable and recall the normalized processes that
were defined before the statement of Lemma 2.2. In terms of the local variable and
the normalized processes, it is not difficult to see that

n1/3(
ψ̂n(z0 + hn−1/3) − ψ(z0)

) = slogcm(B̃
n,ψ̂n

◦ G̃−1
n,ψ̂n

)(G̃
n,ψ̂n

(h)).

Similarly, from the characterization of ψ̂0
n [refer to (2.7) and (2.8)] and the defini-

tions of the normalized processes it follows that

n1/3(
ψ̂0

n(z0 + hn−1/3) − ψ(z0)
) = slogcm0(B̃

n,ψ̂0
n
◦ G̃−1

n,ψ̂0
n

)(G̃
n,ψ̂0

n
(h)).

Thus,

(Xn(h),Yn(h)) = {slogcm(B̃
n,ψ̂n

◦ G̃−1
n,ψ̂n

)(G̃
n,ψ̂n

(h)),

(2.9)
slogcm0(B̃

n,ψ̂0
n
◦ G̃−1

n,ψ̂0
n

)(G̃
n,ψ̂0

n
(h))}.

By Lemma 2.3, the processes B̃
n,ψ̂0

n
(h) − B̃n,ψ(h) and B̃

n,ψ̂n
(h) − B̃n,ψ(h)

converge in probability to 0 uniformly on every compact set. Furthermore, by
Lemma 2.2, the process B̃n,ψ(h) converges to the process Xa,b(h) in Bloc(R).
It follows that the processes

(B̃
n,ψ̂0

n
(h), B̃

n,ψ̂0
n
(h)) →d (Xa,b(h),Xa,b(h)),

in the space Bloc(R) × Bloc(R) equipped with the product topology. Furthermore,
by Lemma 2.4, the processes

(G̃
n,ψ̂n

(h), G̃
n,ψ̂0

n
(h)) →p (h,h).

The proof is now completed by invoking continuous mapping arguments for slopes
of greatest convex minorant estimators: thus, the limit distributions of Xn and Yn

are obtained by replacing the processes on the right-hand side of (2.9) by their
limits. The details of the arguments are available in Theorem 2.1 of [2]. It follows
that for any (h1, h2, . . . , hk),

{Xn(hi), Yn(hi)}ki=1 →d {slogcmXa,b(hi), slogcm0Xa,b(hi)}ki=1

= {ga,b(hi), g
0
a,b(hi)}ki=1.
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The above finite-dimensional convergence, coupled with the monotonicity of
the functions involved, allows us to conclude that (Xn(h),Yn(h)) →d (ga,b(h),

g0
a,b(h)) in L × L as well. Indeed, if a sequence {ψn,φn} of monotone functions

converges pointwise to the monotone functions {ψ,φ}, then (ψn,φn) also con-
verges to (ψ,φ) in L × L (see the result of Corollary 3 following Theorem 3
of [14]). �

PROOF OF THEOREM 2.2. We have

2 logλn = −2

[∑
i∈Jn

φ
(
X(i), ψ̂n

(
Z(i)

)) − ∑
i∈Jn

φ
(
X(i), ψ̂

0
n

(
Z(i)

))] ≡ −2Sn,

say. Here Jn is the set of indices for which ψ̂n(Z(i)) and ψ̂0
n(Z(i)) are different. By

Taylor expansion about ψ(z0), we find that Sn equals[∑
i∈Jn

φ̇
(
X(i),ψ(z0)

)(
ψ̂n

(
Z(i)

) − ψ(z0)
)

+ ∑
i∈Jn

φ̈(X(i),ψ(z0))

2

(
ψ̂n

(
Z(i)

) − ψ(z0)
)2

]

−
[∑

i∈Jn

φ̇
(
X(i),ψ(z0)

)(
ψ̂0

n

(
Z(i)

) − ψ(z0)
)

+ ∑
i∈Jn

φ̈(X(i),ψ(z0))

2

(
ψ̂0

n

(
Z(i)

) − ψ(z0)
)2

]
+ Rn,

with Rn = Rn,1 − Rn,2, where Rn,1 = (1/6)
∑

i∈Jn
φ′′′(X(i),ψ



n,i)(ψ̂n(Z(i)) −

ψ(z0))
3 and Rn,2 = (1/6)

∑
i∈Jn

φ′′′(X(i),ψ



n,i)(ψ̂

0
n(Z(i)) − ψ(z0))

3 for points

ψ

n,i [lying between ψ̂n(Z(i)) and ψ(z0)] and ψ



n,i [lying between ψ̂0
n(Z(i)) and

ψ(z0)]. Under our assumptions Rn is op(1), as will be established later. Thus, we
can write Sn = In + IIn + op(1), where In ≡ In,1 − In,2, with

In,1 − In,2 = ∑
i∈Jn

φ̇
(
X(i),ψ(z0)

)(
ψ̂n

(
Z(i)

) − ψ(z0)
)

(2.10)
− ∑

i∈Jn

φ̇
(
X(i),ψ(z0)

)(
ψ̂0

n

(
Z(i)

) − ψ(z0)
)

and

IIn = ∑
i∈Jn

φ̈(X(i),ψ(z0))

2

(
ψ̂n

(
Z(i)

) − ψ(z0)
)2

− ∑
i∈Jn

φ̈(X(i),ψ(z0))

2

(
ψ̂0

n

(
Z(i)

) − ψ(z0)
)2

.
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Consider the term In,2. Now, Jn can be written as the union of blocks of indices,
say B0

1 ,B0
2 , . . . ,B0

l , such that the constrained solution ψ̂0
n is constant on each of

these blocks. Let B denote a typical block and let w0
B denote the constant value

of the constrained MLE on this block; thus ψ̂0
n(Z(j)) = w0

B for each j ∈ B . For
any block B where w0

B �= θ0 we can write
∑

j∈B φ̇(X(j),ψ(z0))(w
0
B − ψ(z0)) as

(w0
B − ψ(z0))H , where

H = ∑
j∈B

[
φ̇

(
X(j),w

0
B

) + (
ψ(z0) − w0

B

)
φ̈

(
X(j),w

0
B

)

+ 1
2

(
ψ(z0) − w0

B

)2
φ′′′(X(j),w

0,

B

)]
,

for some point w
0,

B between w0

B and ψ(z0). Using the fact that on each block
B where w0

B �= θ0, we have
∑

j∈B φ̇(X(j),w
0
B) = 0 [from (2.6)], it follows that

(w0
B − ψ(z0))H equals

− ∑
j∈B

(
ψ(z0) − w0

B

)2
φ̈

(
X(j),w

0
B

)

− 1
2

∑
j∈B

(
ψ(z0) − w0

B

)3
φ′′′(X(j),w

0,

B

)
.

We conclude that In,2 equals

− ∑
i∈Jn

φ̈
(
X(i), ψ̂

0
n

(
Z(i)

))(
ψ̂0

n

(
Z(i)

) − ψ(z0)
)2

+ 1
2

∑
i∈Jn

φ′′′(X(i), ψ̂
0,

n

(
Z(i)

))(
ψ̂0

n

(
Z(i)

) − ψ(z0)
)3

,

where ψ̂0,

n (Z(i)) is a point between ψ̂0

n(Z(i)) and ψ(z0). The second term in the
above display is shown to be op(1) by the exact same reasoning as used for Rn,1

or Rn,2. Hence, In,2 = −∑
i∈Jn

φ̈(X(i), ψ̂
0
n(Z(i)))(ψ̂

0
n(Z(i)) − ψ(z0))

2 + op(1),
which by a one-step Taylor expansion about ψ(z0) can be seen to be equal to
−∑

i∈Jn
φ̈(X(i),ψ(z0))(ψ̂

0
n(Z(i)) − ψ(z0))

2 up to a op(1) term. Similarly In,1 =
−∑

i∈Jn
φ̈(X(i),ψ(z0))(ψ̂n(Z(i))−ψ(z0))

2 +op(1). Now, using the fact that Sn =
In,1 − In,2 + IIn + op(1) and using the representations for these terms derived
above, we find that up to a op(1) term, Sn equals

− 1
2

{∑
i∈Jn

φ̈
(
X(i),ψ(z0)

)(
ψ̂n

(
Z(i)

) − ψ(z0)
)2

− ∑
i∈Jn

φ̈
(
X(i),ψ(z0)

)(
ψ̂0

n

(
Z(i)

) − ψ(z0)
)2

}
,
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whence 2 logλn is given by∑
i∈Jn

φ̈
(
X(i),ψ(z0)

)(
ψ̂n

(
Z(i)

) − ψ(z0)
)2

− ∑
i∈Jn

φ̈
(
X(i),ψ(z0)

)(
ψ̂0

n

(
Z(i)

) − ψ(z0)
)2 + op(1).

Letting ξn(x, z) denote the random function

φ̈(x,ψ(z0))
{(

n1/3(
ψ̂n(z) − ψ(z0)

))2 − (
n1/3(

ψ̂0
n(z) − ψ(z0)

))2}
1(z ∈ Dn),

it is easily seen that

2 logλn = n1/3(Pn − P)ξn(x, z) + n1/3Pξn(x, z) + op(1).

The term n1/3(Pn −P)ξn(x, z) →p 0 by Lemma 2.7 below. It now remains to deal
with the term n1/3P(ξn(x, z)) and as we will see, it is this term that contributes to
the likelihood ratio statistic in the limit. We can write n1/3Pξn(x, z) as

n1/3
∫
Dn

Eψ(z)(φ̈(X,ψ(z0)))
{(

n1/3(
ψ̂n(z) − ψ(z0)

))2

− (
n1/3(

ψ̂0
n(z) − ψ(z0)

))2}
pZ(z) dz.

On changing to the local variable h = n1/3(z − z0) and denoting z0 + hn−1/3 by
zn(h), the above can be decomposed as An + Bn, where

An ≡
∫
D̃n

[
Eψ(z0)φ̈(X,ψ(z0))

](
X2

n(h) − Y 2
n (h)

)
pZ(zn(h)) dh

and

Bn ≡
∫
D̃n

[
Eψ(zn(h))φ̈(X,ψ(z0)) − Eψ(z0)φ̈(X,ψ(z0))

]
× (

X2
n(h) − Y 2

n (h)
)
pZ(zn(h)) dh,

where D̃n = n1/3(Dn −z0). The term Bn converges to 0 in probability on using the
facts that eventually, with arbitrarily high probability, D̃n is contained in an interval
of the form [−M,M] on which the processes Xn and Yn are Op(1) and that for
every M > 0, sup|h|≤M | Eψ(z0+hn−1/3)(φ̈(X,ψ(z0)))−Eψ(z0)(φ̈(X,ψ(z0))) |→ 0
by (A.6). Thus,

2 logλn = I (ψ(z0))

∫
D̃n

(
X2

n(h) − Y 2
n (h)

)
pZ(z0 + hn−1/3) dh + op(1)

= 1

a2

∫
D̃n

(
X2

n(h) − Y 2
n (h)

)
dh + op(1).

We now deduce the asymptotic distribution of the expression on the right-
hand side of the above display, using Lemma 2.6. Set Wn = a−2 ∫

D̃n
(X2

n(h) −
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Y 2
n (h)) dh and W = a−2 ∫ {(ga,b(h))2 − (g0

a,b(h))2}dh. Using Lemma 2.5, for
each ε > 0, we can find a compact set Mε of the form [−Kε,Kε] such that
eventually, P [D̃n ⊂ [−Kε,Kε]] > 1 − ε and P [Da,b ⊂ [−Kε,Kε]] > 1 − ε.
Here Da,b is the set on which the processes ga,b and g0

a,b vary. Now let
Wnε = a−2 ∫

[−Kε,Kε](X
2
n(h) − Y 2

n (h)) dh and Wε = ∫
[−Kε,Kε](1/a2)((ga,b(h))2 −

(g0
a,b(h))2) dh. Since [−Kε,Kε] contains D̃n with probability greater than 1 − ε

eventually (D̃n is the left closed, right open interval over which the processes Xn

and Yn differ), we have P [Wnε �= Wn] < ε eventually. Similarly P [Wε �= W ] < ε.
Also Wnε →d Wε as n → ∞ , for every fixed ε. This is so because by The-
orem 2.1 (Xn(h),Yn(h)) →d (ga,b(h), g0

a,b(h)) as a process in L × L and
(f1, f2) �→ ∫

[−c,c](f 2
1 (h)−f 2

2 (h)) dh is a continuous real-valued function defined
from L × L to the reals. Thus all conditions of Lemma 2.6 are satisfied, leading
to the conclusion that Wn →d W . The fact that the limiting distribution is actually
independent of the constants a and b, thereby showing universality, falls out from
Brownian scaling. Using (2.2) we obtain

W = 1

a2

∫
{(ga,b(h))2 − (g0

a,b(h))2}dh

≡d

1

a2 a2(b/a)2/3
∫

{(g((b/a)2/3h))2 − (g0((b/a)2/3h))2}dh

=
∫

{(g(w))2 − (g0(w))2}dh,

on making the change of variable w = (b/a)2/3h. It only remains to show that
Rn is op(1) as stated earlier. We outline the proof for Rn,1; the proof for Rn,2 is
similar. We can write

Rn,1 = 1
6Pn

[
φ′′′(X, ψ̂


n(Z))
{
n1/3(

ψ̂n(Z) − ψ(z0)
)}31(Z ∈ Dn)

]
,

where ψ̂

n(Z) is some point between ψ̂n(Z) and ψ(z0). On using the facts that

Dn is eventually contained in a set of the form [z0 − Mn−1/3, z0 + Mn−1/3] with
arbitrarily high probability on which {n1/3(ψ̂n(Z) − ψ(z0))}3 is Op(1) and (A.5),
we conclude that eventually, with arbitrarily high probability,

|Rn,1| ≤ C̃(Pn − P)
[
B(X)1(Z ∈ [z0 − Mn−1/3, z0 + Mn−1/3])]

+ C̃P
[
B(X)1(Z ∈ [z0 − Mn−1/3, z0 + Mn−1/3])],

for some constant C̃. That the first term on the right-hand side goes to 0 in proba-
bility is a consequence of an extended Glivenko–Cantelli theorem (see, e.g., Propo-
sition 2 or Theorem 3 of [25]), whereas the second term goes to 0 by direct com-
putation. �

LEMMA 2.7. With ξn(x, z) as defined in the proof of Theorem 2.2, we have
n1/3(Pn − P)ξn(x, z) →p 0.
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The proof of this lemma uses standard arguments from empirical process theory
and can be found in [2].

3. Applications of the main results. In this section, we discuss some inter-
esting special cases of monotone response models.

Consider the case of a one-parameter full rank exponential family model, natu-
rally parametrized. Thus, p(x, θ) = exp[θT (x) − C(θ)]h(x) where θ varies in an
open interval �. The function C possesses derivatives of all orders. Suppose we
have Z ∼ pZ(·) and X|Z = z ∼ p(x,ψ(z)) where ψ is increasing or decreasing
in z. We are interested in making inference on ψ(z0), where z0 is an interior point
in the support of Z. If pZ and ψ satisfy conditions (a) and (b) of Section 2, the like-
lihood ratio statistic for testing ψ(z0) = θ0 converges to D under the null hypothe-
sis, since conditions (A.0)–(A.7) are readily satisfied for exponential family mod-
els. Note that l(x, θ) = θT (x) − C(θ) + logh(x), so that l̇(x, θ) = T (x) − C′(θ)

and l̈(x, θ) = −C′′(θ). Conditions (A.1)–(A.6) can be checked quite readily. We
leave the details to the reader. To check condition (A.7), note that since C′(θ)

and l̈(x, θ) are uniformly bounded for θ ∈ (θ0 − ε, θ0 + ε) ≡ N , by choos-
ing M sufficiently large, we can ensure that for some constant γ and θ ∈ N ,
H(θ,M) ≤ Eθ [(2T (X)2 + γ )1{| T (X) |> M/2}], which in turn is dominated by

sup
θ∈N

e−C(θ)

[∫
2
(
T (x)2 + γ

)(
e(θ0+ε)T (x) + e(θ0−ε)T (x))

× 1
(|T (x)| > M/2

)
h(x) dµ(x)

]
.

The expression above is not dependent on θ and hence serves as a bound for
supθ∈N H(θ,M). As M goes to ∞ the above expression goes to 0; this is seen
by an appeal to the DCT and the fact that T 2(X) + γ is integrable at parameter
values θ0 − ε and θ0 + ε.

The nice structure of exponential family models actually leads to a sim-
pler characterization of the MLEs ψ̂n and ψ̂0

n . For each block B of indices on
which ψ̂n(Z(i)) is constant with common value equal to, say w, it follows from
the discussion of the Fenchel conditions that characterize ψ̂n in Section 2 that∑

i∈B(T (X(i)) − C′(w)) = 0; hence C′(w) = n−1
B

∑
i∈B T (X(i)) where nB is the

number of indices in the block B . Furthermore, from the Fenchel conditions, it fol-
lows that if S is a head-subset of the block B , then

∑
i∈B(T (X(i)) − C′(w)) ≥ 0;

that is, C′(w) ≤ n−1
S

∑
i∈S T (X(i)), nS denoting the cardinality of S. As a di-

rect consequence of the above, we deduce that the unconstrained MLE ψ̂n

can actually be written as {C′(ψ̂n(Z(i)))}ni=1 = slogcm{Gn(Z(i)),Vn(Z(i))}ni=0,
where Gn(z) = n−1 ∑n

i=1 1(Zi ≤ z) and Vn(z) = n−1 ∑n
i=1 T (Xi)1(Zi ≤ z) and

Gn(Z(0)) ≡ Vn(Z(0)) = 0. The MLE ψ̂0
n is characterized in a similar fashion

but as constrained slopes of the cumulative sum diagram formed by the points
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{Gn(Z(i)),Vn(Z(i))}ni=0. Thus, the MLEs have explicit characterizations for these
models and their asymptotic distributions may also be obtained by direct methods.
It is not difficult to check that examples (a), (b) and (c) discussed in the Introduc-
tion are special cases of the one-parameter full rank exponential family models
discussed above. Theorems 2.1 and 2.2 therefore hold for these models, and MLEs
have explicit characterizations and are easily computable. In particular, the result
on the likelihood ratio statistic derived in [3] follows as a special case of our cur-
rent results.

We now turn to example (d); here, the conditional distribution of the response
given the covariate comes from a curved exponential family. We study this example
in some detail. In this case, with c = d = 1, the Fenchel conditions for ψ̂n take the
following form (in empirical process notation):

m

∫
[a,t)

1

ψ̂n(z)
dPn(x, z) +

∫
z∈[a,t)

x dPn(x, z) + (m − 1)

∫
z∈[a,t)

1

ψ̂n(z)2m−1

− m

∫
z∈[a,t)

x2ψ̂n(z)
2m−1 dPn(x, z) ≥ 0, t ∈ [a, b],

with equality if t is a jump point for ψ̂n. For a general (real) m, the above equa-
tions and inequalities do not translate into an explicit characterization of the MLE
as the solution to an isotonic regression problem. The mileage that we get in the
full rank exponential family models is no longer available to us owing to the more
complex analytical structure of the current model. The self-induced characteriza-
tion nevertheless allows us to write down the MLE as a slope of greatest convex
minorant estimator, and determine its asymptotic behavior, following the route de-
scribed in this paper (we leave the verification of the regularity conditions on the
parametric model to the reader). To simplify matters, take m = 1. In this case,
the joint distribution of (X,Z) is given by g(x, z) = p(x|ψ(z))h(z) where h is
the Lebesgue density of Z, p(x|y) = yf (xy − 1) and f is the standard normal
density. For our simulation study, we chose [a, b] = [1,2] and ψ(z) = z and Z to
follow the uniform distribution on [1,2]. Then, g(x, z) = p(x|z) = zf (xz−1), for
x ∈ R, z ∈ [1,2]. Essentially, we are in the setting of a mixture model. Following
the discussion of the self-induced characterization for ψ̂n described in Section 2,
we find that ψ̂n, for this example, is the slope of the convex minorant of the “self-
induced” cumulative sum diagram,{

Pn

[(
x2 + ψ̂n(z)

−2)
1
(
z ∈ [a, t)

)]
,Pn

[(
2ψ̂−1

n (z) + x
)
1
(
z ∈ [a, t)

)]
: t ∈ [a, b]}.

The left panel of Figure 1 shows the true function ψ(z) = z and the MLE ψ̂n(z)

for the specific sample of size n = 2000 generated from the above model. It can be
seen that the estimator tracks the true function quite well apart from the endpoints
where the “spiking problem” manifests itself. The right panel of Figure 2 shows the
unconstrained MLE (solid line) and the constrained MLE (dashed line) computed
under the (true) H0 : ψ(1.5) = 1.5, in a neighborhood of the point 1.5, along with
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FIG. 1. Left panel: The unconstrained estimator. Right panel: Close-up view of unconstrained and
constrained estimators.

the true function ψ(z) (the slant line). The estimators are seen to coincide outside
of a small interval around 1.5. It is the difference in behavior of the estimators
in this short interval that contributes to the likelihood ratio statistic. The uncon-
strained estimator was obtained by running the ICM (iterative convex minorant)
algorithm with starting value ψ0 set to be the constant function 1.5. It converged
quite rapidly without resorting to the line search procedure (see [15] for an ex-
cellent description of the modified ICM algorithm that incorporates line search to
guarantee convergence). The constrained MLE was computed by decomposing the
likelihood maximization procedure into two parts and optimizing separately, as de-
scribed in the characterization of ψ̂0

n in Section 2. The left panel of Figure 2 shows
the quantile–quantile plot of 3000 points from the distribution of the likelihood
ratio statistic for n = 1000 versus 3000 points from (a fine discrete approximation
to) the distribution of D, along with the line y = x. The quantile–quantile plot is in
very good agreement with the line y = x, in conformity with the theory presented
in this paper.

An interesting fact that we now discuss is the rapid convergence of the ICM
algorithm for this problem, in terms of number of steps to convergence. This is
illustrated in the right panel of Figure 2. The histogram on the left is that of the
number of iterations that is needed by the ICM to converge to ψ̂n (with a tolerance
of 10−5 for checking the Fenchel conditions) based on 1000 replicates for n = 100.
The histogram on the right presents the same information but for n = 10,000. De-
spite the vast disparity in sample sizes, the histograms are very similar; less than
1% of the iterations consume more than ten steps (of course, the actual duration of



950 M. BANERJEE

FIG. 2. Left panel: Quantile–quantile plot of likelihood ratio statistic versus limiting quantiles.
Right panel: Histograms of number of iterations until convergence.

an iteration is larger for n = 10,000). The fast convergence demonstrated through
these histograms indicates that the performance of the ICM algorithm resembles
that of the Newton algorithm, which is known to have good local convergence
properties. This can be explained by the fact that the Hessian matrix of φ̃ (minus
the log-likelihood) is diagonal for this model, and indeed for the entire class of
models considered in this paper, since the ui’s, the arguments to φ̃, are separated
in the optimization problem (Indeed, the separation of variables that we encounter
in the log-likelihood also allows us to solve the constrained optimization under
H0 by splitting the likelihood into two different parts and optimizing separately).
A similar phenomenon was observed by Jongbloed [15] in his simulation studies
on Case 2 interval censoring, where, despite the nondiagonal nature of the Hessian
of the log-likelihood function (this is a nonseparated problem and will be dis-
cussed shortly), the ICM algorithm converged quickly, as a consequence of the
fact that there were very few off-diagonal elements in the Hessian.

The Newton behavior of the ICM algorithm for the separated models of this
paper suggests that in these models a one-step algorithm starting with the true
function will produce estimators which are asymptotically equivalent to the MLE,
even if the MLE is restricted by a null hypothesis. This phenomenon is alluded
to as the “working hypothesis” in Section 5 of [9] and is illustrated through a
derivation of the limit distribution of the MLE of the survival distribution F for
the current status model; in fact, the diagonal structure of the Hessian is used to
establish the equivalence of the MLE with the “toy estimator” obtained by using
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the first iteration step of the ICM with the true distribution as the starting point.
Thus, our results can be interpreted as pointing very strongly to the fact that the
“working hypothesis” holds for the class of models considered in this paper.

While the approach in this paper applies nicely to separated models, there are
several monotone function models of considerable interest where separatedness of
the arguments to the log-likelihood function cannot be achieved; consequently the
Hessian is no longer diagonal. Perhaps the simplest model of this type is the Case 2
interval censoring model, where there are two observation times (Ui,Vi) for each
individual, and one records in which of the three mutually disjoint intervals (0,Ui],
(Ui,Vi], (Vi,∞) the individual fails. Letting {T(i)}ki=1 denote the distinct ordered
values of the 2n observation times {(Ui,Vi) : i = 1,2, . . . , n} (here n is the number
of individuals being observed), and ul denote F(T(l)), one can write down the log-
likelihood for the data. It is seen that terms of the form log(ui − uj ) immediately
enter into the log-likelihood (see, e.g., [9], for a detailed treatment). One important
consequence of this, in particular, is the fact that the computation of the constrained
MLE of the survival distribution F [under a hypothesis of the form F(t0) = θ0] can
no longer be decomposed into two separate optimization problems, in contrast to
the monotone response models we have studied. Consequently, an analytical treat-
ment of the constrained estimator will involve techniques beyond those presented
in this paper. Regarding the unconstrained estimator of F in this model, Groene-
boom [8] uses some hard analysis to show that under a hypothesis of separation
between U and V (the first and second observation times), the estimator converges
to the truth at (pointwise) rate n1/3, with limit distribution still given by Z. The
Case 2 model readily generalizes to the mixed case censoring model, where in-
stead of two random observation times for every individual, the number of random
times at which an individual is examined is also random. While heuristic consid-
erations indicate that D should also arise as the limit distribution of the likelihood
ratio statistic in these problems, the technical machinery for treating such nonsep-
arated models in full generality remains to be developed and is left as a topic for
future research.

4. Discussion. In this paper, we have studied the asymptotics of likelihood
based inference in monotone response models. A crucial aspect of these models
is the fact that conditional on the covariate Z, the response X is generated from a
parametric family that is regular in the usual sense; consequently, the conditional
score functions, their derivatives and the conditional information play a key role
in describing the asymptotic behavior of the maximum likelihood estimates of the
function ψ . We have also shown that there are several monotone function models
of interest that may be expected to exhibit asymptotically similar behavior though
they are not monotone response models in the sense of this paper.

A potential extension of the monotone response models of this paper is to semi-
parametric models where the infinite-dimensional component is a monotone func-
tion. Here is a general formulation: Consider a random vector (X,W,Z) where Z
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is unidimensional, but W can be vector-valued. Suppose that the distribution of X

conditional on (W,Z) = (w, z) is given by p(x,βT w + ψ(z)) where p(x, θ) is a
one-dimensional parametric model. We are interested in making inference on both
β and ψ . The above formulation is fairly general and includes, for example, the
partially linear regression model X = βT W + ψ(Z) + ε where ψ is a monotone
function (certain aspects of this model have been studied by Huang [12]), semi-
parametric logistic regression [with X denoting the binary response and (W,Z)

covariates of interest] where the log odds of a positive outcome (X = 1) is mod-
eled as βT W +ψ(Z), and other models of interest. It is not difficult to see that the
self-induced characterization will again come into play for describing the MLEs
of ψ in this general semiparametric setting. In the light of previous results, we
expect that under appropriate conditions on p(x, θ),

√
n(β̂MLE − β) will converge

to a normal distribution with asymptotic dispersion given by the inverse of the ef-
ficient information matrix and the likelihood ratio statistic for testing β = β0 will
be asymptotically χ2. The theory developed in [19, 20] should prove very useful
in this regard. As far as estimation of the nonparametric component goes, ψ̂n, the
MLE of ψ , should exhibit n1/3 rate of convergence to a nonnormal limit and the
likelihood ratio for testing ψ pointwise should still converge to D. This will be
explored elsewhere and the ideas of the current paper should prove to be useful in
dealing with the nonparametric component of the model.

APPENDIX

Here, we present proofs of some selected lemmas. For proofs of the remaining
lemmas, see [2].

PROOF OF LEMMA 2.2. It suffices to show that B̃n,ψ(h) converges to the
process aW(h) + bh2 in l∞[−K,K], the space of uniformly bounded functions
on [−K,K] equipped with the topology of uniform convergence, for every K > 0.
We can write

B̃n,ψ(h) = √
n(Pn − P)fn,h + √

nPfn,h,

where fn,h(X,Z) is given by

n1/6[(ψ(Z) − ψ(z0))φ̈(X,ψ(Z)) − φ̇(X,ψ(Z))](1(Z ≤ zn(h)) − 1(Z ≤ z0))

I (ψ(z0))pZ(z0)
,

with zn(h) ≡ z0 + hn−1/3. To establish the above convergence, we invoke Theo-
rem 2.11.22 of [24]. This requires verification of Conditions 2.11.21 and the con-
vergence of the entropy integral in the statement of the theorem. Provided these
conditions are satisfied, the sequence

√
n(Pn − P)fn,h is asymptotically tight in

l∞[−K,K] and converges in distribution to a Gaussian process, the covariance
kernel of which is given by

K(s, t) = lim
n→∞(Pfn,sfn,t − Pfn,sPfn,t ).



INFERENCE FOR MONOTONE FUNCTIONS 953

We first compute Pfn,sfn,t . It is easy to see that this is 0 if s and t are of opposite
signs, so we need only consider the cases where they both have the same sign. So
let s, t > 0. Then, Pfn,sfn,t is given by

E
[
n1/3(

φ̇(X,ψ(Z)) − (
ψ(Z) − ψ(z0)

)
φ̈(X,ψ(Z))

)2

× 1
(
Z ∈ (

z0, z0 + (s ∧ t)n−1/3])] × (I (ψ(z0))pZ(z0))
−2,

which can be written as (I (ψ(z0))pZ(z0))
−2n1/3 ∫ z0+(s∧t)n−1/3

z0
G(ψ(z))pZ(z) dz,

where, for every θ , G(θ) = Eθ [φ̇(X, θ) − (θ − θ0)φ̈(X, θ)]2. On expanding the
square, G(θ) simplifies to

I (θ) + (θ − θ0)
2f3(θ, θ) − 2(θ − θ0)Eθ (φ̇(X, θ)φ̈(X, θ)).

As θ → θ0 ≡ ψ(z0), the first term converges to I (θ0) by (A.4) and the second
term converges to 0 by (A.6). The third term also converges to 0, by the Cauchy–
Schwarz inequality. It follows that G(θ) converges to I (θ0) ≡ G(θ0). By the con-
tinuity of ψ at z0, we conclude that

lim
n→∞Pfn,sfn,t = 1

(I (ψ(z0)pZ(z0))2 G(ψ(z0))pZ(z0)(s ∧ t)

= 1

I (ψ(z0))pZ(z0)
(s ∧ t).

It is easily shown that Pfn,s and Pfn,t both converge to 0 as n → ∞, showing
that for s, t > 0, K(s, t) = [I (ψ(z0))pZ(z0)]−1(s ∧ t). Similarly, we can show
that K(s, t) = [I (ψ(z0))pZ(z0)]−1(|s| ∧ |t |), for s, t < 0. But this is the covari-
ance kernel of the Gaussian process aW(h) with a = [I (ψ(z0))pZ(z0)]−1/2. So
the process

√
n(Pn − P)fn,h converges in l∞[−K,K] to the process aW(h). We

next show that
√

nPfn,h → (ψ ′(z0)/2)h2 uniformly on every [−K,K]. This im-
plies that the process B̃n,ψ(h) ≡ √

nPnfn,h converges in distribution to Xa,b(h) ≡
aW(h) + bh2 in l∞[−K,K]. To show the convergence of

√
nPfn,h to the desired

limit, we restrict ourselves to the case where h > 0; the case h < 0 can be handled
similarly. Let ξn(h) = I (ψ(z0))pZ(z0)

√
nPfn,h. Then ξn(h) is given by

n2/3E
{[(

ψ(Z) − ψ(z0)
)
φ̈(X,ψ(Z)) − φ̇(X,ψ(Z))

]
1
(
z0 < Z ≤ z0 + hn−1/3)}

,

which reduces to n2/3E[(ψ(Z) − ψ(z0))φ̈(X,ψ(Z))1(z0 < Z ≤ z0 + hn−1/3)],
on using the fact that Eψ(z)φ̇(X,ψ(z)) = 0. Writing zn(u) for z0 + un−1/3 we can
express this quantity as A + B where A = ∫ h

0 uψ ′(z0)I (ψ(zn(u)))pZ(zn(u)) du

and

B =
∫ h

0

[
n1/3(

ψ(zn(u)) − ψ(z0)
) − ψ ′(z0)u

]
I (ψ(zn(u)))pZ(zn(u)) du.

The term B converges to 0 uniformly for 0 ≤ h ≤ K by the differentiabil-
ity of ψ at z0 and A can be written as

∫ h
0 uψ ′(z0)I (ψ(z0))pZ(z0) du + o(1),
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where o(1) goes to 0 uniformly over h ∈ [0,K] and is readily seen to con-
verge to (1/2)(ψ ′(z0)I (ψ(z0))pZ(z0))h

2 uniformly on 0 ≤ h ≤ K . It follows that√
nPfn,h → (ψ ′(z0)/2)h2 uniformly over 0 ≤ h ≤ K .
It remains to check Conditions 2.11.21. The computations here are tedious but

straightforward, so we have omitted them (see [2] for the full details). Assump-
tion (A.7), in particular, is used to verify a Lindeberg-type condition. �

PROOF OF LEMMA 2.3. We only prove the first assertion. The second one
follows similarly. For the first assertion, we write the proof for h > 0; the proof for
h < 0 is similar. So, let 0 ≤ h ≤ K . Recall that B̃

n,ψ̂n
(h) is given by

Cn2/3
Pn

[{(
ψ̂n(Z) − ψ(z0)

)
φ̈(X, ψ̂n(Z)) − φ̇(X, ψ̂n(Z))

}
× 1

(
Z ∈ (z0, z0 + hn−1/3])],

where C is a constant, and B̃n,ψ(h) has the same form as above but with ψ̂n re-
placed by ψ . Now, for any Z ∈ (z0, z0 + Kn−1/3] we can write φ̇(X,ψ(z0)) as

φ̇(X,ψ(Z)) + φ̈(X,ψ(Z))
(
ψ(z0) − ψ(Z)

)
+ 1

2φ′′′(X,ψ
(Z))
(
ψ(Z) − ψ(z0)

)2
,

for some point ψ
(Z) between ψ(Z) and ψ(z0). We can also write φ̇(X,ψ(z0))

as

φ̇(X, ψ̂n(Z)) + φ̈(X, ψ̂n(Z))
(
ψ(z0) − ψ̂n(Z)

)
+ 1

2φ′′′(X, ψ̂

n(Z))

(
ψ̂n(Z) − ψ(z0)

)2
,

for some point ψ̂

n(Z) between ψ̂n(Z) and ψ(z0). It follows that we can write

B̃n,ψ(h) − B̃
n,ψ̂n

(h) as

C 1
2Pn

[(
n1/3(

ψ(Z) − ψ(z0)
))2

φ′′′(X,ψ
(Z))1
(
Z ∈ (z0, z0 + hn−1/3])]

− C 1
2Pn

[(
n1/3(

ψ̂n(Z) − ψ(z0)
))2

φ′′′(X, ψ̂

n(Z))1

(
Z ∈ (z0, z0 + hn−1/3])].

We will show that the second term in the above display converges to 0 uniformly
in h; the proof for the first term is similar. Up to a constant, the second term is
bounded in absolute value by

Pn

[(
n1/3(

ψ̂n(Z) − ψ(z0)
))2|φ′′′(X, ψ̂


n(Z))|1(
Z ∈ (z0, z0 + Kn−1/3])].

Denote the random function inside square brackets by ξn. For any z ∈ (z0, z0 +
Kn−1/3], we have[

n1/3(
ψ̂n(z) − ψ(z0)

)]2 ≤ (
n1/3(

ψ̂n(z0 + Kn−1/3) − ψ(z0)
))2

+ (
n1/3(

ψ̂n(z0 − Kn−1/3) − ψ(z0)
))2

,
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which with arbitrarily high probability is eventually bounded by a constant C

(by Lemma 2.1). Also, since for any such z ψ̂

n(z) converges in probability to

ψ(z0), with arbitrarily high probability |φ′′′(X, ψ̂

n(Z))| is eventually bounded

by B(X) [by assumption (A.5)]. It follows that with arbitrarily high probability
the random function ξn is eventually bounded up to a constant by B(X)1(Z ∈
[z0, z0 + Kn−1/3]). Hence, eventually, with arbitrarily high probability,

Pn(ξn) ≤ C̃(Pn − P)
[
B(X)1(Z ∈ [z0, z0 + Kn−1/3])]

+ C̃P
[
B(X)1(Z ∈ [z0, z0 + Kn−1/3])],

for some constant C̃. The first term on the right-hand side is op(1) using straight-
forward Glivenko–Cantelli type arguments and the second term is seen to go to 0
by direct computation. This shows that the second term goes to 0 uniformly in h.
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