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UNIFORMLY ROOT-N CONSISTENT DENSITY ESTIMATORS FOR
WEAKLY DEPENDENT INVERTIBLE LINEAR PROCESSES

BY ANTON SCHICK1 AND WOLFGANG WEFELMEYER

Binghamton University and University of Cologne

Convergence rates of kernel density estimators for stationary time series
are well studied. For invertible linear processes, we construct a new density
estimator that converges, in the supremum norm, at the better, parametric, rate
n−1/2. Our estimator is a convolution of two different residual-based kernel
estimators. We obtain in particular convergence rates for such residual-based
kernel estimators; these results are of independent interest.

1. Introduction. The usual estimators for the density of a stationary process
are kernel estimators and their recursive versions. Rates of convergence and point-
wise central limit theorems have been studied under various mixing conditions by
Robinson [24], Chanda [8], Castellana and Leadbetter [7], Masry [19–22], Tran
[39–41], Roussas [27–29], Cai and Roussas [6], Ango Nze and Portier [2], Ango
Nze and Doukhan [1], Ango Nze and Rios [3], Doukhan and Louhichi [11] and
Dedecker and Merlevède [10], and for linear processes by Hall and Hart [14], Tran
[42], Hallin and Tran [15], Coulon-Prieur and Doukhan [9], Honda [16], Lu [18],
Wu and Mielniczuk [43], Bryk and Mielniczuk [5] and Schick and Wefelmeyer
[37, 36]. Under appropriate conditions, the convergence rates of these kernel esti-
mators are the same as for independent and identically distributed observations.

Linear processes are written as linear combinations of independent innovations
and the stationary density can be represented as a convolution of other densities
in many different ways. We use the simplest such representation and estimate
the stationary density by plugging in residual-based estimators of the densities
involved in the representation. We expect this to lead to faster, parametric rates
of convergence. This is already known in nonparametric models with i.i.d. ob-
servations. Frees [12] shows that his plug-in estimators for densities of certain
functions q(X1, . . . ,Xm) are pointwise n1/2-consistent. Saavedra and Cao [32]
consider the special case q(X1,X2) = X1 + aX2. Schick and Wefelmeyer [34, 38]
prove functional convergence for q(X1, . . . ,Xm) = u1(X1) + · · · + um(Xm) and
q(X1,X2) = X1 + X2, viewing their estimators as elements of L1 or of the space
C0(R) of continuous functions on R vanishing at infinity. Giné and Mason [13]
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obtain functional results in Lp , locally uniformly in the bandwidth, for general
q(X1, . . . ,Xm). Special cases of the semiparametric time series model considered
here have also been studied. Saavedra and Cao [31] consider pointwise conver-
gence of plug-in estimators for the stationary density of moving average processes
of order one. Schick and Wefelmeyer [33] obtain asymptotic normality and ef-
ficiency and Schick and Wefelmeyer [35] generalize this result to higher-order
moving average processes and to functional convergence in L1 and C0(R); see
below for details. Here, we consider general invertible linear processes and obtain
n1/2-consistency of our estimator for the stationary density in C0(R).

Specifically, we consider a stationary linear process with infinite-order moving
average representation

Xt = εt +
∞∑

s=1

ϕsεt−s, t ∈ Z,(1.1)

with summable coefficients ϕs and independent and identically distributed (i.i.d.)
innovations εt , t ∈ Z, having mean zero and finite variance. If the innovations have
a density f , then X0 has a density, say h. The usual estimator of this density from
observations X1, . . . ,Xn of the linear process is a kernel density estimator

h̃(x) = 1

n

n∑
j=1

kbn(x − Xj), x ∈ R,

where kbn = k(x/bn)/bn for some kernel k (an integrable function that integrates
to 1) and some bandwidth bn (tending to 0).

Our goal is to construct an n1/2-consistent estimator of h. For this, we set

Yt = Xt − εt =
∞∑

s=1

ϕsεt−s, t ∈ Z.

We must exclude the degenerate case that the observations are i.i.d.:

(C) At least one of the moving average coefficients ϕs is nonzero.

Y0 then has a density, say g. We have X0 = ε0 + Y0. Since Y0 is independent
of ε0, we can express the density h of X0 as the convolution h = f ∗ g of f and g.
We obtain an estimator of h as ĥ = f̂ ∗ ĝ, where f̂ and ĝ are estimators of f and g.
We base these estimators on estimators of the innovations. For this, we require
invertibility of the process.

(I) The function φ(z) = 1 + ∑∞
s=1 ϕsz

s is bounded and bounded away from
zero on the complex unit disk {z ∈ C : |z| ≤ 1}.

ρ(z) = 1/φ(z) = 1 − ∑∞
s=1 �sz

s is then also bounded and bounded away from
zero on the complex unit disk. Hence, the innovations have the infinite-order au-
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toregressive representation

εt = Xt −
∞∑

s=1

�sXt−s, t ∈ Z.(1.2)

Let pn be positive integers with pn/n → 0. For j = pn + 1, . . . , n, we mimic
the innovation εj by the residual

ε̂j = Xj −
pn∑
i=1

�̂iXj−i ,

where �̂i is an estimator of �i for i = 1, . . . , pn. We then estimate the innovation
density by a kernel estimator based on the residuals,

f̂ (x) = 1

n − pn

n∑
j=pn+1

kbn(x − ε̂j ), x ∈ R,

and we estimate the density g by a kernel estimator based on the differences Ŷj =
Xj − ε̂j ,

ĝ(x) = 1

n − pn

n∑
j=pn+1

kbn(x − Ŷj ), x ∈ R.

In addition to (C) and (I), we use the following assumptions:

(Q) the autoregression coefficients satisfy
∑

s>pn
|�s | = O(n−1/2−ζ ) for some

ζ > 0;
(R) the estimators �̂i of the autoregression coefficients �i satisfy

pn∑
i=1

(�̂i − �i)
2 = Op(qnn

−1)

for some qn with 1 ≤ qn ≤ pn;
(S) the moving average coefficients satisfy

∑∞
s=1 s|ϕs | < ∞;

(F) the density f has mean zero, a finite fourth moment, is absolutely contin-
uous with a bounded and integrable (almost everywhere) derivative f ′, and the
function x �→ xf ′(x) is bounded and integrable.

The usual estimators of the autoregression coefficients are the least squares esti-
mators �̂1, . . . , �̂pn which minimize

∑n
j=pn+1(Xj −∑pn

i=1 �iXj−i)
2. By Lemma 1,

they meet condition (R) with qn = pn if, in addition,

npn

∑
s>pn

�2
s → 0(1.3)

holds. For smooth parametric models for the autoregression coefficients, we even
have (R) with qn = 1, as shown in Section 2.
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We denote the number of nonzero coefficients among {ϕs : s ≥ 1} by

N = ∑
s≥1

1[ϕs 	= 0].

We can then express (C) as N ≥ 1. If N is finite, then (S) holds and the auto-
correlation coefficients decay exponentially. Moreover, (Q) holds with ζ = 1 if
pn = log(n) log(logn).

If we assume that |�s | ≤ Bs−1−α for some α > 0, then we have∑
s>pn

|�s | = O(p−α
n ) and npn

∑
s>pn

�2
s = O(np−2α

n ).

The choice pn = nβ with 2βα > 1 then gives (1.3) and (Q) with ζ = βα − 1/2.
Under (C) and (F), the density h is only guaranteed to be twice continuously

differentiable. Thus, the optimal rate of nonparametric estimators like the kernel
estimator h̃ is n−2/5. Our estimator for h is ĥ = f̂ ∗ ĝ. We will show that its rate is
n−1/2. Simulations in [33] for a related estimator in a first-order moving average
process show that ĥ is better than h̃, even for small sample sizes, and uniformly
over a range of bandwidths. We note that our estimator ĥ is easy to calculate.
Indeed, ĥ(x) can be written as the V-statistic

ĥ(x) = 1

(n − pn)2

n∑
i=pn+1

n∑
j=pn+1

Kbn(x − ε̂i − Ŷj ),

where Kb(x) = K(x/b)/b and K = k ∗k. Here, we used the fact that kb ∗kb = Kb.
Thus, it is advantageous to choose a kernel k for which k ∗ k is known.

Smoothness of g and h can be linked to the number N . Our main result will
thus be formulated in terms of N . The following conditions on the kernel and the
bandwidth are kept general in order to allow for various smoothness assumptions
in terms of an integer m ≥ 2, where m − 1 will play the role of a (known) minimal
size for N . Under (C), we know that N ≥ 1, so we can always take m = 2.

(B) The sequences bn, pn and qn and the exponent ζ satisfy pnqnb
−1
n ×

n−1/2 → 0, nb2m
n = O(1), n1/4sn → 0 and n1/2bnsn = O(1), where sn =

b
−1/2
n n−1/2 + pnqnb

−5/2
n n−1 + b

−3/2
n n−ζ−1/2.

(K) The kernel k has bounded, continuous and integrable derivatives up to order
two and is of type (m,2), as defined below.

A kernel k is said to be of type (m, c) if
∫

t ik(t) dt = 0 for i = 1, . . . ,m and if∫ |t |mc|k(t)|dt is finite. A kernel satisfying (K) can be chosen to be of the form
pφ, where φ is the standard normal density and p is an appropriate polynomial of
degree m.

A possible choice of bandwidth is bn ∼ n−1/(2m). Condition (B) is then met if
4mζ > 1 and pnqnn

−(2m−3)/(4m) → 0 hold. In particular, pn = qn ∼ nβ requires
that 8mβ < 2m − 3.
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Let Gn, Fn and Hn denote the processes defined by

Gn(x) = 1

n − pn

n∑
j=pn+1

(
g(x − εj ) − E[g(x − εj )]),

Fn(x) = 1

n − pn

n∑
j=pn+1

(
f (x − Yj ) − E[f (x − Yj )]),

Hn(x) =
pn∑
i=1

(�̂i − �i)E[X0kbn(x − Yi)],

for x ∈ R. Let ‖ · ‖ denote the supremum norm. We can now state our main result.

THEOREM 1. Suppose (I), (Q), (R), (S), (F), (K) and (B) hold. Let N ≥ m −
1 ≥ 1. Then

‖ĥ − h − Fn − Gn + f ′ ∗ Hn‖ = op(n−1/2).

The proof is an immediate consequence of the results in Sections 3–10. Write

ĥ − h = g ∗ (f̂ − f ) + f ∗ (ĝ − g) + (f̂ − f ) ∗ (ĝ − g).(1.4)

Since f is L2-smooth and g is L2-smooth of order m − 1, as shown in Section 3,
Lemmas 9 and 10 in Section 9 imply ‖f̂ − f ‖2 = Op(sn) + o(bn), while Lemmas
11 and 12 in Section 10 imply ‖ĝ − g‖2 = Op(sn) + o(bm−1

n ). Inequality (4.3)
below and condition (B) then give

‖(f̂ − f ) ∗ (ĝ − g)‖ ≤ ‖f̂ − f ‖2‖ĝ − g‖2 = op(n−1/2).(1.5)

We note that strong consistency of f̂ was proved by Robinson [25, 26]. For
(finite-order) nonlinear autoregressive models, convergence rates of residual-based
kernel estimators were obtained by Liebscher [17] and Müller, Schick and We-
felmeyer [23]. By the smoothness properties of f , g and h from Section 3, Theo-
rem 4 in Section 9, applied with a = g, gives

‖g ∗ (f̂ − f ) − Gn‖ = op(n−1/2)(1.6)

and Theorem 5 in Section 10, applied with a = f , gives

‖f ∗ (ĝ − g) − Fn + f ′ ∗ Hn‖ = op(n−1/2).(1.7)

Theorem 1 now follows from (1.4)–(1.7).
The sequences n1/2Gn and n1/2Fn are tight in C0(R) by Section 4. Moreover,

the sequence n1/2f ′ ∗Hn is tight for the least squares estimators if (1.3) also holds.
Indeed, according to Lemma 1 in Section 2, the above assumptions imply that the
least squares estimators satisfy

	̂ = M−1
n

1

n − pn

n∑
j=pn+1

Xj−1εj + op(n−1/2),(1.8)
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where 	̂ = (�̂1 − �1, . . . , �̂pn − �pn)
�, Xj−1 = (Xj−1, . . . ,Xj−pn)

� and Mn =
E[X0X�

0 ]. Thus, if (F) holds, then n1/2f ′ ∗ Hn is tight in C0(R) by Theorem 2
in Section 7, applied with a = f ′. Hence, n1/2(ĥ − h) is tight in C0(R) by the
above Theorem 1 and ĥ is n1/2-consistent in C0(R). Since the finite-dimensional
marginal distributions of n1/2(ĥ − h) are asymptotically normal with mean zero,
the process n1/2(ĥ−h) converges weakly in C0(R) to a centered Gaussian process
with covariance


(s, t) = lim
n→∞ Cov(Zn(s),Zn(t)), s, t ∈ R,

where

Zn(x) = 1√
n

n∑
j=1

(
g(x−εj )+f (x−Yj )−2h(x)+εj X�

j−1M
−1
n E[X0f

′(x−Y1)]).
We pay a price for n1/2-consistency in several respects. One is that we need

stronger assumptions on the process, namely invertibility and a sufficiently fast
decay of the autoregression coefficients, that is, condition (Q). Another is that we
must choose, besides the bandwidth bn, the cut-off index pn. However, our estima-
tor has the advantage that its asymptotic behavior does not depend on bn and pn,
at least in the ranges we allow, while the rate of the usual kernel estimator depends
on the bandwidth.

If we strengthen (F) by imposing additional (smoothness) assumptions on f ′
and use kernels of type (r,2) for appropriately chosen r , the bias terms in the es-
timation of f , g and h can be made smaller, allowing for larger bandwidths and
hence weaker assumptions. For example, if f ′ has bounded variation and a kernel
of type (2m − 1,2) is used, then we can show that ‖f ∗ kbn − f ‖2 = O(b

3/2
n ),

‖g ∗ kbn −g‖2 = O(b
2m−5/2
n ) and ‖h∗ kbn −h‖ = O(b2m−1

n ). This allows us to re-
place the requirements nb2m

n = O(1) and n1/2bnsn = O(1) in (B) by nb4m−2
n → 0

and nb4
n = O(1). For the choice bn = (n logn)1/(4m−2), the requirements of this

modified condition (B) are then implied by pnqn(logn)1/2n−(m−1)/(2m−1) = O(1).
This allows for larger values of pn and avoids additional assumptions on ζ .

The paper is organized as follows. In Section 2 we comment more on the
assumptions. We also look at the case where we have a parametric model for
the autoregressive coefficients and give more details for classical models such
as the AR(p), MA(1) and ARMA(1,1) models. In Section 3 we review expan-
sions in C0(R) and Lp . In Section 4 we give a tightness criterion for sequences
of C0(R)-valued random elements and sufficient conditions for tightness of em-
pirical processes based on observations from linear processes. These are used in
later sections to show tightness of n1/2Fn, n1/2Gn and n1/2f ′ ∗ Hn. An important
inequality is established in Section 5. The asymptotic behavior of averages of the
form (n−pn)

−1 ∑n
j=pn+1 Xj−ian(x −Yj ) and their means is studied in Section 6.

Such averages arise in the stochastic expansion of ĝ. Tightness of n1/2f ′ ∗Hn is es-
tablished in Section 7. Section 8 shows how well the residuals approximate the true
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innovations and gives uniform stochastic expansions for residual-based averages

of the form (n−pn)
−1 ∑n

j=pn+1 an(x − ε̂j ) and (n−pn)
−1 ∑n

j=pn+1 an(x − Ŷj ).

The kernel estimators f̂ and ĝ are of this form. In Section 9 we give convergence
rates of f̂ in L2 and stochastic expansions of functionals a ∗ f̂ in C0(R). Analo-
gous results are given for ĝ and a ∗ ĝ in Section 10. We have seen above how these
results enter the proof of Theorem 1.

2. Examples. The following result on the behavior of the least squares esti-
mators is essentially contained in [4].

LEMMA 1. Assume that (I), (1.3) and p3
n/n → 0 hold and that f has a finite

fourth moment. Then expansion (1.8) is valid.

PROOF. The least squares estimators (�̂1, . . . , �̂pn)
� can be expressed as

M̂−1
n

1

n

n∑
j=1

Xj−1Xj with M̂n = 1

n

n∑
j=1

Xj−1X�
j−1.

We can write the error term in (1.8) as (M̂−1
n − M−1

n )An − M̂−1
n Bn with

An = 1

n

n∑
j=1

Xj−1εj and Bn = 1

n

n∑
j=1

Xj−1
∑
i>pn

�iXj−i .

By (2.13) of Berk [4],

E[|Bn|2] = O

(
pn

∑
i>pn

�2
i

)

and by the relation immediately preceding his (2.17), we have E[|An|2] =
O(pnn

−1). By his Lemma 3, we have p
1/2
n ‖M̂−1

n − M−1
n ‖∗ = op(1), where

‖M‖∗ = sup|x|≤1 |Mx| is the operator norm of a matrix M . By his (2.14), both
‖Mn‖∗ and ‖M−1

n ‖∗ are bounded. Combining the above, we obtain

(M̂−1
n − M−1

n )An = op(p−1/2
n )Op(p1/2

n n−1/2) = op(n−1/2),

M̂−1
n Bn = Op

(
p1/2

n

( ∑
i>pn

�2
i

)1/2)
= op(n−1/2).

The result follows. �

Of special interest is the case where we have a parametric model for the autocor-
relation coefficients, that is, there are functions r1, r2, . . . from an open subset �

of Rq into R such that �i = ri(ϑ) for all i and some unknown ϑ in �. We can
then take �̂i = ri(ϑ̂) for all i and some estimator ϑ̂ of ϑ . Now, let us impose the
following conditions:
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(R1) the estimator ϑ̂ of ϑ is n1/2-consistent, that is, ϑ̂ − ϑ = Op(n−1/2);
(R2) the functions r1, r2, . . . are differentiable at ϑ with gradients ṙ1(ϑ),

ṙ2(ϑ), . . . and
∞∑
i=1

(
ri(ϑ + s) − ri(ϑ) − ṙi (ϑ)�s

)2 = o(|s|2) and
∞∑
i=1

|ṙi (ϑ)|2 < ∞.

These conditions imply (R) with qn = 1. If (C) and (F) are also met, one obtains
(see Theorem 3 in Section 7) that

‖f ′ ∗ Hn − (ϑ̂ − ϑ)�‖ = op(n−1/2)

with

(x) =
∞∑
i=1

ṙi (ϑ)E[X0f
′(x − Yi)], x ∈ R.

Thus, if (I), (Q), (R1), (R2), (S), (F), (K), (B) and N ≥ m − 1 hold, we have the
expansion

‖ĥ − h − Fn − Gn + (ϑ̂ − ϑ)�‖ = op(n−1/2)(2.1)

and tightness of n1/2(ĥ − h). Weak convergence of n1/2(ĥ − h) in C0(R) can now
be established under mild additional assumptions on ϑ̂ .

Let us now look at three special cases, namely AR(p), MA(1) and ARMA(1,1).
In these examples, the moving average and autoregression coefficients decay ex-
ponentially, so (S) holds and the choice pn ∼ log(n) log(log(n)) guarantees (Q)
with ζ = 1. We can then take m = 2 and bn ∼ n−1/4.

EXAMPLE 1. Let Xt = ϑ1Xt−1 + · · · + ϑpXt−p + εt be an AR(p) process
with ϑp 	= 0 and such that the polynomial �(z) = 1 − ∑p

i=1 ϑiz
i has no roots in

the (complex) unit disk. Set ϑ = (ϑ1, . . . , ϑp)� and X̃t−1 = (Xt−j , . . . ,Xt−p)�.
We can then write the model as Xt = ϑ�X̃t−1 + εt . The representation (1.2) holds
with �s = rs(ϑ) = ϑs for s ≤ p and �s = rs(ϑ) = 0 for s > p. By our assump-
tions on �(z), the moving average representation (1.1) holds with ϕs being the
coefficients of 1/�(z) = ∑∞

s=1 ϕsz
k and Yt = Xt − εt = ϑ�X̃t−1. Since ϑ = 0 is

ruled out, we have (C). Moreover, the moving average coefficients decay expo-
nentially, implying (S). Let ϑ̂ be an n1/2-consistent estimator of ϑ . We estimate
the innovations εj by the residuals ε̂j = Xj − ϑ̂�X̃j−1. Here, (R2) holds with
ṙi (ϑ) = ei , the ith unit vector, for i ≤ p and with ṙi (ϑ) = 0 for i > p, and we
find (x) = E[X̃0f

′(x − ϑ�X̃0)]. A simple estimator for ϑ is the least squares
estimator

ϑ̂ =
(

n∑
j=p+1

X̃j−1X̃
�
j−1

)−1 n∑
j=p+1

X̃j−1Xj .
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With M = E[X̃0X̃
�
0 ], ϑ̂ has the stochastic expansion

ϑ̂ = ϑ + M−1 1

n

n∑
j=1

X̃j−1εj + op(n−1/2).

With this choice of ϑ̂ , we obtain, in particular, that n1/2(ĥ − h) converges weakly
in C0(R) to a centered Gaussian process. In this example, we can take pn = p.

EXAMPLE 2. Let Xt = εt + ϑεt−1 be an MA(1) process with |ϑ | < 1 and
ϑ 	= 0. The moving average representation (1.1) then holds with ϕ1 = ϑ and
ϕs = 0 for s > 1, and (C) holds, as ϑ 	= 0. The representation (1.2) holds with
�s = rs(ϑ) = −(−ϑ)s . Let ϑ̂ be an n1/2-consistent estimator of ϑ . We estimate
the innovations εj by the residuals ε̂j = Xj +∑pn

i=1(−ϑ̂)iXj−i . It is easy to check
that (R2) holds with ṙs(ϑ) = s(−ϑ)s−1. We have Yt = Xt − εt = ϑεt−1 and,
therefore, E[X0f

′(x − Yi)] = 0 for i > 1. Thus, the expansion (2.1) holds with
(x) = E[X0f

′(x − Y1)] = E[ε0f
′(x − ϑε0)]. In particular, if ϑ̂ is asymptoti-

cally linear, then n1/2(ĥ − h) converges weakly in C0(R) to a centered Gaussian
process. Our estimator ĥ is asymptotically equivalent to the estimator

ĥSC(x) =
∫

f̂ (x − ϑ̂y)f̂ (y) dy

considered by Saavedra and Cao [31]. This estimator can be written

ĥSC(x) = 1

n2bn

n∑
i=1

n∑
j=1

L
ϑ̂

(
x − εi − ϑ̂εj

bn

)

with Lϑ(x) = ∫
k(x − ϑy)k(y) dy. The kernel L

ϑ̂
can be replaced by a general

(nonrandom) kernel k. The U-statistic version of the resulting estimator,

ĥSW =
n∑

i,j=1
i 	=j

kbn(x − εi − ϑ̂εj ),

is studied in [33], where a pointwise version of the above stochastic expansion is
proved. Schick and Wefelmeyer [35] generalize the result to MA(q) and show that
the expansion holds uniformly and in L1.

EXAMPLE 3. Let Xt = αXt−1 + εt + βεt−1 be an ARMA(1,1) process with
|α|, |β| < 1 and α + β 	= 0. The moving average representation (1.1) then holds
with ϕs = (α +β)αs−1 and the autoregressive representation (1.2) holds with �s =
rs(α,β) = (α + β)(−β)s−1. The requirement that α + β 	= 0 gives ϕ1 	= 0 and,
therefore, (C). We have Yt = Xt − εt = ∑∞

s=1(α + β)αs−1εt−s . Let α̂ and β̂ be
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n1/2-consistent estimators of α and β , respectively. We estimate the innovations εj

by the residuals

ε̂j = Xj − (α̂ + β̂)

pn∑
i=1

(−β̂)i−1Xj−i .

Here, (R2) holds with ṙs(α,β) = ((−β)s−1,−(s − 1)α(−β)s−2 + s(−β)s−1)�.
Thus, the expansion (2.1) holds with ϑ̂ = (α̂, β̂)� and

(x) =
∞∑

s=1

(
(−β)s−1

−(s − 1)α(−β)s−2 + s(−β)s−1

)
E[X0f

′(x − Ys)].

In particular, if α̂ and β̂ are asymptotically linear, then n1/2(ĥ − h) converges
weakly in C0(R) to a centered Gaussian process.

3. Smoothness. Here, we shall address smoothness of f , g and h = f ∗ g.
For this, we assume that N ≥ r for some positive integer r . We can then express
Y0 = ∑r

i=1 ϕτi
ε−τi

+ Z, where τ1, . . . , τr are the indices of the first r nonzero
terms among {ϕs : s ≥ 1} and Z = ∑

s>τr
ϕsε−s . For t 	= 0, define densities ft and

f̄t by ft (x) = f (x/t)/|t | and f̄t (x) = E[ft (x − Z)]. Since the innovations are
independent with density f , we find that the density g of Y0 equals f̄τ1 if r = 1
and equals the convolution fτ1 ∗ · · · ∗ fτr−1 ∗ f̄τr if r > 1.

Let A denote the class of absolutely continuous functions with a bounded and
integrable almost everywhere derivative. Let Ap denote the class of absolutely
continuous functions with an almost everywhere derivative in Lp , p ∈ [1,∞). It
follows from (F) that f belongs to A and, hence, to Ap for each p ∈ [1,∞). Ele-
ments of A are Lipschitz, while elements a of Ap are Lp-Lipschitz with constant
C = ‖a′‖p , that is,

‖a(· − t) − a‖p ≤ C|t |, t ∈ R.

Indeed, we can express

a(x + t) − a(x) = t

∫ 1

0
a′(x + st) ds

and thus obtain from Jensen’s inequality and Fubini’s theorem that∫
|a(x + t) − a(x)|p dx ≤ |t |p

∫ 1

0

∫
|a′(x + st)|p dx ds = |t |p‖a′‖p

p, t ∈ R.

A more careful analysis shows that elements a of Ap are Lp-smooth,

‖a(· − t) − a + ta′‖p ≤ |t |wp,a′(|t |), t ∈ R.

Here, wp,v denotes the Lp-modulus of continuity of a measurable function v, de-
fined by

wp,v(δ) = sup
|t |≤δ

‖v(· − t) − v‖p, δ ≥ 0.
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If v belongs to Lp , then wp,v is bounded by 2‖v‖p and wp,v(δ) → 0 as δ → 0, by
the translation continuity in Lp , for which we refer to Theorem 9.5 in [30]. Also,
recall that the modulus of continuity of a function v is defined by

wv(δ) = sup
x,y∈R,|y−x|≤δ

|v(y) − v(x)| ≤ sup
|t |≤δ

‖v(· − t) − v‖, δ ≥ 0.

If v belongs to C0(R), then wv is bounded by 2‖v‖ and wv(δ) → 0 as δ → 0.
Assume now that f belongs to A. Then the densities ft and f̄t for t 	= 0 will

also belong to A. This immediately gives that g belongs to A if r = 1. Hence,
g is Lp-smooth for each 1 ≤ p < ∞. Now, assume that r > 1. Set gi = f ′

τ1
∗ · · · ∗

f ′
τi

∗ fτi+1 ∗ · · · ∗ fτr−1 ∗ f̄τr for i = 1, . . . , r − 1 and gr = f ′
τ1

∗ · · · ∗ f ′
τr−1

∗ f̄ ′
τr

.
These functions are integrable, bounded and uniformly continuous. The last two
properties stem from the fact that the convolution of a bounded function u with an
integrable function v is bounded and uniformly continuous in view of the bounds
‖u ∗ v‖ ≤ ‖u‖‖v‖1 and wu∗v(δ) ≤ ‖u‖w1,v(δ). It is now easy to check that gi is
the ith derivative of g. Thus, we have the identity

g(x + t) − g(x) −
r∑

i=1

t i

i!gi(x) = t r

r!
∫ 1

0

(
gr(x + st) − gr(x)

)
r(1 − s)r−1 ds.

Since gr belongs to Lp , we obtain from Jensen’s inequality and Fubini’s theorem,
as above, that∥∥∥∥∥g(· + t) − g −

r∑
i=1

t i

i!gi

∥∥∥∥∥
p

≤ |t |r
r! wp,gr (|t |), t ∈ R.(3.1)

If (3.1) holds and gr ∈ Lp , then we say that g is Lp-smooth of order r . This
property reduces to Lp-smoothness if r = 1.

Since h equals f ∗ g, the above arguments show that h is (r + 1)-times contin-
uously differentiable with bounded, integrable and uniformly continuous deriva-
tives. This implies that∥∥∥∥∥h(· + t) − h −

r+1∑
i=1

t i

i!h
(i)

∥∥∥∥∥ ≤ |t |r+1

(r + 1)!wh(r+1) (|t |), t ∈ R.(3.2)

If (3.2) holds and h(r+1) is bounded and uniformly continuous, we say that h is
smooth of order r + 1.

Let us now summarize our findings.

COROLLARY 1. Let f belong to A and N ≥ r ≥ 1. Then f is L2-smooth,
g belongs to A and is L2-smooth of order r and h is smooth of order r + 1.

COROLLARY 2. Let a be L2-smooth of order r and let k be a kernel of type
(m,2) with m ≥ r . Then ‖a ∗ kbn − a‖2 = o(br

n).

COROLLARY 3. Let a be smooth of order r and let k be a kernel of type (m,1)

with m ≥ r . Then ‖a ∗ kbn − a‖ = o(br
n).
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4. Weak convergence in C0(R). In this section, we address weak conver-
gence of sequences of random elements in the space C0(R) of continuous functions
vanishing at (plus and minus) infinity, endowed with the supremum norm ‖ · ‖.
To establish tightness, we use the following characterization of compact subsets
of C0(R).

LEMMA 2. A closed subset A of C0(R) is compact if and only if

lim
δ↓0

sup
a∈A

sup
|z−y|≤δ

|a(z) − a(y)| = 0,

lim
K→∞ sup

a∈A

sup
|z|≥K

|a(z)| = 0.

A proof of this lemma is given in [34]. From the lemma, we immediately obtain
the following characterization of tightness.

COROLLARY 4. A sequence An of C0(R)-valued random elements is tight if
and only if for every ε > 0 and η > 0, there exist a δ > 0 and a K < ∞ such that

sup
n

P

(
sup

|z−y|≤δ

|An(z) − An(y)| > ε

)
< η,(4.1)

sup
n

P

(
sup

|z|≥K

|An(z)| > ε

)
< η.(4.2)

Once tightness is established, weak convergence follows from the convergence
of the finite-dimensional distributions.

Let a1 and a2 be two square-integrable functions. Then a1 ∗a2 belongs to C0(R).
Indeed, an application of the Cauchy–Schwarz inequality and a substitution yield

‖a1 ∗ a2‖ ≤ ‖a1‖2‖a2‖2.(4.3)

Hence, a1 ∗ a2 is bounded. Furthermore,

‖a1 ∗ a2(· − t) − a1 ∗ a2‖ ≤ ‖a1(· − t) − a1‖2‖a2‖2.(4.4)

Since a1 is square-integrable, we obtain from the translation continuity of square-
integrable functions (see, e.g., [30], Theorem 9.5) that ‖a1(· − t) − a1‖2 → 0 as
t → 0. This shows that a1 ∗ a2 is uniformly continuous. Finally, write χK(y) =
1[|y| > K] and a1 ∗ a2 = a1 ∗ (a2(1 − χK)) + a1 ∗ (a2χK). Since |x − y| > K if
|x| > 2K and |y| ≤ K , we obtain

sup
|x|>2K

|a1 ∗ a2(x)| ≤ ‖a1χK‖2‖a2‖2 + ‖a1‖2‖a2χK‖2.(4.5)

Hence a1 ∗ a2 vanishes at infinity. The above shows that a1 ∗ a2 is in C0(R).
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If a is a square-integrable function and Dn is a sequence of L2-valued random
elements, then inequalities (4.3)–(4.5) yield

‖a ∗ Dn(· − t) − a ∗ Dn‖ ≤ ‖a(· − t) − a‖2‖Dn‖2,

sup
|x|>2K

|a ∗ Dn(x)| ≤ ‖aχK‖2‖Dn‖2 + ‖a‖2‖DnχK‖2.

This shows that the C0(R)-valued sequence a ∗ Dn is tight if ‖Dn‖2 = Op(1) and
if for all positive ε and η, there exists a K such that supn P (‖DnχK‖2 > ε) < η.
In view of the Markov inequality, a sufficient condition for these two statements is
the following condition.

(T) There exists an integrable � such that E[D2
n(x)] ≤ �(x) for all x ∈ R.

Now, let ξ1, ξ2, . . . be a stationary sequence of random variables with distribu-
tion function D and let

Dn(x) = n−1/2
n∑

j=1

(
1[ξj ≤ x] − D(x)

)
, x ∈ R,

be the associated empirical process. If A is absolutely continuous with an almost
everywhere derivative A′ that is both integrable and square-integrable, then we can
express

An(x) = n−1/2
n∑

j=1

(
A(x − ξj ) − E[A(x − ξj )]) =

∫
A(x − y)dDn(y)

as

An(x) =
∫

A′(x − y)Dn(y) dy = A′ ∗ Dn(x), x ∈ R.

Thus, the sequence An will be tight if we can show that condition (T) holds. In the
following, we give sufficient conditions for (T).

(a) If ξ1, ξ2, . . . are independent, then condition (T) holds if the random vari-
ables have a finite mean. Indeed, we have the identity E[D2

n(x)] = D(x)(1−D(x))

and D(1 − D) is integrable if and only if the ξj have finite mean.
(b) Now assume that ξ1, ξ2, . . . come from a linear process

ξt =
∞∑

s=0

dsUt−s, t ∈ Z,

where the innovations Ut , t ∈ Z, are i.i.d. with finite mean, the coefficients
d0, d1, . . . are summable and d0 	= 0. Then condition (T) holds if

∑∞
s=0(1 +

s)|ds | < ∞. This follows from Corollary 7.1 in [36].
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5. A bound. Let Ut , t ∈ Z, be independent and identically distributed random
variables with finite mean. For summable coefficients c0, c1, . . . and d0, d1, . . .

with d0 	= 0, let us consider the linear processes

St =
∞∑

s=0

csUt−s and Tt =
∞∑

s=0

dsUt−s, t ∈ Z.

For a measurable function a, we define

K(x) = n−1/2
n∑

j=1

(
a(x − Tj ) − E[a(x − Tj )]),

H(x) = n−1/2
n∑

j=1

(
Sja(x − Tj ) − E[Sja(x − Tj )]), x ∈ R.

Let U = U0 and set

α =
∞∑

j=0

|cj | and D =
∞∑

j=0

(j + 1)|dj | =
∞∑

j=0

∞∑
s=j

|ds |.

In their Lemma 7.3, Schick and Wefelmeyer [36] show the following result.

LEMMA 3. Suppose a is bounded and L1-Lipschitz with constant L. Let D be
finite. Then ∫

E[K2(x)]dx ≤ 4L‖a‖DE[|U |].

We shall now obtain a similar result for the process H .

LEMMA 4. Suppose a is bounded and L1-Lipschitz with constant L and U

has a finite second moment. Let D be finite. Then∫
E[H 2(x)]dx ≤ 8L‖a‖α2DE[|U |]E[U2].

PROOF. We can write H(x) = n−1/2 ∑n
j=1(Zj (x) − E[Zj(x)]), where

Zj(x) = Sja(x − Tj ), x ∈ R.

Now, set

S∗
j =

j−1∑
s=0

csUj−s, S̄j =
∞∑

s=j

csUj−s,

T ∗
j =

j−1∑
s=0

dsUj−s, T̄j =
∞∑

s=j

dsUj−s .
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We can then write

Zj(x) = S∗
j a(x − T ∗

j − T̄j ) + S̄j a(x − T ∗
j − T̄j )

and obtain, with F denoting the σ -field generated by {Ut : t ≤ 0}, that

Z̄j (x) = E(Zj (x)|F ) = a∗
j (x − T̄j ) + S̄j aj (x − T̄j ),(5.1)

where a∗
j and aj are the functions defined by

a∗
j (x) = E[S∗

j a(x − T ∗
j )] and aj = E[a(x − T ∗

j )], x ∈ R.

These functions inherit the L1-Lipschitz property of a. More precisely, we have
the bounds

‖a∗
j (· − t) − a∗

j ‖1 ≤ E[|S∗
j |]L|t | ≤ BL|t | and

(5.2)
‖aj (· − t) − aj‖1 ≤ L|t |,

where B = αE[|U |]. To simplify notation, we abbreviate S0 by S, T0 by T and Z0
by Z. Using stationarity and a conditioning argument, we obtain

E[H 2(x)] = Var(Z(x)) + 2

n

n−1∑
j=1

(n − j)Cov(Z(x), Z̄j (x)) ≤ 2
∞∑

j=0


j (x),

where, in view of (5.1), 
j(x) can be taken to be


j (x) = E
[|Z(x) − E[Z(x)]|∣∣a∗

j (x − T̄j ) − a∗
j (x) + S̄j

(
aj (x − T̄j ) − aj (x)

)∣∣].
Since a is bounded, we derive the bounds |Z(x)| ≤ |S|‖a‖ and |E[Z(x)]| ≤
E[|S|]‖a‖ for x ∈ R. This, E[|S|] ≤ B = αE[|U |] and (5.2) yield that

‖
j‖1 ≤ ‖a‖E[
(|S| + E[|S|])(BL|T̄j | + LE[|S̄j T̄j |])]

≤ ‖a‖BL

(∑
s≥0

|ds+j |E[
(|S| + E[|S|])|U−s |] + 2

∑
s,t≥j

|ct ||ds |E[U2]
)

≤ ‖a‖BL(2αE[U2] + 2αE[U2]) ∑
s≥j

|ds |.

In view of B = αE[|U |] and the definition of D, the desired result is now imme-
diate. �

6. An auxiliary result. Let Xt be a linear process as in (1.1). Let an be an
integrable function that belongs to A1. For i = 1,2, . . . , set

ân,i(x) = 1

n − pn

n∑
j=pn+1

Xj−ian(x − Yj ), x ∈ R,

ān,i(x) = E[ân,i(x)] = E[X0an(x − Yi)], x ∈ R.
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In this section, we study the behavior of ân,i and its expectation ān,i in L2. The
results developed here will be used in later sections with an = kbn or an = k′

bn
.

From Lemma 4, we immediately obtain the following result.

LEMMA 5. Suppose (C) and (S) hold. Then there exists a finite constant A

such that ∫
Var(ân,i(x)) dx ≤ A‖an‖‖a′

n‖1, i = 1,2, . . . .

We denote the index of the first nonzero moving average coefficient by

τ = inf{s ≥ 1 : ϕs 	= 0}.
Under (C), τ is finite. Let Zj = Yj −ϕτ εj−τ . A conditioning argument shows that

ān,i(x) = 1[i = τ ]E[vn(x − Zi)] + E[X0un(x − Zi)]
with

un(x) = E[an(x − ϕτ ε0)] and vn(x) = E[ε0an(x − ϕτ ε0)], x ∈ R.

Then un = an ∗ ψ0 and vn = an ∗ ψ1, where

ψ0(x) = 1

|ϕτ |f
(

x

ϕτ

)
and ψ1(x) = 1

|ϕτ |
x

ϕτ

f

(
x

ϕτ

)
, x ∈ R.(6.1)

Under assumption (F), ψ0 and ψ1 belong to A.
If un converges in L2 to some u and vn converges in L2 to some v, then we find

that ān,i converges in L2 to āi , where

āi(x) = 1[i = τ ]E[v(x − Zi)] + E[X0u(x − Zi)], x ∈ R.

Actually, a stronger statement is possible.

LEMMA 6. Let (C), (S) and (F) hold. Suppose that there exist square-
integrable functions u and v with u in A2 such that ‖an ∗ ψ1 − v‖2 → 0,
‖an ∗ ψ0 − u‖2 → 0 and ‖an ∗ ψ ′

0 − u′‖2 → 0. Then

∞∑
i=1

‖ān,i − āi‖2
2 → 0 and

∞∑
i=1

‖āi‖2
2 < ∞.

PROOF. For i > τ and w ∈ A2, we have

E[X0w(x − Zi)] = E
[
X0

(
w(x − Zi) − w(x − Z̄i)

)]
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with Z̄i = ∑
τ<s<i ϕsεi−s and, hence,∫ (

E[X0w(x − Zi)])2
dx ≤ E[X2

0]
∫

E
[(

w(x − Zi) − w(x − Z̄i)
)2]

dx

≤ E[X2
0]‖w′‖2

2E[(Zi − Z̄i)
2]

= E[X2
0]‖w′‖2

2E[ε2
0]

∞∑
s=i

ϕ2
s .

With w = an ∗ ψ0 − u and assumption (S), we obtain∑
i>τ

‖ān,i − āi‖2
2 ≤ E[X2

0]E[ε2
0]‖an ∗ ψ ′

0 − u′‖2
2

∑
s>τ

sϕ2
s → 0,

and with w = u, we obtain∑
i>τ

‖āi‖2
2 ≤ E[X2

0]E[ε2
0]‖u′‖2

2

∑
s>τ

sϕ2
s < ∞.

The desired results are now immediate, as ān,i converges in L2 to āi for i ≤ τ . �

REMARK 1. The assumptions on an of the previous lemma hold with u =
a ∗ψ0 and v = a ∗ψ1 if an converges in L2 to some a. They hold with u = ψ0 and
v = ψ1 if an = kbn . In the first case, āi = a ∗ δi , and in the second case, āi = δi ,
where

δi(x) = 1[i = τ ]E[ψ1(x − Z0)] + E[X0ψ0(x − Zi)].(6.2)

7. Tightness of n1/2a ∗ Hn. Let us now address tightness of n1/2a ∗ Hn for
some square-integrable a. For such an a, we have, with an = a ∗ kbn ,

a ∗ Hn(x) =
pn∑
i=1

(�̂i − �i)E[X0an(x − Yi)] = 	̂�E[X0an(x − Y1)], x ∈ R.

Recall that 	̂ = (�̂1 − �1, . . . , �̂pn − �pn)
� and Xj−1 = (Xj−1, . . . ,Xj−pn)

�. We
shall first treat the case where (1.8) holds. As seen in the proof of Lemma 1, the
dispersion matrix Mn = E[X0X�

0 ] is invertible and the operator norm of its inverse
M−1

n is bounded. Hence, there exists a constant K such that for all n,

c�
n Mncn ≤ K|cn|2 and c�

n M−1
n cn ≤ K|cn|2, cn ∈ R

pn.(7.1)

Let δ = (δ1, . . . , δpn)
� with δi as defined in (6.2). Now, set

Jn(x) = 1

n − pn

n∑
j=pn+1

εj X�
j−1M

−1
n δ(x), x ∈ R.

We point out that for any square-integrable a,

a ∗ Jn(x) = 1

n − pn

n∑
j=pn+1

εj X�
j−1M

−1
n E[X0a(x − Y1)], x ∈ R.
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THEOREM 2. Let (C), (I), (F), (S) and (1.8) hold and pn → ∞. Then, for each
square-integrable a, the sequence n1/2a ∗ Jn is tight in C0(R) and ‖a ∗ (Hn −
Jn)‖ = op(n−1/2).

PROOF. Since µn,i(x) = E[X0kbn(x − Yi)] equals E[X1−ikbn(x − Y1)], we
obtain that Hn = 	̂�µn, where µn(x) = E[X0kbn(x − Y1)]. Let us set

	̃ = M−1
n

1

n − pn

n∑
j=pn+1

Xj−1εj .

By the results in Section 6, we have, with vn = kbn ∗ ψ1 and un = kbn ∗ ψ0, that

µn,i(x) = 1[i = τ ]E[vn(x − Z0)] + E[X0un(x − Zi)].
Since ‖kbn ∗ ψi − ψi‖2 → 0 for i = 0,1 and ‖kbn ∗ ψ ′

0 − ψ ′
0‖2 → 0, we obtain

from Lemma 6, applied with an = kbn , that

∞∑
i=1

‖µn,i − δi‖2
2 → 0 and

∞∑
i=1

‖δi‖2
2 < ∞.

From this, we obtain that ‖µn‖2 = O(1). This shows that

‖Hn − 	̃�µn‖2 = ‖(	̂ − 	̃)�µn‖2 ≤ |	̂ − 	̃|‖µn‖2 = op(n−1/2).(7.2)

A martingale argument and straightforward calculations show that

(n − pn)E[J2
n(x)] = E[ε2

0]E[(X�
0 M−1

n δ(x))2]
= E[ε2

0]E[δ(x)�M−1
n X0X�

0 M−1
n δ(x)]

= E[ε2
0]δ(x)�M−1

n MnM
−1
n δ(x).

This shows that

(n − pn)E[J2
n(x)] ≤ E[ε2

0]K
∞∑
i=1

δ2
i (x).

Since
∑∞

i=1 δ2
i is integrable, n1/2a ∗ Jn is tight by the results in Section 4. Since

µn,i = kbn ∗ δi , we find that a ∗ (	̃�µn) = kbn ∗ a ∗ Jn. Thus, by the tightness
of n1/2a ∗ Jn, we obtain that ‖a ∗ (	̃�µn) − a ∗ Jn‖ = op(n−1/2). This and (7.2)
establish n1/2‖a ∗ (Hn − Jn)‖ = op(1). �

Now, let us look at the case of parametric autocorrelation coefficients as de-
scribed in Section 2. We then have �i = ri(ϑ) and �̂i = ri(ϑ̂). We assume that
(R1) and (R2) hold. This gives the expansion

Rn =
pn∑
i=1

(
ri(ϑ̂) − ri(ϑ) − (ϑ̂ − ϑ)�ṙi (ϑ)

)2 = op(n−1).
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Fix a square-integrable a. Under (C), (S) and (F), we have
∞∑
i=1

‖a ∗ µn,i − a ∗ δi‖2 ≤ ‖a‖2
2

∞∑
i=1

‖µn,i − δi‖2
2 → 0

and
∞∑
i=1

‖a ∗ δi‖2 ≤ ‖a‖2
2

∞∑
i=1

‖δi‖2
2 < ∞.

Using the Cauchy–Schwarz inequality, we find that∥∥∥∥∥
pn∑
i=1

(
ri(ϑ̂) − ri(ϑ) − (ϑ̂ − ϑ)�ṙi (ϑ)

)
a ∗ µn,i

∥∥∥∥∥
2

≤ Rn

∞∑
i=1

‖a ∗ µn,i‖2 = op(n−1)

and ∥∥∥∥∥
pn∑
i=1

ṙi (ϑ)a ∗ µn,i −
∞∑
i=1

ṙi (ϑ)a ∗ δi

∥∥∥∥∥
2

≤
∞∑
i=1

|ṙi (ϑ)|2
( pn∑

i=1

‖a ∗ µn,i − a ∗ δi‖2 +
∞∑

i=pn+1

‖a ∗ δi‖2

)
→ 0,

provided pn → ∞. This shows that under (C), (I), (F), (R1), (R2) and (S), we have∥∥∥∥∥a ∗ Hn − (ϑ̂ − ϑ)�
∞∑
i=1

ṙi (ϑ)a ∗ δi

∥∥∥∥∥ = op(n−1/2).

Since a ∗ δi(x) = E[X0a(x − Yi)], we have the following result.

THEOREM 3. Suppose that (C), (I), (F), (R1), (R2) and (S) hold and that �̂i =
ri(ϑ̂) and �i = ri(ϑ). Let pn → ∞. Then ‖a ∗ Hn − (ϑ̂ − ϑ)�A‖ = op(n−1/2),
where

A(x) =
∞∑
i=1

ṙi (ϑ)E[X0a(x − Yi)], x ∈ R.

If ṙi (ϑ) = 0 for all i > p, as is the case in the AR(p) model, then the require-
ment that pn → ∞ can be relaxed to pn = p.

8. Behavior of the residuals. In this section, we study how close the resid-
uals are to the actual innovations. Recall that 	̂ = (�̂1 − �1, . . . , �̂pn − �pn)

�
and Xj−1 = (Xj−1, . . . ,Xj−pn)

�. Note that condition (R) is equivalent to |	̂|2 =
Op(qnn

−1). Under (I), we also have

X = 1

n − pn

n∑
j=pn+1

Xj−1 = Op(p1/2
n n−1/2).
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This follows since we have

(n − pn)E

[(
1

n − pn

n∑
j=pn+1

Xj−i

)2]
≤ CE[X2

0](8.1)

for some constant C independent of n and i. Thus, we derive

	̂�X = Op(p1/2
n q1/2

n n−1).(8.2)

The residuals can be expressed as

ε̂j = Xj −
pn∑
i=1

�̂iXj−i = εj −
pn∑
i=1

(�̂i −�i)Xj−i +
∑
i>pn

�iXj−i = ε̂∗
j + ∑

i>pn

�iXj−i ,

where

ε̂∗
j = εj −

pn∑
i=1

(�̂i − �i)Xj−i = εj − 	̂�Xj−1.(8.3)

LEMMA 7. Suppose that (I), (Q) and (R) hold. Then

n∑
j=pn+1

(ε̂j − ε̂∗
j )

2 = Op(n−2ζ ),(8.4)

n∑
j=pn+1

(ε̂∗
j − εj )

2 = Op(pnqn),(8.5)

1

n − pn

n∑
j=pn+1

(ε̂j − εj ) = Op(n−1/2−ζ ) + Op(p1/2
n q1/2

n n−1).(8.6)

If the innovations have a finite moment of order ξ ≥ 2, then

max
pn<j≤n

|ε̂j − εj | = Op(n−ζ ) + op(p1/2
n q1/2

n n−1/2+1/ξ ).(8.7)

PROOF. It follows from the Cauchy–Schwarz inequality that

(ε̂∗
j − εj )

2 ≤
pn∑
i=1

(�̂i − �i)
2

pn∑
i=1

X2
j−i .(8.8)

From this bound, assumption (R) and the fact that E[X2
0] < ∞, we obtain

n∑
j=pn+1

(ε̂∗
j − εj )

2 = Op(qnn
−1)Op(pnn) = Op(pnqn).(8.9)
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It follows from the Minkowski inequality that the L2(P )-norm of ε̂j − ε̂∗
j =∑

s>pn
�sXj−s is bounded by the L2(P )-norm of X0 times

∑
s>pn

|�s |. Thus,

E

[
n∑

j=pn+1

(ε̂j − ε̂∗
j )

2

]
≤ nE[X2

0]
( ∑

s>pn

|�s |
)2

= O(n−2ζ ),

which implies (8.4). It follows from (8.4) that

max
pn<j≤n

|ε̂j − ε̂∗
j | = Op(n−ζ ),(8.10)

1

n − pn

n∑
j=pn+1

(ε̂j − ε̂∗
j ) = Op(n−1/2−ζ ).(8.11)

Indeed, the square of the left-hand side of (8.10) is bounded by Rn, the left-hand
side of (8.4), while the squared error term of (8.11) is bounded by Rn/(n − pn).
Thus, (8.6) follows since, by (8.2), we have

1

n − pn

n∑
j=pn+1

(ε̂∗
j − εj ) = −	̂�X = Op(p1/2

n q1/2
n n−1).(8.12)

The additional moment assumption on the innovations gives E[|X0|ξ ] < ∞.
From this, we obtain that max1≤j≤n |Xj | = op(n1/ξ ). Indeed, for each η > 0,

P

(
max

1≤j≤n
|Xj | > ηn1/ξ

)
≤

n∑
j=1

P(|Xj | > ηn1/ξ ) ≤ η−ξE
[
X

ξ
01[|X0| > ηn1/ξ ]].

It follows from this, inequality (8.8) and assumption (R) that

max
pn<j≤n

|ε̂∗
j − εj |2 ≤ pn

pn∑
i=1

(�̂i − �i)
2 max

1≤j≤n
|Xj |2 = op(pnqnn

−1+2/ξ ).(8.13)

Combining (8.10) and (8.13), we obtain (8.7). �

LEMMA 8. Suppose that (I), (Q) and (R) hold. Let an be a sequence of func-
tions with bounded integrable derivatives up to order two such that ‖a′

n‖ = O(1)

and ‖a′′
n‖ = o(p−1

n q−1
n n1/2). Then

sup
x∈R

∣∣∣∣∣ 1

n − pn

n∑
j=pn+1

(
an(x − Ŷj ) − an(x − Yj ) + 	̂�Xj−1a

′
n(x − Yj )

)∣∣∣∣∣
(8.14)

= op(n−1/2).

If, further, pnqn/n → 0 and ‖a′′
n‖2 = o(p

−1/2
n q

−1/2
n n1/2), then

sup
x∈R

∣∣∣∣∣ 1

n − pn

n∑
j=pn+1

(
an(x − ε̂j ) − an(x − εj )

)∣∣∣∣∣ = op(n−1/2).(8.15)
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PROOF. Note that (8.4) implies

Qn = 1

n − pn

n∑
j=pn+1

|ε̂j − ε̂∗
j | = Op(n−ζ−1/2),(8.16)

while (8.3) and (8.5) imply

Tn = 1

n − pn

n∑
j=pn+1

(ε̂∗
j − εj )

2 = 1

n − pn

n∑
j=pn+1

|	̂�Xj−1|2

(8.17)
= Op(pnqnn

−1).

The expression following the supremum in (8.14) can be written as |rn(x)|, where

rn(x) = 1

n − pn

n∑
j=pn+1

(
an(x − Ŷj ) − an(x − Yj ) + 	̂�Xj−1a

′
n(x − Yj )

)
.

Define r∗
n as rn, but with Ŷj = Xj − ε̂j replaced by Xj − ε̂∗

j . Then

‖rn − r∗
n‖ ≤ ‖a′

n‖Qn = Op(n−ζ−1/2‖a′
n‖).

A Taylor expansion yields the bound

‖r∗
n‖ ≤ ‖a′′

n‖Tn = Op(pnqnn
−1‖a′′

n‖).
This establishes (8.14). The same arguments yield

sup
x∈R

∣∣∣∣∣ 1

n − pn

n∑
j=pn+1

(
an(x − ε̂j )−an(x − εj )− 	̂�Xj−1a

′
n(x − εj )

)∣∣∣∣∣ = op(n−1/2).

In view of (8.2), we have

‖	̂�Xa′
n ∗ f ‖ ≤ |	̂�X|‖a′

n ∗ f ‖ = Op(p1/2
n q1/2

n n−1‖a′
n‖) = op(n−1/2).

Result (8.15) now follows if we can show that ‖α̂n‖ = op(q
−1/2
n ) for

α̂n(x) = 1

n − pn

n∑
j=pn+1

Xj−1
(
a′
n(x − εj ) − E[a′

n(x − εj )]), x ∈ R.

It follows from Fubini’s theorem that α̂n = a′′
n ∗ Wn with

Wn(x) = 1

n − pn

n∑
j=pn+1

Xj−1
(
1[εj ≤ x] − F(x)

)
.

Thus, ‖α̂n‖ ≤ ‖a′′
n‖2‖Wn‖2. Since

(n − pn)E[‖Wn‖2
2] = E[|X0|2]

∫
F(x)

(
1 − F(x)

)
dx = O(pn),

we obtain ‖α̂n‖ = Op(p
1/2
n n−1/2‖a′′

n‖2) = op(q
−1/2
n ). �
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9. Estimating the innovation density f . The kernel estimator based on the
residuals is

f̂ (x) = 1

n − pn

n∑
j=pn+1

kbn(x − ε̂j ), x ∈ R.

In this section, we study convergence of f̂ in the space L2 and of functionals of
the form a ∗ f̂ in the space C0(R).

Let f̃ denote the kernel estimator based on the actual innovations εpn+1, . . . , εn,

f̃ (x) = 1

n − pn

n∑
j=pn+1

kbn(x − εj ), x ∈ R.

The first result is known.

LEMMA 9. Suppose that the kernel k is square-integrable and of type (m,2).
Let f be L2-smooth of order r ≤ m. Then

‖f̃ − f ‖2 = Op(b−1/2
n n−1/2) + o(br

n).

PROOF. It is well known that E[f̃ (x)] = f ∗ kbn(x) and

(n − pn)E[‖f̃ − f ∗ kbn‖2
2] ≤ ‖k2

bn
∗ f ‖1 ≤ b−1

n ‖k2‖1.

Thus, ‖f̃ −f ∗kbn‖2 = Op(b
−1/2
n n−1/2). By Corollary 2, ‖f ∗kbn −f ‖2 = o(br

n).
�

LEMMA 10. Suppose that (I), (Q), (R), (F) and (K) hold. Then

‖f̂ − f̃ ‖2 = Op(pnqnb
−5/2
n n−1) + Op(n−ζ−1/2b−3/2

n ).

PROOF. Let ε̂∗
j be as in (8.3). Let f̂ ∗ denote the kernel estimator based on

ε̂∗
pn+1, . . . , ε̂

∗
n. With Qn as in (8.16), we find that

‖f̂ − f̂ ∗‖2
2 ≤ ‖f̂ − f̂ ∗‖1‖f̂ − f̂ ∗‖ ≤ ‖k′

bn
‖1‖k′

bn
‖Q2

n

and obtain, in view of (8.16), the rate

‖f̂ − f̂ ∗‖2 = Op(b−3/2
n n−ζ−1/2).

The identity ε̂∗
j = εj −	̂�Xj−1 and a Taylor expansion yield f̂ ∗ − f̃ = 	̂�γn +rn

with

γn(x) = 1

n − pn

n∑
j=pn+1

Xj−1k
′
bn

(x − εj ),

rn(x) = 1

n − pn

n∑
j=pn+1

∫ 1

0

∫ 1

0
(	̂�Xj−1)

2tk′′
bn

(x − εj + st	̂�Xj−1) ds dt.
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With Tn as in (8.17), we obtain ‖rn‖ ≤ ‖k′′
bn

‖Tn = Op(pnqnb
−3
n n−1) and ‖rn‖1 ≤

‖k′′
bn

‖1Tn = Op(pnqnb
−2
n n−1), and, consequently,

‖rn‖2
2 ≤ ‖rn‖‖rn‖1 = Op(p2

nq
2
nb−5

n n−2).

Let γ̄n = X k′
bn

∗ f . Since ‖k′
bn

∗ f ‖2 = ‖f ′ ∗ kbn‖2 ≤ ‖f ′‖2‖k‖1, we obtain
from (8.2) that

‖	̂�γ̄n‖2 ≤ |	̂�X|‖k′
bn

∗ f ‖2 = Op(p1/2
n q1/2

n n−1).

A martingale argument yields

(n − pn)E[‖γn − γ̄n‖2
2] ≤ pnE[|X2

0]‖(k′
bn

)2 ∗ f ‖1 = O(pnb
−3
n ).

Thus, ‖	̂�(γn − γ̄n)‖2 = Op(p
1/2
n q

1/2
n b

−3/2
n n−1). The above imply the desired

rate. �

THEOREM 4. Suppose that (I), (Q), (R), (F) and (K) hold. Let a ∈ A and
let a ∗ f be smooth of order r ≤ m. Let the bandwidth satisfy nb2r

n = O(1) and
pnqnb

−1
n n−1/2 → 0. Then

‖a ∗ (f̂ − f ) − An‖ = op(n−1/2),

where

An(x) = 1

n − pn

n∑
j=pn+1

(
a(x − εj ) − E[a(x − εj )]), x ∈ R.

PROOF. Let f̄ = E[f̃ ] = f ∗ kbn . Since a ∗ f is smooth of order r ≤ m and k

is of type (m,1), Corollary 3 yields

‖a ∗ f̄ − a ∗ f ‖ = ‖(a ∗ f ) ∗ kbn − a ∗ f ‖ = o(br
n) = o(n−1/2).

We can write a ∗ (f̃ − f̄ ) = An ∗ kbn . Since n1/2An is tight in C0(R) by result (a)
in Section 4, we obtain that ‖n1/2(An ∗ kbn − An)‖ = op(1). In other words,

‖a ∗ (f̃ − f̄ ) − An‖ = op(n−1/2).

We can now calculate that

a ∗ (f̂ − f̃ )(x) = 1

n − pn

n∑
j=pn+1

(
an(x − ε̂j ) − an(x − εj )

)
, x ∈ R,

with an = a ∗ kbn . an is then twice differentiable with a′
n = a′ ∗ kbn and

a′′
n = a′ ∗ k′

bn
. We have ‖a′

n‖ ≤ ‖a′‖‖kbn‖1 = O(1), ‖a′′
n‖ ≤ ‖a′‖‖k′

bn
‖1 =

O(b−1
n ) and ‖a′′

n‖2
2 ≤ ‖a′′

n‖‖a′′
n‖1 ≤ ‖a′′

n‖‖k′
bn

‖1‖a′‖1 = O(b−2
n ). In view of

pnqnb
−1
n n−1/2 → 0, Lemma 8 yields

‖a ∗ (f̂ − f̃ )‖ = op(n−1/2).

The desired result follows from the above. �
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10. Estimating the density g. The kernel estimator based on the estimated
versions Ŷj = Xj − ε̂j of the Yj = Xj − εj is

ĝ(x) = 1

n − pn

n∑
j=pn+1

kbn(x − Ŷj ), x ∈ R.

In this section, we study convergence of ĝ in the space L2 and of functionals of
the form a ∗ ĝ in the space C0(R). Let g̃ denote the kernel estimator based on
Ypn+1, . . . , Yn,

g̃(x) = 1

n − pn

n∑
j=pn+1

kbn(x − Yj ), x ∈ R.

We first give an analogue of Lemma 9.

LEMMA 11. Suppose that (C) and (S) hold. Let the kernel k be square-
integrable and of type (m,2). Let f belong to A1 ∩ A2 and have finite mean.
Let g be L2-smooth of order r with r ≤ m. Then

‖g̃ − g‖2 = Op(b−1/2
n n−1/2) + o(br

n).

PROOF. By Corollary 2, we have ‖g ∗ kbn − g‖2 = o(br
n). It remains to show

that

‖g̃ − g ∗ kbn‖2 = Op(b−1/2
n n−1/2).(10.1)

Recall the notation τ = inf{s ≥ 1 :ϕs 	= 0}. We can write Yj = ϕτ εj−τ + Zj with
Zj = ∑

s>τ ϕsεj−s . Let an = kbn ∗ ψ0, where ψ0 is the density of ϕτ ε0. We can
then express g̃ − g ∗ kbn as the sum T1 + kbn ∗ T2 with

T1(x) = 1

n − pn

n∑
j=pn+1

(
kbn(x − Yj ) − an(x − Zj)

)
,

T2(x) = 1

n − pn

n∑
j=pn+1

(
ψ0(z − Zj) − E[ψ0(x − Zj)]).

Using a martingale argument, we obtain (n−pn)E[‖T1‖2
2] ≤ ‖k2

bn
∗g‖1 = O(b−1

n )

and thus ‖T1‖2 = Op(b
−1/2
n n−1/2). Since f belongs to A1 ∩ A2, so does ψ0.

Thus, n1/2T2 is tight by result (b) in Section 4, applied with A = ψ0 and ξj = Zj .
This shows that ‖T2 ∗ kbn‖2

2 ≤ ‖T2‖2
2‖kbn‖1 ≤ ‖T2‖‖T2‖1‖k‖ = Op(n−1/2). This

finishes the proof of (10.1). �

Let us define functions µn and µ′
n by

µn(x) = E[X0kbn(x − Y1)] and µ′
n(x) = E[X0k

′
bn

(x − Y1)].
We now give analogues of Lemma 10 and Theorem 4.



840 A. SCHICK AND W. WEFELMEYER

LEMMA 12. Suppose that (C), (I), (Q), (R), (S), (F) and (K) hold. Then

‖ĝ − g̃ + 	̂�µ′
n‖2 = Op(pnqnb

−5/2
n n−1) + Op(n−ζ−1/2b−3/2

n ).

PROOF. Let ĝ∗ denote the kernel estimator based on Ŷ ∗
pn+1, . . . , Ŷ

∗
n with

Ŷ ∗
j = Xj − ε̂∗

j = Yj + 	̂�Xj−1.

As in the proof of Lemma 10, we find that

‖ĝ − ĝ∗‖2 = Op(n−ζ−1/2b−3/2
n ) and

‖ĝ∗ − g̃ + 	̂�µ̂′
n‖2 = Op(pnqnb

−5/2
n n−1),

where

µ̂′
n(x) = 1

n − pn

n∑
j=pn+1

Xj−1k
′
bn

(x − Yj ), x ∈ R.

Note that ‖k′
bn

‖ = O(b−2
n ) and ‖k′

bn
‖ = O(b−1

n ). Thus, it follows from Lemma 5,
applied with an = k′

bn
, that∫

E[‖µ̂′
n(x) − E[µ̂′

n(x)]‖2]dx = O(pnb
−3
n n−1).

Since µ′
n(x) = E[µ̂′

n(x)], we see that

‖	̂�(µ̂′
n − µ′

n)‖2 = Op(p1/2
n q1/2

n b−3/2
n n−1).

The above rates yield the desired result. �

THEOREM 5. Suppose that (C), (I), (Q), (R), (S), (F) and (K) hold. Let a ∈ A
and let a ∗ g be smooth of order r with r ≤ m. Let the bandwidth satisfy nb2r

n =
O(1) and pnqnb

−1
n n−1/2 → 0. Then

‖a ∗ (ĝ − g) − Kn + a′ ∗ (	̂�µn)‖ = op(n−1/2),

where

Kn(x) = 1

n − pn

n∑
j=pn+1

(
a(x − Yj ) − E[a(x − Yj )]), x ∈ R.

PROOF. Set ḡ = E[g̃] = g ∗ kbn . Since a ∗ g is smooth of order r and the
kernel k is of type (m,1) with m ≥ r , we obtain from Corollary 3 that

‖a ∗ ḡ − a ∗ g‖ = ‖(a ∗ g) ∗ kbn − a ∗ g‖ = o(br
n) = o(n−1/2).

Simple calculations yield a ∗ (g̃ − ḡ) = Kn ∗ kbn . Since a belongs to A1 ∩ A2 and
f has finite mean, it follows from (S) and result (b) in Section 4 that n1/2Kn is
tight in C0(R). Consequently, ‖n1/2(Kn ∗ kbn − Kn)‖ = op(1). In other words,

‖a ∗ (g̃ − ḡ) − Kn‖ = op(n−1/2).
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With an = a ∗ kbn , one verifies that

a ∗ (ĝ − g̃)(x) = 1

n − pn

n∑
j=pn+1

(
an(x − Ŷj ) − an(x − Yj )

)
, x ∈ R.

Now, let

µ̂n(x) = 1

n − pn

n∑
j=pn+1

Xj−1kbn(x − Yj ), x ∈ R.

Since ‖a′
n‖ = O(1), ‖a′′

n‖ = O(b−1
n ) and ‖a′′

n‖2 = O(b−1
n ), as shown in the proof

of Theorem 4, and since pnqnb
−1
n n−1/2 → 0, we obtain from Lemma 8 and a′

n =
a′ ∗ kbn that

‖a ∗ (ĝ − g̃) + a′ ∗ (	̂�µ̂n)‖ = op(n−1/2).

It follows from Lemma 5, ‖kbn‖ = O(b−1
n ) and ‖kbn‖1 = O(1) that∫

E
[‖µ̂n(x) − E[µ̂n(x)]‖2]

dx = Op(pnb
−1
n n−1).

Since µn(x) = E[µ̂n(x)], we find that

‖a′ ∗ 	̂�(µ̂n − µn)‖ ≤ ‖a′‖2|	̂|‖µ̂n − µn‖2 = Op(p1/2
n q1/2

n b−1/2
n n−1)

= op(n−1/2).

The desired result follows from the above. �
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